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Noise induced bimodality in genetic circuits with monostable positive
feedback
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Abstract— The expression of individual genes can be main-
tained through positive feedback loop mechanisms. If genes are
expressed in bursts, then feedback either affects the frequency
with which bursts occur or their size. Here we use a tractable
hybrid modelling framework to evaluate how noncooperative
positive feedback in burst frequency or burst size impacts the
protein-level distribution. We confirm the results of previous
studies that noncooperative positive feedback in burst frequency
can support bimodal distributions. Intriguingly, bimodal dis-
tributions are unavailable in the case of feedback in burst
size in the hybrid framework. However, kinetic Monte Carlo
simulations of a full discrete model show that bimodality can
reappear due to low-copy number effects. The two types of
feedbacks lead to dramatically different values of protein mean
and noise. We show that small values of leakage imply a
small protein mean for feedback in burst frequency but not
necessarily for feedback in burst size. We also show that protein
noise decreases in response to gene activation if feedback is in
burst frequency but there is a secondary noise amplification if
feedback acts on burst size. Our results suggest that feedback
in burst size and feedback in burst frequency may play
fundamentally different roles in maintaining and controlling
stochastic gene expression.

I. INTRODUCTION

The ultimate product of gene expression, the protein, is
often synthesised in bursts of many molecule copies [1], [2].
Burst-like synthesis of protein is thought to be a substantive
contributor towards the total gene-expression noise [3], [4].
Noise in gene expression drives variability in isogenic cell
populations as well as temporal fluctuations in the pheno-
types of single cells [5], [6].

Positive feedback loop provides a mechanism by which
a protein can maintain its gene expression [7]. Positive
feedback can support two stable states of protein expres-
sion in the deterministic setting and bimodal protein dis-
tributions in the stochastic setting [8], [9]. Deterministic
analysis shows that bistable behaviour requires cooperativity
in feedback [10]. Stochastic studies indicate that bimodal
distributions are available without cooperativity [11]-[17].
Random fluctuations in protein level can lead to extinction
in a stochastic setting [18]. An ultimate extinction can be
avoided by considering the effects of leakage — a small rate
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Fig. 1. Left: Sample path of protein dynamics. In between bursts, protein
level decays exponentially with rate constant ~y (solid lines). Bursts occur
randomly in time and lead to positive discontinuous jumps in protein level
(dotted vertical lines). Right top: Feedback in burst frequency: protein X,
which is produced in bursts of size B as well as being removed from
the system, maintains the frequency of burst occurrence. Right bottom:
Feedback in burst size: same as above, but here protein X maintains the
size of its bursts.

of spontaneous gene expression which occurs independently
of the feedback.

In this paper we study the control of burst frequency
and burst size through a noncooperative positive feedback
with leakage. We adapt a minimalistic modelling frame-
work [19]-[21] in which protein decays deterministically but
is produced in discontinuous bursts (Fig 1, left). The chosen
framework belongs to a wider family of piecewise determin-
istic [22], [23] or hybrid models [24], [25]. Regulation of
burst frequency (Fig 1, right top), and partly also burst size
(Fig 1, right bottom), have previously been examined using
the aforementioned modelling framework [26]-[28]. In the
context of burst-size regulation, two alternative versions have
been proposed depending on the inclusion or omission of a
so-called infinitesimal delay [29], [30]. Here we shall focus
specifically on the undelayed case in the sense of [29], [30].

Section II introduces the model and its master equa-
tion, explaining the differences between feedback in burst
frequency and burst size. Section III recapitulates analytic
results for feedback in burst frequency, some of which are
known from previous studies. Section IV provides analogous
analytic results for feedback in burst size. Section V presents
discrete reaction systems that incorporate feedback in burst
frequency or burst size. Section VI applies the theoretical
analysis of the previous sections to gain a thorough under-
standing of the most distinctive properties of the feedback
models. Section VII concludes the paper.

II. MASTER EQUATION

The dynamics of protein level, as illustrated by Fig 1, left,
is described by two components: the deterministic law that
governs protein decay between bursts of gene expression; a



probability transition law that governs the occurrence and
size of individual gene-expression bursts. For the decay law
we use a simple linear model dx/d¢t = —~x, where 7 is
the decay rate constant. The linear rate law implies that the
protein level trajectories are piecewise exponential. The prob-
ability transition law is described by the burst kernel B(z|y),
which gives the probability per unit time that a sufficiently
large burst occurs which increases the protein level beyond
the value x, provided that it currently stands at value y. In
particular, B(y|y) gives the stochastic rate with which bursts
(of any size) occur; the rate may or may not depend on the
protein level y. The ratio F(z) = B(z|y)/B(yly), where
x > y, gives the upper-tail probability distribution function
of post-burst level x conditioned on pre-burst level .

In the simplest possible case of no feedback, the burst
kernel is given by [1], [19]

T — y)

B(aly) = aexp (— -

Equation (1) implies that (i) burst sizes are exponentially
distributed with mean § and that (ii) they occur randomly in
time with intensity (or burst frequency) « per unit time. We
refer to kernel (1) as the constitutive kernel.

The probability distribution of protein level is obtained
by formulating and solving an appropriate master equation.
In discrete models of gene expression, master equations are
systems of (typically infinitely many) ordinary differential
equations [31]. In hybrid and piecewise deterministic models,
such as that in Fig 1, left, master equations are described
by (a limited number of) partial differential equations [32],
which can also include a non-local integral term if discontin-
uous bursts are present in the dynamics [19]. In our case, the
probability p(z,t) that protein is present at level z at time ¢
satisfies a partial integro-differential equation [19], [27]

dp  9J r
- B
atas =0 7 yrp(z,t) + /0 (z]y)p(y

(D

,t)dy.
2)

The first equation in (2) states the principle of probability
conservation in differential form. The probability flux J
includes a local flux —yxp(x,t) due to deterministic protein
decay with rate constant . It also comprises a non-local
integral flux due to bursts of protein synthesis featuring a
burst kernel B(z|y).

The stationary probability density function (pdf) satisfies
[27], [29]

yrp(r) = /0 ‘B (z|y)p(y)dy, 3)

which is a homogeneous Volterra integral equation of the
second kind. For the constitutive kernel (1) the stationary
pdf is given by the gamma distribution [19]

() = £

p(x) = x
[(a)B®
with shape a = /v (normalised burst frequency) and scale
[ (mean burst size). Elementary analysis of (4) shows that the
gamma pdf is a unimodal distribution. Its mode is singular
if its shape is less than one i.e. if the burst frequency o
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is less than the decay rate constant 7. Otherwise, the pdf
possesses a regular peak at x (a/y — 1)3. The mean
of gamma distribution is equal to 83/~ and its variance is
equal a3?/~. The squared coefficient of variation, a widely
used dimensionless measure of noise which is defined as
the ratio of variance to mean squared, is therefore equal to
the reciprocal burst frequency +/«. Thus, in the absence of
regulation, the steady-state distribution of a protein produced
in bursts is unimodal, its mean is proportional to the burst
frequency « and its coefficient of variation is inversely
proportional to «. In the next sections, we will consider how
the introduction of positive feedback affects these properties.
We shall consider two additional burst kernels, which
correspond to two different regulation pathways, namely:

1) Feedback in burst frequency:

B =attew (-51)
2) Feedback in burst size:
1 /% dz
B(zly) = avexp (_5/y H(z)) : (6)

Feedback manifests itself in the burst kernels (5) and
(6) through a response function 6(z). In the burst fre-
quency feedback kernel (5), the response function alters
the stochastic rate B(yly) = «f(y) with which bursts
occur but not the probability distribution function F(x) =
B(zly)/B(yly) = exp(—(z — y)/B) of the post-burst level.
In the burst size feedback kernel (6), the stochastic burst
rate B(y|y) = « remains unaltered but the response function
modifies the post-burst level probability distribution function

F(z) = B(zly)/B(yly) = exp(—3 [, 5(Z). The function
ff—mlnF( ) = B%@ is referred to as the failure rate in

reliability theory [33]. Hence, the response function directly
modifies the rate of burst abortion.

If the response function is trivially given by 6(x) = 1, then
both (5) and (6) reduce to the constitutive kernel (1). In this
paper, we shall consider a non-trivial example of an increas-
ing response function 6(z), which corresponds to positive
autoregulation. Specifically, we consider the noncooperative
Hill function

O(z) =€+ 7)

T+ K
where ¢ is a (typically small) leakage parameter and ~ gives
a critical protein level, at which half-activation is achieved.

Without loss of generality we may assume that 5 = 1 and
v = 1. These choices mean that protein level is measured
in units of the referential burst size S and time is measured
in units of protein lifetime 1/+. Having made these choices
necessitates a minor reinterpretation of the other parameters
o and k. Specifically, o says how many bursts occur on
average per protein lifetime and x how many average-sized
bursts amount to a critical level in terms of the regulatory
feedback (7). The remaining parameter ¢, having been non-
dimensional to begin with, retains its original interpretation
of leakage.



III. FEEDBACK IN BURST FREQUENCY

A. Probability density and its moments

Assuming 8 = v = 1, and inserting the burst-frequency
kernel (5) into (3), we obtain

2p(z) = a / e~V (y)p(y)dy. ®)
0
Multiplying (8) with e” yields
eap(x) = a / 0()p(y)dy. ©)
0

Differentiating (9) with respect to x gives

0
e ap(e) = ac0laip(e) = D s crap(a), 10)
from which
e’zp(x) = exp (a/e(xx)dx> , an
ie.
p(z) =2 exp (—x + a/ H(D:)dx) ) (12)

Note that the density function p(x) is not necessarily nor-
malised. In general, any constant multiple of (12) is also a
valid solution to (8).

The derivative of the density function (12) satisfies

o) _ oy (_; 14 O‘Hx(”j)> .

dz
Critical points of the density satisfy dp(x)/dx = 0, which
leads to

13)

1

———1+
X

ablw) _ ie. af(z)—1=z (14

0,

xT

Elementary analysis of equation (14) with the noncooperative
Hill function (7) implies that up to two critical points may
exist.

In the specific case of noncooperative Hill-type response
(7), the density function p(x) is given explicitly by

—z ca—1

p(x) =e " (x + k)~ (15)

The n-the moment of the density function (15) is given by
/ p(x)z"dz = / R (A L b
0 0

= kTN (e 4 n)

x U(ae +n,a(l+¢e)+n+1,k),

M, =

(16)

where I'(z) is the gamma function and U(a,b,z) is the
confluent hypergeometric function of the second kind [34].
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Fig. 2. Parameter space of the model for feedback in burst frequency with
dimensionless critical concentration threshold fixed to x = 10.

B. Parameter space

The pdf (15) can change from unimodal to bimodal
(or back) in two ways: first, by developing (or losing) a
singularity at the origin, which occurs if

1

(07

£

a7

Additionally, modality may change if the critical-point equa-
tion (14) possesses a degenerate root.
The conditions for a degenerate root are

x ak
ale+—— | =z+1, — =1,
< x+%> (z +r)?
which, upon eliminating z, yield
1 —
e=2 /8 14228 (18)
(6% (0%

For a fixed value of x > 0, conditions (17) and (18) represent
two curves in the (e, «)-parameter space delineating the
region of bimodal behaviour (Fig 2).

IV. FEEDBACK IN BURST SIZE

Again assuming $ = v = 1, and inserting the burst-size
regulation kernel (6) into (3), we obtain

ap(z) = « /0 "oty dy, (19)
where d
O(z) = o) (20)
Multiplying (19) with ¢®(®), we obtain
e®@gp(z) = a/ox e®Wp(y)dy. 21

Differentiating (21) with respect to x yields

d ®(z) L ®(x) _a ()
dr <e Cﬁp(l‘)) = ae p(z) = . X e zp(z), (22)

so that
epte) = (o [ ) =
e Wap(x)=exp|a | — | =%,
x

_ e—@(r)x(x—l

(23)

i.e.
p(z) (24)

is the desired solution.



The derivative of the density function (24) satisfies

dp(xz) 1 a—1
dz = (@) (_ 0(z) + x > ' 25
Critical points satisfy
1 a—1 .
R 0, ie. (a—10(z)==z.  (26)

Elementary analysis of equation (26) with the noncooperative
Hill function (7) implies that more than one critical point
cannot exist. Therefore, the probability density function
remains unimodal throughout the parameter space.

For noncooperative Hill-type response (7), the density
function p(z) in (24) takes the explicit form of

p(z) = e THe (14+e)x+er) o2 zo 1L, 27)

and
o0 atn——285_
M, = p(z)z"dx = (1 +¢) 1+ x
0
eR

/oo N Tare? 1
e
0 T arey Y
ER

= (er)* T TOT (1 4 £) " "T(a + 1) x
K
A+ 0+ 5)2> (28)

gives the n-the moment of the density function (15).

— a+n—1
Yy

U<a+n,1+a—|—n—

V. DISCRETE MODELS

In the previous sections, we derived protein probability
density functions for hybrid models of feedback in burst
frequency and size. Here we compare the hybrid analysis
with fine-grained discrete chemical-kinetics models. The
discrete models of burst size and frequency feedback include
three species: the inactive state (I), the active state (A), and
the protein (P). Burst-like limit is achieved if the active state
has short holding times but drives rapid protein production.

In case of frequency regulation, the rate of activation
depends on protein amount. The reaction system is given
by

a8(%)

_ N\
===

Q
A, A5 A+pP, PLo (29)

S

The response function 6(z) is given by (7). The parameter
0 compares the bursting and protein turnover timescales.
Bursting limit is achieved by taking § < 1. The mean
number of protein produced per burst plays the role of a
system-size parameter and is denoted by 2. It is expected,
and numerically verified in the next section, that in the limits
of 2 — oo and § — 0 the protein concentration defined by
x = P/Q satisfies the hybrid model (2) and (5) for feedback
in burst frequency (cf. [21], [35]).

The reaction system for feedback in burst size reads

o (§)
I=A, A—"—A+P P>

)

(30)

Again, it is expected that the hybrid model for feedback in
burst size given by (2) and (6) is achieved from (30) in the
limit of €2 — oo and § — 0.
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Fig. 3. Steady-state protein moments and probability density functions in

response to gene activation () subject to noncooperative positive feedback
in burst frequency. Parameters: the critical protein level is set to k = 10
throughout; the activation parameter « is varied from low to high values; a
selection of leakage values € is considered.

VI. RESULTS

In this section we apply the theoretical analysis of Sections
III-V to gain an overview of the model behaviour. In Figs 3
and 4 we show (i) the steady-state protein mean and squared
coefficient of variation (CV?) as function of referential burst
frequency « and (ii) the steady-state protein distribution
for selected values of a. The CV is defined the ratio of
the standard deviation to the mean value. Biologically, an
increase in the referential burst frequency can be interpreted
as resulting from the turning on of an upstream activatory
pathway. Therefore we shall refer to « as to the activation
parameter and relate the magnitude of « to the level of
upstream transcriptional activation of the gene. We use a
selection of values for the leakage parameter € and fix the
value of the critical concentration to x = 10.

In the case of noncooperative positive feedback in burst
frequency (Fig 3), the protein mean is an increasing function,
and the protein noise, i.e. the CV2, is an decreasing function
of the activation parameter «.. For very low values of leakage,
protein exhibits low means even at high activation levels,
and is extremely noisy at low activation levels. The protein
probability density function (pdf) is bimodal for small values
of leakage parameter and sufficiently large activation levels.
The trivial lower mode x = 0 corresponds to the absence of
protein. The pdf is unbounded at x = 0; in order to correctly
appreciate how much probability mass is concentrated near
the singularity at x = 0, probability density is pooled into
40 equally sized bins in Fig 3.

In the case of feedback in burst size (Fig 4), the protein
mean also increases with the activation parameter «. In
contrast to burst-frequency regulation, there is a lower bound
(x) > a— K for the protein mean which is valid even as the
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Fig. 4. Steady-state protein moments and probability density functions in

response to gene activation () subject to noncooperative positive feedback
in burst size. Parameters: the critical protein level is set to x = 10
throughout; the activation parameter « is varied from low to high values; a
selection of leakage values € is considered.

leakage parameter ¢ tends to zero. We can say that as o ex-
ceeds k, the protein becomes activated regardless of the value
of leakage. The protein noise decreases monotonically with
in response to activation only if the leakage ¢ is relatively
large. If the leakage is sufficiently small, the noise exhibits an
additional spike shortly before the protein becomes activated
at @ = k. The protein distribution is unimodal across the
parameter space.

In Figs 3 and 4, the probability density function (pdf) was
obtained by normalising the density functions (15) and (27)
with the corresponding zero-th moments M, (16) and (28).
The formulae

M,y M,

ov? =20
M

-1
were used to calculate the mean and the CV? from the
moments (16) and (28).

We compare the continuous modelling framework to the
results of kinetic Monte Carlo simulations of full discrete
models in Fig 5. In addition to the parameters of the con-
tinuous framework, the critical concentration x, leakiness &,
and gene activation «, the discrete formulations include two
additional parameters. The system size parameter {2 gives
the number P of protein molecules that correspond to the
unit of protein concentration z. Continuity in protein level is
achieved in the limit of {2 — oco. The parameter 6 compares
the length of bursting and protein turnover timescale; bursts
become instantaneous in the limit of § — 0. The protein
copy-number histograms obtained by stochastic simulation
are compared to the transformed probability density func-

tions
»(5).
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Fig. 5. Steady-state protein copy number distributions for feedback in

burst frequency (top left panel) and feedback in burst size (other panels).
Simulations of full discrete models (29) and (30), as discrete black markers,
are compared to explicit continuous pdfs (15) and (27), as solid red lines.
The parameters are k = 10, « = 18, € = 1072, Q =20, § = 1073 for
burst frequency regulation and x = 10, o = 15, € = 1073, 6§ = 1073,
Q € {5,20,50} for burst size regulation. The simulation result of each
panel is based on 107 direct method iterations of the appropriate discrete
stochastic model performed in StochPy [36].

where p(z) is the protein pdf in the presence of feedback
in burst frequency (15) or burst size (27); the normalisation
constant M is equal to the zero-th moment (see (16) and
(28)).

The discrete model for feedback in burst frequency is in
an excellent agreement with the hybrid framework (Fig 5,
top left panel). For feedback in burst size, the two modelling
approaches agree well if the system size is sufficiently large
(Fig 5, top right panel). However, at smaller system sizes,
the discrete model for burst size feedback leads to higher
probabilities of having zero or few protein molecule copy
numbers (Fig 5, bottom panels). This can ultimately lead to
bimodal distributions, with one mode corresponding to the
absence of protein and the other mode corresponding to the
up-regulated regime (Fig 5, bottom right panel). We conclude
that bimodality can arise in case of feedback in burst size
due to low protein copy number effects.

Let us try to provide an intuitive explanation for the
presence and absence of bimodality in protein subject to
positive noncooperative feedback in burst frequency or size.
Bimodality occurs as a result of pseudo-extinction. Protein
level is normally supported by the feedback loop, but can
drop to near zero values due to random fluctuations, at
which the feedback is interrupted and any production is
due to leakiness. In case of feedback in burst frequency,
this means that there is a large waiting time for the next
burst which rescues protein from pseudo-extinction state.
The long holding time in the pseudo-extinction state drives
the emergence of bimodal protein distributions. In case of
feedback in burst size, bursts retain their frequency but are
smaller if protein level detours into low values. Since every
small burst makes the next burst likely to be a little larger,



the possibility of pseudo-extinction is averted in burst-size
regulation. Nevertheless, if low copy numbers of protein are
considered, very small bursts will simply have the size of
zero. This means that the waiting time until the next nonzero
burst from the pseudo-extinction state can actually be very
large even in case of feedback in burst size if low protein
copy numbers are taken into account. Therefore, bimodality
can emerge for low copy number protein subject to feedback
in burst size. Nevertheless, at reasonably large copy numbers,
feedback in burst size is less conducive to bimodality than
feedback in burst frequency, as suggested by the detailed
analysis of the hybrid model.

VII. CONCLUSIONS

We considered the effects of noncooperative positive
feedback in burst size or burst frequency on steady-state
protein distributions using a hybrid gene-expression model.
Feedback in burst frequency was shown to support bimodal
protein distribution without cooperativity, whereas feedback
in burst size typically does not, except for low protein copy
number driven bimodality. The two types of feedback led
to strikingly different values of protein mean and protein
noise (coefficient of variation), in particular in small-leakage
scenarios. Our analysis was based on exact solutions to
the master equation and stochastic simulation of a fine-
grained discrete chemical kinetics model. The current results
contribute to the understanding of the distinction between
different types of gene-expression regulation. The method-
ologies used to obtain these results are likely to be useful in
other contexts also.
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