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MicroRNA based feedforward control of intrinsic
gene expression noise

Pavol Bokes, Michal Hojcka and Abhyudai Singh

Abstract—Intrinsic noise, which arises in gene expression at low copy numbers, can be controlled by diverse regulatory motifs,
including feedforward loops. Here we study an example of a feedforward control system based on the interaction between an mRNA
molecule and an antagonistic microRNA molecule encoded by the same gene, aiming to quantify the variability (or noise) in molecular
copy numbers. Using linear noise approximation, we show that the mRNA noise is sub-Poissonian in case of non-bursty transcription,
and exhibits a nonmonotonic response both to the species natural lifetime ratio and to the strength of the antagonistic interaction.
Additionally, we use the Chemical Reaction Network Theory to prove that the mRNA copy number distribution is Poissonian in the
absence of spontaneous mMRNA decay channel. In case of transcriptional bursts, we show that feedforward control can attenuate the
super-Poissonian gene-expression noise that is due to bursting, and that the effect is more considerable at the protein than at the
mRNA level. Our results indicate that the strong coupling between mRNA and microRNA in the sense of burst stoichiometry and also
of timing of production events renders the microRNA based feedforward motif an effective mechanism for the control of gene

expression noise.

Index Terms—transcription bursts, mMRNA noise, incoherent feedforward loop, noise reduction, linear noise approximation, Poisson
distribution, chemical reaction network theory, product form distribution

1 INTRODUCTION

ENE expression requires the transcription of the infor-

mation encoded on a gene into an mRNA molecule,
followed by the translation of the mRNA molecule into a
protein (Fig 1la). These processes can be a source of sub-
stantial variability if the constituent molecules are present
at low copy numbers and/or they are produced in bursts
[1]-[4]. Cells have evolved diverse mechanisms to counter
stochasticity arising from gene expression. Negative feed-
back realized via gene autoregulation provides some of the
most widely recognised examples [5]-[12]. A protein with
negative feedback loop inhibits its own transcription or
translation [13]-[16]. Surprisingly, negative autoregulation
is relatively rare in eukaryotic transcription factors [17]. One
plausible explanation is that the noise reduction capability
of negative feedback deteriorates as a result of the delays
incurred in transporting the protein from the eukaryotic
cytoplasm.

The incoherent feedforward architecture provides an
attractive alternative noise-supression mechanism (Fig 1b).
Feedforward loops maintain desired expression level even if
subjected to varying gene dosage [18] or upstream transcrip-
tion factor concentrations [19]-[23]. Mounting biological
evidence shows that, in many eukaryotic genes, the tran-
scribed intronic regions that are removed during splicing
are further processed to make a microRNA that targets
the same gene’s mRNA [24]. This mechanism constitutes
a feedforward loop at the level of the gene, the mRNA
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transcript, and its microRNA antagonist (Fig 1c). The strong
coupling between the mRNA and microRNA species both
in the sense of stoichiometry and also of production timing
suggests that the motif can be beneficial in reducing gene-
expression noise.

Systems of chemical kinetics provide a suitable frame-
work for the representation of genetic regulatory circuits.
Exact probability mass functions of the reaction species
copy numbers are however only rarely available [25]-[27].
The Chemical Reaction Network Theory specifies a class
of systems operating at a complex-balanced equilibrium,
which admit tractable product-form distributions [28]-[31].
Additionally, steady state copy number distributions in
certain simple models that fall outside of the remit of the
Chemical Reaction Network Theory can be characterised
analytically in terms of the generating functions [32]-[34],
[34]-[37]. If exact results are unavailable or intractable,
asymptotic and approximation methods can provide useful
insights into probabilistic behaviour of reactant copy num-
bers. The linear-noise approximation (LNA) and moment-
closure methods can provide valuable approximations for
the species means, variances and covariances, or even quan-
tities based on higher-order moments [38]-[44].

The aim of this paper is to apply computational and
mathematical methodologies to analyse a stochastic model
of a feedforward loop with microRNA based control [45]-
[48]. The model is represented by a reaction system, which
is formally introduced in Section 2. Its essential features,
both for the nonbursty and bursting cases, are identified
in Section 3. The same Section contains a comparison of
the model with three other circuits: the unregulated (or
constitutive) gene expression model; and two alternative
microRNA based regulation models with a relaxed coupling
in mRNA-microRNA production. Section 4 provides details
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Fig. 1: 1la. In the constitutive gene expression model, the
gene information is transcribed onto an mRNA molecule
which is then translated into a protein. 1b. In a general
formulation of an incoherent feedforward loop, a species X
activates species Y and Z, and the species Y represses species
Z.1c. In microRNA based regulation, a gene encodes mRNA
and microRNA, and microRNA degrades mRNA. The gene,
mRNA, and microRNA triangle form the basic feedforward
structure in the microRNA regulatory motif.

for the LNA results and cross-validates them with large-
scale kinetic Monte Carlo simulations. The paper concludes
in Section 6 with a summary and discussion of the presented
results.

2 THE STATEMENT OF THE MODEL

The feed-forward model that we consider here is a dis-
crete stochastic chemical kinetics system composed of three
species P (protein), X (nRNA) and Y (microRNA) which are
subject to seven reaction channels

3(—=q)

Ri:05 Bx(X4Y), Ry:X+Y -9,

Ri:Y50, Re:xXS50, D
R7:Pi>®.

dq
Ry:X+Y 55y,
Rs:X 5 X+P,

The reaction R; represents the transcription of a burst of
mRNA-microRNA pairs. Note that the timing and the stoi-
chiometry of mRNA and microRNA production is strongly
coupled in the reaction R;. The transcriptional burst size B
is drawn from a random distribution

P[B=il=b, i=12,..., (2)
where by + bs + ... = 1. The geometric distribution
bi=1-p)tp, i=12,..., 3)

is commonly used, and can be justified by a random-trial
model with failure probability p, in which molecular pairs

2
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RO g kb ) o '
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Ri:Y 50 (0,0, -1) Yy

Rs:X 50 (0,-1,0) eX

Rg: X2 X+P (1,0,0) AX

R:: P40 (~1,0,0) uP

TABLE 1: Reaction vectors and rates for the reaction chan-
nels of the feedforward model (1). A reaction vector gives
the changes in molecular copy numbers of P (protein), X
(mRNA), and Y (microRNA), respectively, that are induced
by the given reaction. The reaction rate gives the probabilis-
tic intensity of reaction occurrence.

are successively transcribed until the first failure event oc-
curs.

Given that the product stoichiometry is drawn from
a random distribution (2), the bursty production reaction
channel R; is not an elementary reaction. However, since
theory has been developed especially for systems of ele-
mentary reactions, it is advantageous to rewrite the non-
elementary reaction channel I?; into an infinite series

RY 052 ix (X +Y), i=12..., @)

of elementary reactions, each corresponding to one potential
realisation of burst size.

The other reaction channels in (1) have the following
interpretations. In the reaction channels R, and R3, a pair of
X and Y molecules interact, which leads to the elimination of
X; the Y molecule survives its antagonistic action on X with
probability g, where 0 < ¢ < 1 are allowed. For studies with
a decoupled production of X and Y and ¢ = 0 we refer the
reader e.g. to [25]-[27]. Note that the reaction rates of the
two second-order reaction channels Ry and R3 are divided
by k in order to achieve a classical scaling [49] with respect
to the parameter k. Doing so makes the ensuing analysis
more transparent.

The reaction channels R4 and Rs describe the sponta-
neous degradation of Y and X. By measuring time in units
of the expected lifetime of Y, we are able to fix the reaction
constant of R4 to one. The parameter ¢ gives the ratio of
Y to X lifetimes. In particular, small values of ¢ pertain to
the assumption that X be much more stable than Y. Finally,
the reaction channel Rs corresponds to the translation of
protein from an mRNA transcript, and the reaction channel
Ry characterises the protein decay.

The basic characteristics of the reaction system (1) are
succinctly summarised in Table 1. For each reaction, we
report its reaction vector and reaction rate. The reaction
vector gives the changes in molecular copy numbers that
are triggered by the occurrence of the reaction. The reaction
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rate, when multiplied by the length dt of a small time differ-
ential, gives the probability that the reaction occurs within
the small time interval. The reaction rate is obtained by
multiplying the number of possible reactant combinations
with the appropriate reaction rate constant.

3 MAIN RESULTS

In this section we explain how the choice of kinetic param-
eters in (1) affects the stochastic noise in the X and P copy
numbers at steady state. We use the Fano factor, which is
defined as the ratio of the variance to the mean, as our
chosen noise metric of molecular copy number noise. It is
well known that the Fano factor is equal to one for the
Poisson distribution. We refer to a distribution with Fano
factor lower than one (greater than one) as sub-Poissonian
(super-Poissonian). The formulae provided in this section
as well as numerical results presented in the accompanying
figures are based on the linear noise approximation (LNA),
the derivation of which follows in Section 4. For greater
clarity, we separately treat the nonbursty case (B = 1 with
probability one) and bursty case (with a general distribution
of B).

3.1 Nonbursty case

In the nonbursty regime, we obtain for the mRNA Fano

factor a tractable formula

_ €d
(e+0)2(14+e+9)

Note that the LNA result (5) is independent of the system

size parameter k. The function (5) is visualised as a heat

map in the left panel of Fig 2a.
Elementary analysis of (5) reveals that

Fx = forg=1land B=1. (5)

1) The steady-state distribution of X is sub-Poissonian
ife >0and o > 0.

2) If there is no interaction (0 = 0) or if X is stable
(e = 0), the Fano factor is equal to one.

3) For a fixed positive value of ¢, the Fano factor is
a nonmonotonic function of §, initially decreasing
before reaching a minimum, and slowly increasing
back to one as § — oo.

4) The analogous holds if the roles of € and ¢ are
reversed in Property 3.

5) The function Fx(e,d) is discontinuous at (g,4) =
(0,0). A range of limiting values can be achieved
depending on along which ray the origin is ap-
proached.

6) The function Fx(e,d) does not have an uncon-
strained minimum. An infimum of 0.75 is ap-
proached if e = § — 0.

The function Fx can be efficiently evaluated also for 0 <
g < 1, but the algebra reveals little. Graphical examination
of Fx indicates that all the above properties hold for 0 < ¢ <
1 (see the right panel of Fig 2a for ¢ = 0.5). The infimum
of the Fano factor in Property 6 is lower than 0.75 if ¢ < 1
and is approached along a different ray emanating from the
origin. In the exceptional case ¢ = 0 the dependence of Fx
on € and ¢ is monotonous.
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(c) Stable protein (P) noise

Fig. 2: Linear noise approximation based Fano factor of
species X (mRNA; top panels) and P (protein; central and
bottom panels) in the nonbursty case as functions of model
parameters. In the left-hand side panels, ¢ = 1 means that
species Y (microRNA) survives its antagonistic action on
species X (mRNA), whereas in the right-hand side panels,
it survives with probability ¢ = 0.5. The translation rate is
set to A = 30 and the protein decay rate constant is set to
1 = 10 (Fig 2b) or p = 0.2 (Fig 2c¢) (all rates are scaled by
the decay rate constant of Y).

Property 2 suggests, but does not provide a definitive
proof, that the distribution of X is Poissonian if ¢ = 0
or § = 0. In the non-interaction case (§ = 0), the proof
is straightforward: the dynamics of X is that of a simple
immigration-and-death process, which is known to generate
a Poisson distribution [50]-[52]. If X is stable (¢ = 0), the
distribution is again Poisson, but the proof requires a more
subtle reasoning based on the Chemical Reaction Network
Theory. We present the details in Section 5.

The protein Fano factor is given in the nonbursty case by

- 1_< ! +L)x
w+o+e e+dé 1+4+upu

ed
(6+¢e)(1+e+0)

Fp=1+

(6)

) forg=1and B=1.

Despite simplifying assumptions, the formula for the pro-
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tein noise is considerably more intricate than its mRNA
counterpart (5). The following conclusions can nevertheless
be drawn.

1) If p is large, i.e. if protein is unstable, and ¢ and
0 are small or moderate at most, the protein Fano
factor is approximately proportional to the mRNA
Fano factor (compare the near-origin behaviour of
heatmaps in Fig 2a and Fig 2b).

2) If € or ¢ are large, the Fano factor slowly decreases
to the Poissonian value of one (cf. Figs 2b and 2c).
This is because increasing J or ¢ leads to greater
mRNA turnover which brings about an effective
attenuation of translational bursts.

3) If pu is moderate or small, ie. if the protein is
stable, then the role of translation burst attenuation
becomes the dominant one (Fig 2c).

The results for 0 < ¢ < 1, which are presented in the right
hand side panels of Figs 2b and 2c, are obtained numerically
(see Section 4), and are found to be in broad qualitative
agreement with the situation observed for ¢ = 1.

3.2 Bursty case

Recall that in the nonbursty case, the natural stability of
X (¢ = 0) implies Poissonian mRNA and microRNA noise
(Fx = Fy = 1). Contrastingly, the bursty regime generates
super-Poissonian distributions with LNA-based Fano factor
of

Fx = 1+¥?_e:, Fy =14+Beg forg=1lande =0, (7)
where
v =4(B) ®)
is the mRNA turnover rate and
2
b )-8 .

is the effective burst size [53]. Elementary analysis shows
that for geometrical distribution (3) the effective burst size
satisfies Beg = (B) — 1 (see Appendix Afor derivation).

The formula (7) implies, perhaps somewhat counter-
intuitively, that in the absence of spontaneous mRNA decay
increasing interaction strength § leads to an increase in
mRNA noise. The apparent paradox is explained by noting
that according to (8) large interaction strengths imply a fast
turnover of mRNA, which can render the molecule uncon-
trollable by the relatively more stable microRNA. Note also
that equation (7) cannot be used for 6 = 0 (and at the same
time € = 0), since in this case the model (1) fails to possess
a steady-state distribution.

For ¢ > 0 or ¢ # 1 the algebraic form of the mRNA
Fano factor is a complicated expression that reveals little.
However, the inspection of numerically calculated values
in Fig 3a implies that, for a fixed positive lifetime ¢ > 0,
the mRNA Fano factor is a non-monotonous function of the
interaction strength J. Indeed, at low levels of interaction
(6 — 0), noise increases because the spontaneous mRNA
decay channel R5 dominates the microRNA-driven mRNA
decay channels R, and/or Rg; for high levels of interaction
(6 — 00), the large mRNA turnover rate renders the species
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Fig. 3: Linear noise approximation based Fano factor of
species X (mRNA) and P (protein) in the bursty case as
functions of model parameters. In the left-hand side pan-
els, ¢ = 1 means that species Y (microRNA) survives its
antagonistic action on species X (mRNA), whereas in the
right-hand side panels, it survives with probability ¢ = 0.5.
The burst size is geometrically distributed with (B) = 11
so that B.g = 10 (see Appendix A). The protein production
and decay rate constants are set to A = 100, © = 10 (Fig
3b) and A = 10, ¢ = 0.2 (Fig 3c) (all rates are scaled by the
decay rate constant of Y).

uncontrollable. Increasing the spontaneous mRNA decay
rate € leads to an increase in noise and a less effective
performance of the feedforward circuit.

The LNA of the protein Fano factor is given for ¢ = 1
and € = 0 by the formula

Fp=1+

1y Besr > . (10)

v+u< (I+u+7)

Inspecting (10) and the numerically calculated values in Fig
3b-3c, we note that different qualitative results are obtained
for unstable (Fig 3b) and stable (Fig 3c) proteins. For unsta-
ble protein (a large value of p), the protein noise faithfully
copies the mRNA noise for low to medium values of ¢ and
0, trailing off as 6 or € increase to infinity due to traslation
burst attenuation (Fig 3b). For stable proteins, increasing
the interaction strength reduces protein noise through the
attenuation of translation bursts (Fig 3c).
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3.3 Controlled comparison with a constitutive model

Here we consider a constitutive model for gene expression
with transcriptional bursting to provide a benchmark for
the evaluation of the performance of feedforward regulation
introduced in the previous sections. The constitutive model
is a reaction system with the protein (P) and mRNA (X)
species being subject to reactions

P EBxXx, X210, X5x+P, P40 (1

The reactions in (11) represent, in that order, bursting tran-
scription of mRNA, decay of mRNA, translation of protein
from an mRNA, and the decay of protein. The burst size
B is drawn from a prescribed distribution (2) as in the
feedforward loop model.

Aiming to provide a meaningful comparison between
the feedforward (1) and constitutive (11) models, we make
sure that both have the same rate of mRNA turnover. This
can be achieved by equation (8) in the special tractable case
of ¢ = 1 and ¢ = 0; in the general case one uses v = 0y +
€, where 9 is the interaction strength, ¢ is the spontaneous
mRNA decay rate in the feedforward model, and 3 gives
the mean microRNA level (Section 4).

Usual techniques (see Appendix B) yield expressions for
mRNA and protein Fano factors

)\(1+Beff)
pty

The zeros in the superscript of the Fano factors are meant
to indicate the lack of regulation. Comparing (12) to its
analogues (7) and (10) obtained for the feedforward model,
we see that the microRNA-based regulation attenuates the
effective burst size B.g at the mRNA and protein stages.
For the noise reduction to become important at the mRNA
level, the turnover « of the mRNA species must be suffi-
ciently lower than the unit turnover of microRNA. At the
protein level, a more substantial attenuation of noise can
be achieved, as is manifested by the additional damping
prefactor multiplying Beg in (7). In particular, in a situation
where mRNAs are less stable than microRNAs which are
less stable than protein, a mediocre reduction of mRNA
noise, accompanied however by a substantial reduction of
protein noise, can follow.

Figure 4 reports the regulated-to-constitutive Fano fac-
tor ratios Fx/FQ (left panel) and Fp/F§ (right panel) as
functions of the interaction strength . The feedforward
model with strong coupling in mRNA and microRNA
production 1 is thereby referred to as Model 1, and the
other two models refer to certain modifications thereof,
which are introduced in the following sections. Without
spontaneous decay of mRNA (¢ = 0), gene expression noise
can be efficiently attenuated with feedforward control at
sufficiently low interaction strengths (Figure 4, full blue
line). If spontanoues decay of mRNA is enabled (¢ = 1),
the dependence of the relative noise on interaction strength
becomes non-monotonous, with the baseline performance
of one being obtained at low interaction strengths as well
as high interaction strengths (Figure 4, dashed blue line).
At the mRNA stage, this can severely limit the ability of
feedforward circuit to reduce noise (Figure 4, left panel, blue
line). At the protein stage, however, a substantial reduction

Fyy=1+Beg, Fp=1+ (12)
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Fig. 4: Noise controlling performance of microRNA based
regulation models. Three variants of regulation via mi-
croRNA are considered. Model 1 is the original formulation
with strong coupling in burst timing and stoichiometry (cf.
Equation 4). In Model 2, the coupling in stoichiometry is re-
moved (cf. Equation 14). In Model 3, mRNA and microRNA
are independently produced (cf. Equation 18). The reported
value of the normalised noise is defined as the ratio of the
Fano factor F' in a microRNA based regulation model to
the referential Fano factor F° (12) based on a constitutive
model of gene expression (11). The interaction strength ¢ is
being varied and two choices of for the natural microRNA to
mRNA lifetime ratio ¢ € {0, 1} are considered. The effective
transcriptional burst size is set to Beg = 10 molecules. The
probability of microRNA surviving its action on mRNA is
set to ¢ = 1. The translation rate is set to A = 10 and protein
decay rate constant is set to y = 0.2. All reaction constants
are scaled with the microRNA decay rate constant.

can be obtained for a wide range of interaction strengths
(Figure 4, right panel, blue line).

3.4 Decoupling burst stoichiometry

In the feedforward model (1), transcription bursts lead to
the production of the same copy number of mRNA and mi-
croRNA. In order to quantify the importance of the coupling
in stoichiometry, we modify the model (1) by replacing the
first reaction with
R :05 BxR+BxM, 13)
where B and B are two variates drawn from the burst size
distribution (2) independently of each other. The bursting
reaction (13) can equivalently be written as an infinite two-
dimensional series
/i kbibj . . . .
R :0—SixM+jxB, i=12..., j=12...
(14)
of elementary chemical reactions. The mean behaviour of
the feedforward model (see Section 4) is the same regardless
whether the burst stoichiometries are coupled as in R; in
(1) or independently chosen as in R} in (13). The loss of
coupling however affects the noise.
Calculations in Section 4 show that under the simpli-
fying assumptions of ¢ = 0 and ¢ = 1 the mRNA and
microRNA Fano factors are given by

Beg + F|
FXZI—FL_:—]-]D, Fy =1+ B,
J (15)
_ A YuBes + (1 + v+ p)Fy
Fp=1+ 1+ )
B+ 1+ + p)
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Model type/Species MicroRNA mRNA Protein
RN b RNA 1+ Beg + LBt 1+ 2 (14 2s)
production (Sec. 3.2)
Coupling in timi
foup 1ng In tming YBogp +Fi, A A Begr+(1+y+i) Fy
of production events 1+ Besr 1+ Ty 1+ pTE= 14+ 0%
(Section 3.4)
Completely uncoupled
mRNA /microRNA production 1+ Begr (1 + ﬁ) (14 Begg) 1+ Tiv (1 + %) (1 4 Besr)
(Section 3.5)
Constitutive A(14Begr)
model (Section 3.3) N/A 1+ Beg I+ T+u

TABLE 2: Fano factors for the microRNA, mRNA, and protein species based on linear noise approximation. Results are
provided for ¢ = 0 (the spontaneous mRNA decay rate) and g = 1 (the survival probability of microRNA after interacting
with mRNA) in four separate models: the original feedforward model (first row) with coupling in both stoichiometry and
timing; the two variants of the feedforward model (second and third rows) with coupling in timing only or no coupling at
all; and the consitutive model (fourth row) without microRNA-based regulation. The parameters v and p give the rates of
mRNA and protein turnover per molecule. All rates are scaled with microRNA decay rate constant. The parameter A gives
the translation rate. The parameter B.g and Fj, are the effective burst size and the burst size Fano factor.

where B.g is defined by (9) and Fj, is the burst size Fano
factor, which is defined by

(B%) — (B)?
(B)

Comparing (15) to (7) and(10), we note that removing the
coupling between mRNA and microRNA burst stoichiom-
etry leads to a deterioration in noise controlling capability
of microRNA-based feedforward regulation (Fig. 4, orange
lines). Specifically, if the burst size distribution is geomet-
ric (3), then F}, = Beg (see Appendix Afor details), and (15)
reduces to the result (12) that is available in the absence of
feedforward control.

R, = (16)

3.5 Decoupling burst timing

Removing coupling in both stoichiometry and timing in the
feed forward model, we replace the first reaction in (1) by
two independent bursting productions

05 BxR, 0% BxM. 17)
This can be rewritten in terms of two series
, kb;
0% i x M, i=1,2,..., 025 ixM, j=1,2,...
(18)

of elementary reactions. Again, replacing synchronised
bursting with independent, asynchronous bursting does not
impact on the resulting mean dynamics (Section 4), but
affects the noise behaviour.

The results for mRNA and protein Fano factors for ¢ = 0
and g = 1 are in this case summarised by equations

1

FX:<1+7>(1+BEH)7 FY:1+BEH7
147 (19)

1+p+~

A
+v< - (1+u)(1+v)> (1+ Ber).

Thus, if coupling is removed both in burst stoichiometry and
burst timing, the resulting motif leads to greater values of
gene-expression noise than those in (12) which are obtained
in the absence of microRNA based control (Fig. 4, green
lines).

Fp=1+
I

The microRNA, mRNA and protein variabilities in the
strongly coupled, weakly coupled, and uncoupled models,
as well as in the referential constitutive model, are sum-
marised in Table 2.

4 LINEAR-NOISE APPROXIMATION

The linear noise approximation (LNA) provides a method
for an efficient evaluation of molecular copy number noise
across the parameter space of the model. Here we provide
details on the derivation of the approximation. The LNA
of the mean behaviour is given by the law-of-mass-action
formulation of the reaction system (1), which is

P = Az — up,
i =k(B) - 5% —ex, (20)
j=hp - 00,
where .
(B) = ib;
i=1

is the mean transcription burst size. Setting the derivatives
in (20) to zero and solving the resulting algebraic system in
p, x, and y yield the stationary mean values

p=kp, x=kz, y=ky, (21)
where
. AT
p=—
T = 2(B) , (22)

6q(B) + ¢+ /(6¢(B) +¢)? + 46e(1 — q)(B)
§=q(B) +e(1-q)i.

Note that the means (21) scale with the production rate
constant k.

In order to obtain the LNA of the variance, we need
to determine the steady-state fluctuation and dissipation
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matrices of the reaction system (1). The dissipation matrix
A is equal to the linearisation matrix of the system (20), i.e.

" —A 0
A=—|0 6+ 5 23)
0 61—q)y 1+6(1—¢)x

The fluctuation matrix B is obtained in the following man-
ner [54]: for each reaction channel in the reaction system
(Table 1), we calculate the outer product of the reaction
vector [55], [56] with itself, and multiply it by the (steady-
state) reaction rate; then we sum the results over all reaction
channels. In our particular example this leads to

B = ké, where
_ 2up 0 0
B=10 (B*) +(B)  (B*)+(B)—g]|, (24)
0 (B)+(B)-y§ (B*)+(B
where -
(B%) =i
i=1

is the second moment of the burst distribution (2). The
fluctuation—dissipation theorem [57] states that the covari-
ance matrix 3 of the random vector of steady-state X and Y
copy numbers satisfies

AY +SAT+ B =0, (25)

ie.

3= k‘f], where AY + A"+ B =0. (26)

Equation (26) is also referred to as Lyapunov equation.
We solved the Lyapunov system numerically using the
solve_lyapunov routine from Python’s scientific package
scipy.linalg.

Our chosen metric of the noise, the Fano factor, is given

by
szézzil, FX:@:Z~227 FYZ%Z =
p p z z Y Y
for the protein, mRNA, and microRNA, respectively. Since
both the mean and the variance of each species scale linearly
with k, the Fano factors are independent of the parameter.

For g = 1, the steady state levels (22) simplify to

_ AT (B) -
= e xTr = = cum— = B ,
p=- O (B)
and the linearisation matrix (23) reduces to
nwo=A 0
A=—[0 d+e¢ 65?
0 0 1

The triangular structure of the linearisation matrix A makes
explicit calculations feasible. A series of elementary but
lengthy calculations lead to formulae (5), (6), (7), and (10)
reported above in Section 3.

Two other variants of bursty production of mRNA
and microRNA were introduced in Sections 3.4-3.5. Recall
that in the variant in Section 3.4 the coupling between
mRNA and microRNA burst stoichiometry is removed (cf.
Equation (13)), and in Section 3.5 in addition to removing
coupling in burst stoichiometry, the timing of mRNA and

S

7
105 LNA vs. SSA (k=30.0) 105 LNA vs. SSA (k=3.0)
1.00 — 5-0.25 1.00 — 5-0.25
el 6=0.5 1 T =05 1
« 095} — =10 « 095} — 6=1.0
8 8
:_‘é 0.90 E 0.90 |
g 085 g 085
v 0.80 “ 0.80
0.75} 0.75
0.70 L . . . L . 0.70 L . . . . .
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 06 08 1.0

Lifetime ratio ¢ Lifetime ratio ¢

Fig. 5: The Fano factor of species X (mRNA) as function of
model parameters as given by the linear-noise approxima-
tion (LNA, solid lines) and stochastic simulation algorithm
(SSA, discrete markers). Two values of k are used, one large
(k = 30, left panel) and one moderate (k = 3, right panel).
The LNA is independent of k. Error bars indicate 99.9%
confidence intervals for the simulation-based Fano factors.

microRNA bursts is desynchronised (cf. Equation (17)). In
the modified models, the mean dynamics continues to sat-
isfy the rate equations 20. The dissipation matrix, which
is obtained by linearising the rate equations 20, remains
therefore also the same 23. The fluctuation matrix however
changes and instead of 24 we find

_ 2up 0 0
B=1| 0 (B%)+(B)  (B)*+(B)—7
0 (B)?+(B)—-§ (B*)+(B)

for the model with uncoupled burst stoichiometry (13) and

(27)

(2up 0 0
B=| 0 (B)+(B) (B)-y9 (28)
0 (B)-9 (B)?+(B)

for the completely uncoupled production model (17). Com-
paring (24), (27), and (28) while noting that 0 < (B)? < (B?)
holds for burst size distributions, we gather that decoupling
burst stoichiometry and/or timing leads to a decrease in
the off-diagonal element in the fluctuation matrix. Such a
decrease corresponds to an effective decrease of correlation
between microRNA and mRNA production. The copy num-
ber covariance matrix X is calculated from the fluctuation
dissipation theorem (26), where the dissipation matrix A is
given by (23) and the fluctuation matrix B is given by (27) or
(28) depending on which model version is being evaluated.
The calculations lead to tractable results for ¢ = 1 and
¢ = 0; for the remaining combinations of parameter values
we prefer to use numerical evaluation of the Lyapunov
equation (26).

A classical system-size-expansion argument [58] guar-
antees that the LNA accurately describes the reaction sys-
tem (1) as k tends to infinity. We demonstrate the asymp-
totics in Fig 5, in which we compare the LNA of the mRNA
Fano factor to the value obtained by the application of
Gillespie’s stochastic simulation algorithm (SSA) [59]. We
observe a perfect agreement between the two if k¥ = 30
(Fig 5, left panel). Although the agreement remains satis-
factory for k = 3, the SSA results are now seen to deviate
systematically from the LNA prediction for moderate values
of ¢ and ¢ (Fig 5, right panel).

The reaction species mean values and standard devia-
tions were calculated using Stochpy’s [60] implementation
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of Gillespie’s direct method [59]. We skipped over the first
30 units of time to avoid the influence of an initial transient;
we estimated the moments from the next 10° iterations (for
k = 3) or 10° iterations (for & = 30) of the algorithm.
The Fano factor was calculated as the ratio of the squared
standard deviation to the mean value. The procedure was
repeated to obtain 25 independent Fano factor estimates.
The repetition increased accuracy and facilitated the con-
struction of confidence intervals.

5 STABILITY OF X IMPLIES POISSON DISTRIBU-
TION IN THE NONBURSTY CASE

In Section 4, we reported that provided that

1) production is nonbursty (B = 1),

2) Xis stable (¢ = 0),

3) Y has a chance of surviving the antagonism with X
(¢ >0),

then the linear noise approximation of the mRNA Fano fac-
tor is equal to one. Here we expand on this observation by
providing an actual proof that the steady-state copy number
of X (and also that of Y) follows the Poisson distribution.
The argument is based on the application of the Chemical
Reaction Network Theory (CRNT) [30].

Using the simplifying assumptions 1-3 in the chemical
reaction system (1) and truncating to the mRNA (X) and
microRNA species (Y) yields

3(1—q)

Ry :X+Y —F 0,

k
: X+Y
1:0 =X+ R (29)

Sq
Ry:X+Y 25Y, Ri:Y S0,

The combinations of reaction species appearing on the sides
of reaction channels are referred as “complexes” in the
CRNT framework [55]. The four reaction channels in (29)
involve N = 3 complexes, namely the empty set (), the pair
X 4+Y, and the singleton Y. The reaction system can be
visualised as a graph whose vertices are the complexes of
the reaction network and oriented edges represent reactions
transforming one complex into another (Fig 6). In our cur-
rent reaction graph, any two vertices can be connected by
paths (a succession of oriented edges) in each direction. It
follows that our reaction network is weakly reversible and
covered by a single (I = 1) linkage class.

The reaction vectors span the entire two-dimensional
(s = 2) space of X and Y copy number pairs. The deficiency
of the reaction network is obtained by the well-known
formula § = N —{—s = 0. According to CRNT [30], weakly
reversible networks of zero deficiency admit a product-form
steady-state distribution

m, n

Y
mlin!’

PX=mY=n]=C (30)
where © = k/dq and y = kq are obtained by solving the
law-of-mass action kinetics (20) at steady state, i.e. by setting
e =0and (B) = 1in (21)—(22).

Since the reaction system does not admit any conserva-
tion laws, the support of the distribution (30) includes all
pairs of nonnegative integers m,n > 0. The normalisation
constant C' is then readily determined as C' = ¢7*7%. In
other words, the joint distribution of X and Y is the product

0

y/ o\

Y<—X+Y
3

Fig. 6: Graphical representation of a reduced reaction sys-
tem (29) obtained from (1) by disabling bursting and the
spontaneous degradation of X (reaction channel Rs). The
reduced reaction system is seen to be weakly reversible
(unless ¢ = 0). Additionally, it has zero deficiency and
admits no conservation laws. Therefore, the copy numbers
of X and Y are independent and Poissonian.

of the marginal distributions, either of which is Poissonian
with mean z and y, respectively.

One of the powerful aspects of the Chemical Reaction
Network Theory is that it generalises to complex extensions
of Fig 6 as long as they do not violate its fundamental
structural properties. Biologically, microRNAs tend to be
promiscuous binders [61]. Below we extend the reaction
network (29) (Fig 6) by an interaction between Y (the mi-
croRNA) and decoy binding sites. We show that the copy-
number distributions remain Poissonian.

5.1 Extension of CRNT results to a system with decoy
binding sites

The Chemical Reaction Network Theory (CRNT) can be ap-
plied to reaction networks that extend Fig 6 with additional
reaction channels as long as they do not violate its funda-
mental structural properties. Assume, for example, that, in
addition to reaction channels in (29), a molecule Y can bind
to a free binding site B to form a heterodimer C, and that
the heterodimer can dissociate into its constituents Y and B.
Consider a reaction network obtained by extending that of
Fig 6 by the reversible pair of reactions Y + B = C. It is
clear that the extended network remains weakly reversible,
and that it involves N = 5 different complexes (§, X + Y,
Y, Y + B, and C), which are interconnected within [ = 2
linkage classes. The copy numbers (m, n, ¢, j) of the four
reaction species (X, Y, C, and B) are constrained by the
conservation law ¢ 4 j = v, where v gives the total number
of binding sites. Consequently, the stoichiometric subspace
has dimension s = 4 — 1 = 3, and the deficiency of the
extended network isequaltod = N -l —-s=5-3-2=0.
It follows that the steady-state distribution has the product
form [30]

xmyncibj ) )
Py = M= s forit g =v, (31)
where
-1
My b v!
M = = e_fl"_yi
1L 3 S T
H—] v

(32)

is the normalisation constant. The first two components of
the complex-balanced equilibrium (z,y, ¢, b) are still given
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by the values ¢ = k/dq and y = kq obtained in Section 5
in the absence of decoys. For the other two components
of the complex-balanced equilibrium we have the balance
condition yb = Lc¢, where L is the dissociation constant, and
the conservation law b 4 ¢ = v; solving in c and b yields

vy vL
= ) = . 33
¢ y+L y+L (33)
Inserting (33) into (31)—(32) and simplifying yields
L T AN .
Pm,n,i,j = € in] (z) e L)”’ fori+j =v.
(34)

The distribution in (34) is a product of two Poissons for X
and Y copy numbers and of a binomial for the number of
heterodimers C. In particular, the distribution of X (mRNA)
remains Poissonian despite the addition of an unspecific
interaction with decoy binding sites.

6 DiscussiON

In this paper we considered a stochastic model for a feed-
forward loop driven by the interaction between mRNA and
microRNA species. The model includes coupled produc-
tion of mRNA and microRNA, their interaction, protein
translation, and spontaneous decay of all molecular species.
A distinction was made between non-bursty transcription,
with a single microRNA-mRNA pair being transcribed at
a time, and bursty transcription, in which two or more
microRNA-mRNA pairs can be synthesised as a result
of a single production event. The aim of the paper was
to examine how the microRNA driven regulation impacts
the mRNA and protein variability (noise) throughout the
parameter space of the underlying computational model.
Molecular noise was quantified using the Fano factor — the
ratio of the variance (of a molecular species copy number)
to its mean.

In the nonbursty case, our results reinforce the obser-
vation that feedforward regulation can buffer mRNA noise
to sub-Poissonian levels [48]. The Fano factor exhibits a
nonmonotonic behaviour: for a fixed microRNA to mRNA
lifetime ratio, there is an optimal value of the interaction
strength that minimises the Fano factor; conversely, for a
fixed interaction strength, there exists an optimal lifetime
ratio. Intriguingly, in the absence of spontaneous mRNA
decay, the linear noise approximation based Fano factor is
equal to the Poissonian value of one. We supported this
observation with a conclusive proof, based on the Chemical
Reaction Network Theory framework, that the mRNA copy-
number distribution is Poissonian in the specific regime of
nonbursty production and no spontaneous decay. The pro-
tein Fano factor exhibits qualitatively different behaviour
depending on the stability of the protein. The noise in
an unstable protein faithfully copies that of the upstream
mRNA species, whereas for a stable protein the single most
important effect is the control of translation burst size (num-
ber of protein molecules produced per mRNA molecule)
through mRNA stability.

In the case of bursty transcription, mRNA distributions
can be super-Poissonian, with large Fano factors being avail-
able in case of bursts of many molecular copies. Explicit cal-
culations indicate that the bursting noise can be attenuated

9

through feedforward control. In the absence of spontaneous
mRNA decay, low interaction strengths lead to the Poisso-
nian Fano factor value of one, whereas strong interactions
imply an unregulated (large) value of Fano factor. Concep-
tually, the disadvantage of a large value of the interaction
strength is that it leads to fast mRNA turnover which can
interfere with feedforward control. If spontaneous mRNA
decay is included, loss of noise control occurs both for low
interaction strengths and large interaction strengths, and
an optimal value of interaction strength can be found that
minimises the mRNA Fano factor.

Our investigation indicates that the mRNA turnover
rate (both spontaneous and driven by the interaction with
microRNA) plays a crucial role in determining how much
of the bursting noise is transmitted downstream to mRNA
and protein levels. For this reason, we chose to compare the
performance of the microRNA based feedforward model
to a unregulated (or constitutive) model of bursty gene
expression with the same mRNA turnover rate. The result
is that the feedforward model leads to a lower value in both
mRNA and protein noise, but that the reduction in protein
noise can be much more substantial.

We argue that the strong coupling in burst stoichiometry
and in the timing of production events is crucial for the noise
reduction capability of the microRNA based feedforward
circuit. Aiming to quantify the effect, we considered addi-
tional two microRNA based models, one in which timing
of mRNA-microRNA bursts remains coupled but the burst
stoichiometries are decoupled, and one in which the mRNA
and microRNA production is entirely independent. Our re-
sults imply that removing the coupling in production wors-
ens noise controlling capability of the system. In particular,
removing the coupling in burst stoichiometry leads to the
same noise as observed in the constitutive model, whereas
the completely uncoupled case even leads to noise levels
that exceed those observed in the absence of regulation.

In summary, we studied a stochastic feedforward loop
motif featuring a coupled mRNA and microRNA produc-
tion and an antagonistic interaction. We examined the con-
sequences of the interaction on gene-expression noise in
nonbursty as well as bursty transcription regimes. Using
a combination of computational methodologies we charac-
terised the model behaviour in several parameter regions
of interest. We expect that analogous approaches will be
helpful to understand other examples of intrinsically noisy
gene-regulatory motifs operating at low copy numbers.
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