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Guidepath-based transport systems is a pertinent abstraction for the traffic that is generated in many
contemporary applications, ranging from industrial material handling and robotics, to computer game
animations and the qubit transport systems employed in quantum computing. A particular problem
that must be effectively addressed for the systematic operation of these systems, is the preservation
of their “liveness”, i.e., the preservation of the ability of the system agents to complete their current

Keywords: assignments and engage successfully in similar assignments in the future operation of the system. This
Guidepath-based transport systems paper provides a systematic and comprehensive characterization of the notion of “liveness” for the
Liveness

entire spectrum of the aforementioned transport systems, and it further investigates the implications
of this characterization for the deployment of maximally permissive liveness-enforcing supervision
for the underlying traffic. It is shown that the computational complexity of the sought supervisors
is contingent upon certain structural and operational attributes of the considered transport systems,
that define, thus, a useful taxonomy for these environments. The paper proposes effective and efficient
liveness-enforcing supervisors for each member of this taxonomy. Furthermore, the concluding part
of the paper indicates how the obtained results can be integrated in a broader control framework for
the considered transport systems that will also address time-related performance considerations for
these environments, like the maximization of their throughput.

© 2019 Elsevier Ltd. All rights reserved.
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1. Introduction towards their various destinations into a sequential resource al-
location process (Reveliotis, 2017), with the negotiated resources
being the edges - also known as “zones” - of the guidepath
network. A complete characterization of the structure and the
traffic dynamics of the considered transport systems is provided
in Section 2.

From an application standpoint, the traffic problems outlined
in the previous paragraph arise naturally in the real-time op-
erations of various automated unit-load material handling (MH)
systems, like the AGV, the overhead monorail and the complex
crane and gantry systems that are used in many production
and distribution facilities (Heragu, 2008; Weiss, 1996). They also
arise in the physical medium that implements the various el-
ementary operations taking place in the context of quantum

Guidepath-based transport systems and the problem of their
liveness enforcing supervision: This paper concerns the traffic
that is generated by a set of agents circulating on a connected
graph which is known as the “(supporting) guidepath network”.
The “mission” trips of these agents on the guidepath network are
specified by edge sequences that must be visited by the agents
in the indicated order. Furthermore, during their trips to these
destinations, the agents must observe certain regulations that are
dictated by safety considerations, and essentially stipulate that
two agents cannot cohabitate on the same edge of the guidepath
network at any point in time during their trips. This stipulation is

enforced by a traffic coordinator, and it turns the agent traveling
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computing (Daugherty, 2017; Daugherty, Reveliotis, & Mohler,
2019). In addition, similar guidepath-based traffic models have
drawn recently the attention of the robotics community (e.g., Ma,
Tovey, Sharon, Kumar, and Koenig (2016), Sajid, Luna, and Bekris
(2012), Standley and Korf (2011) and Yu and LaValle (2016)),
while, in the past, they have been studied even by the broader
Computer Science community in the context of some classical
games like the, so called, “15-puzzle” where 15 uniquely num-
bered “pebbles” located on a 4 x 4 grid have to be re-arranged
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in the row-major order by “pebble sliding” through the single
unoccupied vertex of the grid (Kornhauser, Miller, & Spirakis,
1984; Wilson, 1974).

A primary concern for the zone allocation function that takes
place in the various instantiations of the aforementioned trans-
port systems, is the establishment of a high throughput for their
operations, through the facilitation of expedient traveling of the
running agents to their various destinations. This objective is at-
tained through (i) a pertinent coordination of the agent traversal
of the various contested edges, and (ii) the effective utilization
of the routing flexibility that is defined by the topology of the
underlying guidepath network (Daugherty et al.,, 2019; Reveliotis,
2019). But an additional important concern for the traffic coor-
dinator and the corresponding resource allocation process, is to
preserve the “liveness” of the generated traffic, i.e., the ability of
all the system agents to complete their current assignments and
engage successfully to similar assignments in the future operation
of the system. In the considered transport systems, this ability
can be compromised by a potential formation of deadlocks and
livelocks among the traveling agents. Hence, the system con-
troller must restrict the system traffic so that no such formation
ever takes place in it. Furthermore, this restriction must be of a
minimal nature, so that it does not compromise unnecessarily the
time-based performance of the system.

A brief, critical review of the literature on the notion of “live-
ness” of the considered transport systems and the correspond-
ing supervisory control problem: In fact, the issues of liveness
and liveness-enforcing supervision for various instantiations of
the considered transport systems have already drawn the at-
tention of the control-systems community. In particular, traffic
coordination of AGV systems for deadlock avoidance has been a
“pet” application for researchers that work on supervisory con-
trol (SC) of Discrete Event Systems (DES); the works of Brandin
(1996), Girault, Loiseau, and Roux (2016), Krogh and Holloway
(1991) and Wonham (2006) provide some indicative examples of
this activity. Furthermore, the same problem of deadlock avoid-
ance in AGV systems has a prominent position in the research
activity of a particular group of researchers within the DES com-
munity that works on the broader problem of liveness-enforcing
supervision of complex resource allocation systems (RAS) (Rev-
eliotis, 2017); some indicative examples coming from this line
of work are those presented in Fanti (2002), Reveliotis (2000),
Reveliotis and Roszkowska (2010), Roszkowska and Reveliotis
(2008) and Wu and Zhou (2001).

But those past works and their results have appeared in the
corresponding literature in a fragmented and scattered man-
ner. More specifically, the first set of the aforementioned works
have used the problem of deadlock avoidance in guidepath-based
transport systems primarily as an “application example” that
demonstrates the efficacy and the application potential of some
more general DES SC theory developed in those works. On the
other hand, the works that focus more explicitly on the particular
problems of liveness assessment and enforcement for the consid-
ered transport systems, tend to target specific configurations of
these systems, customizing their results to the particular features
of these configurations, and seeking to provide practical solutions
that are synthesized around these features rather than a complete
formal theory. Furthermore, while it is generally acknowledged
that the resulting SC problems are “hard”, there has been only
limited effort to formally characterize the complexity of these
problems and the factors that shape this complexity.

The intended contribution and the basic structure of this
work: This work seeks to address the theoretical gaps that were
described in the previous paragraph by (i) providing a systematic
investigation of the aforementioned problems of assessing and

enforcing liveness in the considered transport systems, in the
least restrictive manner, and (ii) characterizing the computational
complexity of these problems. In some more specific terms, the
developments that are presented in this manuscript support the
following triple role: (a) First, they define a unifying framework
for the investigation of the targeted liveness-related problems
across the various instantiations of the considered transport sys-
tems, and use this framework as an instrument for the further
organization of the corresponding results that already exist in
the literature. (b) In addition, they complement those past re-
sults with new results regarding the considered traffic-liveness
problems and their computational complexity that pertain to
guidepath-based transport systems not addressed by the past
literature. (c) Finally, they also identify a number of additional
open problems that should get the attention of the corresponding
research community.

As it will be revealed in the subsequent developments, the
presented results are strongly contingent upon certain structural
and operational characteristics of the underlying transport sys-
tem. Among these characteristics, some of the most prominent
ones are: (i) the ability of an agent to freely reverse its motion on
any given edge of the guidepath network; (ii) the availability of
a “depot” location where the agents retire upon the completion
of their mission trips; and (iii) the degree of prespecificity of
the routes to be followed by the traveling agents as they try to
reach their target nodes. These three attributes define the three
“dimensions” of a taxonomy that will be instrumental for the or-
ganization and exposition of the presented material. We elaborate
further on these three attributes and the induced taxonomy in
Section 2, where we provide a more systematic description of the
guidepath-based transport systems considered in this work.

Finally, in view of the above positioning of the paper con-
tent and its intended contribution, the rest of it is organized
as follows: Section 2 introduces the guidepath-based transport
systems considered in this work in terms of their structural and
operational elements, formalizes the taxonomy of these systems
along the lines that were discussed in the previous paragraph,
and introduces the basic notion of traffic liveness. Sections 3 and
4 provide the main results of the paper on liveness assessment
and preservation, organizing them along the primary axes of the
aforementioned taxonomy. Section 5 concludes the paper, and
suggests some directions for future work. In addition, the main
results of the paper are summarized in a structured manner in
an Appendix A, for the readers’ convenience. On the other hand,
due to the page limitations that are imposed to this publication,
some of the proofs of the supported results are only sketched in
the manuscript, while the complete versions of these proofs are
provided in an electronic supplement that is accessible through
the author’s personal website. Finally, we also notice, for com-
pleteness, that a preliminary, much more concise version of this
work, has appeared in Reveliotis (2018).

2. The considered guidepath-based transport systems, a useful
taxonomy, and the fundamental notion of traffic liveness

The basic abstracting ingredients of the guide-path-based
transport systems considered in this work: The basic structure
of the guidepath-based transport systems considered in this work
is formally represented by a tuple (G, .A), where:

(1) G = (V,E) is an undirected, connected graph' that rep-
resents the supporting “guidepath network”. More specif-
ically, each edge e € E of graph G represents a “zone” of

1 We remind the reader that a graph G is undirected if each of its edges does
not have a sense of direction associated with it, and that an undirected graph
G is connected, if for every pair of vertices vy, v,, there is a “path” of edges, 7,
that connects these two vertices.
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the underlying guidepath network that can be traversed
by a traveling agent in either direction, but it cannot be
occupied by more than one agent at any time. Hence, the
guidepath edges e € E are “reusable resources” of the
considered traffic system, in the spirit of Reveliotis (2017),
and their allocation to the system agents is dynamically
controlled by a traffic coordinator.

(2) A ={ay, ..., ay} is the set of agents that circulate in this
system. Agents execute “mission” trips that are externally
specified and are elaborated in a later part of this section.
Furthermore, these “mission” trips are continually updated
as new “service requirements” are dynamically posed to
the underlying transport system.

Example. As a concretizing example of the above abstraction,
consider the familiar Automated Guided Vehicle (AGV) systems
that are used in various production and distribution facilities
(Heragu, 2008). In this case, the traveling agents a € A are the
system AGVs, which are used to transport materials among the
various locations of the facility. At any point in time, each vehicle
might be assigned a sequence of such transport tasks that must
be executed in the specified order by visiting the corresponding
pickup and delivery locations. The transport-task sequences as-
sociated with each vehicle are also dynamically updated as new
transport requirements arise in the underlying system.

The guidepath network for these AGV systems is defined either
physically (e.g., through some colorful duct tape that is deployed
on the shop-floor and must be traced by the vehicle scanners),
or virtually (e.g., through some radio signals that must be traced
and processed by the vehicle sensors). The exact specification
of the system guidepath network, in any of the aforementioned
manners, intends to confine the AGV traffic in particular corridors
and, in this way, separate it from the remaining activity that takes
place in the surrounding environment, due to safety and other
efficiency considerations. Finally, in an effort to avoid collisions
among the traveling vehicles, the various corridors of the guide-
path network are split into “zones” that must be occupied by at
most one AGV at any point in time; these zones define the edges
e € E of the abstracted guidepath network G.

A classification of the considered transport systems: Next, we
introduce some additional attributes that qualify further the op-
eration of the considered transport systems, and induce a taxon-
omy for these systems that will help us structure the
investigation of the control problems that are considered in this
work.

I. “Open” vs. “closed” guidepath-based transport systems: In
many practical instantiations of the considered transport systems
- including most of the AGV systems that were described in
the above example - the guidepath network avails of a “depot”
location where the system agents can retire upon the completion
of their running missions, and possibly receive some maintenance
service, recharge their batteries, etc. For the representational
needs of this work, we shall model this “depot” location by
augmenting the zone-modeling edge set E with a set of | A| self-
loop edges, one for each agent a € A4, all connected to the same
vertex v,. Vertex v, will be called the “home” vertex. Also, the
self-loop edge corresponding to agent a will be denoted by ep(a),
will be used exclusively by agent a, and it will referred to as the
“home” edge of agent a.?

2 We want to emphasize that the modeling of the “depot” location through
the vertex v, and the edges ey(a), a € A, as described above, intends to capture
the fact that the agents retiring in this location do not interfere with the traffic
that takes place in the main guidepath network that is defined by the edge
set E of the graph G that was introduced at the beginning of this section. The
presented model is just one of a number of models that can capture this effect,
and for the purposes of the subsequent analysis, all these models would be
equivalent.

In the following, guidepath-based transport systems that pos-
sess the “depot” location - or, equivalently, the “home” structure
- that was described in the previous paragraph, will be charac-
terized as “open”; the remaining ones will be said to be “closed”.
Furthermore, the presence of a “home” structure introduces a
“regenerative” element in the dynamics of the underlying traffic,
which will further function as a decomposing mechanism in the
study of the corresponding “liveness”-related problems that are
considered in this work. Hence, the above classification of the
considered transport systems into “open” and “closed” will play
a significant role in the developments of Sections 3 and 4.

I. “Reversible” vs. “irreversible” guidepath-based transport
systems: In some of the considered transport systems, agents a €
A can reverse the direction of their motion in their currently al-
located edge e, while in the remaining ones such motion reversal
is not possible. For instance, in many of the typical AGV systems
that have been deployed in various industrial settings, vehicles
are effectively moving only in one direction of their longitudinal
axis. And even in those cases where the system vehicles have a
substantial capability of “backing up”, such an operation might be
rendered cumbersome and unsafe due to the spatial constraints
that are imposed by the vehicle loads, their sensing capabili-
ties, etc. On the other hand, there are also robotic applications
where reversibility of the agent motion is practically feasible.
Furthermore, such motion reversibility is naturally supported in
the guidepath-based transport systems that abstract the qubit
traffic in quantum computing (Daugherty, 2017; Daugherty et al.,
2019), and the various games that have been studied in the CS
context (Kornhauser et al., 1984; Wilson, 1974).

In the following, we shall refer to the guidepath-based trans-
port systems that support reversibility of the agent motion in
their current zone as “reversible”, and to the remaining ones as
“irreversible”. For the purposes of the “liveness”-related stud-
ies that are pursued in this work, “irreversibility” is important
because it introduces a potential for the development of dead-
locks and livelocks. The simplest example of such a deadlock
is that caused by a number of traveling agents that converge
to a single junction from all possible directions. On the other
hand, “reversible” guidepath-based transport systems can cope
with such developing deadlocks by “backtracing” their moves
that led to those formations. Hence, the above classification of the
considered transport systems into “reversible” and “irreversible”
will also have a prominent role in the subsequent developments.

III. “Statically” vs. “dynamically”’-routed guide-path-based
transport systems: A natural, formal characterization of the
“mission” trip for any traveling agent a € A is through an edge
sequence X, = (eq,ey,...,ex); e € E, Vi = 1,...,k, that
constitutes the set of zones that must be visited by agent a in the
corresponding order. Furthermore, in open transport systems, it
is implicitly assumed that the last edge to be visited by agent a in
its current mission trip, is the corresponding “home” edge e(a).
And as already discussed, agent “mission” trips can be extended
dynamically, as new service requirements arise in the underlying
system.

When traveling from edge e; to edge e;.q, agent a will fol-
low a walk® between these two edges that is consistent with
the operational assumptions of the underlying transport system.
In many cases, the exact determination of the aforementioned
walks will take place in real-time, and it will be contingent
upon the prevailing traffic conditions. Guidepath-based transport
systems where the agent “mission” trips are fully defined and

3 We remind the reader that a walk in an undirected graph G is a sequence
(vo, €1, V1, ..., Vi_1, €, Vi, ..., Vk_1, €k, Vx) Where, for all i =1,...,k, edge e; is
incident upon the vertices v;_; and v;.
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maintained in this way, are characterized as “dynamically routed”.
Furthermore, it can be argued that dynamic routing is the most
natural routing scheme for the considered transport systems. But
in order to provide a comprehensive treatment of the notion of
“liveness” and its complexity in the considered transport systems,
we shall also consider an alternative routing scheme where the
agent routes are completely predetermined by an external entity.
In this case, the “mission” trip of each traveling agent a € A
is an externally specified walk W, that defines completely the
sequence of the edges e € E that this agent must traverse till the
completion of its trip; such a routing scheme will be characterized
as “static” in the following. Furthermore, in the following, we
shall restrict the study of “static” routing schemes into the class
of “open” transport systems only, and we shall further assume
that each of the aforementioned walks W,, a € A4, implicitly
terminates at the corresponding “home” edge ej(a).*

The notion of “traffic liveness” in the considered transport
systems and the role of the introduced taxonomy: In the op-
erational regimes for the guidepath-based transport systems that
were outlined in the previous parts of this section, traffic liveness
can be naturally defined as the preservation of the ability of each
traveling agent to complete its current “mission” trip, and engage
successfully in similar “mission” trips in the future operation of the
system.

Furthermore, as explained in the earlier parts of this section,
loss of liveness can result from an irreversible motion of the
system agents within their allocated edges, and the analysis of
the corresponding traffic dynamics can be affected by additional
attributes of the underlying transport system like the “open” or
the “closed” structure of its guidepath network, and the dynamic
or static nature of the routing scheme that is supported by it. In
the rest of this paper, we provide a formal characterization of
the “liveness” concept as it materializes in the various classes
of the taxonomy of the considered guidepath-based transport
systems that is induced by the aforementioned attributes, and
we also investigate the corresponding supervisory control (SC)
problems of liveness assessment and enforcement. We organize
these developments into two major sections, with the first sec-
tion focusing on dynamically routed guidepath-based transport
systems, and the second one dealing with their statically routed
counterparts.

3. Liveness characterizations and enforcement for dynami-
cally routed guidepath-based transport systems

3.1. Preamble

An abstracting finite state automaton: We begin the develop-
ments of this section, by formalizing further the basic motion
dynamics of dynamically routed guidepath-based transport sys-
tems by means of a finite state automaton (FSA) @ = (S, Q, f, So)
(Cassandras & Lafortune, 2008). A formal definition of the state
s of this automaton that serves the needs of the subsequent
analysis, is as follows:

Definition 1. At any point in time, the state s of the automa-
ton @ that will represent the untimed dynamics of the dynam-
ically routed guidepath-based transport systems introduced in
Section 2, is defined by the following two elements:

4 The notion of “static routing” is not easily defined in closed guidepath-
based transport systems, since agents will still have to move around after the
completion of their designated “mission” trips in order to permit the completion
of the “mission” trips of the other agents. Furthermore, static routing might
over-constrain the traffic dynamics in these environments, to the point that it
might not be possible to generate feasible routing plans.

(1) The placement of the system agents a € A on the edges of
the guidepath network G.

(2) The direction of motion of each agent a € A in its allocated
edge.

In the following, the distribution of the agents a € A over the
edges of the guidepath network G, in any given state s, will be
formally represented by the function €(-;s) : A — E, where
E = E, in the case of closed systems, and E = E U {exy(a) : a € A},
in the case of open systems. Also, the direction of motion of an
agent a € A with €(a; s) = {i, j} € E, can be formally expressed
by one of the two ordered pairs (i, j) and (j, i) (i.e., by assigning a
sense of direction to the underlying undirected edge {i, j}).

The event set Q that advances the state s of the considered
automaton @&, contains all those events q that advance a single
agent a € A from its current edge €(a; s) to a free neighboring
edge ¢/, under the further condition that this advancement is also
compatible with the direction of motion of the corresponding
agent a on its current edge €(a; s). Furthermore, in the case of
reversible systems, an event ¢ € Q might simply reverse the
direction of motion of an agent a € A in its current edge
€(a; s). Finally, all events g € Q are supposed to be controllable
by the supervisory controller that coordinates the traffic of the
considered transport system.

The state transition function f : S x Q — S of the automaton
@ provides a formal representation of the transitional dynamics
that are implied by the above definitions of state s and the event
set Q. Furthermore, following Cassandras and Lafortune (2008),
we assume f to be a partial function that is defined only for
those (s, q) pairs for which the corresponding state transition
is feasible under the operational assumptions that define the
complete dynamics of the underlying guidepath-based transport
system. We also extend f, in the standard manner, to the set
SxQ*, where Q* denotes the Kleene closure of Q (i.e., Q* consists
of all the finite sequences of elements of Q, including the empty
sequence ¢). And we use the notation R(s) to denote the states s’
of @ that are reachable from a given state s through the dynamics
that are defined by the extended function f; i.e, Vs’ € S, s’ €
R(s) & 3Jo €Q*:s =f(s,0).

Finally, in the tuple that defines the considered FSA @, s
denotes a generic initial state; this state will be given different
interpretations in different parts of the subsequent developments.

A formal characterization of liveness for dynamically routed
guidepath-based transport systems: The operational definition
of liveness that was provided in the closing part of the previous
section, when combined with the arbitrary structure of the “mis-
sion” trips that can be assigned to the system agents, motivate the
following characterization of “liveness” for the traffic dynamics
that are modeled by automaton &:

Definition 2. Consider the automaton @ abstracting the untimed
dynamics of a dynamically routed guidepath-based transport sys-
tem, and let sy € S be an arbitrary initial state for this automaton.
Then, the traffic that is represented by automaton @ is live, if and
only if

Vs € R(sg), Ya€ A, Ye€E, 3s' e R(s): e(a;s') =e

State liveness and maximally permissive liveness-enforcing
supervision for the considered transport systems: While
Definition 2 is motivated naturally from the operational dynamics
of the considered transport systems, it is not straightforwardly
testable on any given instantiation of these systems. A first step to
develop a more straightforward test is provided by the following
proposition.
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Proposition 3. Consider the FSA @ abstracting the dynamics
of a dynamically routed guidepath-based transport system, and let
So € S be an arbitrary initial state for this automaton. Then, the
resulting traffic that is represented by automaton @ is live if and
only if, for every state s € R(Sp), the state transition diagram (STD)
of the corresponding subspace R(s) contains a strongly connected
component ¥ (s) that satisfies the following condition:

V(a,e)e AXE, 38 e ¥(s):e(a;s ) =e

A complete proof for this proposition can be found in the elec-
tronic supplement for this paper. A brief exposition of the basic
logic of this proof is as follows: The sufficiency of the condition
of Proposition 3 for the liveness of the traffic of the underlying
transport system follows immediately from the content of this
condition, the controllability of the considered dynamics, and
Definition 2. On the other hand, in order to prove the necessity
part of Proposition 3, we consider the directed graph G that
is defined by the maximal strongly connected components of
the STD of the considered FSA & and their connectivity. By its
definition, the digraph G is acyclic. Furthermore, if the condition
of Proposition 3 does not hold, then, at any node n of G (or,
equivalently, maximal strongly component ¥ of the STD of @),
we shall be able to identify a pair (a, e) € A x E such that there is
no state s in ¥ with €(a; s) = e. Then, the only way that we can
possibly satisfy a request for placing the considered agent a on the
corresponding edge e, is by moving to some state s’ belonging to
some node n; of the subgraph of digraph G that emanates from
node n. We can repeat the above argument at the reached node 1/,
generally with a different pair (@', €’), reaching a new node n” in
the subgraph of G that emanates from node n’. But since digraph G
is finite and acyclic, any such sequence of advancements through
it will be finite, and therefore, eventually we shall reach a state §
and a pair (a, &) that will be unattainable from state 3.

The result of Proposition 3 motivates naturally the following
definition:

Definition 4. A state s € S of the FSA & modeling a dy-
namically routed guidepath-based transport system (G, .A) will
be characterized as live if and only if it satisfies the condition of
Proposition 3. The set of live states of FSA @ will be denoted by S;.

Furthermore, for any initial state sy € S, the maximally permis-
sive liveness-enforcing supervisor (LES) for this transport system is
the supervisor that admits any state s € R(sp) if and only if s € S;.

On the other hand, assessing state liveness for any given
traffic state s through the characterization of Proposition 3 re-
quires a global view of the corresponding subspace R(s), and
therefore, this test will not be easily tractable for most practical
instantiations of the considered transport systems. Hence, in the
remaining parts of this section, we investigate possible restate-
ments of the liveness condition of Proposition 3 that take into
consideration additional structural and operational attributes of
the underlying transport system, and, in this way, they might end
up being more easily testable than the original condition of this
proposition.

A necessary condition for the traffic liveness of irreversible,
dynamically routed guidepath-based transport systems: We
close this subsection by stating a structural condition that must
be satisfied by the guidepath graph G in order to be able to
preserve traffic liveness in any irreversible, dynamically routed
guidepath-based transport system. This condition is formally
stated as follows:

Conglition 1. The guidepath graph G has a minimal vertex degree
of 2.

5 We remind the reader that the degree of a vertex v of an undirected graph
G is the number of edges that are incident to vertex v.

The necessity of this condition for the traffic liveness of any ir-
reversible, dynamically routed guidepath-based transport system
results from the fact that, under the irreversibility assumption,
any agent accessing a vertex v of G of degree 1 would get
deadlocked at this location.

3.2. An alternative characterization of state liveness for open, dy-
namically routed guidepath-based transport systems

Deriving an alternative characterization of state liveness for
open, dynamically routed guidepath-based transport systems:
In the case of open, dynamically routed guidepath-based trans-
port systems, we can also define the notion of the “home” state sy,
in the semantics of the underlying FSA &, as follows:

Definition 5. The “home” state s;, of an open, dynamically routed
guidepath-based transport system (G, .A) is the state where Va €
A, €(a; sp) = en(a).

The “home” state s, plays a central role in the characterization
of state liveness in open, dynamically routed guidepath-based
transport systems. We proceed to establish this result, starting
with the following proposition:

Proposition 6. The “home” state s, of a reversible, open, dy-
namically routed guidepath-based transport system is live. Also,
the “home” state s, of an irreversible, open, dynamically routed
guidepath-based transport system that satisfies Condition 1 is live.

A formal proof for the results of Proposition 6 can be provided
by showing that, under the stated conditions, any single agent
a € A can be taken to any edge e € E of the underlying guidepath
graph G and returned successfully to its “home” edge ey(a). Then,
state s, satisfies the liveness condition of Proposition 3. Filling in
the details of this argument is quite straightforward, and it is left
to the reader.

Proposition 6 subsequently leads to the following theorem
that provides an alternative, very practical characterization of
liveness in open, dynamically routed guidepath-based transport
systems.

Theorem 7. Astate s € S of an open, dynamically routed, reversible
guidepath-based transport system is live if and only if it is co-
reachable to the home state sy, (i.e., sy € R(s)). Also, a state s € S of
an open, dynamically routed, irreversible guidepath-based transport
system is live if and only if it is co-reachable to the home state sy
and the underlying guidepath graph G satisfies Condition 1.

A statement and proof of the result of Theorem 7 for the case
of open, dynamically routed and irreversible guidepath-based
transport systems appeared recently in Reveliotis and Masopust
(2019b). We also provide a complete proof for Theorem 7 in
the electronic supplement for this paper. The necessity of the
co-reachability condition of Theorem 7 for the liveness of the
considered state s results from (i) the fact that, according to
Definition 2, any agent a with €(a; s) # ex(a) must be able to
reach edge ep(a), and (ii) the further realization that any such
advancement of agent a to edge ep(a) can take place without
relocating any other agent a’ with €(a’; s) = ep(a’). The sufficiency
of the co-reachability condition of Theorem 7 for the liveness of
the considered state s results from the liveness of state s, that
was established in Proposition 6.

Implications of Theorem 7 for the liveness and the liveness-
enforcing supervision of reversible, open, dynamically routed
guidepath-based transport systems. The next corollary is a fur-
ther important implication of Theorem 7.
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Fig. 1. The left part of the figure depicts a traffic state of an irreversible, open,
dynamically routed guidepath-based transport system that contains a deadlock.
In the adopted representation, the edge ¢(a; s) of a traveling agent a € A in the
depicted traffic state s, and the direction of its motion in this edge, are jointly
represented by a directed arc that is labeled by agent a. The right part of the
figure depicts a state from the same class of systems that contains no deadlocks
but it is not live, since from the depicted state, the formation of a deadlock is
unavoidable. We also notice, for completeness, that in both parts of this figure
we have depicted the “home” vertex vy, but we have omitted the “home” edges
en(a), a e A.

Corollary 8. In an open, dynamically routed, reversible guidepath-
based transport system, every state s € S is live.

To the best of our knowledge, a first explicit statement and
proof of the result of Corollary 8 appeared only recently in Daugh-
erty, Reveliotis, and Mohler (2017), Daugherty et al. (2019), and
the proof is reproduced in the electronic supplement of this
paper. The proof relies on the following two facts: (i) In open, dy-
namically routed, reversible guidepath-based transport systems,
it is always possible to reach state s, from any state s by routing
agents a with €(a; s) # ep(a) to their corresponding edges ex(a)
one at a time, giving priority to those agents that are closer to
vertex vy. (ii) Also, in the considered class of transport systems,
we can always reach any valid traffic state s from state s;, by
routing agents a € A to their corresponding destinations one at a
time, starting with those agents that are heading to the furthest
destinations.

From a more practical standpoint, Corollary 8 further implies
that in open, dynamically routed, reversible guidepath-based
transport systems, preservation of the traffic liveness is imme-
diately guaranteed by the system structure and dynamics, and,
therefore, there is no need for any externally imposed LES.

Implications of Theorem 7 for the liveness and the liveness-
enforcing supervision of irreversible, open, dynamically routed
guidepath-based transport systems. As already remarked in the
earlier parts of this paper, in this class of guidepath-based trans-
port systems, traffic liveness can be compromised by the forma-
tion of deadlocks among the traveling agents. We formally define
this notion of “deadlock” as follows:

Definition 9. In the dynamics of the FSA & that models a dy-
namically routed, irreversible guidepath-based transport system,
a set AP C A of the system agents is in deadlock if every possible
advancement of each agent a € AP in the underlying guidepath
graph G is blocked by the presence of another agent a’ € AP.

Fig. 1(a) depicts such a deadlock formation. Furthermore, ir-
reversible, open, dynamically routed guidepath-based transport
systems will also possess an additional set of non-live traffic
states that will not contain any deadlocks, but deadlocks will be
unavoidable from these states. Fig. 1(b) depicts such a deadlock-
free but non-live traffic state.

Detection of deadlock in any given traffic state s is an easy
task. A simple algorithm for this task will start with the given
traffic state s, and it will iteratively scan the considered traffic

state in order to detect an agent a € A that can advance to
a neighboring edge under the applying zone-allocation protocol.
Every time that such an agent is detected, it will be removed from
the system, and its edge will be released for possible usage by
the remaining agents. If all agents a € A are removed through
the aforementioned iterations, then the considered state s is
deadlock-free. Otherwise, the set of agents that were not removed
by the algorithm, defines one or more deadlocks in s.

On the other hand, detecting a deadlock-free non-live state
might not be an easy task. In fact, to the best of our knowl-
edge, the computational complexity of the decision problem of
assessing the state liveness of any given traffic state s of an
irreversible, open, dynamically routed guidepath-based transport
system remains an open problem.®

“Ordered” states and Banker’s-type algorithms for open, dy-
namically routed, irreversible guide-path-based transport sys-
tems. The current lack of a polynomial algorithm for assessing
traffic-state liveness for open, dynamically routed, irreversible
guide-path-based transport systems, has been addressed by the
corresponding research community through the adaptation to
this problem of the notion of “ordered state” and Banker’s al-
gorithm (Dijkstra, 1965; Reveliotis, 2000). These results enable
computationally efficient liveness-enforcing supervision for the
considered transport systems, at the expense of non-maximal
permissiveness.

In the considered transport systems, an “ordered” traffic state
is formally defined as follows:

Definition 10. A state s of an irreversible, open, dynamically
routed guidepath-based transport system satisfying Condition 1
is “ordered” if there exists an ordering [-] : {1,..., |A|} — A,
of the agent set A4, such that each agent ap;, i=1,..., |A], can
advance to its “home” edge ep(ay;) from its current edge €(qay;; s)
while agents a;;, j =i+ 1,...,|A|, maintain the original edges
€(ay;); s) that they held in state s.

For further reference, we shall denote the set of ordered states
by S,. Establishing that any given state s € S is ordered, can
be performed through the construction of an ordering for the
traveling agents in that state that satisfies the conditions of
Definition 10. The search for such an ordering of the agent set
A can be performed in a “greedy” manner (i.e., without the need
for any backtracking) since the placement of any agent a € A at
the “home” edge ep(a) increases the set of free edges that can
be used by the remaining agents a’ for reaching their “home”
edges ep(a’). The algorithmic details for organizing such a search
scheme can be found in Reveliotis (2000), and as already noticed,
this algorithm can be perceived as a (nontrivial) adaptation of
Dijkstra’s Banker’s algorithm to the considered problem context.

Furthermore, in Lawley, Reveliotis, and Ferreira (1998) it is
shown how the set of ordered states that is admitted by any
efficient realization of Banker’s algorithm, can be effectively ex-
panded into the complement state set S \ S, through controlled
partial search that will guarantee the return to state set S, within
a bounded number of steps.

Finally, it is easy to see that the “home” state s;, and also
any state s that has only a single traveling agent on some edge
e € E, are ordered. This remark further implies that it is, indeed,
possible to attain traffic liveness while operating within the set of

6 Some recent partial results on this problem can be found in Reveliotis and
Masopust (2019a, 2019b, 2020). These works have identified important special
structure for the considered traffic states s that enables liveness assessment
of polynomial complexity with respect to the size of the underlying transport
system, and for the remaining cases, they also provide a liveness assessment
algorithm with an empirical computational complexity that is expected to be
very benign.
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ordered states, S,. More specifically, a traffic controller that will
start the underlying traffic system from its natural initial state
sp, and will use the algorithmic tools provided in Lawley et al.
(1998) and Reveliotis (2000) in order to resolve the admissibility
of any tentative transition to a new traffic state, will be able to
maintain the operation of the underlying guidepath-based trans-
port system in a subset S’ of its state space S with the following
properties: (a) S, € S’ C §;; (b) §' is efficiently recognizable;
and (c) the resulting supervision will ensure live operation for
the generated traffic.

3.3. An alternative characterization of state liveness for closed, dy-
namically routed, reversible guidepath-based transport systems

A structural condition necessary for the liveness of this class
of transport systems: We start our discussion for this class
of guidepath-based transport systems by noticing that, for any
meaningful realization of these systems, we must have |A| <
|E| since, otherwise, no agent motion is possible. This inequality
implies that there is always a free edge in the guidepath network;
to facilitate the subsequent discussion, we shall refer to such a
free edge as a “hole”. Then, we have the following lemma:

Lemma 11. Consider a traffic state s of a closed, reversible, dynam-
ically routed guidepath-based transport system with |A| < |E|, and
an edge e € E. Then, there is a state s' € R(s) in which edge e is a
“hole”.

The gist of the argument that establishes the result of
Lemma 11, is the observation that anyone of the nearest “holes”
to edge e in state s can be “transferred” to edge e by advancing
each agent on the path leading from edge e to the considered
“hole” by one edge; the detailed formal proof is provided in the
electronic supplement.

But while the condition |A| < |E| guarantees the effective
move of a “hole” to any edge of graph G, it is not sufficient to
ensure that any agent a € .4 can move from its current location
to a target destination. A counter-example establishing the truth
of this statement is presented in Fig. 2. In the depicted situation,
agent a; wants to move to edge e,, and it also holds that |A| =
4 < |E| = 5. But it is easy to check that the required transfer of
agent a, is not feasible.

The problem in the example of Fig. 2 arises from the presence
of the path eje,. This path is characterized by the fact that all
of its edges do not belong on any cycle’ of the corresponding
graph G, and in the following discussion, we shall characterize the
maximal paths of graph G that possess this property as “singular”.
Also, we shall denote the set of singular paths in graph G by Ps,
and for any path p € Ps, |p| will denote the “length” of p as
defined by the number of its edges.

Then, our main result for the considered class of guidepath-
based transport systems can be stated as follows.

Theorem 12. In the class of closed, reversible, dynamically routed
guide-path-based transport systems, a sufficient condition guaran-
teeing that any agent a € A can move from its current edge e to
any other edge ¢ € E of the guidepath network G is that |A] <

|El — 1 — maxpepg{Ipl}.

7 Following standard terminology of graph theory, in this work we define
a cycle in an undirected graph as a simple path with coinciding starting and
ending nodes. Furthermore, a path is simple if it does not revisit any of its
vertices (except possibly the first and the last ones, in the case of a cycle).

The proof of Theorem 12 is by construction of an event se-
quence that will effect the requested agent transfer; the details
of this construction are rather technical, and they are provided
in the electronic supplement of this paper. Furthermore, in the
case where Ps = ¢, the resulting condition of Theorem 12 is also
necessary for ensuring the ability of any agent a € A to move
from its current edge e to any other edge e’ € E of the guidepath
network G. On the other hand, when Ps # #, the condition of
Theorem 12 is only sufficient; characteristically, the reader can
check that in the example of Fig. 2, the circulating agents can
reach any edge of the depicted guidepath graph as long as |A| <
|E| —max,epg {|pl}. Finally, the perusal of the proof of Theorem 12
further implies that the condition | A| < |E| — 1 — maxyepg{|pl} is
also necessary as long as there exists a maximal-length singular
path p that connects two cyclical components, G; and G;, of graph
G.

The implications of Theorem 12 for the liveness-enforcing su-
pervision of the corresponding class of transport systems:
The condition of Theorem 12 is a structural condition for the
underlying guidepath-based transport system that can be vali-
dated off-line. Furthermore, once this condition is established,
the construction of the event sequence that is sought in the
proof of Theorem 12 also provides the necessary mechanism for
transferring any agent a € A from its current edge €(a; s) to a
target edge e’. Furthermore, this mechanism involves only the
identification of (shortest) paths for the necessary transfers of
agent a and of the “holes” that facilitate the agent motion during
the various legs of its trip, and therefore, it is also computationally
efficient.

We close this subsection by noticing that the result of
Theorem 12 resembles, in its basic structure, the result of
Corollary 8 for the open, dynamically routed and reversible sub-
class of the considered transport systems: in both cases, once
some structural condition for the underlying guidepath-based
transport system has been established, the liveness of the gen-
erated traffic is immediately guaranteed.

3.4. An alternative characterization of state liveness for closed, dy-
namically routed, irreversible guidepath-based transport systems

As in the case of open and irreversible, dynamically routed
guidepath-based transport systems, closed and irreversible, dy-
namically routed guidepath-based transport systems need more
active real-time supervision for ensuring the liveness of the un-
derlying traffic. A set of results concerning the structural charac-
terization of state liveness in this class of transport systems was
originally developed in Roszkowska and Reveliotis (2008). In this
section, we overview the main points of these past developments,
and we also discuss their implications for the liveness-enforcing
supervision of the corresponding class of transport systems.

The PDG-based representation of the traffic state and the in-
duced notion of a “chained” traffic state: Central in the de-
velopments of Roszkowska and Reveliotis (2008) is a convenient
representation of the traffic state s through a partially directed
graph (PDG) G/(s) that is defined as follows®:

Definition 13. Given a state s of the considered class of
guidepath-based transport systems, the corresponding PDG G'(s)
is induced from state s and the guidepath graph G, by substituting
the edge €(a; s) of G, for each agent a € A, with a directed edge
that indicates the orientation/direction of motion of agent a on
this edge.

8 In fact, the notion of PDG G/(s) that is introduced in Definition 13 was
already used in the representation of the two states that are depicted in Fig. 1.
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Fig. 2. A counter-example establishing that, for closed, dynamically routed, reversible guidepath-based transport systems, the condition |.A| < |E| is not adequate
for ensuring the ability of an agent a € A to advance from its current edge e to any target edge e’.

Next, we introduce a series of concepts that are defined on
the PDG G'(s) and are instrumental for communicating the main
results of this section; the reader is referred to Fig. 3 for a more
concrete demonstration of the most involved of these concepts
and their accompanying definitions.

A (simple) path p in PDG G'(s) is defined as any (simple)
path p in the original graph G where, however, all the directed
edges introduced in the definition of G'(s) have the same sense
of direction. Furthermore, a cycle c in G/(s) is a simple path with
coinciding initial and terminal nodes. A joint between two cycles
c and ¢’ is a simple path that is a sub-path for both ¢ and ¢’. On
the other hand, a pass between two cycles ¢ and ¢’ is a path of
the PDG G'(s) with its first node lying on c, its last node lying on
¢/, all of its edges being undirected, and with none of its edges
belonging on any cycle of G'(s). Finally, the next set of concepts
are at the core of the sought characterization of liveness for the
considered class of guidepath-based transport systems:

Definition 14. A chain in PDG G'(s) is the subgraph defined by
a sequence ch = {(c1,P2,C2,P3,-.-,Pn, Cn), N > 1, such that
(i)c, i = 1,...,n, are cycles, (ii) p;, i = 2,...,n, are simple
paths, and (iii) each path p; is a joint or a pass between cycles
¢i—1 and ¢;. Two edges e, ¢’ € E are chain-connected - or, simply,
chained - if there exists a chain that contains, both, e and e'.
Furthermore, PDG G'(s) and the corresponding state s are said to
be “chained” if every two edges e, ¢’ € E are chained.

Chain connectivity defines a relationship in the edge set E that
is symmetric and transitive, and the subgraphs of G'(s) that are
induced by the maximal chains of E are the chained components
of G/(s). Also, the PDG C(s) that is obtained from G'(s) by replacing
each of its chained components by a simple node, is called the
condensation of G'(s). Obviously, chained PDGs G'(s) have conden-
sations that correspond to a single node. Finally, Roszkowska and
Reveliotis (2008) also provide an efficient algorithm for obtaining
the condensation C(s) for any given PDG G'(s).

A structural characterization of state liveness for the con-
sidered transport systems: In view of the above definition of
chain connectivity and of chained states, and considering also the
notion of the singular paths p € Ps of the guidepath graph G
that was introduced in Section 3.3, we can state the main result
of Roszkowska and Reveliotis (2008) that is of interest to this
work, as follows:

Theorem 15. In a closed, dynamically routed and irreversible
guidepath-based transport system with |A| < |E| — Zpsps Ipl—2,a
given state s is live if and only if the corresponding set R(s) contains
a chained state s'.

In Roszkowska and Reveliotis (2008) it is also argued that the
condition |A| < |E| — Zpep Ip| — 1 is necessary for being able
to establish traffic liveness for closed, dynamically routed and
irreversible guidepath-based transport systems, and furthermore,
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(a) A PDG G(s) and the "chain" structure
that is recognized in it.

’

An unavoidable deadlock
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(b) The condensation C(G(s)) of the above
PDG G(s), and its u—connected components

Fig. 3. The content of this figure is adapted from Roszkowska and Reveliotis
(2008), and it exemplifies the PDG-related concepts and definitions that are
provided in Section 3.4. We also notice, for completeness, that the concept of a
“u-connected component” of the condensation graph c(s) is defined by a chain
of this graph together with all the paths of free edges that are incident upon
this chain; but this concept is not explicitly necessary for the statement of the
key result of Section 3.4.

the case of | A| = |E|—Zl3673 |p|—1 can give rise to certain config-
urations with unavoidable livelocks. Hence, the condition |A] <
|E| — Zpeps Ip| — 2 that is eventually used in the statement of

Theorem 15, can be perceived as practically necessary for being
able to establish live traffic in the considered class of transport
systems.

The computational complexity of the state-liveness character-
ization of Theorem 15 and its implications for the liveness-
enforcing supervision of the considered class of transport
systems: Currently we do not avail of an efficient test to check the
reachability of a chained state s’ from any given state s that might
arise in the considered class of transport systems. In fact, to the
best of our knowledge, the characterization of the computational
complexity of this particular decision problem remains an open
problem. In view of this limitation, Roszkowska and Reveliotis
(2008) proposes to establish the liveness of the considered class
of transport systems by confining their operation in states that
are either chained or semi-chained; the latter are obtained from
chained states by transferring a single agent between two cycles ¢
and ¢’ over a pass p that connects these cycles. The developments
of Roszkowska and Reveliotis (2008) for the proof of Theorem 15
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guarantee that the aforementioned restriction will maintain the
liveness of the underlying traffic. Of course, the resulting LES
is not maximally permissive anymore, but such a restriction is
similar, in spirit, to the restriction that is imposed by the concept
of the “ordered” state in the case of open, dynamically routed,
irreversible guidepath-based transport systems.’

4. Liveness characterizations and enforcement for statically
routed, open guidepath-based transport systems

Characterizing liveness in statically routed, open guidepath-
based transport systems: In this section, we provide a brief
coverage of the notion of “traffic liveness” and its enforcement in
the context of statically routed, open guidepath-based transport
systems. We start by reminding the reader that, in these systems,
a “mission” trip for any traveling agent a € A is defined as a
walk W, on the guidepath graph G that starts from the current
position of agent a in G and ends at its “home” edge ep(a). In
particular, a complete “mission” trip for any agent a € A is a
walk that originates and ends at the corresponding “home” edge
en(a). In this operational regime, liveness implies the preservation
of the ability of each agent a € A to execute successfully each walk
W, that is assigned to it, (starting from its “home” edge ey(a) and
ending up at the same edge).

Furthermore, as in the case of open, dynamically routed
guidepath-based transport systems, we shall define the “home”
traffic state s, of a statically routed guidepath-based transport
system as the state where all agents a € A are in their “home”
edges ex(a).

Then, we can easily see that when the system is started at
state sy, any set of walks {W,;,a € .A} that are compatible
with the topology of the underlying guidepath network G and
the motion dynamics of the system agents, will be executable
by having the agents performing their corresponding walks one
at a time. Hence, as in the case of open, dynamically routed
guidepath-based transport systems, preservation of traffic liveness
is tantamount to preservation of reachability of the “home” state sy
in the underlying traffic dynamics (cf. Theorem 7 in Section 3.2);
traffic states that satisfy this reachability property, (once again) will
be characterized as “live”.

However, in the case of statically routed, open guidepath-
based transport systems, the reachability of the “home” state s
that characterizes any live traffic state s, must be attained under
the more restricted dynamics that result from the confinement
of each agent a € A on a specific walk W, of the underlying
guidepath graph G. As we shall see in the rest of this section, this
confinement has some very strong implications for the supervi-
sory control problems of assessing and enforcing traffic liveness
in this particular class of transport systems.

The computational complexity of assessing traffic-state live-
ness in statically routed transport systems: For statically routed
guidepath-based transport systems, the following result was re-
cently established in Reveliotis and Masopust (2019b).

Theorem 16. The problem of assessing the liveness of any given
traffic state s of a statically routed, open guidepath-based transport
system is NP-complete in the strong sense.

9 Also, the techniques that have been developed in Reveliotis and Masopust
(2019a, 2019b, 2020) for assessing state liveness in open, dynamically routed,
irreversible guidepath-based transport system might be adaptable to the corre-
sponding problem of state-liveness assessment in their closed counterparts; this
is another issue currently open to further investigation.

The above result was established in Reveliotis and Masopust
(2019b) through a polynomial reduction (Garey & Johnson, 1979)
from the decision problem of “assessing the state safety in a
linear, single-unit resource allocation system (L-SU-RAS)”, which
has been shown to be NP-complete in the strong sense in Revelio-
tis and Roszkowska (2010). In order to maintain the completeness
of this work, we replicate the corresponding results of Reveliotis
and Masopust (2019b) in the electronic supplement.

The reader should also notice that the above statement of
Theorem 16 does not differentiate between reversible and irre-
versible guidepath-based transport systems, and therefore, the
result of Theorem 16 applies to both cases. This finding further
implies that the super-polynomial complexity of state liveness
in the statically routed, open guidepath-based transport systems
that are considered by Theorem 16, is the result of the complete
pre-specification of the agent routes that is enforced by this class
of transport systems, and not an implication of the irreversibility
of the agent motion, which was found to be the primary source
of complexity in the case of dynamically routed, open guidepath-
based transport systems. Finally, the detailed development of the
result of Theorem 16 that is provided in the electronic supple-
ment also highlights the fact that, in the context of statically
routed guidepath-based transport systems, the notion of “state”
that must be employed in any formal reasoning regarding the
liveness characterization and assessment in these environments,
must also contain the walks W, on the guidepath graph G that
represent the remaining “mission” trips for each agent a € A4,
since these walks determine the advancing path of each agent a
towards its final destination ey(a).

Efficient LES for statically routed guidepath-based transport
systems: The developments on the complexity of state liveness
for statically routed guidepath-based transport systems that are
described in the previous part of this section, also reveal the
strong affinity that exists between the qualitative dynamics of
the statically routed guidepath-based transport systems that are
considered in this work, and the corresponding dynamics of the L-
SU-RAS class of Reveliotis (2017). In fact, the supervisory control
problems of traffic(-state) liveness assessment and enforcement
in statically routed transport systems can be effectively addressed
through a straightforward adaptation of the corresponding results
in the current L-SU-RAS theory. In particular, in view of the result
of Theorem 16, the notion of “ordered” (traffic) state and the
related Banker’s algorithm can be applied to the liveness enforce-
ment of statically routed guidepath-based transport systems in
exactly the same way that these two concepts have been applied
to the preservation of liveness in L-SU-RAS. The reader is referred
to Reveliotis (2017) for all the relevant details.

5. Conclusion

This paper has provided a comprehensive treatment of the
notion of “liveness” and its enforcement for the traffic generated
by a set of agents that circulate over the edges of a supporting
guidepath network. It was shown that, both, the operational
and the computational complexity of this concept depend, in a
strong manner, on certain structural and operational attributes of
the underlying transport system. The paper characterized clearly
these dependencies, and it also provided practical efficient solu-
tions to the problem of liveness enforcement for the cases that
the corresponding maximally permissive supervisor might not be
computationally tractable.

The presented results can also define a starting base for a sys-
tematic resolution of the complementary problem of
performance-oriented control of the considered transport sys-
tems. In the non-stationary settings that frequently characterize
the operation of these environments, the system performance



10 S. Reveliotis / Automatica 113 (2020) 108777

can be optimized by means of a pertinently defined Model Pre-
dictive Control (MPC) scheme (Kouvaritakis & Cannon, 2015),
where the notion of “liveness” plays a role similar to that of the
notion of “stability” in more classical control applications of the
MPC framework. An implementation of this idea for the case of
dynamically routed, open, reversible guidepath-based transport
systems can be found in Daugherty et al. (2019), while a first
attempt to extend the MPC framework of Daugherty et al. (2019)
to dynamically routed, open but irreversible guidepath-based
transport systems can be found in Reveliotis (2019).

Furthermore, the presented framework can be expanded to
include additional features, constraints and requirements regard-
ing the behavior of the underlying transport systems, like the
synchronized advancement of the traveling agents that is consid-
ered in Yu and Rus (2015), or the collaborating behavior that is
investigated in Ma et al. (2016). When moving in this direction,
it is also possible to consider the sequential satisfaction of a
series of “formation” requirements that stipulate the placement
of the system agents on specific edges of the underlying guide-
path network, possibly with specific orientations, as well; in
fact, the investigation of such “formation”-related problems for
the particular class of closed, dynamically routed and reversible
guidepath-based transport systems, was the content of the works
of Kornhauser et al. (1984) and Wilson (1974), that were among
the very first to formulate and study reachability problems in the
traffic of guidepath-based transport systems of the type that are
considered in this work.

Concluding this paper, and on the basis of all the above,
we can say that the class of guidepath-based transport systems
considered in it is very rich in terms of, both, application potential
but also open problems and research challenges. By taking a
comprehensive and systematic view of these systems and their
behavioral dynamics, the paper has tried to further define and
articulate all this potential.

Appendix A. A summary of the main results of Sections 3 and
4

All the following statements presume that the underlying
guidepath graph G is undirected and connected. Furthermore, for
dynamically routed traffic systems, the employed notion of traffic
liveness is that provided in Definition 2. On the other hand, for
statically routed traffic systems, the employed notion of traffic
liveness is that introduced in the opening part of Section 4.

Open, dynamically routed, reversible: State liveness is
equivalent to co-reachability of the “home” state s,. Every
traffic state s € S is live. No need for an externally imposed
LES.

Open, dynamically routed, irreversible: A necessary
structural condition for traffic liveness is that the guide-
path graph G has a minimal vertex degree of 2. Then, state
liveness is equivalent to co-reachability of the “home” state
sp. The characterization of the (worst-case) computational
complexity of this co-reachability problem for any given
state s € S is an open problem, but there is a recently de-
veloped set of results that can resolve this co-reachability
problem with polynomial worst-case computational com-
plexity for certain classes of state s, and with low empirical
computational complexity for the remaining cases. Also,
the notion of “ordered” state can function as a substitute
of state liveness in order to obtain a correct but non-
maximally permissive LES of polynomial complexity with
respect to the size of the underlying traffic system.

Open, statically routed, reversible: State liveness is equiv-
alent to co-reachability of the “home” state s;. The corre-
sponding decision problem is NP-complete in the strong
sense. The notion of “ordered” state can function as a
substitute of state liveness in order to obtain a correct but
non-maximally permissive LES of polynomial complexity
with respect to the size of the underlying traffic system.

Open, statically routed, irreversible: A necessary
structural condition for traffic liveness is that the guide-
path graph G has a minimal vertex degree of 2. Then, the
rest of the results are similar to those stated above for the
class of open, statically routed, reversible guidepath-based
transport systems.

Closed, dynamically routed, reversible: A sufficient struc-
tural condition for traffic liveness is that |A| < |[E| — 1 —
maxpep, {|p|}, where Ps is the set of the singular paths of
the guidepath graph G and |p| denotes the number edges
in such a path. This condition is also necessary if there
are no singular paths in guidepath graph G, or there exists
a maximal-length singular path p connecting two cyclical
components, G; and G;, of graph G. When the aforestated
condition is satisfied, every state s € S is live. Hence, there
is no need for an externally imposed LES.

Closed, dynamically routed, irreversible: For  transport
systems from this class, |A| < |E| — Zpeps Ip] — 2 is a

practically required condition for being able to establish
traffic liveness. Under this condition, a state s € S is live if
and only if its reachability space R(s) contains a “chained”
state. Testing whether a given state s € S is chained, is a
task of polynomial worst-case complexity with respect to
the size of the underlying transport system. But the worst-
case computational complexity of the decision problem:
“Js’ € R(s) : s’ is chained”, that is defined by any traffic
state s € S, is an open problem. A correct, computationally
efficient but non-maximally permissive LES for this class of
systems can be obtained by admitting only “chained” and
“semi-chained” states.
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