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Abstract—This technical note develops a unified methodology
for probabilistic analysis and optimal control design for jump
diffusion processes defined by polynomials. The statistical mo-
ments of these systems can be described by a system of linear
ordinary differential equations. Typically, however, the low-order
moments depend on higher-order moments, thus requiring an
infinite system of equations to compute any moment exactly.
Here we develop a methodology for bounding statistical moments
by using the higher-order moments as inputs to an auxiliary
convex optimal control problem with semidefinite constraints.
For steady-state problems, the auxiliary optimal control problem
reduces to a static semidefinite program. The method applies
to both controlled and uncontrolled stochastic processes. For
stochastic optimal control problems, the method gives bounds
on achievable performance and can be used to compute ap-
proximately optimal solutions. For uncontrolled problems, both
upper and lower bounds on desired moments can be computed.
While the accuracy of most moment approximations cannot
quantitatively characterized, our method guarantees that the
moment of interest is between the computed bounds.

I. INTRODUCTION

Two ubiquitous problems for stochastic systems are: 1) the
optimization of cost functions [1], [2] and 2) the estimation
of statistical moments [3]–[5]. Aside from linear systems
with quadratic costs, few stochastic optimal control problems
can be solved analytically. Approximation methods for more
geneneral problems can get stuck in local minima [6]. Simi-
larly, for estimation of moments, exact statistics can rarely be
computed analytically. Typically, estimates of the statistics are
either found through Monte Carlo simulation or approximation
schemes. However, the accuracy of estimates can rarely be
deduced quantitatively.

This technical note defines a unified methodology for ap-
proximating both analysis and control problems via convex
optimization methods. The paper focuses on continuous-time
jump diffusions defined by polynomials. We study polynomials
because they are rich enough to capture interesting problems
from chemical analysis [4] and resource management [7],
[8], while remaining analytically tractable. Both finite-horizon
and steady-state problems are considered. In the finite-horizon
case, approximations are achieved by solving an auxiliary
linear optimal control problem with semidefinite constraints.
In the steady-state case, this problem reduces to a static
semidefinite program (SDP).

The most closely related methods to convex relaxations of
stochastic optimal control problem focus on occupation mea-
sures [9]–[11]. In particular, these methods optimize the joint
distribution of the state and control processes over both space
and time. Our work can be interpreted as an “instantaneous”

version of occupation measures. A more removed relaxation
method uses convex duality to relax causality constraints [12],
[13]. Also related is the work of [14], [15] which uses a
combination of moment dynamics and deterministic optimal
control to find approximate solutions to stochastic optimal
control problems. That work, however, only considers systems
with closed moments.

For uncontrolled systems, our method provides provable
upper and lower bounds on statistical quantities of interest.
The method can be viewed as an alternative to moment closure
methods [3], [5], [16]–[19], which give point approximations
to moments, but whose accuracy cannot be guaranteed. In
contrast, the method of this technical note describes an interval
in which the moment must lie. The special case of stationary
moments was independently studied in [20].

This work is an extension of the conference paper [21].
That paper only considered the case of finite-horizon optimal
control for stochastic differential equations. This current work
provides a unified treatment of finite-horizon and steady state
problems, jump processes, and systems with and without
control inputs. Finally, changes in presentation highlight that
the optimization problem for bounding moments is a type of
linear optimal control problem.

Section II defines the general problems of interest. Back-
ground results on stochastic processes are given in Section III.
The main results and numerical examples are given in Sec-
tion IV. Finally, Section V concludes.

II. PROBLEMS

A. Notation

Random variables are denoted in bold. For a stochastic
process, x(t), dx(t) denotes the increment x(t+ dt)− x(t).
If x is a random variable, its expectation is denoted by 〈x〉.
The notation M � 0 denotes that M is a symmetric, positive
semidefinite matrix.

B. Finite-Horizon Stochastic Optimal Control

The general problem has the form:
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minimize

〈∫ T

0

c(x(t),u(t))dt+ h(x(T ),u(T ))

〉
(1a)

subject to
dx(t) = f(x(t),u(t))dt+ g(x(t),u(t))dw(t) (1b)

+
J∑

i=1

(φi(x(t),u(t))− x(t)) dN i(x(t),u(t)) (1c)

dN i(x(t),u(t)) =

{
1 with probability λi(x(t),u(t))dt

0 otherwise
(1d)

bi(x(t),u(t)) ≥ 0 for i ∈ {1, . . . , nb} (1e)
x(0) ∼ D and u(t) is admissible. (1f)

Here x(0) ∼ D means that x(0) has some specified initial
distribution, D. In the problems studied, D will be a distribu-
tion with known moments. By admissible, we mean that u(t)
is measurable with respect to the filtration F(t) generated by
{x(τ) : 0 ≤ τ ≤ t}. We will assume that the functions c, h,
f , g, φi, λi, and bi are polynomials.

Let V ∗ be the optimal cost. The method to be described
in Subsection IV-A gives a semidefinite programming method
for computing an increasing sequence of lower bounds, Li on
the optimal cost: L0 ≤ · · · ≤ Li ≤ V ∗.

For uncontrolled systems, both upper and lower bounds can
be found: L0 ≤ · · · ≤ Li ≤ V ∗ ≤ Ui ≤ · · · ≤ U0.

Furthermore, In Subsection IV-C, we show how to use
the result of the semidefinite programs to produce feasible
controllers. The cost associated with any feasible controller
will necessarily be at least as high as the optimal cost, and so
the corresponding controller gives an upper bound Ui. So, we
must have that Li ≤ V ∗ ≤ Ui.

C. Steady State

The results for finite-horizon problems can be modified to
bound steady-state moments:

minimize lim
T→∞

〈h(x(T ),u(T ))〉 (2a)

subject to (1b) − (1f) (2b)

III. BACKGROUND RESULTS

A. Generators

In this technical note, we will examine the behavior of mo-
ments of a stochastic process. The dynamics of the moments
can be derived using standard tools from stochastic processes.
For more details, see [22], [23].

Consider the dynamics from (1b). Let h(x) be a smooth
scalar valued function of the state. The generator of the
process is given by:

Lh(x, u) =
∂h(x)

∂x
f(x, u)+

1

2
Tr

(
∂2h(x)

∂x2
g(x, u)g(x, u)>

)
+

J∑
i=1

(h(φi(x, u))− h(x))λi(x, u). (3)

A standard result shows that 〈h(x(t))〉 can be expressed
using the generator as

d

dt
〈h(x(t))〉 = 〈Lh(x(t),u(t))〉. (4)

Say that h(x(t)) is a polynomial. Then, since all of the
functions, f , g, φi, and λi are polynomials, term inside the
expectation on the right hand side of (4) must also be a
polynomial.

B. The Auxiliary Linear System

This section shows how the dynamics, constraints, and costs
can all be studied in terms of an auxiliary linear control
system. The state, X (t), and input U(t), of the auxiliary
control system will be collections of moments:

X (t) =


1〈

x(t)(m1)
〉〈

x(t)(m2)
〉

...〈
x(t)(mN )

〉

 , U(t) =


〈
x(t)(q1)u(t)(r1)

〉〈
x(t)(q2)u(t)(r2)

〉
...〈

x(t)(qP )u(t)(rP )
〉
 .

(5)
Here, we use the notation x(t)(m) such that if m is a collection
of non-negative integers m = (d1, d2, . . . , dn), then x(t)(m)

denotes the product:

x(t)(m) = (x1(t))
d1(x2(t))

d2 · · · (xn(t))
dn . (6)

Note that 1 =
〈
x(t)(0)

〉
, in X (t). For simplicity, X (t) will

often include all moments of x(t) up to some degree.
In the case of an uncontrolled system, the moments from

U(t) will all take the form
〈
x(t)(qi)

〉
for some moment not

appearing in X (t). The moments contained in U(t) will be
chosen so that the Lemmas 1 – 3 below hold.

Lemma 1: Consider the dynamics from (1b) and let X (t)
be the vector of moments defined in (5). There exist constant
matrices, A, and B, such that

Ẋ (t) = AX (t) +BU(t). (7)

Proof: This is an immediate consequence of (3), provided
that all of the moments on the right hand side that do not
appear in X (t) are contained in U(t).

Remark 1: The result from Lemma 1 is well known, and
commonly arises in works on moment closure for stochastic
dynamic systems [3], [5], [16]–[19]. We say that a stochastic
process has non-closed moments when the dynamics of a
given moment depend on a higher order moments. In this
case, infinitely many differential equations are required to
describe any one moment exactly. Moment closure methods
approximate this infinite set of differential equations with a
finite set of differential equations.

Lemma 2: Assume that the moments in X (t) and U(t) are
bounded. There exist constant matrices, C, D, H , and K such
that〈∫ T

0

c(x(t),u(t))dt+ h(x(T ),u(T ))

〉
=∫ T

0

(CX (t) +DU(t)) dt+HX (T ) +KU(T ). (8)
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Proof: This follows by the assumption that c and h are
polynomials, provided that all moments from c and h that do
not appear in X (t) are contained in U(t). The exchange of
integration and expectation is justified by boundedness of the
moments and Fubini’s theorem.

Lemma 3: Let v1(x(t),u(t)), . . . , vm(x(t),u(t)) be any
collection of polynomials. There is an affine matrix-valued
function M such that the following holds:

〈 v1(x(t),u(t))...
vm(x(t),u(t))


 v1(x(t),u(t))...
vm(x(t),u(t))


T〉

= M(X (t),U(t)) � 0. (9)

Furthermore, if bi(x(t),u(t)) ≥ 0 for all t, and
s1(x(t),u(t)), . . . , smi(x(t),u(t)) is a collection of polyno-
mials, then there is a different affine matrix-valued function
Mbi such that

〈
bi(x(t),u(t))

 s1(x(t),u(t))
...

smi
(x(t),u(t))


 s1(x(t),u(t))

...
smi

(x(t),u(t))


T〉

= Mbi(X (t),U(t)) � 0. (10)

Proof: The existence of an affine M follows from
the polynomial assumption, provided that all moments that
do not appear in X (t) are contained in U(t). The matrix,
M(X (t),U(t)) is positive definite, since it is a convex combi-
nation of outer products which are positive semidefinite. Sim-
ilarly, if the positive semidefinite outer product is multiplied
by a non-negative scalar, and its mean is positive semidefinite.

Remark 2: The LMI from (9) must hold for any stochastic
process for which the required moments are finite. How-
ever, there could potentially be values X and U such that
M(X ,U) � 0, but no random variables x, u satisfy
〈v(x,u)v(x,u)>〉 = M(X ,U). Here v is the vector of
polynomials from (9). See [24] and references therein.

IV. RESULTS

A. Bounds via Linear Optimal Control

The following theorem shows how to compute bounds on
stochastic control problems using the auxiliary system.

Theorem 1: Let A, B, C, D, H , K, M , and Mbi be the
terms defined in Lemmas 1 – 3. Consider the corresponding
continuous-time semidefinite program:

minimize
X (t),U(t)

∫ T

0

(CX (t) +DU(t)) dt+HXT +KUT

(11a)

subject to Ẋ (t) = AX (t) +BU(t) (11b)
X (0) = X (0) (11c)
M(X (t),U(t)) � 0 for all t ∈ [0, T ] (11d)
Mbi(X (t),U(t)) � 0 (11e)

for all t ∈ [0, T ], i ∈ {1, . . . , nb}.

The optimal value for this problem is always a lower
bound on the optimal value for the stochastic control problem,
(1), when the corresponding moments exist. If the number
of constraints in (11) is increased, either by adding more
moments to X (t) or by adding more semidefinite constraints,
the value of (11) cannot decrease.

Proof: From classical results in stochastic control, opti-
mal strategies can be found of the form u(t) = γ∗(t,x(t)),
[1]. Thus, the function γ∗ induces a joint distribution over the
trajectories x(t) and u(t). Denote the corresponding moments
by X ∗(t) and U∗(t), provided that they exist. Lemmas 1 and
3 imply that X ∗(t) and U∗(t) satisfy all of the constraints of
the semidefinite program. Furthermore, Lemma 2 implies that
the optimal cost of the original stochastic control problem is
given by (8) / (11a) applied to X ∗(t) and U∗(t). Thus the
optimal cost of the semidefinite program is a lower bound on
the cost of the original stochastic control problem.

Say now that the problem is augmented by adding more
semidefinite constraints. In this case, the set of feasible solu-
tions can only get smaller, and so the optimal value cannot
decrease. Similarly, say that more moments are added to X (t)
giving rise to a larger state vector, X (t). In this case, the
number of variables increases, but the original variables must
still satisfy the constraints of the original problem. So, again
the optimal value cannot decrease.

Corollary 1: For for an uncontrolled system, maximiz-
ing and minimizing (11), are both convex SDPs. Thus
(11) gives upper and lower bounds on the value:〈∫ T

0
c(x(t))dt+ h(x(T ))

〉
.

The process of constructing the semidefinite programs can
be automated, which we briefly sketch. First, we fix a moment
matrix, M(X (t),U(t)), containing all moments up to a given
order. The state vector X (t) is constructed by adding all
of the moments 〈x(t)(m)〉 such that the moment itself and
corresponding moments from the generator are all contained
in M(X (t),U(t)). For a more detailed discussion, see [25].

B. Steady State Bounds

If the process has converged to a stationary distribution
with finite moments, then the moments must be constant. This
implies that the true state satisfies d

dtX (t) = 0.
Theorem 2: Let A, B, H , K, M , and Mbi be the terms

defined in Lemmas 1 – 3. Consider the following semidefinite
program:

minimize
X ,U

HX +KU (12a)

subject to 0 = AX +BU (12b)
M(X ,U) � 0 (12c)
Mbi(X ,U) � 0 for all i ∈ {1, . . . , nb}. (12d)

The optimal value for this problem is always a lower bound
on the optimal value for the steady-state stochastic control
problem, (2), provided that the stationary moments exist and
are finite. If the number of constraints in the linear problem,
(12), is increased, either by adding more moments to X or by
adding more semidefinite constraints, the value of (12) cannot
decrease.
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Remark 3: A special case of this theorem is studied in
detail in [20]. Specifically, that work considers uncontrolled
stochastic differential equations with no jumps. They prove
that in some cases, the upper and lower bounds converge.

Remark 4: In some pathological cases, the stationary mo-
ments may not exist, [26]. Requiring finite moments avoids
these pathologies, [20].

C. Constructing a Feasible Controller

The SDPs (11) and (12) approximate statistical moments of
the control inputs. This subsection gives a heuristic method
for computing controllers from the SDP results.

Assume that u(t) is a polynomial function of x(t):

u(t) =

p∑
i=1

ki(t)x(t)
(di), (13)

where ki(t) is a vector of coefficients and x(t)(di) is a
monomial. In this case, the correlation between u(t) and any
other monomial x(t)(m) can be expressed as:

〈u(t)x(t)(m)〉 =
p∑

i=1

ki(t)〈x(t)(di+m)〉. (14)

For moments computed using the SDP, (14) will not hold
exactly. To make (14) hold approximately, we 1) solve the
SDP from (11) and 2) solve the least squares problem:

minimize
ki(t)

∥∥[〈u(t)x(t)(m1)〉 · · · 〈u(t)x(t)(mq)〉
]
−

p∑
i=1

ki(t)
[
〈x(t)(di+m1)〉 · · · 〈x(t)(di+mq)〉

]∥∥∥∥∥
2

F

, (15)

where ‖ · ‖F denotes the Frobenius norm.
The controller computed from (13) and (15) suffices for

problems with no constraints. However, in the general formu-
lation, the inputs and states could have constraints, defined by
the inequalities bi(x(t),u(t)) ≥ 0. In the special case of input
constraints, the inequalities define a set U such that u(t) ∈ U .
In the case of a convex U , the control strategy can be modified
by using the convex projection onto U :

u(t) = ΠU

(
p∑

i=1

ki(t)x(t)
(di)

)
. (16)

Proposition 1: Let u(t) be the controller computed accord-
ing to (13) / (16) and (15). The cost (1a) induced by this
controller is an upper bound on the optimal value for the
original optimal control problem (1).

Proof: The controller from (13) and (15) is feasible for
(1), so its value cannot be less than the optimum.

Theorem 1 and Proposition 1 give the following corollary.
Corollary 2: Let L be the optimal value of (11) and let U

be the expected cost induced by the controller computed from
(13) and (15). If V ∗ is the optimal value (1), then V ∗ satisfies:
L ≤ V ∗ ≤ U.

D. Examples

In this subsection we will discuss how the results of
the previous subsection can be applied to specific exam-
ples. Throughout this subsection, we will set vj

i (t) =[
x(t)i x(t)i+1 · · · x(t)j

]>
for compact notation.

Example 1 (Stochastic Logistic Model): Consider the
stochastic logistic model studied in [4]:

x(t+ dt) =


x(t) + 1 with probability (a1x− b1x

2)dt

x(t)− 1 with probability (a2x+ b2x
2)dt

x(t) otherwise,
(17)

Here we assume that the coefficients satisfy:

Ω :=
a1
b1

, a1 > 0, a2 > 0, b1 > 0, b2 ≥ 0, (18)

where Ω is a positive integer. These assumptions guarantee that
if x(0) ∈ {0, 1, 2, . . . ,Ω} then x(t) ∈ {0, 1, 2, . . . ,Ω} for all
t ≥ 0. Our goal is to find bounds on the second moment of
the state at the final time, 〈x(T )2〉.

The differential equations corresponding to the moments
have the form:

d

dt
〈x(t)k〉 = 〈((x(t) + 1)k − x(t)k)(a1x(t)− b1x(t)

2)〉+

〈((x(t)− 1)k − x(t)k)(a2x(t) + b2x(t)
2)〉

Because of a cancellation in the terms (x + 1)k − xk and
(x−1)k−xk, the degree of the right hand side is k+1. Here,
the auxiliary control variable U(t) will represent a higher order
moment that is not part of X (t).

For d ≥ 1, we take the state, input, and LMIs as:

X (t) = 〈v2d−1
0 (t)〉, U(t) = 〈x(t)2d〉. (19)

〈vd
0(t)v

d
0(t)

>〉 � 0, 〈x(t)vd−1
0 (t)vd−1

0 (t)>〉 � 0, (20)

〈(Ω− x(t))vd−1
0 (t)vd−1

0 (t)>〉 � 0 (21)

The first LMI encodes the basic outer product constraint, while
the other two encode the constraint that x(t) ∈ [0,Ω]. See
Fig. 1 for numerical results.

Example 2 (Fishery Management): A problem of fishery
management, modified from [7], [8], is given by:

maximize

〈∫ T

0

u(t)dt

〉
(22a)

subject to dx(t) =
(
x(t)− γx(t)2 − u(t)

)
dt

+ σx(t)dw(t) (22b)
x(0) = x0, x(t) ≥ 0, u(t) ≥ 0. (22c)

Here x(t) models the population in a fishery and u(t) models
the rate of harvesting. As in the earlier works, a non-negative
population, x(t) ≥ 0, is required. The constraint that u(t) ≥ 0
encodes the idea that fish are only being taken out, not put into
the fishery. The primary difference between this formulation
and that of [8] and [7], is that the cost is not discounted, and
operates over a fixed, finite horizon.



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2872274, IEEE
Transactions on Automatic Control

5

0.0 0.5 1.0 1.5 2.0

Time

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

­ x(t)
2
®

Lower Bound

Upper Bound

Monte Carlo

Fig. 1: For the logistic model, (17), we used parameters a1 =
3, b1 = 1, a2 = 1, b2 = 0 and initial condition x(0) =
1. Using the SDP of Theorem 1, we get upper and lower
bounds on 〈x(T )2〉. While we only penalized the final value,
the bounds and averaged trajectory (5000 runs) are similar
over the horizon.

The moment dynamics are given by:

d

dt
〈x(t)k〉 = k

〈
x(t)k − γx(t)k+1 − x(t)k−1u(t)

〉
+

1

2
k(k − 1)〈x(t)k〉 (23)

For d ≥ 2, the states, inputs, and LMIs are given by:

X (t) = 〈vd+1
0 (t)〉, U(t) =

〈 v2d
d+2(t)

vd
0(t)u(t)
u(t)2

〉 (24)

〈[
vd
0(t)
u(t)

] [
vd
0(t)
u(t)

]>〉
� 0, 〈x(t)vd−1

0 (t)vd−1
0 (t)> � 0〉,

(25)

〈u(t)vd−1
0 (t)vd−1

0 (t)〉 � 0 (26)

An interesting control strategy appears to emerge, whereby
the population is held constant for most of the interval and
then fished to extinction at the end of the horizon. See Fig. 2.

Example 3 (Jump Rate Control): In the next problem, the
size of a Brownian motion is controlled by instantaneously
jumping the state to zero, with jump rate u(t):

minimize lim
T→∞

〈
Qx(T )2 +Ru(T )

〉
(27a)

subject to dx(t) = dw(t)− x(t)dN(t) (27b)

dN(t) =

{
1 with probability u(t)dt

0 with probability 1− u(t)dt

(27c)
0 ≤ u(t) ≤ Ω. (27d)

The constraints on u(t) ensure that the jump rate is non-
negative and finite. The moments have dynamics given by:

d

dt
〈x(t)k〉 = 1

2
k(k − 1)〈x(t)k−2〉 − 〈x(t)ku(t)〉 (28)

for k ≥ 1. Thus, the state moments do not depend on higher-
order moments of the state, but they do depend on correlations
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(b) Harvesting Strategy

Fig. 2: Fig. 2a shows the average population while Fig. 2b
shows the average harvest. The SDP predicts a maximum yield
of 13.77, while the corresponding controller achieves a yield
of 13.55, when averaged over 5000 simulations.

with the input. Using the vj
i (t) notation defined above, we take

our augmented state and input to be:

X (t) =
〈
v2d
0 (t)

〉
, U(t) =

〈
v2d
0 (t)u(t)

〉
. (29)

We enforce the constraint that 0 ≤ u(t) ≤ Ω using LMIs:〈
u(t)vd

0(t)v
d
0(t)

>〉 � 0,
〈
(Ω− u(t))vd

0(t)v
d
0(t)

>〉 � 0

See Fig. 3 for numerical results.

V. CONCLUSION

This technical note presented a method based on semidefi-
nite programming for computing bounds on stochastic process
moments and stochastic optimal control problems in a unified
manner. The method is flexible, in that it can be applied
to controlled and uncontrolled stochastic processes driven by
Brownian motion and jumps. The key insight behind the
method is the interpretation of the dynamics of the moments
as a linear control problem. The auxiliary state consists of
a collection of moments of the original state, while the
auxiliary input consists of higher order state moments and
terms involving inputs. Then all of the desired bounds can
be computed in terms of optimal control problems on this
auxiliary system.

Future work will focus on algorithmic improvements and
theoretical extensions. A simple algorithmic extension would
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Fig. 3: Fig 3a shows the control policies computed as in
Subsection IV-C for various orders. Here Q = 1, R = 10 and
the upper bound on the jump rate Ω = 10. As the degree of the
controller increases, the strategy becomes flatter near x(t) =
0 and then increases rapidly for |x(t)| > 3. To enforce the
constraint that 0 ≤ u(t) ≤ Ω = 10, the value is simply clipped
to the correct range. Fig 3b compares the predicted bound with
the achieved value (1000 runs each). With increasing controller
degrees, the bounds become increasingly tight.

be to use alternative basis polynomials to improve numerical
stability. Currently, all of the SDPs were solved using CVXPY
[27] and off-the-shelf SDP solvers [28], [29]. However, the
SDP from (11) has a structure which could be potentially be
exploited by custom solvers. Furthermore, the general method-
ology could be extended to functions beyond polynomials.
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