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Abstract

Persistent key-value stores are widely used as building
blocks in today’s IT infrastructure for managing and storing
large amounts of data. However, studies of characterizing
real-world workloads for key-value stores are limited due to
the lack of tracing/analyzing tools and the difficulty of collect-
ing traces in operational environments. In this paper, we first
present a detailed characterization of workloads from three
typical RocksDB production use cases at Facebook: UDB (a
MySQL storage layer for social graph data), ZippyDB (a dis-
tributed key-value store), and UP2X (a distributed key-value
store for AI/ML services). These characterizations reveal sev-
eral interesting findings: first, that the distribution of key and
value sizes are highly related to the use cases/applications;
second, that the accesses to key-value pairs have a good lo-
cality and follow certain special patterns; and third, that the
collected performance metrics show a strong diurnal pattern
in the UDB, but not the other two.

We further discover that although the widely used key-value
benchmark YCSB provides various workload configurations
and key-value pair access distribution models, the YCSB-
triggered workloads for underlying storage systems are still
not close enough to the workloads we collected due to ig-
norance of key-space localities. To address this issue, we
propose a key-range based modeling and develop a bench-
mark that can better emulate the workloads of real-world
key-value stores. This benchmark can synthetically generate
more precise key-value queries that represent the reads and
writes of key-value stores to the underlying storage system.

1 Introduction

In current IT infrastructure, persistent key-value stores (KV-
stores) are widely used as storage engines to support various
upper-layer applications. The high performance, flexibility,
and ease of use of KV-stores have attracted more users and
developers. Many existing systems and applications like file
systems, object-based storage systems, SQL databases, and
even AI/ML systems use KV-stores as backend storage to
achieve high performance and high space efficiency [10, 16,
28, 36].

However, tuning and improving the performance of KV-

stores is still challenging. First, there are very limited studies
of real-world workload characterization and analysis for KV-
stores, and the performance of KV-stores is highly related
to the workloads generated by applications. Second, the an-
alytic methods for characterizing KV-store workloads are
different from the existing workload characterization stud-
ies for block storage or file systems. KV-stores have simple
but very different interfaces and behaviors. A set of good
workload collection, analysis, and characterization tools can
benefit both developers and users of KV-stores by optimizing
performance and developing new functions. Third, when eval-
uating underlying storage systems of KV-stores, it is unknown
whether the workloads generated by KV-store benchmarks
are representative of real-world KV-store workloads.

To address these issues, in this paper, we characterize,
model, and benchmark workloads of RocksDB (a high-
performance persistent KV-store) at Facebook. To our knowl-
edge, this is the first study that characterizes persistent KV-
store workloads. First, we introduce a set of tools that can
be used in production to collect the KV-level query traces,
replay the traces, and analyze the traces. These tools are
open-sourced in RocksDB release [20] and are used within
Facebook for debugging and performance tuning KV-stores.
Second, to achieve a better understanding of the KV work-
loads and their correlations to the applications, we select
three RocksDB use cases at Facebook to study: 1) UDB,
2) ZippyDB, and 3) UP2X. These three use cases are typi-
cal examples of how KV-stores are used: 1) as the storage
engine of a SQL database, 2) as the storage engine of a dis-
tributed KV-store, and 3) as the persistent storage for artificial-
intelligence/machine-learning (AI/ML) services.

UDB is the MySQL storage layer for social graph data at
Facebook, and RocksDB is used as its backend storage engine.
Social graph data is maintained in the MySQL tables, and
table rows are stored as KV-pairs in RocksDB. The conver-
sion from MySQL tables to RocksDB KV-pairs is achieved
by MyRocks [19, 36]. ZippyDB is a distributed KV-store that
uses RocksDB as the storage nodes to achieve data persis-
tency and reliability. ZippyDB usually stores data like photo
metadata and the metadata of objects in storage. In this paper,
the workloads of ZippyDB were collected from shards that
store the metadata of an object storage system at Facebook
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(called ObjStorage in this paper). The key usually contains
the metadata of an ObjStorage file or a data block, and the
value stores the corresponding object address. UP2X is a spe-
cial distributed KV-store based on RocksDB. UP2X stores the
profile data (e.g., counters and statistics) used for the predic-
tion and inferencing of several AI/ML services at Facebook.
Therefore, the KV-pairs in UP2X are frequently updated.

Based on a set of collected workloads, we further explore
the specific characteristics of KV-stores. From our analyses,
we find that 1) read dominates the queries in UDB and Zip-
pyDB, while read-modify-write (Merge) is the major query
type in UP2X; 2) key sizes are usually small and have a
narrow distribution due to the key composition design from
upper-layer applications, and large value sizes only appear in
some special cases; 3) most KV-pairs are cold (less accessed),
and only a small portion of KV-pairs are frequently accessed;
4) Get, Put, and Iterator have strong key-space localities (e.g.,
frequently accessed KV-pairs are within relatively close loca-
tions in the key-space), and some key-ranges that are closely
related to the request localities of upper-layer applications
are extremely hot (frequently accessed); and 5) the accesses
in UDB explicitly exhibit a diurnal pattern, unlike those in
ZippyDB and UP2X, which do not show such a clear pattern.

Benchmarks are widely used to evaluate KV-store perfor-
mance and to test underlying storage systems. With real-world
traces, we investigate whether the existing KV benchmarks
can synthetically generate real-world-like workloads with
storage I/Os that display similar characteristics. YCSB [11]
is one of the most widely used KV benchmarks and has be-
come the gold standard of KV-store benchmarking. It provides
different workload models, various query types, flexible con-
figurations, and supports most of the widely used KV-stores.
YCSB can help users simulate real-world workloads in a con-
venient way. However, we find that even though YCSB can
generate workloads that have similar key-value (KV) query
statistics as shown in ZippyDB workloads, the RocksDB stor-
age I/Os can be quite different. This issue is mainly caused
by the fact that the YCSB-generated workloads ignore key-
space localities. In YCSB, hot KV-pairs are either randomly
allocated across the whole key-space or clustered together.
This results in an I/O mismatch between accessed data blocks
in storage and the data blocks associated with KV queries.
Without considering key-space localities, a benchmark will
generate workloads that cause RocksDB to have a bigger read
amplification and a smaller write amplification than those in
real-world workloads.

To develop a benchmark that can more precisely emu-
late KV-store workloads, we propose a workload modeling
method based on the hotness of key-ranges. The whole key-
space is partitioned into small key-ranges, and we model the
hotness of these small key-ranges. In the new benchmark,
queries are assigned to key-ranges based on the distribution
of key-range hotness, and hot keys are allocated closely in
each key-range. In our evaluation, under the same configura-

tion, YCSB causes at least 500% more read-bytes and delivers
only 17% of the cache hits in RocksDB compared with real-
world workloads. The workloads generated by our proposed
new benchmark have only 43% more read-bytes and achieve
about 77% of the cache hits in RocksDB, and thus are much
closer to real-world workloads. Moreover, we use UDB as
an example to show that the synthetic workloads generated
by the new benchmark have a good fit of the distributions in
key/value sizes, KV-pair accesses, and Iterator scan lengths.

This paper is organized as follows. First, we introduce
RocksDB and the system background of three RocksDB use
cases in Section 2. We describe our methodology and tools in
Section 3. The detailed workload characteristics of the three
use cases including the general query statistics, key and value
sizes, and KV-pair access distributions are presented in 4, 5,
and 6 respectively. In Section 7, we present the investigation
results of the storage statistics of YCSB, and describe the
proposed new modeling and benchmarking methods. We also
compare the results of YCSB with those of the new bench-
mark. Related work is described in Section 8, and we conclude
the paper in Section 9.

2 Background
In this section, we first briefly introduce KV-stores and

RocksDB. Then, we provide background on three RocksDB
use cases at Facebook, UDB, ZippyDB, and UP2X, to promote
understanding of their workloads.

2.1 Key-Value Stores and RocksDB
KV-store is a type of data storage that stores and accesses

data based on {key, value} pairs. A key uniquely identifies the
KV-pair, and the value holds the data. KV-stores are widely
used by companies as distributed hash tables (e.g., Ama-
zon Dynamo [14]), in-memory databases (e.g., Redis [39]),
and persistent storage (e.g., BigTable [8] from Google and
RocksDB [15, 21] from Facebook).

RocksDB is a high-performance embedded persistent KV-
store that was derived from LevelDB [23] by Facebook
[15, 21] and was optimized for fast storage devices such as
Solid State Drives. RocksDB is also used by many large web-
sites, like Alibaba [44], Yahoo [37], and LinkedIn [24]. At
Facebook, RocksDB is used as the storage engine for sev-
eral data storage services, such as MySQL [19, 36], Laser [9],
Cassandra [16], ZippyDB [1], and AI/ML platforms.

RocksDB supports KV interfaces like Get, Put, Delete,
Iterator (scan), SingleDelete, DeleteRange, and Merge. Get,
Put, and Delete are used to read, write, and delete a KV-pair
with certain key respectively. Iterator is used to scan a set of
consecutive KV-pairs beginning with a start-key. The scan
direction can be either forward (calling Nexts) or backward
(calling Prevs). SingleDelete can only be used to delete a
KV-pair that has not been overwritten [22]. DeleteRange is
used to delete a range of keys between [start, end) (the end-
key is excluded from the deletion). RocksDB encapsulates
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Figure 1: The basic architecture of RocksDB.

the semantics for read-modify-write into a simple abstract
interface called Merge [17], which avoids the performance
overhead of a random Get before every Put. Merge stores
the delta of the write to RocksDB, and these deltas can be
stacked or already combined. This incurs a high read overhead
because a Get to one key requires finding and combining
all the previously stored deltas with the same key inserted
by a Merge. The combine function is defined by users as a
RocksDB plugin.

RocksDB adopts a Log-Structured Merge-Tree [38] to
maintain the KV-pairs in persistent storage (e.g., file systems).
The basic architecture of RocksDB is shown in Figure 1. One
RocksDB maintains at least one logical partition called Col-
umn Family (CF), which has its own in-memory write buffer
(Memtable). When a Memtable is full, it is flushed to the file
system and stored as a Sorted Sequence Table (SST) file. SST
files persistently store the KV-pairs in a sorted fashion and
are organized in a sequence of levels starting from Level-0.
When one level reaches its limit, one SST file is selected
to be merged with the SST files in the next level that have
overlapping key-ranges, which is called compaction. Detailed
information about RocksDB is described in [15, 21]

2.2 Background of Three RocksDB Use Cases

We discuss three important and large-scale production use
cases of RocksDB at Facebook: 1) UDB; 2) ZippyDB; and 3)
UP2X. Sharding is used in all three use cases to achieve load
balancing. Therefore, the workloads are very similar among
all shards, and we randomly select three RocksDB instances
from each use case to collect the traces.

UDB: Social graph data at Facebook is persistently stored
in UDB, a sharded MySQL database tier [4]. The cache read
misses and all writes to social graph data are processed by
UDB servers. UDB relies on the MySQL instance to han-
dle all queries, and these queries are converted to RocksDB
queries via MyRocks [19, 36]. Much of the social graph data
is presented as objects and associations, and is maintained
in different MySQL tables following the model introduced
in [4]. RocksDB uses different Column Families (CFs) to
store object- and association-related data.

There are 6 major CFs in UDB: Object, Assoc,
Assoc_count, Object_2ry, Assoc_2ry, and Non_SG.
Object stores social graph object data and Assoc stores

social graph association data, which defines connections
between two objects. Assoc_count stores the number
of associations of each object. Association counters are
always updated with new values and do not have any
deletions. Object_2ry and Assoc_2ry are the CFs that
maintain the secondary indexes of objects and associations,
respectively. They are also used for the purpose of ETL
(Extract, Transform, and Load data from databases). Non_SG
stores data from other non-social graph related services.

Because the UDB workload is an example of KV queries
converted from SQL queries, some special patterns exist. We
collected the traces for 14 days. Since the workload character-
istics of three UDB servers are very similar, we present only
one of them. The total trace file size in this server is about 1.1
TB. For some characteristics, daily data is more important.
Thus, we also analyzed the workload of the last day in the
14-day period (24-hour trace) separately.

ZippyDB: A high-performance distributed KV-store called
ZippyDB was developed based on RocksDB and relies on
Paxos [29] to achieve data consistency and reliability. KV-
pairs are divided into shards, and each shard is supported by
one RocksDB instance. One of the replicas is selected as the
primary shard, and the others are secondary. The primary
shard processes all the writes to a certain shard. If strong
consistency is required for reads, read requests (e.g., Get and
Scan) are only processed by the primary shard. One ZippyDB
query is converted to a set of RocksDB queries (one or more).

Compared with the UDB use case, the upper-layer queries
in ZippyDB are directly mapped to the RocksDB queries, and
so the workload characteristics of ZippyDB are very different.
We randomly selected three primary shards of ZippyDB and
collected the traces for 24 hours. Like UDB, we present only
one of them. This shard stores the metadata of ObjStorage,
which is an object storage system at Facebook. In this shard,
a KV-pair usually contains the metadata information for an
ObjStorage file or a data block with its address information.

UP2X: Facebook uses various AI/ML services to support
social networks, and a huge number of dynamically changing
data sets (e.g., the statistic counters of user activities) are used
for AI/ML prediction and inferencing. UP2X is a distributed
KV-store that was developed specifically to store this type of
data as KV-pairs. As users use Facebook services, the KV-
pairs in UP2X are frequently updated, such as when counters
increase. If UP2X called Get before each Put to achieve a read-
modify-write operation, it would have a high overhead due to
the relatively slow speed of random Gets. UP2X leverages the
RocksDB Merge interface to avoid Gets during the updates.

KV-pairs in UP2X are divided into shards supported by
RocksDB instances. We randomly selected three RocksDB
instances from UP2X and then collected and analyzed the
24-hour traces. Note that the KV-pairs inserted by Merge are
cleaned during compaction via Compaction Filter, which uses
custom logic to delete or modify KV-pairs in the background
during compaction. Therefore, a large number of KV-pairs
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are removed from UP2X even though the delete operations
(e.g., Delete, DeleteRange, and SingleDelete) are not used.

3 Methodology and Tool Set
To analyze and characterize RocksDB workloads from

different use cases and to generate synthetic workloads, we
propose and develop a set of KV-store tracing, replaying,
analyzing, modeling, and benchmarking tools. These tools
are already open-sourced in RocksDB release [20]. In this
section, we present these tools and discuss how they are used
to characterize and generate KV-store workloads.

Tracing The tracing tool collects query information at
RocksDB public KV interfaces and writes to a trace file as
records. It stores the following five types of information in
each trace record: 1) query type, 2) CF ID, 3) key, 4) query
specific data, and 5) timestamp. For Put and Merge, we store
the value information in the query-specific data. For Itera-
tor queries like Seek and SeekForPrev, the scan length (the
number of Next or Prev called after Seek or SeekForPrev) is
stored in the query-specific data. The timestamp is collected
when RocksDB public interfaces are called with microsecond
accuracy. In order to log the trace record of each query in a
trace file, a lock is used to serialize all the queries, which will
potentially incur some performance overhead. However, ac-
cording to the performance monitoring statistics in production
under the regular production workloads, we did not observe
major throughput degradation or increased latency caused by
the tracing tool.

Trace Replaying The collected trace files can be replayed
through a Replayer tool implemented in db_bench (special
plugins like MergeOperator or Comparator are required if they
are used in the original RocksDB instance). The replay tool
issues the queries to RocksDB based on the trace record infor-
mation, and the time intervals between the queries follow the
timestamps in the trace. By setting different fast forward and
multithreading parameters, RocksDB can be benchmarked
with workloads of different intensities. However, query order
is not guaranteed with multithreading. The workloads gener-
ated by Replayer can be considered as real-world workloads.

Trace Analyzing Using collected traces for replaying has
its limitations. Due to the potential performance overhead of
workload tracing, it is difficult to track large-scale and long-
lasting workloads. Moreover, the content of trace files is sen-
sitive and confidential for their users/owners, so it is very hard
for RocksDB users to share the traces with other RocksDB
developers or developers from third-party companies (e.g.,
upper-layer application developers or storage vendors) for
benchmarking and performance tuning. To address these lim-
itations, we propose a way of analyzing RocksDB workloads
that profiles the workloads based on information in the traces.

The trace analyzing tool reads a trace file and provides the
following characteristics: 1) a detailed statistical summary
of the KV-pairs in each CF, query numbers, and query types;
2) key size and value size statistics; 3) KV-pair popularity;

4) the key-space locality, which combines the accessed keys
with all existing keys from the database in a sorted order; and
5) Queries Per Second (QPS) statistics.

Modeling and Benchmarking We first calculate the Pear-
son correlation coefficients between any two selected vari-
ables to ensure that these variables have very low correlations.
In this way, each variable can be modeled separately. Then,
we fit the collected workloads to different statistical models to
find out which one has the lowest fitting error, which is more
accurate than always fitting different workloads to the same
model (like Zipfian). The proposed benchmark can then gen-
erate KV queries based on these probability models. Details
are discussed in Section 7.

4 General Statistics of Workloads

In this section, we introduce the general workload statistics
of each use case including query composition in each CF,
KV-pair hotness distributions, and queries per second.

4.1 Query Composition

By analyzing query composition, we can figure out query
intensity, the ratio of query types in different use cases, and
the popularity of queries. We find that: 1) Get is the most
frequently used query type in UDB and ZippyDB, while
Merge dominates the queries in UP2X, and 2) query com-
position can be very different in different CFs.

UDB In this UDB server, over 10.2 billion queries were
called during the 14-day period, and there were about 455
million queries called during the last 24 hours. There are six
CFs being used in UDB as discussed in 2.2. Although those
CFs are stored in the same RocksDB database, the workloads
are very different. It is difficult to analyze and model such a
mixed workload without the separation of different CFs. The
query composition in each CF is shown in Figure 2. Get, Put,
and Iterator are three major query types in UDB, especially
in Object, Assoc, and Non_SG. Get does not show up in the
secondary indexes of objects (Object_2ry) and associations
(Assoc_2ry). Object_2ry is built for the purpose of ETL,
so Iterator is the major query type. Assoc mostly checks the
existence of an association between two objects via Get, while
the secondary index (Assoc_2ry) lists the objects that are as-
sociated with one target object. Since KV-pairs in Assoc_2ry
have no repeating updates, SingleDelete is used in this CF to
delete the invalid KV-pairs. In other CFs, regular Delete is
called to remove the invalid KV-pairs. Assoc_count stores
the number of associations of each object. Therefore, Get and
Put are the major query types used in this CF to read and
update the counters.

ZippyDB There is only one CF being used in ZippyDB.
Get, Put, Delete, and Iterator_seek (forward Iterator) are the
four query types that are used. Over the 24-hour period, there
were about 420 million queries called in this shard. The ratios
of each query type are: 78% Get, 13% Put, 6% Delete, and 3%
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(a) The KV-pair access count CDF by Get (b) The KV-pair access count CDF by Put

Figure 3: The KV-pair access count distribution queried by
Get and Put in each CF during 24 hours.

Iterator, respectively. Get is the major query type in ZippyDB,
which aligns with the read-intensive workload of ObjStorage.

UP2X Over the 24-hour period, the RocksDB instance
received 111 million queries. Among them, about 92.53% of
the queries are Merge, 7.46% of them are Get, and fewer than
0.01% of the queries are Put. The query composition is very
different from the UDB and ZippyDB use cases, which are
read dominated. About 4.71 million KV-pairs were accessed
by Merge, 0.47 million by Get, and 282 by Put. Read-and-
modify (Merge) is the major workload pattern in UP2X.

4.2 KV-Pair Hotness Distribution
To understand the hotness of KV-pairs in each use case, we

count how many times each KV-pair was accessed during the
24-hour tracing period and show them in cumulative distribu-
tion function (CDF) figures. The X-axis is the access count,
and the Y-axis is the cumulative ratio between 0 and 1. We
find that in UDB and ZippyDB, most KV-pairs are cold.

UDB We plot out the KV-pair access count CDFs for Get
and Put. For Iterator, we show the start-key access count
distribution and the scan length distribution. The CDFs of
Get and Put are shown in Figure 3. Looking at Figure 3(a),
more than 70% of the KV-pairs in Assoc are Get requests
that occurred at least 2 times. In contrast, this ratio in other
CFs is lower than 40%. It indicates that read misses of Assoc
happen more frequently than the others. As shown in 3(b),
in all CFs, more than 75% of the KV-pairs are Put only one
time and fewer than 2% of the KV-pairs are Put more than 10
times. The majority of the KV-pairs are rarely updated.

We plot out the access count CDF of the start-keys of Itera-
tors over the 24-hour period, as shown in Figure 4(a). Most of
the start-keys are used only once, which shows a low access lo-
cality. Fewer than 1% of the start-keys are used multiple times

(a) The Iterator start-key access count
CDF distribution

(b) The Iterator scan length CDF distribu-
tion

Figure 4: The Iterator scan length and start-key access count
CDF of four CFs during 24 hours.

by Iterators. The scan length of more than 60% of the Itera-
tors is only 1 across all CFs, as shown in Figure 4(b). About
20% of the Iterators in Assoc scan more than 100 consecutive
keys, while the ratios for Assoc_2ry and Non_SG are about
10% and 5%, respectively. A very large scan length (higher
than 10,000) is very rare, but we can still find some exam-
ples of this type in Non_SG and Assoc. The configured range
query limit in MySQL creates some special scan lengths. For
example, there is a jump at 200 in both Assoc and Non_SG.

We also count the number of unique keys being accessed
in different time periods. As shown in Table 1, during the last
24 hours, fewer than 3% of the keys were accessed. During
the 14-day period, the ratio is still lower than 15% for all CFs.
In general, most of the keys in RocksDB are “cold" in this use
case. On one hand, most read requests are responded to by
the upper cache tiers [5, 7]. Only the read misses will trigger
queries to RocksDB. On the other hand, social media data
has a strong temporal locality. People are likely accessing the
most recently posted content on Facebook.

ZippyDB The average access counts per accessed KV-pair
of the four query types (Get, Put, Delete, and Iterator_seek)
are: 15.2, 1.7, 1, and 10.9, respectively. Read queries (Get and
Iterator_seek) show very good locality, while the majority of
the KV-pairs are only Put and Deleted once in the last 24-hour
period. The access count distribution is shown in Figure 5.
For about 80% of the KV-pairs, Get requests only occur once,
and their access counts show a long tail distribution. This
indicates that a very small portion of KV-pairs have very large
read counts over the 24-hour period. About 1% of the KV-
pairs show more than 100 Get requests, and the Gets to these
KV-pairs are about 50% of the total Gets that show strong
localities. In contrast, about 73% of the KV-pairs are Put only
once, and fewer than 0.001% of the KV-pairs are Put more
than 10 times. Put does not have as clear a locality as Get does.
The CDF of Iterator_seek start-key access counts has a special
distribution that we can observe very clearly through the 4
“steps" in the figure. About 55% of the KV-pairs are used as
the start-key of Iterator_seek 1 time, 6% of the KV-pairs 11
times, 11% of the KV-pairs 12 times, 5% of the KV-pairs 13
times, 10% of the KV-pairs 23 times, and 10% of the KV-pairs
46 times. The special access count distribution of start-keys is
caused by the metadata scanning requests in ObjStorage. For
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Table 1: The ratios of KV-pairs among all existing KV-pairs being accessed during different time periods in UDB
CF name Object Object_2ry Assoc Assoc_2ry Assoc_count Non_SG
24 hours 2.72% 0.62% 1.55% 1.75% 0.77% 1.38%
14 days 14.14% 6.10% 13.74% 10.37% 14.05% 11.29%

Figure 5: The KV-pair access count distribution of ZippyDB.

Figure 6: The access count distribution of UP2X.

example, if one KV-pair stores the metadata of the first block
of a file, it will always be used as the start-key of Iterator_seek
when the whole file is requested.

UP2X The CDF distribution of KV-pair access counts is
shown in Figure 6. Merge and Get have wide distributions of
access counts. If we define a KV-pair accessed 10 times or
more during the 24-hour period as a hot KV-pair, about 50%
of the KV-pairs accessed by Get and 25% of the KV-pairs
accessed by Merge are hot. On the other hand, the ratio of
very hot KV-pairs (accessed 100 times or more in the 24-hour
period) for Merge is 4%, which is much higher than that of
Get (fewer than 1%). Both Merge and Get have a very long
tail distribution, as shown in the figure.

4.3 QPS (Queries Per Second)
The QPS metric shows the intensiveness of the workload

variation over time. The QPS of some CFs in UDB have
strong diurnal patterns, while we can observe only slight
QPS variations during day and night time in ZippyDB
and UP2X. The daily QPS variations are related to social
network behaviors.

UDB The QPS of UDB is shown in Figure 7. Some CFs
(e.g., Assoc and Non_SG) and some query types (e.g., Get
and Put) have strong diurnal patterns due to the behaviors
of Facebook users around the world. As shown in Figure
7(a), the QPS for either Get or Put usually increases from
about 8:00 PST and reaches a peak at about 17:00 PST. Then,
the QPS quickly drops and reaches its nadir at about 23:00
PST. The QPS of Delete, SingleDelete, and Iterator shows
variations, but it is hard to observe any diurnal patterns. These
queries are triggered by Facebook internal services, which

have low correlation with user behaviors. The QPS of six CFs
are shown in Figure 7(b). Assoc and Non_SG have a strong
diurnal variation, but the QPS of Non_SG is spikier. Since
ETL requests are not triggered by Facebook users, the QPS of
Object_2ry is spiky and we cannot find any clear patterns.

ZippyDB The QPS of ZippyDB is different from that of
UDB. The QPS of ZippyDB varies over the 24-hour period,
but we do not find a diurnal variation pattern, especially for
Put, Delete, and Iterator_Seek. Since ObjStorage is an object
stored at Facebook, object read is related to social network
behaviors. Therefore, the QPS of Get is relatively lower at
night and higher during the day (based on Pacific Standard
Time). Because range queries (Iterator_Seek) are usually not
triggered by Facebook users, the QPS for this query type is
stable and is between 100 and 120 most of the time.

UP2X The QPS of either Get or Put in UP2X does not
have a strong diurnal variation pattern. However, the usage
of Merge is closely related to the behavior of Facebook users,
such as looking at posts, likes, and other actions. Therefore,
the QPS of Merge is relatively lower at night (about 1000)
and higher during the day (about 1500).

5 Key and Value Sizes

Key size and value size are important factors in understand-
ing the workloads of KV-stores. They are closely related to
performance and storage space efficiency. The average (AVG)
and standard deviation (SD) of key and value sizes are shown
in Table 2, and the CDFs of key and value sizes are shown in
Figure 8. In general, key sizes are usually small and have
a narrow distribution, and value sizes are closely related
to the types of data. The standard deviation of key sizes
is relatively small, while the standard deviation of value
size is large. The average value size of UDB is larger than
the other two.

UDB The average key size is between 16 and 30 bytes
except for Assoc_2ry, which has an average key size of 64
bytes. The keys in Assoc_2ry consist of the 4-byte MySQL
table index, two object IDs, the object type, and other informa-
tion. Therefore, the key size of Assoc_2ry is usually larger
than 50 bytes and has a long tail distribution as shown in
Figure 8(a). For other CFs, the keys are composed of the 4-
byte MySQL table index as the prefix, and 10 to 30 bytes
of primary or secondary keys like object IDs. Thus, the keys
show a narrow distribution. Note that the key sizes of a very
small number of KV-pairs are larger than 1 KB, which is not
shown in the key size CDF due to the X-axis scale limit.

The value size distribution is shown in Figure 8(b). Object
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(a) Overall QPS for each query type at different dates and times in a 14-day time span (b) Overall QPS of each CF at different dates and times in a 14-day time span

Figure 7: The QPS variation at different dates and times in a 14-day time span.

Table 2: The average key size (AVG-K), the standard deviation
of key size (SD-K), the average value size (AVG-V), and the
standard deviation of value size (SD-V) of UDB, ZippyDB,
and UP2X (in bytes)

AVG-K SD-K AVG-V SD-V
UDB 27.1 2.6 126.7 22.1
ZippyDB 47.9 3.7 42.9 26.1
UP2X 10.45 1.4 46.8 11.6

and Assoc have a long tail distribution. The value sizes of
Object vary from 16 bytes to 10 KB, and more than 20% of
the value sizes are larger than 1 KB. The average value size
of KV-pairs in Object is about 1 KB and the median is about
235B, which is much larger than those in other CFs. User
data, like the metadata of photos, comments, and other posted
data, is stored in this CF, which leads to a large value size.
In Assoc, the value sizes are relatively small (the average is
about 50 bytes) and vary from 10 bytes to 200 bytes.

A very special case is Assoc_count, whose key size and
value size are exactly 20 bytes. According to the design of
this CF, the key is 20 bytes (bigint association ID) and is com-
posed of a 10-byte counter and 10 bytes of metadata. Since
all the information used in secondary index CFs (Assoc_2ry
and Object_2ry) is stored in its key, the value does not con-
tain any meaningful data. Therefore, the average value size is
less than 8 bytes and there are only three possible value sizes
in the distribution (1 byte, 6 bytes, or 16 bytes) as shown in
Figure 8(b). For CFs with large value sizes like Object, opti-
mizations like separating key and value [32] can effectively
improve performance.

ZippyDB Since a key in ZippyDB is composed of ObjS-
torage metadata, the key sizes are relatively large. The CDF
of the key sizes is shown in Figure 8(c). We can find several
“steps" in the CDF. Nearly all of the key sizes are in the
two size ranges: [48, 53] and [90, 91]. The ratio of KV-pairs
in these two key size ranges are different for different query
types. For example, about 60% of the key sizes of Get are in
the [48, 53] range, while the ratio for Put is about 31%.

The value sizes are collected from Put queries. As shown
in Figure 8(d), the value size distribution has a very long tail:
about 1% of the value sizes are larger than 400 bytes, and

(a) UDB key size CDF (b) UDB value size CDF

(c) ZippyDB key size CDF (d) ZippyDB value size CDF

(e) UP2X key size CDF (f) UP2X value size CDF

Figure 8: The key and value size distributions of UDB, Zip-
pyDB, and UP2X.

about 0.05% of the value sizes are over 1 KB. Some of the
value sizes are even larger than 100 KB. However, most of
the KV-pairs have a small value. More than 90% of the value
sizes are smaller than 34 bytes, which is even smaller than
the key sizes.

UP2X The key sizes do not have a wide distribution, as
shown in Figure 8(e). More than 99.99% of the KV-pairs
accessed by Get have a key size of 9 bytes. About 6% of
the KV-pairs inserted by Merge have a key size of 9 bytes,
and 94% are 17 bytes. The 17-byte KV-pairs are all cleaned
during compaction, and they are never read by upper-layer
applications through Get. Put is rarely used in UP2X. Among
the 282 KV-pairs inserted by Put, about 8.9% of the key sizes
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Figure 9: The heat-map of Get in Object and Assoc_count during a 24-hour period. The X-axis represents the key-ID of keys in
the whole key-space, and the Y-axis represents the KV-pair access counts. The red vertical lines are the MySQL table boundaries.

are smaller than 10 bytes, and 47% of them are 46 bytes.
The value size distribution is shown in Figure 8(f). The

value sizes of some KV-pairs inserted by Put are extremely
large. The average is about 3.6 KB, and about 3% of the KV-
pairs are over 100 KB. The value sizes of KV-pairs inserted
by Merge have a special distribution. About 40% of the values
are smaller than 10 bytes, and about 52% of the values are
exactly 64 bytes. A large portion of the updates in UP2X are
the counters and other structured information. Thus, the value
sizes of those KV-pairs are fixed to 64 bytes.

6 Key-Space and Temporal Patterns

KV-pairs in RocksDB are sorted and stored in SST files. In
order to understand and visualize the key-space localities, we
sort all the existing keys in the same order as they are stored
in RocksDB and plot out the access count of each KV-pair,
which is called the heat-map of the whole key-space. Each
existing key is assigned a unique integer as its key-ID, based
on its sorting order and starting from 0. We refer to these
key-IDs as the key sequence.

The KV-pair accesses show some special temporal patterns.
For example, some KV-pairs are intensively accessed during
a short period of time. In order to understand the correlation
between temporal patterns and key-space locality, we use a
time series sequence to visualize these patterns. We sort the
keys in ascending order and assign them with key-IDs as
previously discussed, and this key sequence is used as the
X-axis. The Y-axis shows the time when a query is called.
To simplify the Y-axis value, we shift the timestamp of each
query to be relative to the tracing start time. Each dot in
the time series figure represents a request to a certain key at
that time. In the UDB use case, the first 4 bytes of a key are
the MySQL table index number due to the key composition
of MyRocks. We separate the key-space into different key-
ranges that belong to different tables by red vertical lines.

The heat-maps of the three use cases show a strong
key-space locality. Hot KV-pairs are closely located in
the key-space. The time series figures of Delete and Sin-
gleDelete for UDB and Merge for UP2X show strong tem-
poral locality. For some query types, KV-pairs in some
key-ranges are intensively accessed during a short period
of time.

(a) The time series of Delete queries in
Object

(b) The time series of SingleDelete
queries in Assoc_2ry

Figure 10: The time series figure of a 24-hour trace.

UDB We use the heat-map of Get in Object and
Assoc_count over a 24-hour period as an example to show
the key-space localities. As shown in Figure 9, hot KV-pairs
(with high access counts) are usually located in a small key-
range and are close to each other. That is, they show a strong
key-space locality (indicated by the dense green areas). Some
MySQL tables (the key-ranges between the red vertical
lines) are extremely hot (e.g., the green dense area in
Object), while other tables have no KV-pair accesses.
One interesting characteristic is that the KV-pairs with high
access counts in Assoc_count are skewed toward the end of
the table. In social graphs, new objects are assigned with rela-
tively larger IDs, and new associations are frequently added
to the new objects. Therefore, new KV-pairs in Assoc_count
are hot and are usually at the end of the MySQL table. More-
over, the heat-maps of Get and Put are similar. Usually, the
keys with the most Get queries are the ones with the most Put
queries.

Most KV-pairs are deleted only once, and they are unlikely
to be reinserted. Therefore, there are no hot KV-pairs in Delete
and SingleDelete queries. However, they show some special
patterns. For example, some nearby KV-pairs are deleted to-
gether in a short period of time as shown in Figure 10.

In Figure 10(a), the deleted KV-pairs in the same table for
Object are removed together in a short period of time (indi-
cated by green dots with close Y values). After that, deletions
will not happen for a long period of time. Similar patterns
also appear in the SingleDelete time series for Assoc_2ry, as
shown in Figure 10(b). In some MySQL tables, SingleDelete
is intensively called in several short time intervals to remove
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Figure 11: Heat-map of KV-pairs accessed by Get in Zip-
pyDB.

KV-pairs in the same table. Between any two sets of inten-
sive deletions, SingleDelete is never called, which causes the
“green blocks" in the time series figures.

In general, KV-pairs are not randomly accessed in the
whole key-space. The majority of KV-pairs are not accessed
or have low access counts. Only a small portion of KV-pairs
are extremely hot. These patterns appear in the whole key-
space and also occur in different key-ranges. KV-pairs belong-
ing to the same MySQL table are physically stored together.
Some SST files at different levels or data blocks in the same
SST file are extremely hot. Thus, the compaction and cache
mechanisms can be optimized accordingly.

ZippyDB The heat-map of Get in ZippyDB shows a very
good key-space locality. For example, as shown in Figure 11,
the KV-pairs accessed by Get have high access counts and
are concentrated in several key-ranges (e.g., between 1×
106 and 5×106). Hot KV-pairs are not randomly distributed:
instead, these KV-pairs are concentrated in several small key-
ranges. The hotness of these key-ranges is closely related
to cache efficiency and generated storage I/Os. The better a
key-space locality is, the higher the RocksDB block cache
hit ratio will be. Data blocks that are associated with hot
key-ranges will most likely be cached in the RocksDB block
cache. These data blocks are actually cold from a storage
point of view. With a good key-space locality, the number of
data block reads from SST files will be much lower than a
random distribution. A similar locality is also found in the
Put and Iterator_seek heat-maps. Since all the KV-pairs are
deleted once, we did not observe any key-space locality for
Delete. In general, the ZippyDB workload is read-intensive
and has very good key-space locality.

UP2X If we look at the heat-map of all KV-pairs accessed
by Get as shown in Figure 12, we can find a clear boundary
between hot and cold KV-pairs. Note that the whole key-
space was collected after the tracing was completed. In the
heat-map, the KV-pairs from 0 to about 550,000 are never
accessed by Gets, but the KV-pairs from 550,000 to 900,000
are frequently accessed. A similar locality is also shown in the
heat-map of Merge. While KV-pairs from 0 to about 550,000
are sometimes accessed by Merge, their average access counts
are much lower than those of the KV-pairs from 550,000 to
900,000. This special locality might be caused by a unique
behavior of AI/ML services and their data update patterns.

The UP2X use case shows a very strong key-space local-
ity and temporal locality in Merge. However, about 90% of

Figure 12: Heat-map of KV-pairs accessed by Get in UP2X.

Figure 13: The time series of Merge in UP2X.

the KV-pairs inserted by Merge are actually cleaned during
compaction. Since the key-space heat-map does not show the
existence of KV-pairs cleaned by compactions, we plot out
the time series sequence for Merge, which can indicate Merge
accesses of all KV-pairs. As shown in Figure 13, KV-pairs
between 0 and 250,000 are frequently accessed during the
24-hour period. These are KV-pairs between 0 and 900,000
in the whole key-space. The KV-pairs between 250,000 and
4,700,000 show very special key-space and temporal localities.
The green blocks indicate that a small range of KV-pairs
are intensively called by Merge during half an hour. Af-
ter that, a new set of KV-pairs (with incrementally composed
keys) are intensively accessed by Merge during the next half
an hour. These KV-pairs are cleaned during compactions. Get
and Put do not have similar temporal and key-space localities.

7 Modeling and Benchmarking
After understanding the characteristics of some real-world

workloads, we further investigate whether we can use exist-
ing benchmarks to model and generate KV workloads that
are close to these realistic workloads. We do not consider
deletions in our current models.

7.1 How Good Are the Existing Benchmarks?
Several studies [6, 26, 47] use YCSB/db_bench + Lev-

elDB/RocksDB to benchmark the storage performance of
KV-stores. Researchers usually consider the workloads gen-
erated by YCSB to be close to real-world workloads. YCSB
can generate queries that have similar statistics for a given
query type ratio, KV-pair hotness distribution, and value size
distribution as those in realistic workloads. However, it is
unclear whether their generated workloads can match the I/Os
for underlying storage systems in realistic workloads.

To investigate this, we focus on storage I/O statistics such
as block reads, block cache hits, read-bytes, and write-bytes
collected by perf_stat and io_stat in RocksDB. To exclude
other factors that may influence the storage I/Os, we replay
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the trace and collect the statistics in a clean server. The bench-
marks are also evaluated in the same server to ensure the same
setup. To ensure that the RocksDB storage I/Os generated
during the replay are the same as those in production, we
replay the trace on a snapshot of the same RocksDB in which
we collected the traces. The snapshot was made at the time
when we started tracing. YCSB is a benchmark for NoSQL
applications and ZippyDB is a typical distributed KV-store.
Therefore, the workloads generated by YCSB are expected to
be close to the workloads of ZippyDB, and we use ZippyDB
as an example to investigate. Due to special plugin require-
ments and the workload complexities of UDB and UP2X, we
did not analyze storage statistics for those two use cases.

Before we run YCSB, we set the YCSB parameters of
workloada and workloadb to fit ZippyDB workloads as
much as possible. That is, we use the same cache size, ensure
that the request distribution and scan length follows Zipfian,
set the fieldlength as the average value size, and use the same
Get/Put/Scan ratios as those shown in Section 4. Since we
cannot configure the compression ratio in YCSB to make it
the same as ZippyDB, we use the default configuration in
YCSB. We normalize the results of the RocksDB storage
statistics based on those from the trace replay.

The number of block reads from YCSB is at least 7.7x that
of the replay results, and the amount of read-bytes is about
6.2x. The results show an extremely high read amplification.
Although the collected amount of write-bytes from YCSB
is about 0.74x that of the replay, the actual amount of write-
bytes is much lower if we assume YCSB achieves the same
compression ratio as ZippyDB (i.e., if the YCSB compression
ratio is 4.5, the amount of write-bytes is about 0.41x that
of the replay). Moreover, the number of block cache hits is
only about 0.17x that of the replay results. This evaluation
shows that, even though the overall query statistics (e.g., query
number, average value size, and KV-pair access distribution)
generated by YCSB are close to those of ZippyDB workloads,
the RocksDB storage I/O statistics are actually quite different.
db_bench has a similar situation.

Therefore, using the benchmarking results of YCSB as
guidance for production might cause some misleading results.
For example, the read performance of RocksDB under a pro-
duction workload will be higher than what we tested using
YCSB. The workload of YCSB can easily saturate the storage
bandwidth limit due to its extremely high read amplification.
Also, the write amplification estimated from the YCSB bench-
marking results are lower than in real production. The write
performance can be overestimated and might also lead to
incorrect SSD lifetime estimates.

With detailed analyses, we find that the main factor that
causes this serious read amplification and fewer storage writes
is the ignorance of key-space locality. RocksDB reads data
blocks (e.g., 16 KB) instead of a KV-pair from storage to
memory when it encounters a cache miss. In YCSB, even
though the overall KV-pair hotness follows the real-world

workload distribution, the hot KV-pairs are actually randomly
distributed in the whole key-space. The queries to these hot
KV-pairs make a large number of data blocks hot. Due to
the cache space limit, a large number of hot data blocks that
consist of the requested KV-pairs will not be cached, which
triggers an extremely large number of block reads. In contrast,
in ZippyDB, hot KV-pairs only appear in some key-ranges,
so the number of hot data blocks is much smaller. Similarly,
a random distribution of hot KV-pairs causes more updated
KV-pairs to be garbage collected in the newer levels during
compactions. Therefore, old versions of cold KV-pairs that
are being updated are removed earlier in the newer levels,
which leads to fewer writes when compacting older levels. In
contrast, if only some key-ranges are frequently updated, old
versions of cold KV-pairs are continuously compacted to the
older levels until they are merged with their updates during
compactions. This causes more data to be written during
compactions.

7.2 Key-Range Based Modeling
Unlike workloads generated by YCSB, real-world work-

loads show strong key-space localities according to the work-
load characteristics presented in Sections 6. Hot KV-pairs
are usually concentrated in several key-ranges. Therefore, to
better emulate a real-world workload, we propose a key-range
based model. The whole key-space is partitioned into several
smaller key-ranges. Instead of only modeling the KV-pair
accesses based on the whole key-space statistics, we focus on
the hotness of those key-ranges.

How to determine the key-range size (the number of KV-
pairs in the key-range) is a major challenge of key-range based
modeling. If the key-range is extremely large, the hot KV-pairs
are still scattered across a very big range. The accesses to
these KV-pairs may still trigger a large number of data block
reads. If the key-range is very small (e.g., a small number
of KV-pairs per range), hot KV-pairs are actually located in
different key-ranges, which regresses to the same limitations
as a model that does not consider key-ranges. Based on our
investigation, when the key-range size is close to the average
number of KV-pairs in an SST file, it can preserve the locality
in both the data block level and SST level. Therefore, we use
average number of KV-pairs per SST file as key-range size.

We first fit the distributions of key sizes, value sizes, and
QPS to different mathematical models (e.g., Power, Expo-
nential, Polynomial, Webull, Pareto, and Sine) and select the
model that has the minimal fit standard error (FSE). This is
also called the root mean squared error. For example, for a
collected workload of ZippyDB, the key size is fixed at either
48 or 90 bytes, the value sizes follow a Generalized Pareto
Distribution [25], and QPS can be better fit to Cosine or Sine
in a 24-hour period with very small amplitude.

Then, based on the KV-pair access counts and their se-
quence in the whole key-space, the average accesses per KV-
pair of each key-range is calculated and fit to the distribution
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model (e.g., power distribution). This way, when one query is
generated, we can calculate the probability of each key-range
responding to this query. Inside each key range, we let the
KV-pair access count distribution follow the distribution of
the whole key-space. This ensures that the distribution of the
overall KV-pair access counts satisfies that of a real-world
workload. Also, we make sure that hot KV-pairs are allocated
closely together. Hot and cold key-ranges can be randomly
assigned to the whole key-space, since the locations of key-
ranges have low influence on the workload locality.

Based on these models, we further develop a new bench-
mark using db_bench. When running the benchmark, the QPS
model controls the time intervals between two consecutive
queries. When a query is issued, the query type is determined
by the probability of each query type calculated from the
collected workload. Then, the key size and value size are
determined by the probability function from the fitted mod-
els. Next, based on the access probability of each key-range,
we choose one key-range to respond to this query. Finally,
according to the distribution of KV-pair access counts, one
KV-pair in this key range is selected, and its key is used to
compose the query. In this way, the KV queries are generated
by the benchmark and follow the expected statistical models.
At the same time, it better preserves key-space locality.

7.3 Comparison of Benchmarking Results
We fit the ZippyDB workload to the proposed model

(Delete is excluded) and build a new benchmark called Pre-
fix_dist [20]. To evaluate the effectiveness of key-range-based
modeling, we also implement three other benchmarks with
different KV-pair allocations: 1) Prefix_random models the
key-range hotness, but randomly distributes the hot and cold
KV-pairs in each key-range; 2) similar to YCSB, All_random
follows the distribution of KV-pair access counts, but ran-
domly distributes the KV-pairs across the whole key-space;
and 3) All_dist puts the hot keys together in the whole key-
space instead of using a random distribution. All four bench-
marks achieve a similar compression ratio as that of ZippyDB.

Similar to the process described in Section 7.1, we config-
ure YCSB workloada and workloadb to fit the ZippyDB work-
load as closely as possible. We run YCSB with the following
4 different request distributions: 1) uniform (YCSB_uniform),
2) Zipfian (YCSB_zipfian), 3) hotspot (YCSB_hotspot), and
4) exponential (YCSB_exp). We use the same pre-loaded
database (with 50 million randomly inserted KV-pairs that
have the same average key and value sizes as those of a real-
world workload) for the 8 benchmarks. The RocksDB cache
size is configured with the same value as the production setup.
We run each test 3 times (the following discussion uses aver-
age value) and normalize the results based on that of replay.

Figure 14 compares the I/O statistics of the 8 benchmarks.
The total number of block reads and the amount of read-bytes
by YCSB_zipfian workloads are at least 500% higher than
those of the original replay results. Even worse, the num-
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Figure 14: The normalized block read, block cache hit, read-
bytes, and write-bytes of benchmarks based on that of the
replay. We collected statistics from ZippyDB trace replay
results and normalized the statistics from 8 benchmarks. The
red line indicates the normalized replay results at 1. The closer
the results are to the red line, the better.

ber of block reads and the amount of read-bytes of the other
three YCSB benchmarking results are even higher, at 1000%
or more compared with the replay results. In contrast, the
amount of read-bytes of Prefix_dist are only 40% higher, and
are the closest to the original replay results. If we compare
the 4 benchmarks we implemented, we can conclude that
Prefix_dist can better emulate the number of storage reads by
considering key-space localities. All_dist and Prefix_random
reduce the number of extra reads by gathering the hot KV-
pairs in different granularities (whole key-space level vs. key-
range level). Note that if YCSB achieves a similar compres-
sion ratio, the RocksDB storage I/Os can be about 35-40%
lower. However, this is still much worse than the storage I/Os
of All_dist, Prefix_random, and Prefix_dist.

If the same compression ratio is applied, the actual amount
of write-bytes by YCSB should be less than 50% of the origi-
nal replay. Prefix_dist achieves about 60% write-bytes of the
original replay. Actually, the mismatch between key/value
sizes and KV-pair hotness causes fewer write-bytes compared
with the original replay results. In general, YCSB can be fur-
ther improved by: 1) adding a key-range based distribution
model as an option to generate the keys, 2) providing through-
put control to simulate the QPS variation, 3) providing key
and value size distribution models, and 4) adding the ability
to simulate different compression ratios.

7.4 Verification of Benchmarking Statistics
We select the Assoc workload from UDB as another exam-

ple to verify whether our benchmark can achieve KV query
statistics that are very similar to those of real-world work-
loads. Since 90% of keys are 28 bytes and 10% of keys are
32 bytes in Assoc, we can use these two fixed key sizes. We
find that Generalized Pareto Distribution [25] best fits the
value sizes and Iterator scan length. The average KV-pair
access count of key-ranges can be better fit in a two-term
power model [33, 34], and the distribution of KV-pair access
counts follows a power-law that can be fit to the simple power
model [33, 34]. As we discussed in Section 4.3, because the
QPS variation has a strong diurnal pattern, it can be better fit
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Figure 15: The synthetic workload QPS, and the PDF comparisons between the collected workload and the synthetic workload.

to the Sine model [35] with a 24-hour period.
To compare the workload statistics obtained from bench-

marking with those of realistic workloads, we run the new
benchmark with a different workload scale: 1) 10 million
queries, 2) 30 million existing keys, 3) a 600-second period of
QPS sine, and 4) a {Get, Put, Iterator} ratio of {0.806, 0.159,
0.035}, respectively (the same as in UDB Assoc). We collect
the trace during benchmarking and analyze the trace. Figure
15 shows the QPS variation and the probability density func-
tion (PDF) comparison of value sizes, KV-pair access counts,
and Iterator scan lengths between the UDB Assoc workload
and the generated workload. Although the scale of the work-
load generated from our benchmark is different from that of
UDB Assoc, the PDF figures show that they have nearly the
same distribution. This verifies that the generated synthetic
workload is very close to the UDB Assoc workload in terms
of those statistics.

8 Related Work

During the past 20 years, the workloads of storage systems,
file systems, and caching systems have been collected and
analyzed in many studies. Kavalanekar et al. collected block
traces from production Windows servers at Microsoft and
provided workload characterizations that have benefitted the
design of storage systems and file systems tremendously [27].
Riska et al. analyzed the disk-level workload generated by
different applications [40]. The file system workloads were
studied by industrial and academic researchers at different
scales [30, 41, 42]. The workloads of the web server caches
were also traced and analyzed [2, 3, 43, 46]. While the web
cache can be treated as a KV-store, the query types and work-
loads are different from persistent KV-stores.

Although KV-stores have become popular in recent years,
the studies of real-world workload characterization of KV-
stores are limited. Atikoglu et al. analyzed the KV workloads
of the large-scale Memcached KV-store at Facebook [5]. They
found that reads dominate the requests, and the cache hit rate
is closely related to the cache pool size. Some of their find-
ings, such as the diurnal patterns, are consistent with what
we present in Section 4. Major workload characteristics of
RocksDB are very different from what Atikoglu et al. found in
Memcached. Other KV-store studies, such as SILT [31], Dy-
namo [14], FlashStore [12], and SkimpyStash [13], evaluate

designs and implementations with some real-world workloads.
However, only some simple statistics of the workloads are
mentioned. The detailed workload characteristics, modeling,
and synthetic workload generation are missing.

Modeling the workloads and designing benchmarks are
also important for KV-store designs and their performance
improvements. Several benchmarks designed for big data
NoSQL systems, such as YCSB [11], LinkBench [4], and
BigDataBench [45], are also widely used to evaluate KV-
store performance. Compared with these benchmarks, we
further provide the tracing, analyzing, and key-range based
benchmarking tools for RocksDB. The users and developers
of RocksDB can easily develop their own specific benchmarks
based on the workloads they collect with better emulation in
both the KV-query level and storage level.

9 Conclusion and Future Work

In this paper, we present the study of persistent KV-store
workloads at Facebook. We first introduce the tracing, replay-
ing, analyzing, and benchmarking methodologies and tools
that can be easily used. The findings of key/value size dis-
tribution, access patterns, key-range localities, and workload
variations provide insights that can help optimize KV-store
performance. By comparing the storage I/Os of RocksDB
benchmarked by YCSB and those of trace replay, we find that
many more reads and fewer writes are generated by bench-
marking with YCSB. To address this issue, we propose a
key-range based model to better preserve key-space localities.
The new benchmark not only provides a good emulation of
workloads at the query level, but also achieves more precise
RocksDB storage I/Os than that of YCSB.

We have already open-sourced the tracing, replaying, ana-
lyzing, and the new benchmark in the latest RocksDB release
(see the Wiki for more details [20]). The new benchmark is
part of the benchmarking tool of db_bench [18]. We are not
releasing the trace at this time. In the future, we will further
improve YCSB workload generation with key-range distribu-
tion. Also, we will collect, analyze, and model the workloads
in other dimensions, such as correlations between queries, the
correlation between KV-pair hotness and KV-pair sizes, and
the inclusion of additional statistics like query latency and
cache status.
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A Appendix

A.1 Trace Replay
./db_bench –benchmarks=replay –

trace_file=./trace_<Trace Name> –num_column_families=1
-use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -trace_replay_fast_forward=24
–perf_level=2 –trace_replay_threads=3 -use_existing_db=true
-db=./<Directory of Existing RocksDB Database for Replay>

A.2 Trace Analyzing
./trace_analyzer -analyze_get -analyze_put -

analyze_merge -analyze_delete -analyze_single_delete
-analyze_iterator -output_access_count_stats -
output_dir=./result_<Trace Name> -output_key_stats
-output_qps_stats -output_value_distribution -
output_key_distribution -output_time_series -
print_overall_stats -print_top_k_access=6 -value_interval=1
-output_prefix= <Trace Name>_result -trace_path=./trace_
<Trace Name> ./ <Trace Name>_general.txt

A.3 New Benchmarks
Before running the benchmark, user needs to compile

RocksDB db_bench and run it via command lines. Note that,
if user runs the benchmark following the 24 hours Sine pe-
riod, it will take about 22-24 hours. In order to speedup the
benchmarking, user can increase the sine_d to a larger value
such as 45000 to increase the workload intensiveness and also
reduce the sine_b accordingly.

Create a database with 50 million random inserted KV-
pairs

./db_bench –benchmarks=fillrandom –perf_level=3
-use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -cache_size=268435456 -key_size=48
-value_size=43 -num=50000000 -db=./<Directory of
Generated Database with 50 million KV-pairs>

All_random
./db_bench –benchmarks="mixgraph" -

use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -cache_size=268435456 -
keyrange_num=1 -value_k=0.2615 -value_sigma=25.45
-iter_k=2.517 -iter_sigma=14.236 -mix_get_ratio=0.83
-mix_put_ratio=0.14 -mix_seek_ratio=0.03 -
sine_mix_rate_interval_milliseconds=5000 -sine_a=1000
-sine_b=0.000073 -sine_d=4500 –perf_level=2 -
reads=420000000 -num=50000000 -key_size=48 -

db=./<Directory of Generated Database with 50 million
KV-pairs> -use_existing_db=true

All_dist
./db_bench –benchmarks="mixgraph" -

use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -cache_size=268435456
-key_dist_a=0.002312 -key_dist_b=0.3467 -
keyrange_num=1 -value_k=0.2615 -value_sigma=25.45
-iter_k=2.517 -iter_sigma=14.236 -mix_get_ratio=0.83
-mix_put_ratio=0.14 -mix_seek_ratio=0.03 -
sine_mix_rate_interval_milliseconds=5000 -sine_a=1000
-sine_b=0.000073 -sine_d=4500 –perf_level=2 -
reads=420000000 -num=50000000 -key_size=48 -db=./<
Directory of Generated Database with 50 million KV-pairs>
-use_existing_db=true

Prefix_random
./db_bench –benchmarks="mixgraph" -

use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -cache_size=268435456 -
keyrange_dist_a=14.18 -keyrange_dist_b=-2.917 -
keyrange_dist_c=0.0164 -keyrange_dist_d=-0.08082
-keyrange_num=30 -value_k=0.2615 -value_sigma=25.45
-iter_k=2.517 -iter_sigma=14.236 -mix_get_ratio=0.83
-mix_put_ratio=0.14 -mix_seek_ratio=0.03 -
sine_mix_rate_interval_milliseconds=5000 -sine_a=1000
-sine_b=0.000073 -sine_d=4500 –perf_level=2 -
reads=420000000 -num=50000000 -key_size=48 -db=./<
Directory of Generated Database with 50 million KV-pairs>
-use_existing_db=true

Prefix_dist
./db_bench –benchmarks="mixgraph" -

use_direct_io_for_flush_and_compaction=true -
use_direct_reads=true -cache_size=268435456
-key_dist_a=0.002312 -key_dist_b=0.3467 -
keyrange_dist_a=14.18 -keyrange_dist_b=-2.917 -
keyrange_dist_c=0.0164 -keyrange_dist_d=-0.08082
-keyrange_num=30 -value_k=0.2615 -value_sigma=25.45
-iter_k=2.517 -iter_sigma=14.236 -mix_get_ratio=0.83
-mix_put_ratio=0.14 -mix_seek_ratio=0.03 -
sine_mix_rate_interval_milliseconds=5000 -sine_a=1000
-sine_b=0.000073 -sine_d=4500 –perf_level=2 -
reads=420000000 -num=50000000 -key_size=48 -db=./<
Directory of Generated Database with 50 million KV-pairs>
-use_existing_db=true
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