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Abstract
We study the stability of the Kolmogorov flows which are stationary solutions to the
two-dimensional Navier–Stokes equations in the presence of the shear external force.
We establish the linear stability estimate when the viscosity coefficient ν is sufficiently

small, where the enhanced dissipation is rigorously verified in the time scale O(ν− 1
2 )

for solutions to the linearized problem, which has been numerically conjectured and is
much shorter than the usual viscous time scale O(ν−1). Our approach is based on the
detailed analysis for the resolvent problem. We also provide the abstract framework
which is applicable to the resolvent estimate for the Kolmogorov flows.
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1 Introduction

For nearly-inviscid fluids, turbulent phenomena often occur at transient time scales
that are much smaller than the viscous time scale. Describing the fluid, by means of
simple solutions, for such long transient times helps to understand turbulence. This
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is of course of great interest both physically and mathematically. But finding such
solutions and estimating their basin of attraction are in general not easy tasks both
experimentally and theoretically. To investigate this phenomena let us consider the
two dimensional incompressible Navier–Stokes equations in the domain M = T

2 or
M = R

2,

∂tU + (U · ∇)U + ∇P = ν�U + F , t > 0 , (x, y) ∈ M . (1.1)

Here U = (U1,U2) : M
2 × (0,∞) → R

2 is the velocity field of a fluid, P :
M

2 × (0,∞) → R is the pressure field, and ν > 0 is the viscosity coefficient. The
vector field F describes a given external force. Setting the vorticity� as� = rotU =
∂xU2 − ∂yU1, one can rewrite (1.1) in the vorticity form

∂t� + (U · ∇)� = ν�� + rot F . (1.2)

Recall that the velocity field can be formally recovered from its vorticity using the
Biot–Savart law:

U = KBS ∗ � . (1.3)

Here the kernel KBS is given by KBS(x, y) = 1
2π

(−y,x)
x2+y2

whenM = R
2, and ∗ denotes

the convolution with respect to the spatial variables. In the sequel, we will review two
important examples of solutions to (1.2), the Kolmogorov flow and the Lamb–Oseen
vortex, and explain how the study of their stability is related to spectral problems for
non-self adjoint operators.

TheKolmogorovflow,which is themain object of this paper, is an explicit stationary
solution to (1.1) with a shear sourcing term F = (aν sin y, 0), a ∈ R, and is given by

Ua(x, y) = a(sin y, 0) , �a(x, y) = −a cos y . (1.4)

By Iudovich [15] these solutions are known to be globally stable for initial pertur-
bations in Sobolev class with zero mean condition for the streamfunctions; see also
Marchioro [21]. By changing the length of the periodicity (e.g., for x) the detailed
bifurcation analysis has also been done, and there are a lot of important works in this
direction; see, for example, [1,15,22,24,25,30]. As a closely related subject of this
paper, there are also explicit solutions having the similar forms to (1.4) when F = 0,
but instead, the initial data is chosen as in (1.4). Indeed, in this case one can check
that Ua(x, y, t) = ae−νt (sin y, 0) solves (1.1) with F = 0. These solutions describe
a quasi-steady state of the fluid, and are exact steady solutions to the Euler equations
when ν = 0. These quasi-steady solutions are known as “bar-states” or also as the Kol-
mogorov flows, and they qualitatively match the maximum entropy solutions found
in [7,23,31]. Both numerical and experimental evidences [31] claim that solutions to
(1.1) rapidly approach bar-states on time scaleO( 1√

ν
) for high Reynolds number. Note

that the time scale O( 1√
ν
) is much shorter than the scale O( 1

ν
) which is the scale for

the linear Stokes equation (and thus, heat equation in this problem) with the viscosity
ν.
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The aim of this paper is to study this enhanced dissipation in view of the stability
analysis of the steady Kolmogorov flows (1.4). Expanding solutions to (1.2) around
(1.4) yields

∂tω = Lν,aω + nonlinear term (1.5)

where we have set � = �a + ω, and the linearized operator Lν,a is given by

Lν,aω = ν�ω − a sin y ∂x (I + �−1)ω . (1.6)

We note that the linearized operator around the bar-state has the similar form but
becomes time-dependent as

Lν,a(t)ω = ν�ω − ae−νt sin y ∂x (I + �−1)ω . (1.7)

Showing that the solution ω to (1.5) decays rapidly within a nontrivial time scale
t � O( 1

ν
) is a challenging mathematical problem, even in the linear case. In studying

the flows generated by (1.6) or (1.7) the main difficulty comes from the presence of
the non-local term in these linearized operators. In [2], Beck and Wayne proved the
stability and enhanced dissipation of the bar-states for the model linear problem by
removing the nonlocal term�−1 from (1.7). Their method is based on hypocoercivity
arguments developed by Villani [26], and provide the decay in the time scale O( 1√

ν
)

for solutions to the model linear problem in a suitable invariant subspace. However,
it is not clear how to extend their argument in the presence of the nonlocal term
�−1. Moreover, beside the nonlocality, the presence of �−1 in (1.6) or (1.7) leads
to an additional difficulty in view of the symmetry of the operator. Indeed, although
the operator sin y∂x is antisymmetric in the standard L2 space, sin y∂x (I + �−1) is
not. Very recently, the full evolution operator (1.7) and the corresponding nonlinear
problem were studied in details by Lin and Xu [19], and the enhanced dissipation
is verified at some time scale o( 1

ν
) for Qω, called the non-shear part of the solution

ω in [19], where Q is the projection to the orthogonal complement of the kernel of
− sin y∂x (I + �−1) in L2. The core idea in [19] is to use the Hamiltonian structure
of the operator − sin y∂x (I +�−1) = J L with J = − sin y∂x and L = I +�−1 that
naturally leads to the use of the weighted L2 space 〈L·, ·〉L2 in which J L becomes
antisymmetric. Then one can apply the RAGE Theorem for the estimate of the group
et J L and the argument of Constantin et al. [8], see also ZlatoLs [32], which study the
enhanced dissipation for the advection-diffusion equations. Note that the inner product
〈L·, ·〉L2 was a key tool also in obtaining the global stability of the Kolmogorov flows
with arbitrary amplitude a; cf. [15].

The argument and the result of [19] are verified without any change also for the
stability problem of the steady Kolmogorov flows (1.5)–(1.6). However, for a deeper
quantitative point of view, the spectral property ofLν,a requires a further study. Indeed,
the argument in [19] provides little information on the required smallness of ν to

achieve the smallness of
‖Qω(t/ν)‖L2‖ω(0)‖L2 , which depends on t in an implicit way, even for

the linear solution ω(t) = etLν,a
ω(0). In particular, the question whether or not the
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smallness of
‖Qω(t/νβ)‖L2‖ω(0)‖L2 holds for some β ∈ (0, 1), as solved in [2] with β = 1

2 for

the model problem to (1.7), has been a challenging problem; see Remark 1.2 below.
In this paper we will establish some resolvent estimate on the imaginary axis of the

resolvent parameters for the linearization (1.6) around the steady Kolmogorov flows.
Our resolvent estimate is related to the pseudospectrum as in the work by Gallagher,
Gallay, and Nier [11] of the spectral analysis for large skew-symmetric perturbations
of the Harmonic oscillator. As a main result, we will verify the enhanced dissipation
in a time scale O( 1√

ν
) for the linear flow etLν,a

ω0; see (1.10) below. In particular,
our result gives an affirmative answer to the problem numerically conjectured in [2].
We expect that the similar enhanced dissipation will be true also for the linear flow
generated by the evolution operator Lν,a(t) in (1.7), which is still under investigation
due to an obstacle from the time dependence of the operator. The nonlinear problem
(1.5) can also be handled based on the linear estimates of this paper, but here we focus
only on the linear problem.

By rescaling time as t �→ νt , one can rewrite the evolution problem ∂tω = Lν,aω

as, by relabeling the variable and the unknown again as t and ω respectively,

∂tω = �ω − a

ν
sin y∂x (I + �−1)ω . (1.8)

This problem is viewed in the more abstract form

∂tω = (A − α
)ω , (1.9)

where α > 0 is a large positive parameter, A is a dissipative operator, and 
 has a
Hamiltonian structure. It will be worthwhile investigating the spectral property for
such operators in the abstract level, which is handled in Section 2. The problem (1.8)
for the Kolmogorov flows is discussed in Section 3, and we will show the key estimate
for the resolvent with a rate on α = a

ν
(Theorem 3.11), and then for the semigroup

(Theorem 3.12). In the original variables, our result in particular provides the bound
for the semigroup etLν,a

such as

‖QetLν,a
ω0‖L2 ≤ Ce−c

√
aν t‖Qω0‖L2 , t ≥ 1√

aν
, (1.10)

see Corollary 3.14. Here C and c are positive constants independent of t , a, ω0, and
sufficiently small ν > 0. This implies the enhanced dissipation in the time scale

O(ν− 1
2 ) for 0 < ν � 1, that is much shorter than o( 1

ν
) and provides a decay of

‖Qω(t/νβ)‖L2‖ω(0)‖L2 for β = 1
2 in the linear problem.

Remark 1.1 It should be emphasized that the semigroup estimate (1.10) is in fact new
even for the model problem considered by [2] in which the nonlocal operator �−1 is
dropped, though our result does not handle the time-dependent operator as in (1.7).
More precisely, the argument used in [2] provides the semigroup bound of the model
problem in a weighted H1 space whose norm has a dependence in ν. In particular, the
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norm introduced in [2] involves the term ν− 1
4 ‖Mcos y f ‖L2 , in addition to the usual L2

norm. As a result, the estimate obtained in [2] shows that ‖Mcos yω(t)‖L2 becomes

small in a time scale O(ν− 1
2 ) for the model problem, while in order to achieve the

dissipation in the usual L2 norm it seems that one needs to take a slightly longer

time scale, e.g., O(ν− 1
2 | log ν|). Our result (1.10) gives the dissipation in the L2 norm

exactly in a time scale O(ν− 1
2 ). Our proof is based on the detailed resolvent analysis

and is very different from the approach in [2].

Next let us briefly mention a topic which is closely related to the present work as
another example of (1.9): the asymptotic stability problem of the Lamb–Oseen vortex.
By working onM = R

2, it is known that there exists a family of self-similar solutions
to the vorticity equation (1.2) given by

�(x, y, t) = γ

νt
G

(
x√
νt

,
y√
νt

)
, and U (x, y, t) = γ√

νt
V G

(
x√
νt

,
y√
νt

)
,

(1.11)

where the profiles are G(ξ) = 1
4π e

−|ξ |2/4 and VG(ξ) = 1
2π

ξ⊥
|ξ |2 (1 − e−|ξ |2/4). The

constant γ = ∫
R2 �(x, y, t) dx dy is the circulation at infinity of the flow. By the

significant work of Gallay and Wayne [14] it is known that this solution is the only
forward self-similar solution to (1.1) in R

2 with an integrable vorticity. This solution
is called the Lamb–Oseen vortex. It is well known that, through a suitable similarity
transformation, the asymptotic stability of the Lamb–Oseen vortex is equivalent with
the two dimensional stability of the Burgers vortex, which is a stationary solution to
the three dimensional Navier–Stokes equations in the presence of the axisymmeric
linear strain. The reader is referred to a recent review article [13] by Gallay and the
second author of this paper about the research on the stability of the Burgers vortex.
The two dimensional linearized problem for the Burgers vortex with circulation α is
given by

∂τω = (L − α
)ω , τ > 0 , ξ ∈ R
2 , (1.12)

where Lω = �ω + 1
2ξ · ∇ω + ω, and 
ω = (VG · ∇)ω + (KBS ∗ ω · ∇)G. Here �

and∇ are now about the variables ξ = (ξ1, ξ2). In the weighted L2 space L2(R2; dξ
G ),

the operator −L is nonnegative self-adjoint with compact resolvent, and 
 becomes
antisymmetric as proved in [14]. Hence the linear analysis falls into the analysis of the
operator of the form (1.9). In the space L2(R2,G−1dξ) with zero mass condition, we
have −L ≥ 1

2 , and thus, the antisymmetry of 
 provides 1
2 spectral gap for L − α


for any α. This yields the linear stability with a uniform estimate in α. However,
this simple argument does not provide further informations for the fast rotation case
|α| � 1, at the time when numerical and experimental evidence suggest that the basin
of attraction should be α-dependent, at least “away” from the kernel of the operator
.
In [20] the second author of this paper verifies a behavior of the pseudospectral bound
but without the information on the rate about α. On the other hand, in [11] and Deng
[9] simplified model operators are studied in details, where the main simplification is
dropping the nonlocal term (KBS ∗ w,∇)G, and the optimal dependence on α of the
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pseudospectral bound that decays like |α| 13 is obtained for these model operators. The
same result is proved for the full linearized operator L − α
 in Deng [10] but in a
smaller subspace than the orthogonal complement of Ker
. Very recently, Li et al.
[17] gave a sharp pseudospectral bound as well as the spectral bound of L −α
 in the
orthogonal complement of Ker
, and this result is applied to the nonlinear problem
by Gallay [12].

Remark 1.2 In Li et al. [17] the key elegant idea is to introduce the wave operator
which converts the original skew-symmetric operator 
, containing a nonlocal term
that leads to an essential difficulty, into a skew-symmetric operator for which the
nonlocal operator is removed and hence the approach of [11] is applied. As announced
in [17], it is recently shown by Wei, Zhang, and Zhao [28] (see also Li et al. [18] for
3D problem) that this approach for the Lamb–Oseen operator can be applied also for
the estimate of the enhanced dissipation around the Kolmogorov flows and the optimal
enhanced dissipation as in (1.10) is obtained together with the algebraic dissipation

in the time scale O(ν− 1
3 ) for the velocity field. We note that our approach for (1.10)

or Theorem 1.3 below is different and independent of [17,28], and in particular, does
not rely on the construction of the wave operator.

To summarize, the above two examples of the Kolmogorov flows and the Lamb–
Oseen vortex show that to measure the basin of attraction, it is important to obtain a
pseudospectral bound as sharp as possible for the operator in the abstract form given
in (1.9). We also note that the enhanced dissipation is one of the important subjects
in fluid mechanics, and recently, significant progress has been achieved around some
class of simple flows such as the Couette flow; see, e.g., [3–6].

This paper consists of two parts. The first one is an abstract result, in which the
spectral properties of some class of non self-adjoint operators are established. The
other one is the application of the abstract result to the linearized operator for the
Kolmogorov flows. As for the abstract part, we consider the operator in a Hilbert
space X of the form

Lα = A − α
 , (1.13)

where −A is positive self-adjoint with compact resolvent, α ∈ R, and 
 is a densely
defined closed linear operator relatively compact to A. For later use we set 
̂ by the
relation


 = i
̂ . (1.14)

We denote by DX (A) the domain of A in X . We are interested in the spectral property
of Lα for large |α|. Since the effect of α is absent for functions in Ker 
̂ it is natural
to introduce the orthogonal projections

Q : X → Y := (
Ker 
̂

)⊥
, (1.15)

where K⊥ denotes the orthogonal complement space in X for a given closed subspace
K . We are interested in the estimate of QetLα for large α. Since the semigroup etLα
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is expressed in terms of the resolvent of Lα the problem is reduced to the estimate
of Q(iλ − Lα)−1 when iλ belongs to the resolvent set of Lα . When the invariance
QA ⊂ AQ holds, which will be assumed in this paper, the estimate of Q(iλ − Lα)−1

is reduced to the resolvent analysis of the operator QLα in Y , which is realized as

DY (QLα) = DY (QA) := DX (A) ∩ Y ,

QLαu = QAu − iαQ
̂u , u ∈ DY (QLα) .
(1.16)

Indeed, we have Q(iλ − Lα)−1 f = (iλ − QLα)−1 f for f ∈ Y when QA ⊂ AQ.

In order to obtain the estimate of QetLα or etQLα , the following quantity plays an
essential role:

�Y (α;QLα) =
(
sup
λ∈R

‖(iλ − QLα)−1‖Y→Y

)−1

=
(
sup
λ∈R

‖(iλ + QLα)−1‖Y→Y

)−1

.

(1.17)

The quantity (1.17) was introduced in [11], where the basic pseudospectral property
and the relation with the semigroup estimate are also presented. For convenience we
call (1.17) the pseudospectral bound of QLα . In our framework the operator 
 is not
necessarily antisymmetric, but instead, is assumed to possess a Hamiltonian structure;
see Assumption 2 in Section 2. This structural assumption is of course motivated
by the application to the Kolmogorov flows. There are two theorems in the abstract
part. The first one is a pseudospectral bound without a concrete dependence on α

(Theorem 2.4). The argument in Theorem 2.4 shares some common features with the
argument in [19].While the result of [19] is based on the RAGE theorem, our argument
is much more elementary, though Theorem 2.4 does not necessarily give a stronger
result than [19]. The second result of the abstract part has a concrete dependence on α

(see Theorem 2.9), under additional assumptions on 
̂. The key additional condition
is Assumption 4 which imposes some coercive estimate for μ − 
̂ with μ ∈ R by
allowing a presence of the term yielding a “loss of derivative” but with a small factor in
front. This derivative losswith a small prefactor is controlled by the smoothing effect of
A at the end, and this balance determines the rate in α for the pseudospectral bound. In
Assumption 4 another key condition is imposed on the cross term Im〈Au, 
̂u〉X , which
is useful in achieving the resolvent estimate with a sharper dependence on α. This type
of condition fits with the case when A is of the form A = −T ∗T and is related with the
commutator [T , 
̂], and thus, our approach is highlymotivated by the work of [11,26].

As an application of the abstract result, we study in Section 3 the rescaled version
of the linear operator (1.6), i.e., the problem (1.8). By taking the Fourier series in x ,
the key is to analyze the operator only in the y variable in the space L2(T):

Lα,l = Al − iαl
̂l , 
̂l = Msin y(I + A−1
l ) .

Here Al = ∂2y − l2, α = a
ν
, Msin y f = sin y f , and l ∈ Z \ {0}. The operator 
̂l has a

nontrivial kernel only when l = ±1 which is spanned by the constant functions, and
thus, the projection Ql : L2(T) → L2(T) is defined by
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Ql f = f for |l| ≥ 2 , Ql f = f − 1

2π

∫ 2π

0
f dy for |l| = 1 .

Themain effort is to check the coercive estimates described inAssumption 4 forμ−
̂l

with μ ∈ R which is essential to achieve the pseudospectral bound with a rate in α.
We shall verify Assumption 4 by analyzing the ODE corresponding to the operator
μ − 
̂l . The main difficulty here is the presence of the term A−1

l in 
̂l , which makes
the problem nonlocal and also leads to some lack of invariance, namely the fact that
(I − Ql)
̂l �= 0 when l = ±1. This loss of invariance is due to the absence of the
symmetry of 
̂l , and gives rise to an additional nonlocality coming from the projection
Ql . Therefore, we have to deal with two nonlocalities; the one in A−1

l and the one
in Ql . For a given μ ∈ R the point y ∈ T satisfying sin y = μ is called a critical
point of this problem. The difficulty coming from the nonlocality of A−1

l is significant
when the critical points are degenerate, and this corresponds to the case when |μ|
is around 1 in the analysis of μ − 
̂l . The core part of the analysis is Lemma 3.8
which deals with this singularity. The key idea is to use a contradiction argument,
which enables us to focus on the functions concentrating around the critical points,
for which the nonlocal term essentially becomes a small order since the operator
A−1
l has a smoothing effect. On the other hand, the influence of the projection Ql

becomes relevant only when μ is close to 0 in the analysis of μ− 
̂l , for I −Ql is the
projection to the kernel of 
̂l . As a result, these two kinds of difficulty related to A−1

l
and to Ql appear in different parameter regimes of μ, and thus we can handle them
separately. After establishing the key coercive bounds of μ − 
̂l , which are stated
in Proposition 3.10, the resolvent estimate for Lα,l is obtained in Theorem 3.11 by
applying the abstract result in Section 2. For convenience, it will be worthwhile stating
our resolvent estimate for the Kolmogorov flow in this introductory section:

Theorem 1.3 There exist C, α0 > 0 such that the following statement holds for all
α ∈ R with |α| ≥ α0. Let λ ∈ R and l ∈ Z \ {0}. Then

‖(iλ + Ql Lα,l)
−1‖Yl→Yl ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C

|αl| (| λ
αl | − 1)

if | λ

αl
| > 1 + 1

|αl| 12
,

C

|αl| 12
if 1 − 1

|αl| 12
< | λ

αl
| ≤ 1 + 1

|αl| 12
,

C

|αl| 23 (1 − | λ
αl |)

1
3

if | λ

αl
| ≤ 1 − 1

|αl| 12
.

(1.18)
Here Yl = Ql L2(T).

The estimate (1.18) actually gives more detailed information on the spectrum ofQLα,l

than the pseudospectral bound defined by (1.17), and seems to be considerably sharp
in view of the degeneracy of the critical points. In fact, we observe that the critical

points become degenerate when | λ
αl | ∼ 1, and (1.18) claims that the rate is O(|αl|− 1

2 )

around this case. When | λ
αl | is less than 1, the critical points are nondegenerate and

the rate is improved as O(|αl|− 2
3 ). Note that these rates, O(|αl|− 1

2 ) and O(|αl|− 2
3 ),
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depending on the degeneracy of the critical points, are compatible with the result in
[11] and hence they are optimal if the nonlocal term Msin y A

−1
l is dropped from 
̂l .

Additional remark for the local operator Al − iαlMsin y is that, near the critical point
sin y ∼ μ, the operator is modeled by the complex Airy operator ∂2y + iy when μ is
away from ±1 (nondegenerate case) that is responsible for the exponent 2/3, while it
is modeled by ∂2y ±iy2 whenμ is close to±1 (degenerate case), resulting the exponent

1/2. Finally, if | λ
αl | is larger than 1, the critical points are no longer present, resulting

in the rate O(|αl|−1).
This paper is organized as follows. In Section 2 we discuss the problem in an

abstract framework. Section 3 is devoted to the study of the linearized problem for
the Kolmogorov flows. The main results in Section 3 are Theorem 3.12 and its Corol-
lary 3.14 for the estimate of the semigroup {etLν,a }t≥0. In Section 4 we also consider
the application to the Lamb–Oseen vortices by omitting some details of the proof
since the argument is similar to the case of the Kolmogorov flow. Section 4 provides
alternative approach for the result of [17].

2 Abstract Result

In this section we establish the abstract result in obtaining the resolvent estimate
for the operator (1.13), by taking into account the application to the stability of the
Kolmogorov flows. In fact, to prove the estimate stated in Theorem1.3 requires a rather
complicated and long argument, and thus, the abstract result is useful in understanding
the basic strategy. First we state the basic assumption on A.

Assumption 1 The operator A : DX (A) ⊂ X → X is self-adjoint in X with compact
resolvent, and −A is positive and satisfies

〈−Au, u〉X ≥ ‖u‖2X , u ∈ DX (A) . (2.1)

Remark 2.1 Onecan extend the result of this section tomoregeneral class of A such that
−A is m-sectorial satisfying the positivity Re〈−Au, u〉X ≥ ‖u‖2X + C |Im〈Au, u〉X |
with compact resolvent, by slightly modifying the assumption on 
̂. But for simplicity
we focus on the case when A is self-adjoint.

Next we state the conditions on the relation between A and 
̂.

Assumption 2 (i) 
̂ is a densely defined closed operator and is relatively compact
to −A in X .

(ii) Set Y = (Ker 
̂)⊥, the orthogonal complement space of Ker 
̂ in X , and let
Q : X → Y be the orthogonal projection. Then QA ⊂ AQ, DX (A) ⊂ DX (
̂∗),
and there exists a positive constant C such that

|〈
̂u , u〉X | + |Im〈−Au, 
̂u〉X | ≤ C〈−Au, u〉X , u ∈ DX (A) .
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(iii) There exist closed symmetric operators B1, B2, and positive constants c1 and C
such that 
̂ = B1B2, Ker 
̂ = Ker B2, and

‖B2u‖2X ≤ C‖(−A)
1
2 u‖2X , u ∈ DX (A) , (2.2)

〈u , B2u〉X ≥ c1‖u‖2X , u ∈ DX (A) ∩ Y , (2.3)

Re〈−Au, B2u〉X ≥ c1‖(−A)
1
2 u‖2X u ∈ DX (A) ∩ Y . (2.4)

Remark 2.2 Assumption 2 (iii) states that 
̂ has a property similar to a closed sym-
metric operator. Indeed, if 
̂ is closed symmetric then it suffices to take B1 = 
̂ and
B2 = Q.

Let us denote by Ran 
̂ the range of 
̂, i.e, Ran 
̂ = { f ∈ X | f =

̂g for some g ∈ DX (
̂)}.
Assumption 3 (i) Ker 
̂ ⊂ DX (
̂∗).
(ii) Ker 
̂ ∩ Ran 
̂ = {0}.
(iii) 
̂ does not possess eigenvalues in R \ {0}.
Remark 2.3 (1) Assumption 3 (i) is imposed in order to justify the formal computa-

tion.
(2) If 
̂ is closed symmetric then Assumption 3 (ii) holds. Indeed, it suffices to

use the orthogonal decomposition X = Ker 
̂∗ ⊕ Ran 
̂∗∗ = Ker 
̂∗ ⊕ Ran 
̂;
then for any f we have the corresponding decomposition f = ϕ + ψ , and ψ is
approximated by {ψn} such that ψn = 
̂φn . Then for any u ∈ Ker 
̂ ∩Ran 
̂ we
have

〈u, f 〉X = 〈u, ϕ〉X + 〈u, ψn〉X + 〈u, ψ − ψn〉X = 〈u, ψ − ψn〉X → 0 n → ∞.

Hence u = 0.

First we state the abstract result of the spectral behavior of QLα with α ∈ R in the
limit |α| → ∞, but without any information on the rate of convergence.

Theorem 2.4 Suppose that Assumptions 1, 2, and 3 hold. Let σY (QLα) be the set of
the spectrum of QLα , α ∈ R, in Y . Then we have

lim|α|→∞ sup
μ∈σY (QLα)

Reμ = −∞ , (2.5)

and

lim|α|→∞ sup
λ∈R

‖(iλ − QLα)−1‖Y→Y = 0 . (2.6)

Moreover, for sufficiently large |α| the set {ζ ∈ C | Reζ > −1} is contained in the
resolvent set of Lα in X, and we have

lim|α|→∞ sup
λ∈R

‖Q(iλ − Lα)−1‖X→X = 0 . (2.7)
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Proof The proof consists of several steps. Without loss of generality we may assume
that α > 0.

Step 1: The operator QA in Y is a closed linear operator with compact resolvent.
This follows directly from the invariance QA ⊂ AQ and Assumption 1. We denote
by A|Y the restriction of A to Y with the domain DY (A|Y ) = DX (A) ∩ Y .

Step 2: σY (QLα) ⊂ {μ ∈ C | Reμ < 0}.
Let c1 > 0 be the number in (2.4). We have already seen that −A|Y is bounded from
below inY andhas a compact resolvent inY . Then, since 
̂ is relatively compact to A by
the assumption,we see thatQLα = A|Y −iαQ
̂ is also a closed operatorwith compact
resolvent in Y . Thus, the spectrum ofQLα consists of isolated eigenvalues with finite
multiplicities. Let μ ∈ C be an eigenvalue ofQLα in Y and let u ∈ DX (A) ∩ Y be an
associated eigenfunction such that ‖u‖X = 1. Note that −μu = −QLαu holds. By
taking the inner product with B2u, we have

−μ〈u , B2u〉X = 〈−QAu , B2u〉X + iα〈Q
̂u , B2u〉X
= 〈−QAu , B2u〉X + iα〈B1B2u ,QB2u〉X .

(2.8)

Here we have used 
̂ = B1B2 by Assumption 2 (ii). Moreover, we verify that
(I − Q)B2 = 0 since B2 is closed symmetric and Ker 
̂ = Ker B2. Hence
we have QB2 = B2, which implies 〈B1B2u ,QB2u〉X = 〈B1B2u , B2u〉X and
〈−QAu , B2u〉X = 〈−Au ,QB2u〉X = 〈−Au , B2u〉X . Therefore, since B1 is closed
symmetric in X , the real part of (2.8) yields

−(Reμ)〈u , B2u〉X = Re〈−Au , B2u〉X
≥ c1‖(−A)

1
2 u‖2X ≥ c1 . (2.9)

Here we have used the assumptions (2.4) and (2.1) with ‖u‖X = 1. Hence, (2.3) yields

Re(μ) ≤ − c1
〈u, B2u〉X < 0 . (2.10)

Thus, σY (QLα) ⊂ {μ ∈ C | Reμ < 0} for all α ≥ 0.

Step 3: The spectral limits (2.5) and (2.6) hold.
By Step 2 it suffices to show

lim
α→∞ sup

λ∈R
‖(iλ − QLα)−1‖Y→Y = 0 . (2.11)

Suppose that (2.11) does not hold. Then there exist δ > 0, {αn} ⊂ R+, {λn} ⊂ R,
and fn ∈ Y with ‖ fn‖X = 1 such that αn → ∞, and ‖(iλn − QLα)−1 fn‖X ≥ δ. Set
un = (iλn − QLα)−1 fn , which solves

iλnun − QAun + iαnQ
̂un = fn . (2.12)
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By taking the inner product with B2un in the above equation, we obtain

iλn〈un , B2un〉X + 〈−Aun , B2un〉X + iαn〈B1B2un , B2un〉X = 〈 fn , B2un〉X .

(2.13)

Here we have usedQB2 = B2 as observed in Step 2. Since B1 and B2 are symmetric,
the real part of (2.13) yields

Re〈−Aun , B2un〉X = Re〈 fn , B2un〉X ,

and then the assumptions (2.2), (2.3), and (2.4) imply

c1〈−Aun , un〉X ≤ Re〈 fn , B2un〉X ≤ ‖ fn‖X‖B2un‖X ≤ C‖(−A)
1
2 un‖X .

Thus we obtain the uniform bound

sup
n

‖(−A)
1
2 un‖X < ∞ . (2.14)

Now we recall that, since −A is positive self-adjoint with compact resolvent, (−A)
1
2

also has a compact resolvent ([16, TheoremV-3.49]). Since (2.14) implies the uniform

bound of ‖(−A)
1
2 un‖X , {un} is compact in X , and thus, in Y . Then there exists a

subsequence of {un}, denoted again by {un}, which strongly converges to someu∞ ∈ Y

and satisfies ‖(−A)
1
2 u∞‖X ≤ supn ‖(−A)

1
2 un‖X < ∞. By the strong convergence

we have ‖u∞‖X ≥ δ, so u∞ ∈ Y is nontrivial. Let us go back to (2.12), and take the
inner product with un . Then we have

i
λn

αn
‖un‖2X + 1

αn
〈−Aun , un〉X + i〈
̂un , un〉X = 1

αn
〈 fn , un〉X

and the imaginary part of this identity yields the bound

∣∣∣∣λnαn

∣∣∣∣ ‖un‖2X ≤ |〈
̂un , un〉X | + |Im〈 fn , un〉X | ≤ C‖(−A)
1
2 un‖2X + ‖ fn‖X‖un‖X

≤ C
(
sup
n

‖(−A)
1
2 un‖2X + 1

)
< ∞ .

Since ‖un‖X ≥ δ we have the uniform bound

sup
n

∣∣∣∣λnαn

∣∣∣∣ < ∞ .

Set μn = λn
αn
. By taking a suitable subsequence we may assume that μn converges to

some μ∞ ∈ R. For any ϕ ∈ DX (A) we have from (2.12),

iμn〈un , ϕ〉X − i

αn
〈un , AQϕ〉X + i〈un , 
̂∗

Qϕ〉X = 1

αn
〈 fn , ϕ〉X ,

123



On pseudospectral bound for non-selfadjoint… Page 13 of 84 14

and by taking the limit n → ∞, we have

iμ∞〈u∞ , ϕ〉X + i〈u∞ , 
̂∗
Qϕ〉X = 0 ,

and thus,

〈u∞ , 
̂∗ϕ〉X = −μ∞〈u∞ , ϕ〉X + 〈u∞ , 
̂∗(I − Q)ϕ〉X .

Note that (I −Q) : X → Ker 
̂ ⊂ DX (
̂∗) by the assumption, and thus, 
̂∗(I −Q)

defines a bounded operator in X by the closed mapping theorem. Then, since DX (A)

is dense in X this identity holds for all ϕ ∈ DX (
̂∗), which implies u∞ ∈ DX (
̂) and


̂u∞ = −μ∞u∞ + (I − Q)
̂u∞ .

This shows 
̂u∞ ∈ DX (
̂) and


̂2u∞ = −μ∞
̂u∞ . (2.15)

Since we have shown that u∞ ∈ Y and u∞ �= 0, we conclude that 
̂u∞ �= 0. Thus,
−μ∞ is an eigenvalue of 
̂ in X . Then, by the assumption of the theoremμ∞ must be
0, which implies 
̂u∞ ∈ Ker 
̂. Thus, 
̂u∞ ∈ Ran 
̂∩Ker 
̂, and by the assumption
we conclude that 
̂u∞ = 0, i.e., u∞ ∈ Ker 
̂. On the other hand, we have also seen
u∞ ∈ Y = (

Ker 
̂
)⊥, and hence, u∞ = 0. This is a contradiction, and (2.11) must

hold.
Step 4: σ(Lα) ⊂ {ζ ∈ C | Reζ ≤ −1} and (2.7) holds.
Let ζ ∈ C satisfy Reζ > −1 and let f ∈ X . Let v ∈ DY (QLα) be the unique solution
to

(ζ − QLα)v = Q f , (2.16)

which is well-defined for all sufficiently large |α| by (2.5). Let w ∈ DX (A) be the
solution to

(ζ − A)w = −P(ζ − Lα)v + P f , P = I − Q ,

where the term −P(ζ − Lα)v coincides with −iαP
̂v by the invariance QA ⊂ AQ
and v ∈ Y . That is, we have the following formula for w:

w = −iα(ζ − A)−1
P
̂(ζ − QLα)−1

Q f + (ζ − A)−1
P f . (2.17)

Note that (2.1) implies that ζ ∈ C satisfying Reζ > −1 belongs to the resolvent set
of A, and thus the above formula is well-defined. Moreover, from QA ⊂ AQ and the
above equation, we get:

0 = Q(ζ − A)w = (ζ − A)Qw .
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Hence we have Qw = 0, that is, w ∈ Ker 
̂. Then u = v + w solves

(ζ − Lα)u = (ζ − Lα)v + (ζ − A)w = Q f + P(ζ − Lα)v + (ζ − A)w

= Q f + P f = f .

Hence u ∈ DX (Lα) solves the resolvent problem, and the above construction also
implies the uniqueness. Moreover, we have from the construction that

Q(ζ − Lα)−1 f = (ζ − QLα)−1
Q f , f ∈ X . (2.18)

Hence, (2.7) holds by (2.6). The proof is complete. ��
Remark 2.5 From (2.17) and (2.18) we have the formula

Q(ζ − Lα)−1 = (ζ − QLα)−1
Q ,

P(ζ − Lα)−1 = −iα(ζ − A)−1
P
̂(ζ − QLα)−1

Q + (ζ − A)−1
P .

(2.19)

Theorem 2.4 and its proof do not give any information on the rate of convergence
for |α| → ∞. To obtain a rate we make further assumptions as follows.

Assumption 4 There exist C > 0, τ ∈ (0,∞], m0 ≥ 1, and bounded nonnegative
functions h j : [m0,∞) ×R → [0,∞), j = 1, 2, satisfying lim

m→∞ sup
μ∈R

h j (m, μ) = 0,

such that the following statements hold.

(i) Ker 
̂ ⊂ DX (A).
(ii) (a) It follows that

‖B2u‖X ≤ C‖u‖X , u ∈ X . (2.20)

(b) For all μ ∈ R and m ≥ m0 it follows that

‖u‖2X ≤ C

(
m2‖(μ − 
̂)u‖2X + h21(m, μ)‖(−A)

1
2 u‖2X

)

if |μ| ≥ τ and u ∈ DX (A) , (2.21)

‖u‖2X ≤ C

(
m2‖Q(μ − 
̂)u‖2X + h21(m, μ)‖(−A)

1
2 u‖2X

)

if |μ| < τ and u ∈ DX (A) ∩ Y . (2.22)

(iii) There exists a densely defined closed operator B3 : DX (B3) → X such that

(a) DX ((−A)
1
2 ) ⊂ DX (B3) and

|Im〈Au, 
̂u〉X | ≤ C‖(−A)
1
2 u‖X‖B3u‖X , u ∈ DX (A) , (2.23)
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and
(b) for all μ ∈ R and m ≥ m0 it follows that

‖B3u‖2X ≤ C

(
m2‖(μ − 
̂)u‖2X + h22(m, μ)‖(−A)

1
2 u‖2X

)

if |μ| ≥ τ and u ∈ DX (A) , (2.24)

‖B3u‖2X ≤ C

(
m2‖Q(μ − 
̂)u‖2X + h22(m, μ)‖(−A)

1
2 u‖2X

)

if |μ| < τ and u ∈ DX (A) ∩ Y . (2.25)

Remark 2.6 (1) The condition (ii) (b) states quantitatively the absence of eigenval-
ues of 
̂ in R \ {0}. To be precise let us compare the conditions (2.21)–(2.22) with
Assumption 3. Assume that Ker 
̂ ⊂ DX (A) holds. Then (2.21)–(2.22) imply that 
̂
does not possess eigenvalues in R \ {0}, otherwise one can take the limit m → ∞ in
(2.21)-(2.22) for the eigenvalueμ and the eigenfunction u, which leads to a contradic-
tion. Moreover, if in addition Ker 
̂2 ⊂ DX (A), then for any u ∈ Ker 
̂∩Ran
̂ there
exists f ∈ DX (A) ∩ Y such that u = 
̂ f . Then (2.22) with μ = 0 implies f = 0,
which leads to u = 0. Thus, in this case we also have Ker 
̂∩Ran 
̂ = {0}. As a con-
clusion, under Assumption 4 (ii) and the condition Ker 
̂2 ⊂ DX (A), Assumption 3
is automatically satisfied.
(2) The case τ = ∞means that the conditions (2.22) and (2.25) hold for allμ ∈ R. But
sinceQ is nonlocal in actual applications, in the case μ is away from 0 the conditions
(2.21) and (2.24) will be easier to check. If 
̂ is closed symmetric then Q in (2.22)
and (2.25) is automatically dropped since P
̂ = 0 in this case.

Remark 2.7 In fact, one can obtain the pseudospectral bound with some rate without
assuming (iii) (b) of Assumption 4. However, the condition (iii) (b) is useful in obtain-
ing the pseudospectral bound with a better rate in α. Indeed, when A is of the form
−A = T ∗T for some densely defined closed operator T as discussed in the work of
[26], a natural candidate of B3 is B1T (B2− I )+[T , B1]B2; formally we can compute
as, in virtue of the symmetry of B1,

|Im〈Au, 
̂u〉X | = |Im〈Tu, T B1B2u〉X | = |Im〈Tu, B1T B2u + [T , B1]B2u〉X |
= |Im〈Tu, B1T (B2 − I )u + [T , B1]B2u〉X | .

(2.26)

Thus, the estimate (2.23) is valid with B3 = B1T (B2 − I ) + [T , B1]B2. When B2 is
a smooth enough perturbation from the identity operator, then one can even expect to
take B3 just as [T , B1].
Remark 2.8 The key idea of Assumption 4 is that we reduce the whole analysis to
several coercive estimates of 
̂. This idea is useful in actual applications. Indeed, when
A and 
̂ are (pseudo)differential operators, the order of 
̂ is lower than A− iα
̂, and
hence, the analysis of 
̂ itself is expected to be simpler than the combined operator
A − iα
̂. In principle, the operator A plays a role of recovering the regularity which
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was lost in the coercive estimates for 
̂. The functions h j in the assumption describe
the degeneracy of the operator μ − 
̂, which leads to an essential influence to the
resolvent estimate for the full operator Lα .

The next theorem provides the information on the convergence rate, once we know
the behavior of the functions h j .

Theorem 2.9 Suppose that Assumptions 1, 2, and 4 hold. Then for any α ∈ R the set
{ζ ∈ C | Reζ ≥ 0} is contained in the resolvent set of Lα in X and of QLα in Y .
Moreover, there exists a large number M0 > 0 such that if |α| ≥ M0 then the following
resolvent estimate holds for any λ ∈ R.

‖Q(iλ + Lα)−1‖X→X = ‖(iλ + QLα)−1‖Y→Y ≤ CF(α,
λ

α
) , (2.27)

where

F(α, μ) = inf
m1,m2≥m0

(
m1

|α| + m2
1m

2
2

α2 + m2
1h2(m2, μ)

|α| + h21(m1, μ)

)
(2.28)

and m0 is given in Assumption 4. Here C is independent of α and λ.

Remark 2.10 To evaluate F(α, μ) we first choose m2 so that m2
2 = |α|h2(m2, μ)

holds, which gives the balance
m2
1m

2
2

α2 = m2
1h2(m2,μ)

|α| for any m1. With this choice of

m2, the number m1 is chosen so that m1|α| + m2
1m

2
2

α2 + h21(m1, μ) is minimized.

Proof of Theorem 2.9 It suffices to consider the case α > 0. Set μ = λ
α
and let τ ∈

(0,∞] be the number in Assumption 4. For simplicity of notations we write h j instead
of h j (m j , μ), j = 1, 2. In the following argument any constant which is independent
of α, λ, m1, and m2 will be denoted by C , and thus, the constant C can change from
line to line.
(i) The case |μ| < τ . From the definition, we have for u ∈ DX (A) ∩ Y ,

Q(Lα + iλ) = QA − iαQ(
̂ − μ)

and

〈(QLα + iλ)u,
(

̂ − μ

)
u〉X = 〈QAu,

(

̂ − μ

)
u〉X − iα‖Q(
̂ − μ)u‖2X . (2.29)

By taking the imaginary parts of both sides, we obtain

α‖Q(
̂ − μ
)
u‖2X ≤ |Im〈(QLα + iλ)u,Q

(

̂ − μ

)
u〉X | + |Im〈−QAu,

(

̂ − μ

)
u〉X |

≤ ‖(QLα + iλ)u‖X‖Q(
̂ − μ
)
u‖X + |Im〈−Au, 
̂u〉X |

Here we have used that for u ∈ DX (A) ∩ Y , we have QAu = AQu = Au and
the self-adjointness of A, which gives Im〈−QAu, μu〉X = 0. For the mixing term
Im〈−Au, 
̂u〉X , we use Assumption 4 (iii) (a) and arrive at the estimate
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α‖Q(μ − 
̂
)
u‖2X ≤ C

α
‖(QLα + iλ)u‖2X + C‖(−A)

1
2 u‖X‖B3u‖X . (2.30)

Let us estimate ‖B3u‖X . Fix m2 ≥ m0. We have from (2.25) and (2.30),

‖B3u‖2X ≤ Cm2
2‖Q(μ − 
̂)u‖2X + Ch22‖(−A)

1
2 u‖2X

≤ Cm2
2

α

(
1

α
‖(QLα + iλ)u‖2X + ‖(−A)

1
2 u‖X‖B3u‖X

)
+ h22‖(−A)

1
2 u‖2X

≤ Cm2
2

α2 ‖(QLα + iλ)u‖2X + C

(
m4

2

α2 + h22

)
‖(−A)

1
2 u‖2X . (2.31)

Then (2.30) and (2.31) imply

‖Q(μ − 
̂
)
u‖2X ≤ C

α2 ‖(Q(Lα + iλ)u‖2X

+ C

α
‖(−A)

1
2 u‖X

(m2
2

α2 ‖(QLα + iλ)u‖2X + (m4
2

α2 + h22
)‖(−A)

1
2 u‖2X

) 1
2

≤ C

α2 ‖(Q(Lα + iλ)u‖2X + C
(m2

2

α2 + h2
α

)‖(−A)
1
2 u‖2X . (2.32)

Then, by combining (2.32) with the assumption (2.22), we see

‖u‖2X ≤ Cm2
1‖Q(μ − 
̂)u‖2X + Ch21‖(−A)

1
2 u‖2X

≤ Cm2
1

α2 ‖(QLα + iλ)u‖2X + C
(m2

1m
2
2

α2 + m2
1h2
α

+ h21

)
‖(−A)

1
2 u‖2X . (2.33)

Next we estimate ‖(−A)
1
2 u‖2X . We observe that the following identity holds:

Re〈(QLα + iλ)u, B2u〉X = Re〈(Lα + iλ)u,QB2u〉X = Re〈Au , B2u〉X .

Here we have used QB2 = B2, Im〈
̂u , B2u〉X = Im〈B1B2u , B2u〉X = 0,
and Im〈u , B2u〉X = 0 since B1 and B2 are symmetric. By (2.4) we have
Re〈−Au , B2u〉X ≥ c1〈−Au , u〉X , which gives

‖(−A)
1
2 u‖2X ≤ C‖(QLα + iλ)u‖X‖B2u‖X , u ∈ DX (A) ∩ Y . (2.34)

Thus we conclude from (2.20), (2.33), and (2.34) that

‖u‖2X ≤ C

(
m2

1

α2 + m4
1m

4
2

α4 + m4
1h

2
2

α2 + h41

)
‖(QLα + iλ)u‖2X , u ∈ DX (A) ∩ Y .

(2.35)

Note that (2.35) is valid for any m1,m2 ≥ m0 and α > 0.
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(ii) The case |μ| ≥ τ . In this case we drop the projection Q in (2.29) and use the
identity

〈(Lα + iλ)u,
(

̂ − μ

)
u〉X = 〈Au,

(

̂ − μ

)
u〉X − iα‖(
̂ − μ)u‖2X , u ∈ DX (A) ,

which gives by taking the imaginary parts,

α‖(
̂ − μ
)
u‖2X ≤ ‖(Lα + iλ)u‖X‖(
̂ − μ

)
u‖X + |Im〈−Au, 
̂u〉X | .

Thus, as in (2.30), we obtain

α‖(
̂ − μ
)
u‖2X ≤ C

α
‖(Lα + iλ)u‖2X + ‖(−A)

1
2 u‖X‖B3u‖X , u ∈ DX (A) .

(2.36)

Then the estimates of the terms B3u and (−A)− 1
2 u are obtained in the same manner

as in the case (i), and we have

‖B3u‖2X ≤ Cm2
2

α2 ‖(Lα + iλ)u‖2X + C

(
m4

2

α2 + h22

)
‖(−A)

1
2 u‖2X ,

‖(μ − 
̂
)
u‖2X ≤ C

α2 ‖(Lα + iλ)u‖2X + C
(m2

2

α2 + h2
α

)‖(−A)
1
2 u‖2X .

(2.37)

Then u is estimated as follows, by arguing as in (2.33):

‖u‖2X ≤ Cm2
1

α2 ‖(Lα + iλ)u‖2X + C1

(
m2

1m
2
2

α2 + m2
1h2
α

+ h21

)
‖(−A)

1
2 u‖2X . (2.38)

Next we observe that AP, where P = I −Q, is a bounded operator by the assumption
Ker 
̂ ⊂ DX (A), which gives from QA ⊂ AQ,

‖(−A)
1
2 u‖2X = 〈−Au, u〉X = 〈−APu,Pu〉X + 〈−AQu,Qu〉X

≤ C2‖Pu‖2X + 〈−AQu,Qu〉X .

Hence, for sufficiently large α and m j so that

C1C2

(
m2

1m
2
2

α2 + m2
1h2
α

+ h21

)
≤ 1

4
, (2.39)

the estimate (2.38) yields

‖u‖2X ≤ Cm2
1

α2 ‖(Lα + iλ)u‖2X + C

(
m2

1m
2
2

α2 + m2
1h2
α

+ h21

)
‖(−A)

1
2Qu‖2X .

(2.40)

123



On pseudospectral bound for non-selfadjoint… Page 19 of 84 14

Since 〈−AQu,Qu〉X is estimated as (2.34) but with u replaced by Qu, we obtain the
estimate like (2.35) such as

‖u‖2X ≤ C
m2

1

α2 ‖(Lα + iλ)u‖2X + C

(
m4

1m
4
2

α4 + m4
1h

2
2

α2 + h21

)
‖Q(Lα + iλ)u‖2X

≤ C

(
m2

1

α2 + m4
1m

4
2

α4 + m4
1h

2
2

α2 + h41

)
‖(Lα + iλ)u‖2X , u ∈ DX (A) .

(2.41)

This is the desired estimate in the case |μ| ≥ τ . Note that (2.41) is valid for
any m1,m2 ≥ m0 and α > 0 satisfying (2.39). Such a set is not empty since
lim

m j→∞ sup
μ∈R

h j (m j , μ) = 0, and in particular, we can find a positive constant M0

uniformly in λ so that if α ≥ M0 then there exists (m1,m2) satisfying (2.39).
Now we recall that σ(Lα), σY (QLα), and σPX (A|PX ) consist only of discrete

eigenvalues. Moreover, we have from QA ⊂ AQ,

σ(Lα) = σY (QLα) ∪ σPX (A|PX ) , (2.42)

and the formula (2.19) holds for all ζ ∈ C \ (σ(Lα)
)
. Indeed, let ζ ∈ C be in the

resolvent of QLα in Y and also of A|PX in PX . Let us show that ζ − Lα is injective
in X , which shows that ζ belongs to the resolvent of Lα since σ(Lα) in X consists
of eigenvalues. If u ∈ DX (A) satisfies (ζ − Lα)u = 0, then (ζ − QLα)Qu = 0 by
the invariance QA ⊂ AQ and 
̂u = 
̂Qu. Then Qu = 0 by the assumption, and
therefore, (ζ − A)Pu = 0, which also gives Pu = 0 by the assumption. Thus u = 0,
and we have shown the inclusion

σ(Lα) ⊂ σY (QLα) ∪ σPX (A|PX ) .

On the other hand, let ζ belong to the resolvent set of Lα in X . Since σPX (A|PX ) ⊂
σ(Lα) holds by the assumptionsQA ⊂ AQ and Ker 
̂ ⊂ DX (A), ζ is also a resolvent
of A|PX in PX . If u ∈ DX (A) ∩ Y satisfies (ζ − QLα)u = 0 then by setting v ∈
DX (A) ∩ PX as v = −iα(ζ − A|PX )−1

P
̂u we see that w = u + v solves from
QA ⊂ AQ,

(ζ − Lα)w = (ζ − Lα)u + (ζ − Lα)v = (ζ − QLα)u + iαP
̂u − iαP
̂u = 0 .

Since ζ is a resolvent of Lα in X , w = 0. This implies u = Qw = 0. Hence ζ is a
resolvent of QLα in Y . Thus (2.42) holds.

By arguing as in Step 2 of the proof of Theorem 2.4, we can show that σY (QLα) ⊂
{ζ ∈ C |Reζ < 0} for all α. Therefore, we observe from σ(A) ⊂ {ζ ∈ C |Reζ ≤ −1}
and (2.42) that σ(Lα) ⊂ {ζ ∈ C | Reζ < 0} for all α. In particular, iR belongs to the
resolvent set of Lα and also of QLα .

Let λ ∈ R. If | λ
α
| < τ then (2.35) gives the estimate for the resolvent (iλ+QLα)−1

in Y . If | λ
α
| ≥ τ then (2.41) yields the estimate of the resolvent (iλ + Lα)−1 in X as
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long as (2.39) is satisfied. The estimate of the resolvent (iλ + QLα)−1 in Y is then
obtained from the formula

(iλ + QLα)−1 f = Q(iλ + Lα)−1 f , f ∈ Y ,

and by using the inequality ‖Qu‖X ≤ ‖u‖X . As a summary, there exists M0 > 0 such
that we have

‖(iλ + QLα)−1‖Y→Y ≤ C

(
m1

|α| + m2
1m

2
2

α2 + m2
1h2
|α| + h21

)
, (2.43)

as long as α ≥ M0. The proof is complete.

Remark 2.11 From (2.34) in the proof of Theorem 2.9, we observe that

‖(−A)
1
2 (iλ + QLα)−1‖Y→Y ≤ CF

(
α,

λ

α

) 1
2

. (2.44)

Moreover, when m1 and m2 are the numbers such that the infimum in the definition
of F is evaluated, we have

‖B3(iλ + QLα)−1‖Y→X ≤ C

(
m2

|α| +
(m2

2
|α| + h2(m2, μ)

)
F
(
α,

λ

α

) 1
2
)

, (2.45)

‖Q
(

λ

α
− 
̂

)
(iλ + QLα)−1‖Y→Y ≤ C

(
1

|α| +
(m2

|α| + h2(m2, μ)
1
2

|α| 12
)
F(α,

λ

α
)
1
2

)
, | λ

α
| < τ,

(2.46)

‖( λ

α
− 
̂)(iλ + Lα)−1‖X→X ≤ C

(
1

|α| +
(m2

|α| + h2(m2, μ)
1
2

|α| 12
)
F(α,

λ

α
)
1
2

)
, | λ

α
| ≥ τ.

(2.47)

2.1 On the Proof of Assumption 4 (ii) (b) and (iii) (b) in Actual Applications

In actual applications to the Kolmogorov flow or the Lamb–Oseen vortex, the most
trivial part is to verify the interpolation inequalities (2.21), (2.22), and (2.24), (2.25).
To find appropriate B3 itself is not a difficult task in these examples, by recalling
Remark 2.7.Wewill show these interpolation inequalities by a contradiction argument.
The approach using a contradiction argument is standard, and one can go back to the
very abstract and classical result as follows: Suppose that the triple of Banach spaces
(X ,Y , Z) satisfies the embedding property Z ↪→↪→ X and Z ↪→ Y , in particular,
Z is compactly embedded in X (note that, for example in (2.21), we can consider

‖u‖Y = ‖(μ − 
̂)u‖X and ‖u‖Z = ‖(−A)
1
2 u‖X when it is assumed that μ − 
̂

is injective and that (−A)− 1
2 is compact). Then for any ε > 0 there exists Cε > 0

such that ‖u‖X ≤ Cε‖u‖Y + ε‖u‖Z for any u ∈ Z . Indeed, one can easily prove
this inequality, depending on ε, by a contradiction argument. Since the assumption
of this abstract result is too general, we do not know how Cε depends on ε. But
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for concrete applications, we expect to be able to estimate the degeneracy of μ − 
̂

that gives an information about the concrete dependence of Cε on ε when ‖u‖Y =
‖(μ−
̂)u‖X (this leads to a candidate of h1(m, μ) in (2.21)). Thenwe can try to prove
the interpolation-type inequality by a contradiction but together with the presence of
h1(m, μ).

In the application to the Kolmogorov flow and the Lamb–Oseen vortex, the operator

̂ is essentially of the form 
̂1+
̂2,where 
̂1 is a simple local operator (multiplication
operator) and 
̂2 is a nonlocal compact operator. Thenwe expect that the degeneracy of
μ−
̂ is dominated byμ−
̂1, and thus, the interpolation-type inequality such as (2.21)
has a close relation to the similar inequality but with μ − 
̂ replaced by μ − 
̂1. This
is indeed shown to be true in the above two examples, though the whole proof requires
a long argument. It will be useful to point out that the interpolation-type inequalities
in Assumption 4 are also related to the estimate of the limiting absorption principle

(LAP) typically stated as limε↓ ‖(−A)− 1
2 (μ ± iε − 
̂)−1 f ‖X ≤ C‖(−A)

1
2 f ‖X , for

which a contradiction argument is a familiar tool in the proof. Indeed, our argument
in Lemma 3.8 for the Kolmogorov flow share a common feature with the proof of the
limiting absorption principle around the shear flows obtained byWei, Zhang, and Zhao
[29]. But on the other hand, there are some differences in technical details between
the proof of (2.21) and the proof of LAP in [29], mainly due to the difference of the
regularity condition on f = (μ − 
̂)u; in (2.21) we impose f ∈ X , while in LAP it

is f ∈ DX ((−A)
1
2 ). In fact, the lower regularity condition (μ − 
̂)u ∈ X in (2.21)

makes the argument more technical in the analysis around the critical points.

3 Application to Kolmogorov Flow

In this section we study the spectral property of the operator (1.8) related to the
linearization of the Kolmogorov flow. Set

X = L2
0(T

2) =
{
ω ∈ L2(T2) |

∫ 2π

0
ω(x, y) dx = 0 a.e. y ∈ T

}
.

Let A be the realization of � = ∂2x + ∂2y in L2
0(T

2), i.e.,

D(A) = W 2,2(T2) ∩ L2
0(T

2) , Aω = �ω , ω ∈ D(A) .

Next let us denote byMg themultiplication operator with themultiplier g, i.e.,Mg f =
g f . We denote by 
̂ the realization of −i∂x Msin y(I + A−1) in L2

0(T
2) which is given

by

D(
̂) = {ω ∈ L2
0(T

2) | ∂x Msin yω ∈ L2
0(T

2)} ,


̂ω = −i∂x Msin y(I + A−1)ω , ω ∈ D(
̂) .

Since i∂x is realized as a self-adjoint operator in L2
0(T

2) and Msin y(I + A−1) is
bounded in L2

0(T
2), the operator 
̂ is a closed operator. Moreover, since H1(T2) ∩
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L2
0(T

2) ⊂ D(
̂), it is densely defined in L2
0(T

2). We are interested in the spectral
property of

Lα = A − iα
̂ , D(Lα) = D(A) . (3.1)

Let us denote by Y the closed subspace of L2
0(T

2) defined by

Y =
{
ω ∈ L2

0(T
2) |

∫ 2π

0
(Plω)(x, y) dy = 0 , |l| = 1 , for all x ∈ T

}
, (3.2)

where

(Plω)(x, y) = 1

2π

∫ 2π

0
ω(s, y)e−ils ds eilx , l ∈ Z .

The orthogonal projection from L2
0(T

2) to Y is denoted by Q. We observe that Y is
an invariant space under the action of A and that

Y is the orthogonal complement of {a cos x + b sin x | a, b ∈ C} in X .

The spaces L2
0(T

2) and Y are diagonalized as

L2
0(T

2) = ⊕l∈Z\{0}Pl L
2
0(T

2) , Y = ⊕l∈Z\{0}PlY , (3.3)

and each of Pl L2
0(T

2) and PlY is identified with L2(T) and Yl respectively, where

Yl =
{
L2(T) if l �= ±1 ,

{ f ∈ L2(T) | ∫ 2π0 f dy = 0} if l = ±1 .
(3.4)

The orthogonal projection from L2(T) to Yl is denoted by Ql . Since Pl L2
0(T

2) and
PlY are invariant spaces for Lα , the operator Lα is also diagonalized as

Lα = ⊕l∈Z\{0}Lα|Pl L2
0(T

2) , (3.5)

where Lα|Pl L2
0(T

2) is the restriction of Lα to the invariant subspace Pl L2
0(T

2), which

is identified with Lα,l in L2(T) defined as follows:

Lα,l = Al − iαl
̂l , D(Lα,l) = W 2,2(T) , (3.6)

where

Al = ∂2y − l2 , D(Al) = W 2,2(T) ,


̂l = Msin y (I + A−1
l ) , D(
̂l) = L2(T) .

(3.7)

It is straightforward to see the following result.
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Proposition 3.1 Let |l| ≥ 1. (i) −Al is positive self-adjoint in L2(T) and satisfies
Assumption 1 in L2(T). Moreover, the invariance Ql Al ⊂ AlQl holds.
(ii) (Ker 
̂l)

⊥ = Yl , Ran 
̂l ∩ Ker 
̂l = {0}, and 
̂l satisfies Assumption 2 (i).

Proof We give a proof only for the statement Ran 
̂l ∩ Ker 
̂l = {0} with l = ±1,
since the other statements are easy to check. Let f ∈ Ran 
̂l ∩ Ker 
̂l with l = ±1.
Then, since Ker 
̂±1 = {Const .}, there exists a constant c and a function g ∈ L2(T)

such that f = c = 
̂l g. By the definition of 
̂l , we have sin y
(
I + A−1

l

)
g = c.

However,
(
I + A−1

l

)
g = c

sin y
cannot belong to L2(T) if c �= 0. Hence, we must have

c = 0, that is, f = 0. The proof is complete. ��
The following corollary immediately follows from the above proposition.

Corollary 3.2 (i) −A is positive self-adjoint in L2
0(T

2) and satisfies Assumption 1 in
L2
0(T

2). Moreover, the invariance QA ⊂ AQ holds.
(ii) Ker 
̂ = { f = a sin x+b cos x , a, b ∈ C}, (Ker 
̂)⊥ = Y ,Ran 
̂∩Ker 
̂ = {0},

and 
̂ satisfies Assumption 2 (i).

3.1 EstimateWithout Rate

In this subsection we aim to apply Theorem 2.4. Let us first check Assumption 2 (ii)
for Lα,l in L2(T). We observe that


̂l = Msin y B2,l , B2,l = (
I + A−1

l

)
, (3.8)

and B2,l is bounded self-adjoint in L2(T). We can also check that Ker 
̂l = Ker B2,l
without difficulty. The operator B2,l is positive in Yl . To see this we set φ = A−1

l f
for f ∈ Yl , which satisfies

‖∂yφ‖2L2 + l2‖φ‖2L2 = −〈 f , φ〉L2 ≤ ‖ f ‖L2‖φ‖L2 . (3.9)

Since f , φ ∈ Yl we see ‖∂yφ‖2
L2 ≥ ‖φ‖2

L2 if l = ±1, and ‖∂yφ‖2
L2 ≥ 0 if |l| ≥ 2.

Thus we have

‖φ‖L2 ≤
{

2−1‖ f ‖L2 if l = ±1 ,

l−2‖ f ‖L2 if |l| ≥ 2 .
(3.10)

Hence, for |l| ≥ 1 and f ∈ Yl ,

〈 f , B2,l f 〉L2 = ‖ f ‖2L2 + 〈 f , φ〉L2 ≥ ‖ f ‖2L2 − ‖ f ‖L2‖φ‖L2

≥ ‖ f ‖2L2 − 1

2
‖ f ‖2L2 = 1

2
‖ f ‖2L2 . (3.11)

Since (2.4) is also not difficult to check, Assumptions 1 and 2 are satisfied by the above
operators. To apply Theorem 2.4 it remains to show
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Proposition 3.3 σ(
̂l) = [−1, 1]. Moreover, 
̂l in L2(T) does not have eigenvalues
in C \ {0}.
Remark 3.4 Proposition 3.3 and its Corollary 3.5 below are not new, and have been
proved in a more general framework; see Lin and Xu [19, Lemmas 2.4, 5.1]. We give
a proof here just for the convenience of the reader.

Proof of Proposition 3.3 We first observe that the spectrum of Msin y in L2(T) consists
of the essential spectrum and is [−1, 1]. Since Msin y A

−1
l is compact in L2(T), the

essential spectrum of 
̂l coincides with the one of Msin y , and thus, is [−1, 1]. Hence
it suffices to consider the existence of eigenvalues of 
̂l . Suppose that f ∈ L2(T) and
μ ∈ C \ {0} satisfies


̂l f = μ f . (3.12)

We first consider the case μ ∈ R\ {0}. Then we have (sin y−μ) f + sin y A−1
l f = 0,

and thus,

f + sin y

sin y − μ
A−1
l f = 0 , y /∈ Sμ , (3.13)

where Sμ = {θ ∈ T | sin θ = μ}. Note that φ = A−1
l f ∈ W 2,2(T) is a C1+δ(T)

function for some δ > 0 by the Sobolev embedding inequality. From (3.13) we see that
f ∈ C1+δ(T \ {Sμ}), and also (3.13) implies that φ(yμ) = 0 for yμ ∈ Sμ, otherwise

f cannot be in L2(T). By the bootstrap argument and (3.13), we see that f is smooth
in T \ {Sμ}. Thus φ is smooth in T \ {Sμ} and solves the ODE

(Msin y − μ)Alφ + Msin yφ = 0 .

By the identity Msin y = Msin y − μ + μ, we have (Msin y − μ)(Al + 1)φ + μφ = 0,
and thus,

−(Al + 1)φ + μ

μ − sin y
φ = 0 , y ∈ T \ {Sμ} . (3.14)

Case (i)μ ≥ 0.When 0 ≤ μ < 1 let yμ, zμ ∈ Sμ be the points such that yμ ∈ [ 12π, π ]
and zμ ∈ [2π, 5

2π ] (they are uniquely determined). When μ ≥ 1 we simply take
yμ = 1

2π and zμ = 5
2π . Then μ − sin y ≥ 0 for y ∈ (yμ, zμ), and we obtain

∫ zμ

yμ
(−Al − 1)φ φ̄ dy +

∫ zμ

yμ

μ

μ − sin y
|φ|2 dy = 0 . (3.15)

Note that the second integral converges due to the regularityφ ∈ C1+δ(T) andφ(yμ) =
φ(zμ) = 0 when 0 ≤ μ ≤ 1. As for the first integral, the integration by parts and the
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condition φ(yμ) = φ(zμ) = 0 when 0 ≤ μ ≤ 1 and the periodicity of φ when μ > 1
yield

∫ zμ

yμ
(−Al − 1)φ φ̄ dy =

∫ zμ

yμ
|∂yφ|2 + (l2 − 1)|φ|2 dy ,

thus we have

∫ zμ

yμ
|∂yφ|2 + (l2 − 1)|φ|2 dy +

∫ zμ

yμ

μ

μ − sin y
|φ|2 dy = 0 . (3.16)

Hence φ = 0 in [yμ, zμ]. When μ ≥ 1 we clearly have φ = 0 on [ 12π, 5
2π ]. When

0 ≤ μ < 1 we see from φ ∈ C1+δ(T) that φ(yμ) = φ′(yμ) = 0. However, since the

singularity of
1

μ − sin y
is first order when 0 ≤ μ < 1 it is easy to see that any C1+δ

solution φ to the ODE (3.14) satisfying φ(yμ) = φ′(yμ) = 0 must be trivial. Thus,
we have f = 0 in T.
Case (ii) μ < 0. The argument is the same as above, and we omit the details.
Case (iii) μ /∈ R. Since −μ f + Msin y(I + A−1

l ) f = 0, by taking the inner product
with B2,l f , we have −μ〈 f , B2,l f 〉L2 + 〈Msin y B2,l f , B2,l f 〉L2 = 0. The imaginary
part of this equality gives (Imμ)〈 f , B2,l f 〉L2 = 0, and thus, from the definition of
B2,l , we observe that f = 0 if |l| ≥ 2 and f = constant if |l| = 1. On the other hand,
if |l| = 1 and f = constant then (I + A−1

l ) f = B2,l f = 0, which gives −μ f = 0.
Thus f = 0 since μ �= 0. The proof is complete. ��

The above result for 
̂l in L2(T) is easily translated to 
̂ in L2
0(T

2). Indeed,


̂ = B1B2 , B1 = −i∂x Msin y , B2 = (I + A−1) , (3.17)

and B1 is closed symmetric and B2 is bounded self-adjoint in L2
0(T

2), and Ker 
̂ =
Ker B2. The operator B2 is positive in Y , for so is B2,l in Yl for each l ∈ Z \ {0} with
a uniform lower bound in l. Proposition 3.3 therefore implies

Corollary 3.5 σ(
̂) = R. Moreover, 
̂ in L2
0(T

2) does not have eigenvalues inC\{0}.
Proof Let f ∈ L2

0(T
2) and set fl(y) = (Pl f )(x, y)e−ilx . If ζ ∈ C and Imζ �= 0 then

ζ − l
̂l is invertible for any l ∈ Z \ {0} and ωl = (ζ − l
̂l)
−1 fl satisfies

‖ωl‖L2(T) ≤ C

|Imζ | ‖ fl‖L2(T) if |l| ≥ 2 ,

‖ωl‖L2(T) ≤ C(|Imζ |)‖ fl‖L2(T) if |l| = 1 .

Here C is independent of l and C(|Imζ |) depends only on |Imζ | (the concrete depen-
dence of C(|Imζ |) on |Imζ | is not needed in the argument below). Moreover, from
ζωl − lMsin y B2,lωl = fl , we also have
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‖lMsin yωl‖L2(T) ≤ ‖lMsin y A
−1
l ωl‖L2(T) + |ζ | ‖ωl‖L2(T) + ‖ fl‖L2(T)

≤ C(ζ )‖ fl‖L2(T)

withC(ζ )dependingonlyon ζ and independent of l.Hence,ω(x, y) = ∑
l∈Z\{0} ωl(y)

eilx satisfies ω ∈ L2
0(T

2) and ∂x Msin yω ∈ L2
0(T

2). Clearly ω solves (ζ − 
̂)ω = f .
The uniqueness is also shown by taking the Fourier series in x . Thus ζ belongs to
the resolvent set of 
̂ in L2

0(T
2). This shows σ(
̂) ⊂ R. Since σ(l
̂l) = [−l, l],

we conclude that σ(
̂) = R. If ζ ∈ R is an eigenvalue of 
̂ and ω ∈ D(
̂) is an
eigenfunction then there exists l ∈ Z \ {0} such that ωl(y) = (Plω)(x, y)e−ilx is
nontrivial. Since ωl satisfies (ζ − l
̂l)ωl = 0, the number ζ

l must be an eigenvalue

of 
̂l in L2(T), which is a contradiction. The proof is complete. ��
We can now apply Theorems 2.4, which yields the following result.

Theorem 3.6 Let Lα be as in (3.1). Then

lim|α|→∞ sup
λ∈R

‖(iλ − QLα)−1‖Y→Y = lim|α|→∞ sup
λ∈R

‖Q(iλ − Lα)−1‖X→X = 0 . (3.18)

A similar result holds also for Lα,l for each l ∈ Z \ {0}.

3.2 Estimate with Rate

Theorem3.6does not give any estimates on the convergence rate. To applyTheorem2.9
we focus on the study of 
̂l = Msin y(I + A−1

l ) in L2(T). Note that

−Al = T ∗
l Tl , Tl = ∂y − l

and therefore,

[Tl , B1] = Mcos y .

In particular, it is not difficult to show from B2,l = I + A−1
l ,

|Im〈Alφ, 
̂lφ〉L2 | = |Im〈Tlφ, Tl B1B2,lφ〉L2 |
= |Im〈Tlφ, B1Tl B2,lφ + Mcos y B2,lφ〉L2 |
= |Im〈Tlφ, B1Tl A

−1
l φ + Mcos y B2,lφ〉L2 |

≤ ‖Tφ‖L2‖(B1Tl A
−1
l + Mcos y B2,l

)
φ‖L2 , (3.19)

which ensures Assumption 4 (iii) (a) with B3 = B1Tl A
−1
l + Mcos y B2,l and X =

Xl = L2(T). The result for 
̂ is obtained by the diagonalization 
̂ = ⊕l∈Z\{0}l
̂l .
To simplify the notation we use the symbols u and v as scalar functions on T in this
subsection (i.e., in this subsection u and v do not mean velocity fields).
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Our goal is to show the coercive estimates of 
̂l as stated in Assumption 4. The
main difficulty comes from the degeneracy of the critical points, i.e., the case when
(sin y)′|y=yμ = cos yμ vanishes for the point yμ ∈ sin−1 μ. This is the case μ = ±1.
More precisely, the difficulty is to show (2.21) uniformly in a neighborhoodofμ = ±1,
rather than on the exact points μ = ±1. Below we divide the regime of μ into three
parts. The first part, discussed in Lemma 3.7, corresponds to the case |μ| ≥ 1, though
we can take |μ| slightly below 1 depending on the value m in (2.21). The second part,
which is the core part of this section and discussed in Lemma 3.8, is 1

2 ≤ |μ| < 1.
The last part is |μ| < 1

2 and will be treated in Lemma 3.9, where the critical point is
nondegenerate, while we need to handle the additional nonlocality due to the presence
of the projection Ql when |l| = 1.

Lemma 3.7 There exist κ ∈ (0, 1) and C > 0 such that the following statements hold
for all δ ∈ (0, 1] and l ∈ Z \ {0}. If μ ∈ R satisfies 1 − κδ2 ≤ |μ| ≤ 1 + κδ2 then

δ2‖u‖2L2 + ‖Mcos y B2,lu‖2L2 + ‖(−Al)
− 1

2 u‖2L2

≤ C
(
δ−2‖(μ − 
̂l)u‖2L2 + δ4‖(−Al)

1
2 u‖2L2

)
, u ∈ H1(T) , (3.20)

while if |μ| > 1 then

(|μ| − 1)2‖B2,lu‖2L2 + (|μ| − 1)‖Mcos y B2,lu‖2L2

+ |μ|(|μ| − 1)‖(−Al)
− 1

2 u‖2L2 ≤ C‖(μ − 
̂l)u‖2L2 , u ∈ H1(T) .
(3.21)

Proof Set f = (μ − 
̂l)u for u ∈ H1(T), i.e.,

(μ − Msin y)u − Msin y A
−1
l u = f (3.22)

by the definition of 
̂l . Setting v = A−1
l u and using Msin y = Msin y − μ + μ , (3.22)

is also written as

(μ − Msin y)(Al + 1)v − μv = f . (3.23)

Note that (Al +1)v = B2,lu by the definition. Below we fix δ ∈ (0, 1) and take κ > 0
sufficiently small. Taking the inner product with (Al +1)v and by considering the real
part, we obtain

∫ 2π

0

μ − sin y

μ
|(Al + 1)v|2 dy + ‖∂yv‖2L2 + (l2 − 1)‖v‖2L2

= 1

μ
Re〈 f , (Al + 1)v〉L2 . (3.24)
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If 0 < 1 − κδ2 ≤ μ ≤ 1 + κδ2 then we have

∫ 2π

0

1 − sin y

μ
|(Al + 1)v|2 dy + ‖∂yv‖2L2 + (l2 − 1)‖v‖2L2

= 1 − μ

μ

∫ 2π

0
|(Al + 1)v|2 dy + Re

1

μ
〈 f , (Al + 1)v〉L2

≤ κδ2

μ

∫ 2π

0
|(Al + 1)v|2 dy + 1

μ
‖ f ‖L2‖(Al + 1)v‖L2 . (3.25)

Thus, we have

∫ 2π

0
(1 − sin y)|(Al + 1)v|2 dy + ‖∂yv‖2L2 + (l2 − 1)‖v‖2L2

≤ Cκδ2‖(Al + 1)v‖2L2 + C‖ f ‖L2‖(Al + 1)v‖L2 .

(3.26)

Next we compute

∫ 2π

0
(1 − sin y)|(Al + 1)v|2 dy =

∫
|y− 1

2π |≥δ

. . . dy +
∫

|y− 1
2π |<δ

. . . dy

≥
∫

|y− 1
2π |≥δ

. . . dy

≥ Cδ2‖(Al + 1)v‖2
L2({|y− 1

2π |≥δ})
≥ Cδ2‖(Al + 1)v‖2L2 − Cδ3‖(Al + 1)v‖2L∞ .

(3.27)

Thus, from ‖(Al + 1)v‖L∞ ≤ C‖u‖L∞ with C independent of l, and (3.25)–(3.26),
we deduce that

δ2‖(Al + 1)v‖2L2 + ‖∂yv‖2L2 + (l2 − 1)‖v‖2L2

≤ C

(
κδ2‖(Al + 1)v‖2L2 + δ3‖u‖2L∞ + ‖ f ‖L2‖(Al + 1)v‖L2

)
,

and if κ > 0 is small enough but independently of μ and δ, then

δ2‖(Al + 1)v‖2L2 + ‖∂yv‖2L2 + (l2 − 1)‖v‖2L2 ≤ C

(
δ3‖u‖2L∞ + δ−2‖ f ‖2L2

)
.

From Alv = u we finally obtain

δ2‖u‖2L2 + ‖(−Al)
− 1

2 u‖2L2 ≤ C

(
δ−2‖(μ − 
̂l)u‖2L2 + δ3‖u‖2L∞

)
. (3.28)
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The argument is the same as above for the case −1 − κδ2 ≤ μ ≤ −1 + κδ2 < 0,
and we have (3.28) also in this case. The details are omitted here. The estimate of
‖Mcos x B2,lu‖2

L2 follows from (3.26) and (3.28) by the inequality

cos2 y = (1 − sin2 y) ≤ 2(1 ± sin y) .

Then it suffices to apply the interpolation inequality ‖u‖2∞ ≤ C‖u‖H1‖u‖L2 and

‖u‖H1 ≤ ‖(−Al)
1
2 u‖L2 to obtain (3.20). Estimate (3.21) for the case |μ| > 1 easily

follows from the identity (3.24). Indeed, (3.24) is written from (Al + 1)v = B2,lu,

(
1 − 1

|μ|
)

‖B2,lu‖2L2 + 1

|μ|
∫ 2π

0

(
1 − |μ|

μ
sin y

)
|B2,lu|2 dy

+ ‖∂yv‖2L2 + (l2 − 1)‖v‖2L2 = 1

μ
Re〈 f , B2,lu〉L2 ,

which gives (3.21) for |μ| > 1. The details are omitted here. The proof is complete.
��

The coercive estimate for |μ| < 1 − κδ2 is more delicate, especially when κδ2

< |μ ± 1| ≤ o(1) as δ → 0 due to the degeneracy around the points such that
(sin y)′ = cos y = 0 and the nonlocality. To overcome the difficulty we apply a
contradiction argument. The contradiction argument is useful since it enables us to
focus on the functions which concentrate around the critical points, by which the
nonlocality is reduced since the nonlocal operator has a smoothing effect and thus
becomes a small perturbation of the local operator for such functions. The following
lemma, which requires a long proof, is the core result of this subsection.

Lemma 3.8 Let κ ∈ (0, 1) be the number in Lemma 3.7. There exists C > 0 such that
if δ ∈ (0, 1], l ∈ Z \ {0}, and μ ∈ R with 1

2 ≤ |μ| < 1 − κδ2, then

δ2‖u‖2L2 + ‖(−Al)
− 1

2 u‖2L2 + 1

1 − |μ| ‖A
−1
l u‖2L2

≤ C

(
δ−2‖(μ − 
̂l)u‖2L2 + δ6

1 − |μ| ‖(−Al)
1
2 u‖2L2

)
, u ∈ H1(T) , (3.29)

and

‖Mcos y B2,lu‖2L2 ≤ C

(
δ−2‖(μ − 
̂l)u‖2L2 + δ2(1 − |μ|) ‖(−Al)

1
2 u‖2L2

)
, u ∈ H1(T) .

(3.30)

The proof consists of several steps. We first consider (3.29).

Proof of (3.29) Since μ is a real number and 
̂l and Al preserve the real valued,
without loss of generality it suffices to show (3.29) for real valued functions. We may
also assume thatμ is positive, for the caseμ < 0 is proved in the same manner. By the
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density argument it suffices to show the claim for u ∈ H2(T), rather than u ∈ H1(T).
We make use of a contradiction argument. Suppose that the estimate

δ2‖u‖2L2 + ‖(−Al)
− 1

2 u‖2L2 + 1

1 − μ
‖A−1

l u‖2L2

≤ C

(
δ−2‖(μ − 
̂l)u‖2L2 + δ6

1 − μ
‖(−Al)

1
2 u‖2L2

)
,

δ ∈ (0, 1] , l ∈ Z \ {0} ,
1

2
≤ μ < 1 − κ|δ|2 , u ∈ H2(T;R)

(3.31)

does not hold. Then there exist {δn, ln, μn}n∈N, δn ∈ (0, 1], ln ∈ Z \ {0}, μn ∈
[ 12 , 1 − κδ2n), and {un} ⊂ H2(T;R) such that

lim
n→∞ δn = δ∞ ∈ [0, 1] , lim

n→∞ ln = l∞ ∈ {±∞} ∪ Z \ {0} ,

lim
n→∞ μn = μ∞ ∈ [1

2
, 1 − κδ2∞] ,

and

δ2n‖un‖2L2 + ‖(−Aln )
− 1

2 un‖2L2 + 1

1 − μn
‖A−1

ln
un‖2L2 = 1 ,

lim
n→∞

(
δ−2
n ‖(μn − 
̂ln )un‖2L2 + δ6n

1 − μn
‖(−Aln )

1
2 un‖2L2

)
= 0 .

(3.32)

Set

fn = δ−1
n (μn − 
̂ln )un , vn = A−1

ln
un , (3.33)

and then vn satisfies

(μn − Msin y)
(
Aln + 1)vn − μnvn = δn fn . (3.34)

The normalized condition in (3.32) implies δ2n‖un‖2L2+‖(−Aln )
1
2 vn‖2L2+ 1

1−μn
‖vn‖2L2

= 1, and thus, from the integration by parts,

δ2n‖un‖2L2 + ‖∂yvn‖2L2 + l2n‖vn‖2L2 + 1

1 − μn
‖vn‖2L2 = 1 . (3.35)

Note that we have also from (3.35) and the interpolation inequality ‖vn‖L∞ ≤
C‖vn‖

1
2
H1‖vn‖

1
2
L2 that

sup
n

‖vn‖L∞

|1 − μn| 14
< ∞ . (3.36)

123



On pseudospectral bound for non-selfadjoint… Page 31 of 84 14

Since supn ‖vn‖H1 < ∞, we may assume that, after taking a suitable subsequence,
{vn} converges to v∞ weakly in H1(T;R), and thus, strongly in L2(T;R). First we

exclude the possibility δ∞ > 0. Indeed, in this case we have
‖(−Aln )

1
2 un‖2L2

1−μn
→ 0 by

(3.32), which implies

δ2n‖un‖2L2 + ‖(−Aln )
1
2 vn‖2L2 + 1

|1 − μn| ‖vn‖
2
L2 ≤ C

‖(−Aln )
1
2 un‖2L2

1 − μn
→ 0 .

This contradicts with the normalized condition in (3.35). Thus it suffices to consider
the case δ∞ = 0. Let Sμn = {y ∈ T | sin y = μn} be the set of critical points. Then
we have from (3.34),

μnvn(yμ) + δn fn(yμ) = 0 , for any yμ ∈ Sμn . (3.37)

This fact plays an important role in the analysis.
Let us start from the following claim.

Step 1: lim
n→∞ δn‖un‖L2 = 0.

The Taylor expansion implies for any yμn ∈ Sμn ,

sin y = μn + cos yμn (y − yμn ) + Rn(y)(y − yμn )
2 ,

|Rn(y)| ≤ C , y ∈
[
−π

2
,
3π

2

]
, (3.38)

and

|1 − μn| 12 ≤ | cos yμn | =
√
1 − μ2

n ≤ 2
1
2 |1 − μn| 12 . (3.39)

Here C is independent of n. Let κ1 > 0 be fixed but arbitrary small number. We
decompose the interval [−π

2 , 3π
2 ] into In and I cn = [−π

2 , 3π
2 ] \ In , where

In =
{
y ∈

[
−π

2
,
3π

2

] ∣∣ dist (y, Sμn ) ≤ δ2n

κ1|1 − μn| 12

}
. (3.40)

Then we have from supn δn‖B2,ln un‖L2 ≤ C by (3.35),

δn‖B2,ln un‖L2(In) ≤ δn|In| 12 ‖B2,ln un‖L∞

≤ Cδ2n

κ
1
2
1 |1 − μn| 14

‖B2,ln un‖
1
2
H1‖B2,ln un‖

1
2
L2
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≤ Cδ
3
2
n

κ
1
2
1 |1 − μn| 14

‖B2,ln un‖
1
2
H1

≤ C
( δ3n

κ1|1 − μn| 12
‖(−Aln )

1
2 un‖L2

) 1
2 → 0 (n → ∞, by (3.32)) .

Next, (3.34) gives

B2,ln un = μnvn + δn fn
μn − sin y

. (3.41)

We decompose I cn as I cn = (I cn ∩ [−π
2 , π

2 ]) ∪ (I cn ∩ [π
2 , 3π

2 ]) =: I cn,1 ∪ I cn,2, and we
find that there exists C > 0 independent of n such that

∑
j=1,2

‖ 1

μn − sin y
‖L2(I cn, j )

≤ Cκ
1
2
1

δn(1 − μn)
1
4

,
∑
j=1,2

‖ 1

μn − sin y
‖L∞(I cn, j )

≤ C

δ2n
.

(3.42)

Then we have from (3.41) with (3.42) and (3.36),

δn‖B2,ln un‖L2(I cn,1)
≤ Cδn‖vn‖L∞‖ 1

μn − sin y
‖L2(I cn,1)

+ Cδ2n‖ fn‖L2‖ 1

μn − sin y
‖L∞(I cn,1)

≤ Cκ
1
2
1 ‖vn‖L∞

|1 − μn| 14
+ C‖ fn‖L2

≤ Cκ
1
2
1 + C‖ fn‖L2 .

The same estimate holds for δn‖B2,ln un‖L2(I cn,2)
. Thus we obtain δn‖B2,ln un‖L2(I cn ) ≤

Cκ
1
2
1 + C‖ fn‖L2 . Since κ1 > 0 is arbitrary and lim

n→∞ ‖ fn‖L2 = 0, we have

lim sup
n→∞

δn‖B2,ln un‖L2 = 0, which gives lim
n→∞ δn‖un‖L2 = 0 by the relation B2,ln un =

un + vn .

Step 2: lim
n→∞

μn|vn(yn)|
|1 − μn| 14

= lim
n→∞

δn| fn(yn)|
|1 − μn| 14

= 0 for yn ∈ Sμn .

In virtue of (3.37) it suffices to show lim
n→∞

δn| fn(yn)|
|1 − μn| 14

= 0 for yn ∈ Sμn . As in the

previous step, let yn,1 be the unique point of Sμn such that yn,1 ∈ (0, π
2 ). Let κ2 > 0 be

fix but arbitrary small number and set I In,1 = (yn,1, yn,1 + κ2
δ2n

|1−μn |
1
2
]. There exists

a point ỹn,1 ∈ I In,1 such that κ2δ
2
n

|1−μn |
1
2
| fn(ỹn,1)|2 ≤ ‖ fn‖2L2(I In,1)

, and thus, we have

δn | fn(ỹn,1)|
|1−μn |

1
4

≤ ‖ fn‖L2
κ
1
2
2

. Then we see
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δn| fn(yn,1)|
|1 − μn| 14

≤ δn| f (yn,1) − f (ỹn,1)|
|1 − μn| 14

+ δn| f (ỹn,1)|
|1 − μn| 14

≤ δn|I In,1| 12
|1 − μn| 14

‖∂y fn‖L2(I In,1)
+ ‖ fn‖L2

κ
1
2
2

≤ Cκ
1
2
2 δ2n

|1 − μn| 12
‖∂y fn‖L2(I In,1)

+ ‖ fn‖L2

κ
1
2
2

.

To estimate the H1 norm of fn we observe that δn∂y fn is written from (3.34) as

δn∂y fn = (μn − sin y)(∂yun + ∂yvn) − cos y (Aln + 1)vn − μn∂yvn

= −Mcos y B2,ln un − Msin y ∂yvn + (μn − Msin y)∂yun . (3.43)

From cos y = cos yn,1 + O((y − yn,1)
2) and (3.39) we observe that | cos y| ≤ C |1−

μn| 12 for y ∈ I In,1, and also |μn − sin y| ≤ Cδ2n for y ∈ I In,1. Thus we have

‖δn∂y fn‖L2(I In,1)
≤ C |1 − μn| 12 ‖B2,ln un‖L2 + C‖∂yvn‖L2 + Cδ2n‖∂yun‖L2

(3.44)

Therefore, we arrive at

δn| fn(yn,1)|
|1 − μn| 14

≤ Cκ
1
2
2 δn‖un‖L2 + Cκ

1
2
2 δn

|1 − μn| 12
‖∂yvn‖L2 + Cκ

1
2
2 δ3n

|1 − μn| 12
‖∂yun‖L2

+ ‖ fn‖L2

κ
1
2
2

,

which shows from Step 1, (3.32), and 1 − μn ≥ κδ2n that lim sup
n→∞

δn| fn(yn,1)|
|1 − μn| 14

≤

C(
κ2

κ
)
1
2 . Since κ2 > 0 is arbitrary, the claim is proved. The estimate for the point

yn,2 ∈ Sμn ∩ (π
2 , π) is proved in the same manner.

Step 3: Estimate of ‖vn‖2L2 .
Let yn,2, yn,3 ∈ Sμn be the unique critical points such that yn,2 ∈ (π

2 , π) and yn,3 ∈
(2π, 5π

2 ) (that is, yn,3 = yn,1 + 2π ). Then we have

∫ yn,3

yn,2

(μn − sin y)
(
∂2yvn − l2nvn + vn) vn dy − μn

∫ yn,3

yn,2

v2n dy = δn

∫ yn,3

yn,2

fn vn dy ,
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and then, by the integration by parts,

∫ yn,3

yn,2

(μn − sin y)
(|∂yvn|2 + (l2n − 1)v2n

)
dy +

∫ yn,3

yn,2

(μn − 1

2
sin y) v2n dy

= 1

2

∑
j=2,3

|vn(yn, j )|2(−1) j+1 cos yn, j − δn

∫ yn,3

yn,2

fn vn dy

≤ C |1 − μn|
( ∑
j=1,2

|vn(yn, j )|2
|1 − μn| 12

+ ‖ fn‖L2
)

(by (3.39), (3.35), and 1 − μn ≥ κδ2n) .

(3.45)

Note that μn − sin y ≥ 0 in (yn,2, yn,3). When 3
4 < μ∞ ≤ 1 we have the bound

μn − 1
2 sin y ≥ 1

4 for large n. Since the norm over the interval [yn,2, yn,3] is the same
as the norm over [−π

2 , 3π
2 ] \ (yn,1, yn,2) for 2π periodic functions, we have when

3
4 < μ∞ ≤ 1, by using (3.45) with Step 2 and (3.32),

lim
n→∞

1

1 − μn
‖vn‖2L2([− π

2 , 3π2 ]\(yn,1,yn,2))
= 0 . (3.46)

Step 4: Estimate of ‖(−Aln )
1
2 vn‖2L2 .

The integration by parts and (3.34) yield for any ϕ ∈ H2(T),

〈∂yvn, ∂yϕ〉L2 + (l2n − 1)〈vn, ϕ〉L2 = −〈B2,ln un, ϕ〉L2 = −
〈
μnvn + δn fn
μn − sin y

, ϕ

〉
L2

.

(3.47)

Note that the term μnvn+ fn
μn−sin y belongs to L2 in virtue of (3.37) and the Hardy inequality.

Let us estimate the right-hand side of (3.47).

−〈μnvn + fn
μn − sin y

, ϕ〉L2 = −
∫ π

2

− π
2

μnvn + δn fn
μn − sin y

ϕ dy −
∫ 3π

2

π
2

μnvn + δn fn
μn − sin y

ϕ dy

=: J1[ϕ] + J2[ϕ] .

Weare interested in the caseϕ = vn . Let us estimate J1, forwhich detailed computation
is needed. Let yn,1 be the unique point of Sμn ∩(0, π

2 ). Let κ3 > 0 be fixed but arbitrary
small number. Take bn ∈ ( 1

10 , 10) such that

sin an,1 = sin a′
n,1 , an,1 = yn,1 + κ3

δ2n

|1 − μn| 12
, a′

n,1 = yn,1 − bnκ3
δ2n

|1 − μn| 12
.
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Set I I In,1 = [yn,1 − bnκ3
δ2n

|1−μn |
1
2
, yn,1 + κ3

δ2n

|1−μn |
1
2
] and

I Vn,1 =
[
yn,1 − κ3|1 − μn| 12 , yn,1 − bnκ3

δ2n

|1 − μn| 12

]

∪
[
yn,1 + κ3

δ2n

|1 − μn| 12
, yn,1 + κ3|1 − μn| 12

]
.

Then we have for an,2 = yn,1 + κ3|1 − μn| 12 and a′
n,2 = yn,1 − κ3|1 − μn| 12 ,

∣∣∣∣∣
∫
I Vn,1

1

(μn − sin y)
cos y dy

∣∣∣∣∣
=
∣∣∣∣∣
∫
sin I Vn,1

1

μn − s
ds

∣∣∣∣∣
= ∣∣− log(sin an,2 − μn) + log(μn − sin an,1)

− log(μn − sin a′
n,1) + log(μn − sin a′

n,2)
∣∣

=
∣∣∣∣∣log

μn − sin a′
n,2

sin an,2 − μn

∣∣∣∣∣ ≤ C . (3.48)

Here we have used the fact that sin an,2 − μn and μn − sin a′
n,2 are approximated

by cos yn,1 κ3|1 − μn| 12 ∼ κ3O(|1 − μn|); recall (3.38) and (3.39). Taking this into
account, we can decompose J1 as

J1 = −
( ∫

I I In,1

+
∫
I Vn,1

+
∫

[− π
2 , π

2 ]\(I I In,1∪I Vn,1)

)
= J1,1 + J1,2 + J1,3 .

Since yn,1 ∈ I I In,1, we have from |μn − sin y| ≥ cos yn,1
C |y− yn,1| for y ∈ I I In,1 and

the Hardy inequality,

|J1,1[ϕ]| ≤ C

cos yn,1
‖∂y(μnvn + δn fn)‖L2(I I In,1)

‖ϕ‖L2(I I In,1)

≤ C

|1 − μn| 12
(‖∂yvn‖L2 + ‖δn∂y fn‖L2(I I In,1)

)|I I In,1| 12 ‖ϕ‖L∞

≤ Cκ
1
2
3 δn

|1 − μn| 34
(1 + ‖δn∂y fn‖L2(I I In,1)

)‖ϕ‖L∞ .

Here we have used the normalized condition (3.35) for ‖∂yvn‖L2 . The norm
‖δn∂y fn‖L2(I I In,1)

is bounded as (3.44) by the definition of I I In,1, and thus, in virtue
of (3.32), we conclude that
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sup
n

δn

|1 − μn| 12
‖δn∂y fn‖L2(I I In,1)

≤ C < ∞ , (3.49)

which gives

|J1,1[ϕ]| ≤ Cκ
1
2
3

‖ϕ‖L∞

|1 − μn| 14
, (3.50)

and in particular, by using (3.36),

|J1,1[vn]| ≤ Cκ
1
2
3 . (3.51)

As for the term J1,2, we compute as

J1,2[ϕ] = −μn

∫
I Vn,1

cos y

μn − sin y

vnϕ

cos y
dy −

∫
I Vn,1

δn fn
μn − sin y

ϕ dy

= −μn

∫
I Vn,1

cos y

μn − sin y

(
vnϕ

cos y
− vn(yn,1)ϕ(yn,1)

cos yn,1

)
dy

− μnvn(yn,1)ϕ(yn,1)

cos yn,1

∫
I Vn,1

cos y

μn − sin y
dy −

∫
I Vn,1

δn fn
μn − sin y

ϕ dy

=: J1,2,1[ϕ] + J1,2,2[ϕ] + J1,2,3[ϕ] .

Then we have from | cos y| ≥ 1
C |1 − μn| 12 for y ∈ I I In,1 ∪ I Vn,1,

|J1,2,1[ϕ]| ≤ Cκ
1
2
3 |1 − μn | 14 ‖∂y

(
vnϕ

cos y

)
‖L2(I I In,1∪I Vn,1)

≤ Cκ
1
2
3 |1 − μn | 14

(
‖∂yvn‖L2‖ϕ‖L∞ + ‖vn‖L∞‖∂yϕ‖L2

|1 − μn | 12
+ ‖vn‖L∞‖ϕ‖L∞

|1 − μn | 34

)

≤ Cκ
1
2
3

( ‖ϕ‖L∞

|1 − μn | 14
+ ‖∂yϕ‖L2

)
(by (3.35) and (3.36)) . (3.52)

Hence we have

|J1,2,1[vn]| ≤ Cκ
1
2
3 . (3.53)

The term J1,2,2 is estimated from (3.48),

|J1,2,2[ϕ]| ≤ C
|vn(yn,1)ϕ(yn,1)|

|1 − μn| 12
, (3.54)
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and thus,

|J1,2,2[vn]| ≤ C
|vn(yn,1)|2
|1 − μn| 12

. (3.55)

As for J1,2,3, we have from the definition of I Vn,1 and (3.42),

|J1,2,3[ϕ]| ≤ ‖ 1

μn − sin y
‖L2(I Vn,1)

‖δn fn‖L2‖ϕ‖L∞

≤ Cδn‖ fn‖L2‖ϕ‖L∞

|1 − μn| 12 · κ
1
2
3

δn

|1−μn |
1
4

≤ C‖ fn‖L2‖ϕ‖L∞

κ
1
2
3 |1 − μn| 14

. (3.56)

Thus it follows that

|J1,2,3[vn]| ≤ C‖ fn‖L2

κ
1
2
3

. (3.57)

Next we estimate J1,3:

J1,3[ϕ] = −
∫

[− π
2 , π

2 ]\(I I In,1∪I Vn,1)

μnvn ϕ

μn − sin y
dy −

∫
[− π

2 , π
2 ]\(I I In,1∪I Vn,1)

δn fn ϕ

μn − sin y
dy

=: J1,3,1[ϕ] + J1,3,2[ϕ] .

Since μn − sin y is positive for y ∈ [−π
2 , yn,1), we have from the definition of I I In,1

and I Vn,1,

J1,3,1[vn] = −
∫ yn,1−κ3|1−μn |

1
2

− π
2

μnv
2
n

μn − sin y
dy −

∫ π
2

yn,1+κ3|1−μn |
1
2

μnv
2
n

μn − sin y
dy

≤ −
∫ π

2

yn,1+κ3|1−μn |
1
2

μnv
2
n

μn − sin y
dy

≤
C‖vn‖2L2([yn,1,yn,2])

κ3(1 − μn)
. (3.58)

On the other hand, for general ϕ ∈ H2(T) we have

|J1,3,1[ϕ]| ≤ |
∫

[− π
2 , π

2 ]\(I I In,1∪I Vn,1)

μn(vn − vn(yn,1)) ϕ

μn − sin y
dy| + |μnvn(yn,1)

∫
[− π

2 , π
2 ]\(I I In,1∪I Vn,1)

ϕ

μn − sin y
dy|

≤ C‖∂yvn‖L2‖ϕ‖L2

|1 − μn| 12
+ C |μnvn(yn,1)| ‖ϕ‖L2

κ
1
2
3 |1 − μn| 34

. (3.59)
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The estimate of J1,3,2 is similar to J1,2,2, and we have

|J1,3,2[ϕ]| ≤ ‖ 1

μn − sin y
‖L2([− π

2 , π
2 ]\(I I In,1∪I Vn,1))

‖δn fn‖L2‖ϕ‖L∞

≤ Cδn‖ fn‖L2‖ϕ‖L∞

|1 − μn| 12 · κ
1
2
3 |1 − μn| 14

≤ C‖ fn‖L2‖ϕ‖L∞

κ
1
2
3 |1 − μn| 14

. (3.60)

Hence,

|J1,3,2[vn]| ≤ C‖ fn‖L2

κ
1
4
3

. (3.61)

Collecting (3.51), (3.53), (3.55), (3.57), (3.58), (3.61), we have

J1[vn] ≤
C‖vn‖2L2([yn,1,yn,2])

κ3(1 − μn)
+ C

|vn(yn,1)|2
|1 − μn| 12

+ C‖ fn‖L2

κ
1
2
3

+ Cκ
1
2
3 . (3.62)

The estimate of J2 is exactly the same as J1. Hence we have

‖∂yvn‖2L2 + (l2n − 1)‖vn‖2L2 = J1[vn] + J2[vn]

≤
C‖vn‖2L2([yn,1,yn,2])

κ3(1 − μn)

+ C
∑
j=1,2

|vn(yn, j )|2
|1 − μn| 12

+ C‖ fn‖L2

κ
1
2
3

+ Cκ
1
2
3 . (3.63)

By Step 2 and lim
n→∞ ‖ fn‖L2 = 0, we conclude that

lim sup
n→∞

(‖∂yvn‖2L2 + (l2n − 1)‖vn‖2L2

) ≤ C

κ3
lim sup
n→∞

‖vn‖2L2([yn,1,yn,2])
1 − μn

+ Cκ
1
2
3 ,

(3.64)

for any small κ3 > 0. Suppose that 1
2 ≤ μ∞ < 1 and l2∞ ∈ [1,∞). In this case we

have from (3.50), (3.52), (3.54), (3.56), (3.59), (3.60),

∣∣〈∂yv∞, ∂yϕ〉L2

∣∣ = ∣∣ lim
n→∞〈∂yvn, ∂yϕ〉L2

∣∣
≤ (l2∞ − 1)

∣∣〈v∞, ϕ〉L2

∣∣+ lim sup
n→∞

∣∣ 〈μnvn + δn fn
μn − sin y

, ϕ

〉
L2

∣∣
≤ (l2∞ − 1)‖v∞‖L2‖ϕ‖L2 + C‖ϕ‖L2 , (3.65)

for any ϕ ∈ H2(T).
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Case 1
2 ≤ μ∞ < 1.

Let us first consider the case μ∞ < 1. If l∞ = ∞ then (3.64) implies that
lim
n→∞ ‖vn‖2L2 = 0, and then, again by (3.64) andμ∞ < 1,we have lim

n→∞ ‖∂yvn‖2L2 = 0,

since κ3 > 0 is arbitrary small. By recalling that lim
n→∞ δ2n‖un‖2L2 = 0 by Step 1, we

achieve the contradiction with the normalized condition (3.35). Hence we conclude
that l∞ < ∞. In this case, in virtue of (3.64) and the assumption μ∞ < 1, we
may assume that infn ‖vn‖L2 > 0. Since vn converges to v∞ strongly in L2(T), the
limit v∞ is a nontrivial function. Moreover, we see from (3.65) that v∞ belongs to
H2(T). The direct computation using the weak formulation implies that v∞ satisfies
(μ∞ − sin y)(Al∞ + 1)v∞ − μ∞v∞ = 0 for y ∈ T \ Sμ∞ . Since we have already
shown that v∞ ∈ H2(T), we conclude that u∞ = Al∞v∞ is an eigenfunction of

̂l∞ in L2(T). By Proposition 3.3 this is a contradiction since μ∞ ∈ [ 12 , 1). The case
1
2 ≤ μ∞ < 1 is settled.

Case μ∞ = 1.
In this case we need additional steps to achieve the contradiction.

Step 5: lim sup
n→∞

‖vn‖2L2([yn,1,yn,2])
1 − μn

> 0 when μ∞ = 1.

Suppose that μ∞ = 1 and lim
n→∞

‖vn‖2L2([yn,1,yn,2])
1 − μn

= 0. Then (3.46) implies

lim
n→∞

‖vn‖2L2

1 − μn
= 0, and (3.64) implies lim

n→∞ ‖∂yvn‖2L2 = 0 as well. Since

lim
n→∞ δ2n‖un‖2L2 = 0 by Step 1, we achieve the contradiction due to the normalized

condition (3.35).
Step 6: Rescaling and limiting process for the case μ∞ = 1.

By Step 5 we may assume that inf
n

‖vn‖2L2([yn,1,yn,2])
1 − μn

> 0 (by taking suitable subse-

quence if necessary). Set

wn(ξ) = 1

|1 − μn| 14
vn

(π

2
+ |1 − μn| 12 ξ

)
, ξ ∈ [−2, 2] . (3.66)

Let cn > 0 be the number such that

yn,1 = π

2
− |1 − μn| 12 cn , yn,2 = π

2
+ |1 − μn| 12 cn . (3.67)

Note that

μn = sin yn, j = sin
π

2
− 1

2

(π

2
− yn, j

)2 + 1

4!
(π

2
− yn, j

)4 + · · · ,

123



14 Page 40 of 84 S. Ibrahim et al.

which gives

(
yn, j − π

2

)2 = 2(1 − μn) + O(|1 − μn|2) .

Hence we see from (yn, j − π
2 )2 = (1 − μn)c2n by its definition,

cn = √
2 + O(|1 − μn| 12 ) . (3.68)

In particular, we have

1 ≤ cn ≤ 2 for all large n , lim
n→∞ cn = √

2 . (3.69)

In virtue of the normalized condition (3.35) and Step 5, we have

‖∂ξwn‖2L2(−2,2)) + ‖wn‖2L2((−2,2)) ≤ ‖∂yvn‖2L2 + ‖vn‖2L2

|1 − μn| ≤ 1 ,

inf
n

‖wn‖2L2((−cn ,cn))
= inf

n

‖vn‖2L2((yn,1,yn,2))

1 − μn
> 0 .

(3.70)

That is, the sequence {wn} is uniformly bounded in H1((−2, 2)), and thus, we may
assume that wn weakly converges in H1((−2, 2)) to some w∞ ∈ H1((−2, 2)) and
strongly converges in L2((−2, 2)) as well as in Cη([−2, 2]) for some η > 0. More-
over, by the uniform lower bound in (3.70), the limit w∞ is nontrivial. The direct
computation shows that wn satisfies

(μn − sinn ξ)∂2ξ wn = |1 − μn|
(

(μn − sinn ξ)(l2n − 1)wn + μnwn + δngn

)
,

ξ ∈ (−2, 2) .

(3.71)

Here we have set

sinn ξ = sin
(π

2
+ |1 − μn| 12 ξ

)
, gn(ξ) = |1 − μn|− 1

4 fn
(π

2
+ |1 − μn| 12 ξ

)
.

On the points ξ = ±cn we have

wn(−cn) = |1 − μn|− 1
4 vn(yn,1) , wn(cn) = |1 − μn|− 1

4 vn(yn,2) . (3.72)

Thus Step 2 gives

w∞(±√
2) = 0 . (3.73)
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Next we see

sinn ξ = sin
π

2
− 1

2
|1 − μn|ξ2 + 1

4! |1 − μn|2ξ4 · · ·

and

μn = sin yn,2 = sin(
π

2
+ |1 − μn| 12 cn) = 1 − 1

2
|1 − μn|c2n + 1

4! |1 − μn|2c4n + · · ·

which gives

μn − sinn ξ = 1

2
|1 − μn|(ξ2 − c2n)

(
1 + |1 − μn| qn(ξ)

)
.

Here qn is a smooth function on [−2, 2] satisfying the uniform bound

sup
n

‖ dkqn
dξ k

‖L∞((−2,2)) < ∞ for k = 0, 1, 2 .

Thus (3.71) is written as

1

2
(ξ2 − c2n)

(
1 + |1 − μn| qn

)
∂2ξ wn

= 1

2
|1 − μn|(l2n − 1)(ξ2 − c2n)

(
1 + |1 − μn| qn

)
wn + μnwn + δngn .

(3.74)

Note that, from 1 − μn ≥ κδ2n and ‖ fn‖L2 → 0 as n → ∞,

δn‖gn‖L2((−2,2)) ≤ Cδn

|1 − μn| 12
‖ fn‖L2 → 0 n → ∞ . (3.75)

We have from (3.74) that for any test function ϕ ∈ C∞
0 ((−2, 2)),

−〈∂ξwn, ∂ξϕ〉L2((−2,2)) = |1 − μn|(l2n − 1) 〈wn, ϕ〉L2((−2,2))

+ 2

〈
μnwn + δngn

ξ2 − c2n
,

ϕ

1 + |1 − μn| qn
〉
L2((−2,2))

. (3.76)

Let us focus on the second term of the right-hand side of (3.76).

〈
μnwn + δngn

ξ2 − c2n
,

ϕ

1 + |1 − μn| qn
〉
L2((−2,2))

=
∫

[0,2]
1

ξ2 − c2n

[
hn
]
(+)

dy +
∫

[−2,0]
1

ξ2 − c2n

[
hn
]
(−)

dy .
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Here

hn =
(
μnwn + δngn

)
ϕ

1 + |1 − μn|qn , [q](±)(ξ) := q(ξ) − q(±cn) ,

where we have used (μnwn + δngn)(±cn) = 0. Let us decompose hn as

hn = hn,1 + hn,2 , hn,1 = μnwnϕ

1 + |1 − μn|qn , hn,2 = δngnϕ

1 + |1 − μn|qn .

Then, by the weak convergence in H1 for wn and strong convergence to zero in H2

for |1 − μn|qn , it is not difficult to show the convergence

∫
[0,2]

1

ξ2 − c2n

[
hn,1

]
(+)

dy +
∫

[−2,0]
1

ξ2 − c2n

[
hn,1

]
(−)

dξ

→
∫

[0,2]
1

ξ2 − 2

[
w∞ϕ

]
(+)

dy +
∫

[−2,0]
1

ξ2 − 2

[
w∞ϕ

]
(−)

dξ =
∫ 2

−2

w∞ϕ

ξ2 − 2
dξ .

(3.77)

Here [w∞ϕ](±)(ξ) := (w∞ϕ)(ξ) − (w∞ϕ)(±√
2) = (w∞ϕ)(ξ) is used in the last

line since w∞(±√
2) = 0. Next we show

∣∣∣∣
∫

[0,2]
1

ξ2 − c2n

[
hn,2

]
(+)

dy

∣∣∣∣+
∣∣∣∣
∫

[−2,0]
1

ξ2 − c2n

[
hn,2

]
(−)

dy

∣∣∣∣ → 0 . (3.78)

It suffices to consider the integral over [−2, 0]. Recall from lim
n→∞ wn(−cn) = 0 and

(μnwn + δngn)(±cn) = 0 that we have lim
n→∞ δngn(−cn) = 0. Then we have

∫
[−2,0]

1

ξ2 − c2n

[
hn,2

]
(−)

dξ =
∫

[−2,0]
1

ξ2 − c2n

[
δngn

]
(−)

ϕn dξ + o(1) ,

ϕn := ϕ

1 + |1 − μn|qn .

We take arbitrary small κ ′′ > 0 and set �̃n = [−cn − κ ′′ δ2n
1−μn

,−cn + κ ′′ δ2n
1−μn

]. Then
we have

∣∣∣∣
∫

�̃n

1

ξ2 − c2n

[
δngn

]
(−)

ϕn dξ

∣∣∣∣ ≤ C(κ ′′)
1
2

δn

|1 − μn| 12
‖δn∂ξ gn‖L2(�̃n)

‖ϕ‖L∞

≤ C(κ ′′)
1
2

δn

|1 − μn| 12
‖δn∂y fn‖L2(�n)

‖ϕ‖L∞ .
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Here �n = [yn,1 − κ ′′ δ2n

|1−μn |
1
2
, yn,1 + κ ′′ δ2n

|1−μn |
1
2
], and the norm ‖δn∂y fn‖L2(�n)

is

already estimated as in (3.49). Thus we have

lim sup
n→∞

∣∣ ∫
�̃n

1

ξ2 − c2n

[
δngn

]
(−)

ϕ

1 + |1 − μn|qn dξ
∣∣ ≤ C(κ ′′)

1
2 .

On the other hand, we have

∣∣ ∫
[−2,0]\�̃n

1

ξ2 − c2n

[
δngn

]
(−)

ϕn dξ
∣∣

≤ ∣∣ ∫
[−2,0]\�̃n

1

ξ2 − c2n
δngnϕn dξ

∣∣

+ |δngn(−cn)
∫

[−2,0]\�̃n

ϕn − ϕn(−cn)

ξ2 − c2n
dξ
∣∣

+ |δngn(−cn)ϕn(−cn)
∫

[−2,0]\�̃n

1

ξ2 − c2n
dξ
∣∣

≤ C |1 − μn| 12
(κ ′′) 1

2 δn

‖δngn‖L2((−2,2))‖ϕn‖L∞ + C‖ϕn‖H1 |δngn(−cn)|

≤ C

(κ ′′) 1
2

‖ fn‖L2 + C |δngn(−cn)| → 0 (n → ∞) .

Here (3.75) and sup
n

∣∣ ∫
[−2,0]\�̃n

1

ξ2 − c2n
dξ
∣∣ < ∞ are used. Hence (3.78) holds, by

taking κ ′′ → 0 after n → ∞. Collecting these, we conclude that

2 lim
n→∞

〈
μnwn + δngn

ξ2 − c2n
,

ϕ

1 + |1 − μn| qn
〉
L2((−2,2))

= 2
∫ 2

−2

w∞ϕ

ξ2 − 2
dξ , w∞(±√

2) = 0 . (3.79)

(i) When lim sup
n→∞

|1 − μn|(l2n − 1) = ∞:

In this case we may assume that lim
n→∞ |1 − μn|(l2n − 1) = ∞ by taking a suitable

subsequence. Then we divide both sides of (3.76) by |1 − μn|(l2n − 1) and consider
the weak formulation with arbitrary test function ϕ ∈ C∞

0 ((−2, 2)):

−1

|1 − μn|(l2n − 1)
〈∂ξwn, ∂ξϕ〉L2((−2,2)) = 〈wn, ϕ〉L2((−2,2))

+ 2

|1 − μn|(l2n − 1)

〈
μnwn + δngn

ξ2 − c2n
,

ϕ

1 + |1 − μn| qn
〉
L2((−2,2))

.
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Then, by taking the limit n → ∞ in the above weak formulation and using (3.79), we
obtain w∞ = 0, which is a contradiction.
(ii) When lim sup

n→∞
|1 − μn|(l2n − 1) < ∞:

In this case we may assume that lim
n→∞ |1 − μn|(l2n − 1) = d∞ ∈ [0,∞) by taking

a suitable subsequence. Then, by considering the weak formulation for (3.76) with
arbitrary test function φ ∈ C∞

0 ((−2, 2)) as above, we verify from (3.79) that the limit
w∞ ∈ H1((−2, 2)) satisfies w∞(±√

2) = 0 and

−〈∂ξw∞, ∂ξϕ〉L2((−2,2)) = d∞〈w∞, ϕ〉L2((−2,2)) + 2
∫ 2

−2

w∞ϕ

ξ2 − 2
dξ . (3.80)

By the Hardy inequality the second term in the right-hand side of (3.80) is bounded
from above by C‖w∞‖H1‖ϕ‖L2 , which implies w∞ ∈ H2((−2, 2)). In particular,
w∞ ∈ C1+η((−2, 2)) for some η > 0. By considering the test function of the form
(ξ2 − 2)φ with φ ∈ C∞

0 ((−2, 2)), we also have from (3.80) that

(ξ2 − 2)∂2ξ w∞ = d∞(ξ2 − 2)w∞ + 2w∞ , ξ ∈ (−2, 2) \ {±√
2} ,

w∞(±√
2) = 0 . (3.81)

We can show from (3.81) that w∞ ∈ H2((−2, 2)) is smooth except for the points
ξ = ±√

2, and thus (3.81) is satisfied pointwise in (−2, 2) \ {±√
2}. Our aim is to

show thatw∞ = 0 in (−2, 2), for it leads to the contradiction. The difficulty is that the
polynomial ξ2 − 2 satisfies (3.81) at least when d∞ = 0, therefore we need to derive
some additional estimate for w∞. The key is the estimate of vn outside the interval
(yn,1, yn,2), which is obtained in Step 3. Indeed, (3.66) implies that

∫ −cn

−2
|wn|2 dξ = |1 − μn|− 1

2

∫ −cn

−2
|vn
(π

2
+ |1 − μn| 12 ξ

)
|2 dξ

= 1

1 − μn

∫ yn,1

π
2 −2|1−μn |

1
2

v2n dy ,

and hence, since 0 < π
2 − 2|1 − μn| 12 < yn,1, estimate (3.46) leads to

lim
n→∞

∫ −cn

−2
|wn|2 dξ = 0 .

That is, w∞ = 0 for ξ ∈ (−2,−√
2). Since w∞ ∈ C1+η((−2, 2)) we conclude that

∂ξw∞(−√
2) = 0 . (3.82)

Note that the singularity (ξ2 − 2)−1 at ξ = −√
2 is first order. Then it is easy to

show that the solution w∞ ∈ H2((−2, 2)) to (3.81) satisfying the initial condition
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w∞(−√
2) = ∂ξw∞(−√

2) = 0 must be trivial, i.e., w∞ = 0 in (−2, 2). This
contradicts with ‖w∞‖L2((−2,2)) > 0. The proof of (3.29) is complete. ��
Proof of (3.30) Again we will use the contradiction argument. Suppose that there exist
{δn, ln, μn}n∈N, δn ∈ (0, 1], ln ∈ Z \ {0}, μn ∈ (−1 + κδ2n,− 1

2 ] ∪ [ 12 , 1 − κδ2n), and
{un} ⊂ H2(T;R) such that

lim
n→∞ δn = δ∞ ∈ [0, 1] , lim

n→∞ ln = l∞ ∈ {±∞} ∪ Z \ {0} ,

lim
n→∞ μn = μ∞ ∈

[
−1 + κδ2∞,−1

2

]
∪
[
1

2
, 1 − κδ2∞

]
,

and

‖Mcos y B2,ln un‖2L2 = 1 ,

lim
n→∞

(
δ−2
n ‖(μn − 
̂ln )un‖2L2 + δ2n(1 − |μn|)‖(−Aln )

1
2 un‖2L2

)
= 0 .

(3.83)

As in the previous lemma, set

fn = δ−1
n (μn − 
̂ln )un , vn = A−1

ln
un . (3.84)

Since un is real valued, so is vn , and vn satisfies

(μn − Msin y)
(
Aln + 1)vn − μnvn = δn fn . (3.85)

From (3.29) and the condition 1 − |μn| ≥ κδ2n , we have

lim
n→∞

(
δ2n‖un‖2L2 + ‖∂yvn‖2L2 + 1

1 − |μn| ‖vn‖
2
L2

)
= 0 , (3.86)

which is essential in the proof below. It suffices to consider the case δ∞ = 0; otherwise
we have lim

n→∞ ‖un‖L2 = 0 by (3.86), which implies lim
n→∞ ‖Mcos y B2,ln un‖L2 = 0 and

we achieve the contradiction. We also note that we may assume μn ≥ 1
2 for all n, for

the case μn ≤ − 1
2 is handle in the same manner. Let us recall that yn, j ∈ Sμn are the

critical points, sin yn, j = μn , such that yn,1 ∈ (0, π
2 ) and yn,2 ∈ (π

2 , π). Then (3.85)
gives the identity

μnvn(yn, j ) + δn fn(yn, j ) = 0 . (3.87)

Let κ5 > 0 be fixed and sufficiently small number. We decompose the interval
[−π

2 , 3π
2 ] into Ĩn and Ĩ cn = [−π

2 , 3π
2 ] \ Ĩn , where

Ĩn =
{
y ∈

[
−π

2
,
3π

2

] ∣∣ dist (y, Sμn ) ≤ κ5δn

}
.
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We also set

Ĩ I n = Ĩ I n,1 ∪ Ĩ I n,2 , Ĩ I n,1 =
[
−π

2
, yn,1 + κ5δn

]
Ĩ I n,2 =

[
yn,2 − κ5δn,

3π

2

]
.

Note that Ĩn ⊂ Ĩ I n and | Ĩ I n, j | ≥ 1
C hold. Then we have from | cos y| ≤ C |1− μn| 12

for y ∈ Ĩn and | cos y| ≥ 1
C |1 − μn| 12 for y ∈ Ĩ I n,1 ∪ Ĩ I n,2,

‖Mcos y B2,ln un‖L2( Ĩn)
≤ C | Ĩn| 12 |1 − μn| 12 ‖B2,ln un‖L∞( Ĩn)

≤ Cδ
1
2
n |1 − μn| 12 ‖B2,ln un‖

1
2

H1( Ĩ I n)
‖B2,ln un‖

1
2

L2( Ĩ I n)

≤ Cδ
1
2
n |1 − μn| 14 ‖(−Aln )

1
2 un‖

1
2
L2‖Mcos y B2,ln un‖

1
2

L2( Ĩ I n)

≤ Cδ
1
2
n |1 − μn| 14 ‖(−Aln )

1
2 un‖

1
2
L2

→ 0 (n → ∞) .

Here we have used (3.83) in the last line. Next, (3.85) gives

B2,ln un = μnvn + δn fn
μn − sin y

. (3.88)

We decompose Ĩ cn as Ĩ cn = ( Ĩ cn ∩ [0, π
2 ]) ∪ ( Ĩ cn ∩ [π

2 , π ]) ∪ ( Ĩ cn ∩ [π, 2π ]) =: Ĩ cn,1 ∪
Ĩ cn,2 ∪ Ĩ cn,3. Then, since

1
2 ≤ μn < 1 we find that there exists C > 0 such that

|μn − sin y| ≥ | cos y|
C

|y − yn,1| , y ∈ Ĩ cn,1 ,

|μn − sin y| ≥ | cos y|
C

|y − yn,2| , y ∈ Ĩ cn,2 ,

|μn − sin y| ≥ 1

2
, y ∈ Ĩ cn,3 .

(3.89)

Here yn, j is a unique point of Sμn such that yn,1 ∈ (0, π
2 ) and yn,2 ∈ (π

2 , π), respec-
tively. Then we have from (3.88) and the definition of Ĩ cn,1,

‖Mcos y B2,ln un‖L2( Ĩ cn,1)
≤ C

∥∥∥∥vn − vn(yn,1)

y − yn,1

∥∥∥∥
L2( Ĩ cn,1)

+ μn|vn(yn,1)|
∥∥∥∥ cos y

μn − sin y

∥∥∥∥
L2( Ĩ cn,1)

+ Cδn‖ fn‖L2

κ5δn

≤ C‖∂yvn‖L2 + C |vn(yn,1)|
κ

1
2
5 δ

1
2
n

+ C‖ fn‖L2

κ5
.
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The same estimate holds for ‖Mcos y B2,ln un‖L2( Ĩ cn,2)
, while we have from (3.89),

‖Mcos y B2,ln un‖L2( Ĩ cn,3)
= ‖μnvn + δn fn

μn − sin y
‖L2( Ĩ cn,3)

≤ C
(‖vn‖L2 + δn‖ fn‖L2

)
.

Collecting these, we obtain from (3.86),

lim sup
n→∞

‖Mcos y B2,ln un‖L2 ≤ C

κ
1
2
5

∑
j=1,2

lim sup
n→∞

|vn(yn, j )|
δ
1
2
n

. (3.90)

Let us estimate
|vn(yn, j )|

δ
1
2
n

. It suffices to consider the case j = 1, for the case j = 2 is

handled in the same manner. The argument is similar to Step 2 in the proof of (3.29).
For sufficiently small κ ′ > 0 as above, we set T̃n as

T̃n = [yn,1, yn,1 + κ ′2δn] ⊂ (0,
π

2
) .

We take zn,1 ∈ T̃n so that

| f (zn,1)|2 ≤ C

κ ′2δn
‖ fn‖2L2(T̃n)

≤ C

κ ′2δn
‖ fn‖2L2 .

Then we have from (3.85),

μn|vn(yn,1)| = δn| fn(yn,1)| ≤ δn| fn(yn,1) − fn(zn,1)| + δn| fn(zn,1)|

≤ Cκ ′δ
3
2
n ‖∂y fn‖L2(T̃n) + Cδ

1
2
n

κ ′ ‖ fn‖L2 .

Next by using the identity (3.43) for δn∂y fn and also (3.83),

δn‖∂y fn‖L2(T̃n) ≤ ‖Mcos y B2,ln un‖L2(T̃n) + ‖∂yvn‖L2 + Cδn|1 − μn| 12 ‖∂yun‖L2

≤ C ,

and thus,

lim sup
n→∞

|vn(yn,1)|
δ
1
2
n

≤ Cκ ′ → 0 (κ ′ → 0) .

Hence (3.90) implies lim sup
n→∞

‖Mcos y B2,ln un‖L2 = 0, which contradicts with (3.83).

The proof of (3.30) is complete. This completes the proof of Lemma 3.8. ��
Finally we consider the case |μ| < 1

2 . The proof is similar to Case 2 in the proof of
Lemma 3.8. The only difference is the influence of the projection Ql when l = ±1,
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which yields an additional nonlocal term in the limit equation when we perform the
contradiction argument.

Lemma 3.9 Let κ ∈ (0, 1) be the number in Lemma 3.7. There exists C > 0 such that
if δ ∈ (0, 1], l ∈ Z \ {0}, and μ ∈ R with |μ| < 1

2 , then

δ2‖u‖2 + ‖(−Al)
− 1

2 u‖2L2 + ‖A−1
l u‖2L2

≤ C

(
δ−2‖Ql(μ − 
̂l)u‖2L2 + δ6‖(−Al)

1
2 u‖2L2

)
, (3.91)

and

‖Mcos y B2,lu‖2L2 ≤ C

(
δ−2‖Ql(μ − 
̂l)u‖2L2 + δ2‖(−Al)

1
2 u‖2L2

)
, (3.92)

for all u ∈ H1(T) ∩ Yl . Here Ql : L2(T) → Yl is the orthogonal projection on Yl .

Again the proof consists of several steps. We first consider (3.91).

Proof of (3.91) The proof is very similar to the proof of (3.29) and is based on the
contradiction argument. Again it suffices to consider real valued functions and to
show the claim for u ∈ H2(T) ∩ Yl . Suppose that the estimate

δ2‖u‖2
L2

+ ‖(−Al )
− 1

2 u‖2
L2

+‖A−1
l u‖2

L2
≤ C

(
δ−2‖Ql (μ − 
̂l )u‖2

L2
+ δ6‖(−Al )

1
2 u‖2

L2

)
,

δ ∈ (0, 1] , l ∈ Z \ {0} , |μ| <
1

2
, u ∈ H2(T;R) ∩ Yl

(3.93)

does not hold. Then there exist {δn, ln, μn}n∈N, δn ∈ (0, 1], ln ∈ Z\{0},μn ∈ (− 1
2 ,

1
2 ),

and {un} ⊂ H2(T;R) ∩ Yln such that

lim
n→∞ δn = δ∞ ∈ [0, 1] , lim

n→∞ ln = l∞ ∈ {±∞} ∪ Z \ {0} ,

lim
n→∞ μn = μ∞ ∈ [−1

2
,
1

2
] ,

and

δ2n‖un‖2L2 + ‖(−Aln )
− 1

2 un‖2L2 + ‖A−1
ln

un‖2L2 = 1 ,

lim
n→∞

(
δ−2
n ‖Qln (μn − 
̂ln )un‖2L2 + δ6n‖(−Aln )

1
2 un‖2L2

)
= 0 .

(3.94)

We first observe that δ∞ = 0, otherwise we have ‖(−Aln )
1
2 un‖L2 → 0 (n → ∞) due

to the second condition in (3.94), from which we easily reach a contradiction to the
normalized condition in (3.94). Moreover, if |l∞| �= 1 then the situation is exactly the
same as the case 1

2 ≤ μ∞ < 1 in the proof of Lemma 3.8, for Ql = I when |l| �= 1.
Therefore, it remains to consider the case |l∞| = 1 and |μ∞| ≤ 1

2 . Let us focus on the
case l∞ = 1 and 0 ≤ μ∞ ≤ 1

2 ; the other cases are handled in the same manner. Then
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we may assume that ln = 1 for all n by taking a subsequence if necessary, though we
often keep the notation ln for convenience.

Set

fn = δ−1
n (μn − 
̂ln )un , vn = A−1

ln
un . (3.95)

We may assume that vn converges to a function v∞ strongly in L2(T) and weakly in
H1(T). Since un is real valued, so is vn , and vn satisfies (μn − Msin y)

(
Aln + 1)vn =

μnvn + δn fn , and then by l2n = 1,

(μn − Msin y)∂
2
yvn = μnvn + δn fn . (3.96)

It is convenient to introduce the value

ϑn = 1

2π

∫ 2π

0
δn fn dy ,

which gives δn fn = δnQln fn + ϑn . The value ϑn is computed from (3.96) and the
condition vn ∈ Yln as

ϑn = − 1

2π

∫ 2π

0
sin y ∂2yvn dy = 1

2π

∫ 2π

0
sin y vn dy . (3.97)

Then (3.96) is written as

(μn − Msin y)∂
2
yvn = μnvn + ϑn + δnQln fn . (3.98)

The trace relation of (3.37) in the present case is

μnvn(yμn ) + ϑn + δn(Qln fn)(yμn ) = 0 , yμn ∈ Sμn . (3.99)

Here Sμn is the set of critical points. A key difference from the proof of (3.29) is
that the role of μnvn(yn, j ), where yn, j is the critical point, has to be replaced by
μnvn(yn, j ) + ϑn , and similarly, the role of fn is replaced by Qln fn . The other part of
the argument is similar to the proof of (3.29) for the case μ∞ < 1. Indeed, the same
argument as Step 1 in the proof of (3.29) leads to

lim
n→∞ δn‖un‖L2 = 0 , (3.100)

while the argument of Step 2 gives

lim
n→∞ (μnvn(yn, j ) + ϑn) = lim

n→∞ δn(Qln ) fn(yn, j ) = 0 .

In particular, we have

μ∞v∞(yμ∞) + ϑ∞ = 0 , yμ∞ ∈ Sμ∞ , (3.101)
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where

ϑ∞ = lim
n→∞

1

2π

∫ 2π

0
sin y vn dy = 1

2π

∫ 2π

0
sin y v∞ dy .

To estimate ‖∂yvn‖2L2 we use

∂2yvn = μnvn + ϑn + δnQln fn
μn − sin y

. (3.102)

By taking the inner product with vn , we obtain

‖∂yvn‖2L2 = −
∫ 3π

2

− π
2

(
μnvn + ϑn + δnQln fn

)
vn

μn − sin y
dy . (3.103)

Then we apply the argument of Step 4 by replacing μnvn and fn there by μnvn + ϑn

and Qln fn , respectively. We obtain the estimate of the form

lim sup
n→∞

‖∂yvn‖2L2 ≤ C

κ3
lim sup
n→∞

‖vn‖2L2 + Cκ
1
2
3 (3.104)

for any sufficiently small κ3 > 0, and also obtain the estimate

∣∣〈∂yv∞, ∂yϕ〉L2

∣∣ ≤ C‖ϕ‖L2 (3.105)

for any ϕ ∈ H2(T). This ensure the regularity v∞ ∈ H2(T). Estimate (3.104)
together with (3.100) and the normalized condition (3.94) implies that wemay assume
infn ‖vn‖L2 > 0, and thus, the limit v∞ must be nontrivial. We can also show that the
limit v∞ ∈ H2(T) ∩ Y1 satisfies

(μ∞ − sin y)∂2yv∞ = μ∞v∞ + ϑ∞ . (3.106)

If μ∞ = 0 then ϑ∞ = 0 by (3.101), and thus, ∂2yv∞ = 0 by (3.106). Hence v∞ is
a constant. Since v∞ ∈ Y1 we conclude that the constant v∞ must be zero. This is
a contradiction. The proof is complete for the case μ∞ = 0. When 0 < μ∞ ≤ 1

2
let y∞, j ∈ Sμ∞ , j = 2, 3, be such that y∞,2 ∈ (π

2 , π) and yn,3 ∈ (2π, 5π
2 ). Then

μ∞ − sin y ≥ 0 for y ∈ (y∞,2, y∞,3). Thus we see

∫ y∞,3

y∞,2

∂2yv∞ (μ∞v∞ + ϑ∞) dy =
∫ y∞,3

y∞,2

(μ∞v∞ + ϑ∞)2

μ∞ − sin y
dy ,

which makes sense by the H2 regularity of v∞ and the condition (3.101). The inte-
gration by parts and (3.106) imply

μ∞
∫ y∞,3

y∞,2

|∂yv∞|2 dy +
∫ y∞,3

y∞,2

(μ∞v∞ + ϑ∞)2

μ∞ − sin y
dy = 0 . (3.107)
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Therefore, we conclude that μ∞v∞ + ϑ∞ = 0 on [y∞,2, y∞,3]. Set w∞ = ∂yv∞ ∈
H1(T), which then satisfies w∞ = 0 on [y∞,2, y∞,3]. Moreover, from (3.107) and
also from ϑ∞ = −μ∞v(y∞, j ), we see

∂yw∞ = μ∞v∞ + ϑ∞
μ∞ − sin y

= μ∞
μ∞ − sin y

∫ y

y∞,2

w∞ dz , y > y∞,2 ,

w∞(y∞,2) = 0 . (3.108)

Then it is easy to see that w∞ = 0 for y ∈ (y∞,2, y∞,2 + τ) for some τ > 0, and
thus, w∞ = 0 for all y > y∞,2. Hence w∞ = 0, i.e., v∞ is a constant. Since v∞ ∈ Y1
we must have v∞ = 0, which is a contradiction. The proof of (3.91) is complete. ��

Proof of (3.92) The proof is again very similar with the proof of (3.30) and is based on
a contradiction argument. Then the problem is reduced to the analysis of the sequence
{ũn}, where ũn = Mcos y B2,ln un , un ∈ H2(T) ∩ Yln . As in proof of (3.91), it suffices
to consider the case |ln| = 1 and δ∞ = 0, and without loss of generality we may
assume that ln = 1 for all n. From the hypothesis of the contradiction argument, we
have the convergence

lim
n→∞

(
δ−2
n ‖(μn − 
̂ln )un‖2L2 + δ2n‖(−Aln )

1
2 un‖2L2

)
= 0 , (3.109)

and therefore, from (3.91) we have

lim
n→∞(δ2n‖un‖2L2 + ‖vn‖2H1) = 0 . (3.110)

Then we can apply the same argument as in the proof of (3.30), for the argument there
relies only on (3.109) and (3.110). The only difference from the proof of (3.30) is that
the role of μnvn and fn is again replaced by μnvn + ϑn and Qln fn , respectively. We
omit the details. The proof of Lemma 3.9 is complete. ��

Let us set for m ≥ 1 and μ ∈ R,

h1(m, μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |μ| > 1 + κ

m
,

m− 1
2 if 1 − κ

m
< |μ| ≤ 1 + κ

m
,

m−1(1 − |μ|)− 1
2 if |μ| ≤ 1 − κ

m
,

(3.111)

h2(m, μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |μ| > 1 + κ

m2 ,

m−2 if 1 − κ

m2 < |μ| ≤ 1 + κ

m2 ,

m−1(1 − |μ|) 1
2 if |μ| ≤ 1 − κ

m2 ,

(3.112)
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and

h3(m, μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |μ| > 1 + κ

m2 ,

m−2 if 1 − κ

m2 < |μ| ≤ 1 + κ

m2 ,

m−3(1 − |μ|)− 1
2 if |μ| ≤ 1 − κ

m2 .

(3.113)

Note that each h j satisfies h j (m,−μ) = h j (m, μ) and lim
m→∞ sup

μ∈R
h j (m, μ) = 0.

Moreover, we have h3(m, μ) ≤ Ch2(m, μ). By Lemmas 3.7, 3.8, and 3.9, we obtain

Proposition 3.10 There exist C, κ > 0 such that for all m ≥ 1,μ ∈ R, and l ∈ Z\{0},

‖u‖2L2 ≤ C

(
m2‖(μ − 
̂l)u‖2L2 + h21(m, μ) ‖(−Al)

1
2 u‖2L2

)
,

u ∈ H1(T) ,
1

2
≤ |μ| ≤ 1 + κ

m
,

(3.114)

‖u‖2L2 ≤ C

(
m2‖Ql(μ − 
̂l)u‖2L2 + h21(m, μ) ‖(−Al)

1
2 u‖2L2

)
,

u ∈ H1(T) ∩ Yl , |μ| <
1

2
.

(3.115)

‖Mcos y B2,lu‖2L2 ≤ C

(
m2‖(μ − 
̂l)u‖2L2 + h22(m, μ) ‖(−Al)

1
2 u‖2L2

)
,

u ∈ H1(T) ,
1

2
≤ |μ| ≤ 1 + κ

m2 ,

(3.116)

‖Mcos y B2,lu‖2L2 ≤ C

(
m2‖Ql(μ − 
̂l)u‖2L2 + h22(m, μ) ‖(−Al)

1
2 u‖2L2

)
,

u ∈ H1(T) ∩ Yl , |μ| <
1

2
,

(3.117)

and

‖(−Al)
− 1

2 u‖2L2 ≤ C

(
m2‖(μ − 
̂l)u‖2L2 + h23(m, μ) ‖(−Al)

1
2 u‖2L2

)
,

u ∈ H1(T) ,
1

2
≤ |μ| ≤ 1 + κ

m2 ,

(3.118)

‖(−Al)
− 1

2 u‖2L2 ≤ C

(
m2‖Ql(μ − 
̂l)u‖2L2 + h23(m, μ) ‖(−Al)

1
2 u‖2L2

)
,

u ∈ H1(T) ∩ Yl , |μ| <
1

2
.

(3.119)
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On the other hand, if |μ| > 1 then

‖u‖2L2 ≤ C

(|μ| − 1)2
‖(μ − 
̂l)u‖2L2 , u ∈ H1(T) , (3.120)

‖Mcos y B2,lu‖2L2 ≤ C

(|μ| − 1)
‖(μ − 
̂l)u‖2L2 , u ∈ H1(T) , (3.121)

and

‖(−Al)
− 1

2 u‖2L2 ≤ C

|μ| (|μ| − 1)
‖(μ − 
̂l)u‖2L2 , u ∈ H1(T) . (3.122)

Note that the constantsC andm0 in Proposition 3.10 are independent of l ∈ Z\{0}.
Let us recall that Lα,l is defined as Lα,l = Al − iαl
̂l , and thus, it is convenient to
introduce

α̃ = α̃(l) = αl . (3.123)

We are interested in the estimate of ‖(iλ+QLα,l)
−1‖Yl→Yl by applying Theorem 2.9.

In particular, the dependence of the estimate on α̃ is important. Let us recall that
B3 = B1Tl A

−1
l + Mcos y B2,l = Msin y(∂y − l)A−1

l + Mcos y B2,l , and hence,

‖B3u‖L2 ≤ C‖(−Al)
− 1

2 u‖L2 + ‖Mcos y B2,lu‖L2 .

Since h3(m, μ) ≤ Ch2(m, μ) by their definitions, it suffices to consider the function
F(α̃, μ) defined as

F(α̃, μ) = inf
m1,m2≥m0

(
m1

|α̃| + m2
1m

2
2

α̃2 + m2
1h2(m2, μ)

|α̃| + h1(m1, μ)2
)

. (3.124)

Here h j are defined by (3.111) and (3.112). Our aim is to obtain the upper bound for
F(α̃, μ).

Case 1: |μ| > 1 + κ
3
4

|α̃| 12
. In this case let us take

m1 = m2
2 = 2κ

|μ| − 1
. (3.125)

Then we have

1 + κ

m1
= 1 + κ

m2
2

= 1 + |μ| − 1

2
< |μ| .
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Thus, h j (m j , μ) = 0 by the definition, and

m1

|α̃| = 2κ

|α̃|(|μ| − 1)
,

m2
1m

2
2

α̃2 ≤ C

α̃2(|μ| − 1)3
≤ C

|α̃|(|μ| − 1)
.

Hence we obtain

m1

|α̃| + m2
1m

2
2

α̃2 + m2
1h2(m2, μ)

|α̃| + h1(m1, μ)2 ≤ C

|α̃|(|μ| − 1)
, (3.126)

as desired.

Case 2: 1 − κ
3
4

|α̃| 12
< |μ| ≤ 1 + κ

3
4

|α̃| 12
. In this case we take m1 and m2 as

m1 = m2
2 = κ

1
2 |α̃| 12 . (3.127)

Then we see from κ ∈ (0, 1),

κ

m1
= κ

m2
2

= κ1− 1
2

|α̃| 12
>

κ
3
4

|α̃| 12
≥ ∣∣1 − |μ|∣∣ .

Hence h1(m1, μ) = m
− 1

2
1 and h2(m2, μ) = m−2

2 for this choice of m1 and m2. We
can also check that there exist C,C ′ > 0 depending only on κ such that

1

C

m2
1m

2
2

α̃2 ≤ m2
1h2(m2, μ)

|α̃| ≤ C ′h1(m1, μ)2 ≤ C
m2

1m
2
2

α̃2 .

Let us compute the size of each term as in Case 1:

m1

|α̃| = κ
1
2

|α̃| 12
,

m2
1m

2
2

α̃2 = κ
3
2

|α̃| 12
.

Thus we have

m1

|α̃| + m2
1m

2
2

α̃2 + m2
1h2(m2, μ)

|α̃| + h1(m1, μ)2 ≤ C

|α̃| 12
. (3.128)
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Case 3: |μ| ≤ 1 − κ
3
4

|α̃| 12
. In this case we take m1 and m2 as

m1 =
( |α̃|
1 − |μ|

) 1
3

, m2 =
(

|α̃|(1 − |μ|) 1
2

) 1
3

. (3.129)

Then we have

κ

m1(1 − |μ|) = κ

|α̃| 13 (1 − |μ|) 2
3

≤ κ

|α̃| 13

(
|α̃| 12
κ

3
4

) 2
3

= κ
1
2 < 1 ,

and

κ

m2
2(1 − |μ|) = κ

|α̃| 23 (1 − |μ|) 4
3

≤ κ

|α̃| 23

(
|α̃| 12
κ

3
4

) 4
3

= 1 .

Hence h1(m1, μ) = m−1
1 (1 − |μ|)− 1

2 and h2(m2, μ) = m−1
2 (1 − |μ|) 1

2 by their
definitions. Thus it follows that

m2
1m

2
2

α̃2 = m2
1h2(m2, μ)

|α̃| for any m1 > 0 ,

and we can also check the balance

m2
1h2(m2, μ)

|α̃| = h1(m1, μ)2 .

Let us now compute the size of each term in the right-hand side of (3.124) for m1 and
m2 defined as (3.129):

m1

|α̃| = 1

|α̃| 23 (1 − |μ|) 1
3

,

m2
1m

2
2

α̃2 = |α̃| 23
(1 − |μ|) 2

3

|α̃| 23 (1 − |μ|) 1
3 α̃−2 = 1

|α̃| 23 (1 − |μ|) 1
3

.

Thus we have

m1

|α̃| + m2
1m

2
2

α̃2 + m2
1h2(m2, μ)

|α̃2| + h1(m1, μ)2 ≤ C

|α̃| 23 (1 − |μ|) 1
3

. (3.130)

Here C is also independent of l.
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As a summary, we have arrived at the upper bound of F(α̃, μ) such that

F(α̃, μ) ≤ C |α̃|− 1
2 = C |αl|− 1

2 , (3.131)

where C is independent of α,μ, and l. Then Theorem 2.9 implies the following result.

Theorem 3.11 There exist positive numbers c and C such that the following statement
holds for all sufficiently large |α|. Let λ ∈ R and l ∈ Z \ {0}. Then Ql Lα,l in Yl =
Ql L2(T) satisfies

sup
ζ∈σ(Ql Lα,l )

Reζ ≤ −c |αl| 12 , (3.132)

and

‖(iλ + Ql Lα,l)
−1‖Yl→Yl ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C

|αl| (| λ
αl | − 1

) if | λ

αl
| > 1 + 1

|αl| 12
,

C

|αl| 12
if 1 − 1

|αl| 12
< | λ

αl
| ≤ 1 + 1

|αl| 12
,

C

|αl| 23 (1 − | λ
αl |
) 1
3

if | λ

αl
| ≤ 1 − 1

|αl| 12
.

(3.133)

Here c and C are independent of α and l.

Recall that Lα,l = Al − iαl
̂l . Theorem 3.11 follows from Theorem 2.9 and the
estimates (3.126), (3.128), (3.130), and (3.131) for Fl(α̃, μ) with α̃ = αl. Note that
Ql = I when |l| ≥ 2.

3.3 Estimate for Semigroup

The resolvent estimates in Theorem 3.11 provide a crucial information on the solution
to the following nonstationary problem both in qualitative and quantitative point of
views.

⎧⎨
⎩

dw

dt
− Lαw = 0 , t > 0 ,

w|t=0 = f ∈ L2
0(T

2) .

(3.134)

Note that the operator Lα = A − iα
̂ is diagonalized in terms of the Fourier series
with respect to the x variable:

Lα = ⊕l∈Z\{0} Lα,l , Lα,l = Al − iαl
̂l . (3.135)
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Hence the estimates of the solution u to (3.152) are obtained from the estimates for
each Fourier mode Plu, which is given by the semigroup generated by Lα,l in L2(T).
For the estimate of the semigroup etLα,l it is convenient to use the representation in
terms of the Dunford integral

wl(t) = etLα,l fl = 1

2π i

∫
�

etζ (ζ − Lα,l)
−1 fl dζ . (3.136)

Here fl = (Pl f )e−ilx ∈ L2(T), and � is first taken as

� =
{
ζ ∈ C | Reζ = −1

2
, |Imζ | ≤ 4|αl|

}

∪
{
ζ ∈ C | Imζ = ∓(Reζ + 1

2
) ± 4|αl| , Reζ ≤ −1

2

}

=: �0,− 1
2

+ �±,− 1
2
, (3.137)

which is oriented counter-clockwisely. We note that

‖(ζ − Lα,l)
−1‖L2(T)→L2(T) ≤ C

|Imζ | , |Imζ | ≥ 4α|l| (3.138)

hold with a constant C independent of α. Set Pl = I − Ql , where Ql : L2(T) →
Yl = (Ker 
̂l)

⊥ is the orthogonal projection as used in the previous section. Note that
Pl = 0 when |l| ≥ 2. Our aim is to establish the estimates forQl et Lα,l and Pl et Lα,l . For
the part Ql et Lα,l the fast dissipation is expected for large α, while for the part Pl et Lα,l

the strong amplification is expected through the interaction term

iαlPl
̂lQl , |l| = 1 ,

which does not vanish due to the lack of the invariance of the space Yl = Ql L2(T)

under the action of 
̂l , or in other words, due to the lack of the symmetry of 
̂l , for
this term automatically vanishes if 
̂l is symmetric. To estimate Ql et Lα,l we observe

Ql e
t Lα,l f = 1

2π i

∫
�

etζQl(ζ − Lα,l)
−1 fl dζ = 1

2π i

∫
�

etζ (ζ − Ql Lα,l)
−1

Ql fl dζ .

The last identity follows from (2.19). We observe that for each λ ∈ R the set

{
ζ ∈ C | |ζ − iλ| <

1

‖(iλ − Ql Lα,l)−1‖Yl→Yl

}

is contained in the resolvent set of QLα,l by the standard Neumann series argument,
and in particular, we have

‖(ζ − Ql Lα,l)
−1‖Yl→Yl ≤ 2‖(iλ − Ql Lα,l)

−1‖Yl→Yl (3.139)
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if |ζ − iλ| < 1
2‖(iλ−Ql Lα,l )

−1‖Yl→Yl
. Then, in virtue of Theorem 3.11, we can shift the

integral
∫
�
dζ to

∫
�α

dζ by the Cauchy theorem, where

∫
�α

dζ =
∫

�α,+
dζ +

∫
�α,−

dζ =
∑

k=1,2,3

∫
�α,+,k

dζ +
∑

k=1,2,3

∫
�α,−,k

dζ ,

where, with the notation of α̃ = αl,

�α,+,1 =
{

ζ = s + i
( 1

|α̃|
s3

c3
+ |α̃|) | − c|α̃| 23 ≤ s ≤ −c|α̃| 12

}
,

�α,+,2 =
{

ζ = −c|α̃| 12 + is | |α̃| − |α̃| 12 ≤ s ≤ |α̃| + |α̃| 12
}

,

�α,+,3 =
{

ζ = s + i(− s

c
+ |α̃|) | s ≤ −c|α̃| 12

}
,

(3.140)

and each �α,−,k is a reflection of �α,+,k with respect to the real axis. Here c is a
positive constant which is independent of |α| � 1 and also of l. Let us estimate each
integral by applying Theorem 3.11 and (3.139). As for the integral on �α,+,1 we see

‖ 1

2π

∫
�α,+,1

etζ (ζ − Ql Lα,l)
−1

Ql fl dζ‖L2

≤ C
∫ −c|α̃| 12

−c|α̃| 23
ets

√
1 + 9s4

α̃2c6

|α̃| 23 (1 − 1
|α̃| (

s3

|α̃|c3 + |α̃|)) 13 ds ‖Ql fl‖L2

≤ C

|α̃|
∫ −c|α̃| 12

−c|α̃| 23
|s|ets ds ‖Ql fl‖L2

≤ C

|α̃|t2 e
−c′|α̃| 12 t‖Ql fl‖L2 , (3.141)

where c′ = c
2 and α̃ = αl. The integral on �α,+,2 is estimated as

‖ 1

2π

∫
�α,+,2

etζ (ζ − Ql Lα,l)
−1

Ql fl dζ‖L2 ≤ C

|α̃| 12
∫ |α̃|+|α̃| 12

|α̃|−|α̃| 12
e−c|α̃| 12 t ds ‖Ql fl‖L2

≤ Ce−c|α̃| 12 t‖Ql f ‖L2 . (3.142)

As for the integral on �α,+,3, we have

‖ 1

2π

∫
�α,+,3

etζ (ζ − Ql Lα,l)
−1

Ql fl dζ‖L2

≤ C

|α̃|
∫
s≤−c|α̃| 12

ets
√
1 + c−2

1
|α̃| (− s

c + |α̃|) − 1
ds ‖Ql fl‖L2
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≤ C
∫
s≤−c|α̃| 12

ets
ds

|s| ‖Ql fl‖L2

≤ C

|α̃| 12 t
e−c|α̃| 12 t‖Ql fl‖L2 . (3.143)

The estimates on the curve�α,−,k are obtained in the samemanner.Hence, by rewriting
c′ by c for notational convenience, we have arrived at, from α̃ = αl,

‖Ql e
t Lα,l fl‖L2 ≤

⎧⎪⎨
⎪⎩

C
( 1

|αl|t2 + 1

|αl| 12 t
)
e−c|αl| 12 t‖Ql fl‖L2 , t > 0

Ce−c|αl| 12 t‖Ql fl‖L2 , t ≥ |αl|− 1
2 .

(3.144)

On the other hand, the simple energy computation for d
dt 〈ul(t), B2,lul(t)〉L2(T) gives

the identity

d

dt
〈ul , B2,lul〉L2(T) = 2〈Alul , B2,lul〉L2(T) .

The term in the right-hand side is bounded from above by −(2l2 − 1))‖Qlul‖2L2(T)
≤

−(2l2 − 1)〈ul , B2,lul〉L2(T), where we have used 〈ul , B2,lul〉L2(T) ≤ ‖Qlu‖2
L2(T)

.
Thus we have from the coercive estimate (3.11),

‖Ql e
t Lα,l fl‖L2 ≤ 2e− 1

2 (2l2−1)t‖Ql fl‖L2 , t > 0 . (3.145)

This estimate is useful for a short time period. When |l| ≥ 2 we have obtained the
desired semigroup bound since Ql = I in this case. For the estimate of Pl et Lα,l in
the case |l| = 1 we cannot shift the curve � as in �α , and it has to be computed in a
different way. By the construction of the resolvent in the proof of Theorem 2.4, see
(2.17), we observe that

Pl(ζ − Lα,l)
−1 fl = −iαl(ζ − Al)

−1
Pl
̂l(ζ − Ql Lα,l)

−1
Ql fl + (ζ − Al)

−1
Pl fl .
(3.146)

Since ‖(ζ − Al)
−1‖L2(T)→L2(T) ≤ |ζ |−1, we have

‖Pl et Lα,l fl‖L2 ≤ α|l| ‖ 1

2π i

∫
�

etζ (ζ − Al)
−1

Pl
̂l(ζ − Ql Lα,l)
−1

Ql fl dζ‖L2

+ ‖ 1

2π i

∫
�

etζ (ζ − Al)
−1

Pl fl dζ‖L2

= α I1 + I2 ,

and it is not difficult to see

‖I2‖X ≤ e−t‖Pl fl‖L2 , t > 0 , |l| = 1 (3.147)
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by the estimate for the semigroup generated by the self-adjoint operator Al in L2(T).
As for I1, we replace � by �̃α , where

�̃α = �̃− 1
2 ,± + �̃α,±,1 + �α,±,2 + �α,±,3 ,

where �α,±. j with j = 2, 3 are the curves as in (3.140), while �̃− 1
2 ,+ (Rep. �̃− 1

2 ,−) is
the segment connecting ζ = − 1

2 and a point pα,+ of �α,+,1 (Resp. pα,− of �α,−,1),
and �̃α,±,1 is the part of �α,±,1 which therefore connects pα,± and the end point of
�α,±,2. We will take pα,± as |Impα,±| = |αl|

2 , thus, they are away enough from the
degenerate case such as |Imζ | ∼ |αl| = |α|. On the curve �̃− 1

2 ,± we have ‖(ζ −
Ql Lα,l)

−1‖Yl→Yl ≤ C

|α| 23
by the choice of pα,±. Thus we have

∥∥∥∥∥∥
1

2π i

∫
�̃− 1

2 ,±
etζ (ζ − Al)

−1
Pl
̂l(ζ − Ql Lα,l)

−1
Ql fl dζ

∥∥∥∥∥∥
L2

≤ C

|α| 23
e− t

2

∫ ζ=pα,±

ζ=− 1
2

| dζ |
|ζ |

≤ C | logα|
|α| 23

e− t
2 ‖Ql fl‖L2 .

As for the integrals on the curve �̃α,±,1 and�α,±,2 we compute as in (3.141) and (3.142)
respectively, but the difference in this case is the presence of the factor (ζ −Al)

−1
Pl
̂l ,

which is bounded by

‖(ζ − Al)
−1

Pl
̂l‖L2→L2 ≤ C

|ζ | ≤ C

|α|

on �̃α,±,1 and�α,±,2.Moreover, we need to compute the integral so that the singularity
at t = 0 does not appear. Hence we have

∥∥∥∥∥
1

2π i

∫
�̃α,±,1

etζ (ζ − Al)
−1

Pl
̂l(ζ − Ql Lα,l)
−1

Ql fl dζ

∥∥∥∥∥
L2

≤ C

|α|2
∫ −c|α| 12

−c|α| 23
|s|ets ds ‖Ql fl‖L2

≤ C

|α| 23
e−c|α| 12 t‖Ql fl‖L2 ,
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and similarly,∥∥∥∥∥
1

2π i

∫
�α,±,2

etζ (ζ − Al)
−1

Pl
̂l(ζ − Ql Lα,l)
−1

Ql fl dζ

∥∥∥∥∥
L2

≤ C

|α| 32
∫ |α|+|α| 12

|α|−|α| 12
e−c|α| 12 t ds ‖Ql fl‖L2 ≤ C

|α|e
−c|α| 12 t‖Ql fl‖L2 .

Finally, the integrals over �α,±,3 is computed as in (3.143), and we have

∥∥∥∥∥
1

2π

∫
�α,+,3

etζ (ζ − Al)
−1

Pl
̂l(ζ − Ql Lα,l)
−1

Ql fl dζ

∥∥∥∥∥
L2

≤ C

|αl|
∫
s≤−c|α| 12

ets
√
1 + c−2

(|s| + |α|)( 1
|αl| (− s

c + |αl|) − 1
) ds ‖Ql fl‖L2

≤ C
∫
s≤−c|α| 12

ets
1

(|s| + |α|)|s| ds ‖Ql fl‖L2

≤ C | logα|
|α| e−c|α| 12 t‖Ql fl‖L2 .

Collecting these above, we have

|α|I1 ≤ C |α| 13 | logα| e− t
2 ‖Ql fl‖L2 . (3.148)

Combining (3.147) and (3.148), we obtain

‖Pl et Lα,l fl‖L2 ≤ C |α| 13 | logα| e− t
2 ‖Ql fl‖L2 + e−t‖Pl fl‖L2 , t > 0 , |l| = 1 .

(3.149)

Thus we have arrived at the following theorem. Let us recall thatQ : L2
0(T

2) → Y
is the orthogonal projection on to Y .

Theorem 3.12 For all sufficiently large |α| the following statement holds. The semi-
group {etLα }t≥0 generated by Lα in L2

0(T
2) satisfies for any l ∈ Z \ {0},

‖QPl e
t Lα f ‖L2(T2) ≤

⎧⎨
⎩

2e− 1
2 (2l2−1)t‖QPl f ‖L2(T2) , t > 0 ,

Ce−c|αl| 12 t‖QPl f ‖L2(T2) , t ≥ |αl|− 1
2 ,

(3.150)

while

‖(I − Q)Pl e
t Lα f ‖L2(T2) ≤ C |α| 13 | logα| e− t

2 ‖QPl f ‖L2(T2)

+ e−t‖(I − Q)Pl f ‖L2(T2) , t > 0 , |l| = 1 .

(3.151)
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Here C and c are independent of α, l, and f .

Remark 3.13 Recently Wei [27] obtained a refined version of the Gearhart-Prüss the-
orem for semigroup in terms of the pseudospectral bound. If one applies this general
result of [27] then the semigroup estimate (3.150) is a direct consequence of the pseu-

dospecral bound sup
λ∈R

‖(iλ+Ql Lα,l)
−1‖Yl→Yl ≤ C

|αl| 12
in Theorem 3.11, and thus the

proof of Theorem 3.12 is much shortened.

Theorem 3.12 immediately leads to the estimate of the solution to

⎧⎨
⎩

dω

dt
− Lν,aω = 0 , t > 0 ,

ω|t=0 = f ∈ L2
0(T

2) .

(3.152)

HereLν,a is defined as in (1.7) with a ∈ R\{0} and 0 < ν � 1. Indeed, by introducing
the rescaling ω(x, y, t) = w(x, y, νt)which gives α = a

ν
in Theorem 3.12, we obtain

Corollary 3.14 For all sufficiently small ν
a > 0 the following statement holds. The

semigroup {etLν,a }t≥0 generated by Lν,a in L2
0(T

2) satisfies for any l ∈ Z \ {0},

‖QPl e
tLν,a

f ‖L2(T2) ≤
⎧⎨
⎩

2e− 1
2 (2l2−1)νt‖QPl f ‖L2(T2) , t > 0 ,

Ce−c
√
a|l|ν t‖QPl f ‖L2(T2) , t ≥ 1√

a|l|ν ,

(3.153)

while

‖(I − Q)Pl e
tLν,a

f ‖L2(T2) ≤ C(
a

ν
)
1
3 | log a

ν
| e− νt

2 ‖QPl f ‖L2(T2)

+ e−νt‖(I − Q)Pl f ‖L2(T2) ,

t > 0 , |l| = 1 .

(3.154)

Here C and c are independent of ν, a, l, and f .

4 Application to the Lamb–Oseen Vortices

In this sectionwe consider the operator related to the Lamb–Oseen vortices. For details
of the derivation of the operators below, the reader is referred to Deng [10] and Li

et al. [17]. Let H1
1,0(R+) = { f ∈ H1

0 (R+) | f (r)

r
, r f (r) ∈ L2(R+)}. Let A be the

realization in L2(R+) of

A = ∂2r − 3

4r2
− r2

16
+ 1

2
(4.1)
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with the maximal domain D(A) = { f ∈ H1
1,0(R+) | A f ∈ L2(R+)}. It is known that

the operator A is conjugate to the two-dimensional Harmonic oscillator restricted to
the angular Fourier mode ±1, and hence, A is a self-adjoint operator in L2(R+) with
compact resolvent and −A is strictly positive. Moreover, we have the equivalence
between the norms such as

‖(−A)
1
2 u‖L2 ∼ ‖∂r u‖L2 + ‖u

r
‖L2 + ‖ru‖L2 . (4.2)

This fact will be frequently used in the analysis below. Let g(r) = e− r2
8 and we denote

by Y the orthogonal complement space in L2(R+) to the one-dimensional subspace

spanned by r
3
2 g(r), that is,

Y = {r 3
2 g(r)}⊥ in L2(R+) . (4.3)

Then Y is known to be invariant under the action of A. Let ρ(r) be the function defined
by

ρ(r) = 1 − e− r2
4

r2/4
. (4.4)

The direct computation shows that ρ(0) = 1, ρ′(0) = 0, ρ′′(0) < 0, and ρ′(r) < 0
for r > 0. We also introduce the nonlocal operator Z as

Z [ f ](r) = r− 3
2

∫ r

0
f (s)g(s)s

3
2 ds . (4.5)

Then Z belongs to the Hilbert–Schmidt class, for the kernel k(r , s) = r− 3
2 g(s)s

3
2

χ{0<s<r} belongs to L2(R+ × R+). We define the self-adjoint operators 
̂1, 
̂2, and

̂, as


̂1 = Mρ , 
̂2 = −Z∗Z , 
̂ = 
̂1 + 
̂2 , (4.6)

where Z∗ is the adjoint of Z in L2(R+), that is,

Z∗[ f ](r) = g(r)r
3
2

∫ ∞

r
f (s)s− 3

2 ds . (4.7)

The explicit representation of 
̂2 is given by


̂2[ f ](r) = −g(r)

2

∫ ∞

0
f (s)min

{r
s
,
s

r

}
(rs)

1
2 g(s) ds .
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We are interested in the resolvent estimate of the operator in Y defined as

Lα = A − iα
̂ , DY (Lα) = DY (A) = D(A) ∩ Y .

We note that, by Proposition 4.1 (1) below and by the fact that Y is invariant under the
action of A, the operator Lα is indeed well-defined as the operator from D(A) ∩ Y to
Y . As observed in [17], the operator Lα is conjugate to the linearized operator around
the Lamb–Oseen vortex with the total circulation α in the self-similar variable (that is,
L− α
 introduced as in (1.12)), when it is restricted to the angular Fourier mode ±1
(and it is known that this case is the most difficult to analyze). It will be convenient to
see that the inverse of Z , denoted by W , is given by

W [v](r) = 1

g(r)r
3
2

(
r

3
2 v(r)

)′
, (4.8)

and the domain of W is D(W ) = {v ∈ H1
1,0(R+) | W [v] ∈ L2(R+)}. The operator

W is densely defined and closed in L2(R+). Let W ∗ be the adjoint of W in L2(R+).
Then the direct computation shows

WW ∗ f = − 1

g2

(
f ′′ + r

2
f ′ +

( r2
16

+ 1

4
− 3

4r2

)
f
)

= − 1

g2

(
A f + r

2
f ′ +

(r2
8

− 1

4

)
f
)

. (4.9)

Note that −WW ∗
̂2 = I . We have the following estimates for 
̂2:

∥∥∥∥ 1

(1 + r)g
∂r Z

∗ f
∥∥∥∥
L2

+
∥∥∥∥ 1

rg
Z∗ f

∥∥∥∥
L2

≤ C‖ f ‖L2 ,

|Im〈A f , 
̂2 f 〉L2 | ≤ C‖Mρ′ f ‖L2‖Z f ‖L2 . (4.10)

The second inequality in (4.10) follows from A∗ = A and

A
̂2 f = −g2WW ∗
̂2 f − r

2

d

dr

̂2 f −

(
r2

8
− 1

4

)

̂2 f

= g2 f − r

2

d

dr

̂2 f −

(
r2

8
− 1

4

)

̂2 f ,

where (4.9) is used. Indeed, this identity implies

|Im〈A f , 
̂2 f 〉L2 | = |Im〈 f , r
2
∂r Z

∗Z f + r2

8
Z∗Z f 〉L2 |

≤ ‖Mρ′ f ‖L2
(‖M r

2ρ′ ∂r Z
∗Z f ‖L2 + ‖M r2

8ρ′
Z∗Z f ‖L2

)

≤ C‖Mρ′ f ‖L2‖Z f ‖L2 .
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Here we have used the first inequality in (4.10) in the last line. As for 
̂, the following
properties are known.

Proposition 4.1 (1) Each 
̂ j is bounded and self-adjoint, and 
̂2 is compact in
L2(R+).

(2) σ(
̂) = [0, 1], where σ(
̂) is the spectrum of 
̂ in L2(R+). Moreover, {r 3
2 g(r)}

is the eigenspace for the eigenvalue 0 of 
̂ in L2(R+), and 
̂ does not possess the
eigenvalues except for the eigenvalue 0.

Indeed, the statement (1) is clear from the definition of 
̂ j above (the fact 
̂2 is
self-adjoint is firstly observed by Gallay-Wayne [14] in the original formulation of
the linearized operator around the Burgers vortex). As for the statement (2), the fact
σ(
̂1) = Ran (ρ) = [0, 1] with no eigenvalues is trivial from the definition of 
̂1,
and then, since 
̂2 is compact, the essential spectrum of 
̂ must coincides with that
of 
̂1, i.e., it is the interval [0, 1]. The structure of the eigenvalues of 
̂ follows from
[20], which also gives σ(
̂) = [0, 1].

We also have the following proposition, which implies the choice of B3 = Mρ′ in
applying the abstract result.

Proposition 4.2 |Im〈A f , 
̂ f 〉L2 | ≤ C‖(−A)
1
2 f ‖L2‖Mρ′ f ‖L2 for any f ∈ D(A).

Proof In virtue of (4.10) for the estimate of A
̂2 it suffices to show

|Im〈A f , 
̂1 f 〉L2 | ≤ C‖(−A)
1
2 f ‖L2‖Mρ′ f ‖L2 .

To see this, we observe that A f = (−T ∗T + 1
2 ) f , where T = ∂r + 1

2r + r
4 and

T ∗ = −∂r + 1
2r + r

4 . Thus we have

Im
〈
A f , 
̂1 f

〉
L2

= −Im〈T f , T Mρ f 〉L2 = −Im〈T f , [T , Mρ] f 〉L2

= −Im〈T f , Mρ′ f 〉L2 .

Then the desired estimate follows from ‖(−A)
1
2 f ‖2

L2 = 〈−A f , f 〉L2 = ‖T f ‖2
L2 −

1
2‖ f ‖2

L2 and ‖ f ‖L2 ≤ C‖(−A)
1
2 f ‖L2 . The proof is complete. ��

Let h1(m, μ), m > 0 and μ ∈ [− 1
2 ,

1
2 ] be the nonnegative function whose square

is defined as

h1(m, μ)2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

m2μ3 m >
1

μ2 and 0 < μ ≤ 1

2
,

μ
1

10μ
< m ≤ 1

μ2 and 0 < μ ≤ 1

2
,

1

m
0 < m ≤ 1

10|μ| .

(4.11)

Note that h1(m, μ)2 = 1
m for − 1

2 ≤ μ ≤ 0.
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Lemma 4.3 Let − 1
2 ≤ μ ≤ 1

2 . Then there exists C > 0 such that for δ ∈ (0, 1] and
u ∈ D(A) ∩ Y ,

δ2‖Mρ′u‖2L2 + ‖Zu‖2L2 + ‖Z∗Zu‖2L2 ≤ Cδ−2‖(μ − 
̂)u‖2L2

+ Cδ6|μ+|3‖(−A)
1
2 u‖2L2 , (4.12)

and

‖u‖2L2 ≤ Cδ−2‖(μ − 
̂)u‖2L2 + Ch1(
1

δ
, μ)2‖(−A)

1
2 u‖2L2 . (4.13)

Here μ+ = max{μ, 0}.

Proof of (4.12) Againwewill use the contradiction argument. Suppose that (4.12) does
not hold. Then there exist {δn, μn}n∈N, δn ∈ (0, 1], μn ∈ (− 1

2 ,
1
2 ], and {un} ⊂ D(A)

such that

lim
n→∞ δn = δ∞ ∈ [0, 1] , lim

n→∞ μn = μ∞ ∈
[
−1

2
,
1

2

]
,

and

δ2n‖Mρ′un‖2L2 + ‖Zun‖2L2 + ‖Z∗Zun‖2L2 = 1 ,

lim
n→∞

(
δ−2
n ‖(μn − 
̂)un‖2L2 + δ6n |(μn)+|3‖(−A)

1
2 un‖2L2

)
= 0 .

(4.14)

Set

fn = δ−1
n (μn − 
̂)un , vn = Z∗Zun , (4.15)

and then, un = WW ∗vn . Since Z∗ is compact, by (4.10), we may assume that vn
converges to v∞ strongly in L2(R+), W ∗vn converges to W ∗v∞ weakly in L2(R+).
Since un is real valued, so is vn , and vn satisfies vn(0) = 0 and

(μn − Mρ)WW ∗vn = vn + δn fn , r > 0 . (4.16)

Let rn ∈ [ 1
100 ,∞] be the critical point, i.e., rn = ρ−1(μn) forμn ∈ (0, 1

2 ] and rn = ∞
for μn ∈ [− 1

2 , 0]. Then from (4.16) we have

vn(rn) + δn fn(rn) = 0 , (4.17)
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which is valid also for the case rn = ∞ by setting vn(∞) = fn(∞) = 0. The
following estimates will be frequently used:

|ρ(k)(r)| ≤ C(1 + r)−2−k , k = 0, 1, 2 , (4.18)

| 1

μn − ρ(r)
| ≤ Crn(1 + r min{r , rn})

|rn − r | , r �= rn , (4.19)

rn = ρ−1(μn) ≈ 2μ
− 1

2
n for 0 < μn � 1 . (4.20)

When rn = ∞ estimate (4.19) is interpreted as C(1 + r2). We define the operation
∞ · 0 = 0 · ∞ = 0 and set 1

ρ′(∞)
= ∞ below.

Step 1: lim
n→∞

vn(rn)

ρ′(rn)
= lim

n→∞
δn fn(rn)

ρ′(rn)
= 0 .

Since vn(∞)
ρ′(∞)

= ∞ · 0 = 0 and δn fn(∞)
ρ′(∞)

= ∞ · 0 = 0, it suffices to consider the case
0 < rn < ∞ for all n. In this caseμn > 0 for all n. First we consider the caseμ∞ = 0,
that is, lim

n→∞ rn = ∞. In this case we compute as

|vn(rn)|2 ≤ 2
∫ ∞

rn
|v′

nvn| dr ≤ 2‖v′
n‖L2‖vn‖L2([rn ,∞))

≤ C

(1 + rn)8
‖Zun‖L2‖(1 + r)8vn‖L2

≤ 1

C(1 + rn)8
‖Zun‖2L2 .

Hence, since ρ′(r) = −2r−3(1 + o(1)) for r � 1, we have lim
n→∞

∣∣∣∣vn(rn)ρ′(rn)

∣∣∣∣
≤ lim

n→∞
C

1 + rn
= 0. Then we also have lim

n→∞
δn fn(rn)

ρ′(rn)
= 0 by using (4.17). Next

we consider the case μ∞ ∈ (0, 1
2 ], that is, supn rn < ∞ and supn

1
|ρ′(rn)| < ∞. Let

κ1 > 0 be fixed but arbitrary small number. We find r̃n ∈ [rn, rn + κ2
1 δ2n] such that

κ2
1 δ2n | fn(r̃n)|2 ≤ ‖ fn‖2L2([rn ,rn+κ21 δ2n ] ≤ ‖ fn‖2L2 , and thus, δn| fn(r̃n)| ≤ 1

κ1
‖ fn‖L2 . On

the other hand, we have

|δn fn(rn) − δn fn(r̃n)| ≤ Cκ1δn‖∂rδn fn‖L2([rn ,r̃n ])

and (4.16) yields

‖∂rδn fn‖L2([rn ,r̃n ]) ≤ C
(‖(μn − Mρ)∂r un‖L2([rn ,r̃n ]) + ‖Mρ′un‖L2 + ‖∂rvn‖L2

)
≤ Cκ2

1 δ2n‖∂r un‖L2 + C + Cδn , (4.21)
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since |μn − ρ′(r)| ≤ Cκ2
1 δ2n for r ∈ [rn, rn + κ2

1 δ2n] and the normalized condition
(4.14). Then (4.14) implies

lim sup
n→∞

|δn fn(rn)| ≤ lim sup
n→∞

(|δn fn(rn) − δn fn(r̃n)| + |δn fn(r̃n)|)

≤ lim sup
n→∞

(‖ fn‖L2

κ1
+ Cδ3n‖(−A)

1
2 un‖L2 + Cκ1

)
≤ Cκ1 .

Since κ1 > 0 is arbitrary, we have lim
n→∞ δn fn(rn) = 0, which also gives lim

n→∞ vn(rn) =
0 in virtue of (4.17). This proves the claim in the case supn rn < ∞.
Step 2: lim sup

n→∞
δn‖Mρ′un‖L2 ≤ C lim sup

n→∞
δn‖Z∗Zun‖L2 .

Let κ2 > 0 be fixed but arbitrary small number. Let rn < ∞ (thus, μn > 0). Then, by
setting un(r) = 0 if r < 0,

∫ rn+ δ2n
κ2

rn− δ2n
κ22

|Mρ′un|2 dr ≤ Cδ2n

κ2
2

‖Mρ′un‖2
L∞

(
[rn− δ2n

κ22
,∞)

)

≤ Cδ2n

κ2
‖∂r (Mρ′un)‖

L2([rn− δ2n
κ22

,∞))
‖Mρ′un‖

L2

(
[rn− δ2n

κ22
,∞)

)

≤ Cδn

κ2
‖Mρ′∂r un + Mρ′′un‖

L2

(
[rn− δ2n

κ22
,∞)

)

≤ Cδn

κ2(1 + rn)3
‖(−A)

1
2 un‖L2 ≤ Cδnμ

3
2
n ‖(−A)

1
2 un‖L2 .

Here we have used ‖ρ′‖
L∞([rn− δ2n

κ22
,∞))

+‖ρ′′‖
L∞([rn− δ2n

κ22
,∞))

≤ C(1+rn)−3. Note that

the above estimate is valid also for the case μn ∈ (− 1
2 , 0], for rn = ∞ in this case.

On the other hand, we have from (4.16), when rn < ∞,

‖Mρ′un‖
L2

([
rn− δ2n

κ22
,rn+ δ2n

κ22

]c)

≤
∥∥∥∥ ρ′

μn − ρ
vn

∥∥∥∥
L2

([
rn− δ2n

κ22
,rn+ δ2n

κ22

]c) +
∥∥∥∥ ρ′

μn − ρ
δn fn

∥∥∥∥
L2

([
rn− δ2n

κ22
,rn+ δ2n

κ22

]c)

≤
∥∥∥∥ ρ′

μn − ρ

∥∥∥∥
L2

([
rn− δ2n

κ22
,rn+ δ2n

κ22

]c) ‖vn‖L∞ +
∥∥∥∥ ρ′

μn − ρ

∥∥∥∥
L∞

([
rn− δ2n

κ22
,rn+ δ2n

κ22

]c) ‖δn fn‖L2

≤ Cκ2

δn
‖vn‖L∞ + Cκ2

2

δn
‖ fn‖L2 .
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When rn = ∞ (and thus, μn ∈ [− 1
2 , 0]), we see [rn − δ2n

κ22
, rn + δ2n

κ22
]c = [0,∞) and

|ρ′|
|μn−ρ| ≤ |ρ′|

ρ
, and thus,

‖Mρ′un‖L2 ≤ ‖ρ′

ρ
‖L∞‖vn‖L2 + ‖ρ′

ρ
‖L∞‖δn fn‖L2 ≤ C‖vn‖L2 + Cδn‖ fn‖L2 .

Since ‖vn‖L∞ ≤ C by (4.14) and the interpolation inequality, collecting these above,
we have

δn‖Mρ′un‖L2 ≤ C
(
δ3n |(μn)+| 32 ‖(−A)

1
2 un‖L2

) 1
2 + Cκ2 + C‖ fn‖L2 + Cδn‖vn‖L2 .

This shows from (4.14) that lim sup
n→∞

δn‖Mρ′un‖L2 ≤ Cκ2 + C lim sup
n→∞

δn‖vn‖L2 , and

the claim is proved since κ2 > 0 is arbitrary.
Step 3: Estimate of ‖Zun‖L2 .
Let us recall from (4.16) that

〈W ∗vn,W ∗ϕ〉L2 = J [ϕ] := 〈vn + δn fn
μn − ρ

, ϕ〉L2 , ϕ ∈ D(W ∗) . (4.22)

Here the right-hand side is well-defined in virtue of (4.17). Let κ3 > 0 be fixed but
arbitrary small number. We decompose J as J1 + J2, where

J1[ϕ] =
∫ rn+κ23 δ2n

rn−κ23 δ2n

vn + δn fn
μn − ρ

· ϕ dr , J2[ϕ] = J [ϕ] − J1[ϕ] .

Let us estimate J1. In virtue of (4.17), we have

|J1[ϕ]| ≤
∫ rn+κ23 δ2n

rn−κ23 δ2n

ρ′|vn − vn(rn) + δn( fn − fn(rn))|
|μn − ρ| dr ‖M 1

ρ′ ϕ‖L∞([ rn2 ,∞))

≤ Cκ3δn‖∂rvn‖L2‖ϕ‖D(W ∗) + Cκ3δ
2
n‖∂r fn‖L2([rn−κ23 δ2n ,rn+κ3δ2n ])‖ϕ‖D(W ∗) .

Here ‖ϕ‖D(W ∗) = ‖W ∗ϕ‖L2 +‖ϕ‖L2 , and we have used infn rn > 0 (by the condition
μn ≤ 1

2 ) and ‖M 1
σ ′ ϕ‖L∞([ rn2 ,∞)) ≤ C‖ϕ‖D(W ∗). As in (4.21), it follows from (4.16)

that

δn‖∂r fn‖L2([rn−κ23 δ2n ,rn+κ3δ2n ]) ≤ Cκ2
3 δ2n(1 + rn)

−3‖∂r un‖L2

+ C‖Mρ′un‖L2 + C‖∂rvn‖L2 ,

and thus,

|J1[ϕ]| ≤ Cκ3‖ϕ‖D(W ∗) + C
(
δ3n |(μn)+| 32 ‖(−A)

1
2 un‖L2 + κ3

)
‖ϕ‖D(W ∗)

≤ C
(
δ3n |(μn)+| 32 ‖(−A)

1
2 un‖L2 + κ3

)
‖ϕ‖D(W ∗) . (4.23)
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As for J2, we decompose it as J2,1 + J2,2 + J2,3, where

J2,1[ϕ] =
∫

[rn−κ23 δ2n , rn+κ23 δ2n ]c
1

μn − ρ

(vn

ρ′ − vn(rn)

ρ′(rn)

)
ϕ ρ′ dr ,

J2,2[ϕ] = vn(rn)

ρ′(rn)

∫
[rn−κ23 δ2n , rn+κ23 δ2n ]c

1

μn − ρ
ϕ ρ′ dr ,

J2,3[ϕ] =
∫

[rn−κ23 δ2n , rn+κ23 δ2n ]c
δn fn

μn − ρ
ϕ ρ′ dr .

The term J2,1 is estimated as, from vn = Z∗Zun , |ρ′|
|μn−ρ| ≤ Crn|rn−r |(1+r) , and the Hardy

inequality,

|J2,1[ϕ]| ≤ C‖(1 + r)∂r

(
Z∗Zun

ρ′

)
‖L2‖ϕ‖L2 ≤ C‖Zun‖L2‖ϕ‖L2 (by (4.10)) .

Note that this estimate is valid also including the case rn = ∞. Next, when κ3 > 0 is
sufficiently small, we can check that when rn < ∞,

∣∣∣∣∣
(∫ rn−κ23 δ2n

rn−1
+
∫ rn+1

rn+κ23 δ2n

)
1

μn − ρ
ρ′ dr

∣∣∣∣∣ ≤ C , (4.24)

by considering the change of the variable ρ(r) = s. Hence, when rn < ∞ we have

|J2,2[ϕ]| ≤ |vn(rn)|
|ρ′(rn)|

(∣∣∣∣∣
∫ rn−1

0
· · · dr

∣∣∣∣∣+
∣∣∣∣∣
(∫ rn−κ23 δ2n

rn−1
+
∫ rn+1

rn+κ23 δ2n

)
· · · dr

∣∣∣∣∣+
∣∣∣∣
∫ ∞
rn+1

· · · dr

∣∣∣∣
)

≤ |vn(rn)|
|ρ′(rn)|

(∥∥∥∥ ρ′
μn − ρ

∥∥∥∥
L2([0,rn−1])

‖ϕ‖L2 + |ϕ(rn)|
∣∣∣∣∣
( ∫ rn−κ23 δ2n

rn−1
+
∫ rn+1

rn+κ23 δ2n

)
ρ′

μn − ρ
dr

∣∣∣∣∣
+
∣∣∣∣∣
(∫ rn−κ23 δ2n

rn−1
+
∫ rn+1

rn+κ23 δ2n

)
ρ′

μn − ρ
(ϕ − ϕ(rn)) dr

∣∣∣∣∣+ ‖ ρ′
μn − ρ

‖L2([rn+1,∞))‖ϕ‖L2
)

≤ C
|vn(rn)|
|ρ′(rn)| ‖ϕ‖H1 ≤ C

|vn(rn)|
|ρ′(rn)| ‖ϕ‖D(W∗) .

When rn = ∞we have J2,2[ϕ] = 0 since vn(rn)
ρ′(rn) = ∞·0 = 0. Finally it is not difficult

to show

|J2,3[ϕ]| ≤ C‖ ρ′

μn − ρ
‖L2([rn−κ23 δ2n , rn+κ23 δ2n ]c)‖δn fn‖L2‖ϕ‖L∞

≤ C

κ3δn
‖δn fn‖L2‖ϕ‖H1 ≤ C

κ3
‖ fn‖L2‖ϕ‖D(W ∗)

for ϕ ∈ D(W ∗). Hence, we have

|J2[ϕ]| ≤ C‖Zun‖L2‖ϕ‖L2 + C

( |vn(rn)|
|ρ′(rn)| + C

κ3
‖ fn‖L2

)
‖ϕ‖D(W ∗) , ϕ ∈ D(W ∗) .

(4.25)
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Estimates (4.24) and (4.25) with (4.14) yield for ϕ ∈ D(W ∗),

∣∣〈Zun,W ∗ϕ〉L2

∣∣ = |J [ϕ]| ≤ C‖ϕ‖L2 + C
(
δ3n |(μn)+| 32 ‖(−A)

1
2 un‖L2

+ κ3 + |vn(rn)|
|ρ′(rn)| + ‖ fn‖L 2

κ3

)
‖ϕ‖D(W ∗) , (4.26)

that is, from (4.14) and Step 2,

∣∣〈W ∗v∞,W ∗ϕ〉L2

∣∣ = ∣∣〈W ∗v∞,W ∗ϕ〉L2

∣∣ = lim sup
n→∞

∣∣〈Zun,W ∗ϕ〉L2

∣∣
≤ C‖ϕ‖L2 , ϕ ∈ D(W ∗) . (4.27)

Moreover, by taking ϕ = Z∗Zun in (4.26), we conclude that

‖Zun‖L2 ≤ C‖Z∗Zun‖L2 + C
(
δ3n |(μn)+| 32 ‖(−A)

1
2 un‖L2 + κ3 + |vn(rn)|

|ρ′(rn)|
+ ‖ fn‖L 2

κ3

)
.

which gives again from (4.14) and Step 1,

lim sup
n→∞

‖Zun‖L2 ≤ C lim sup
n→∞

‖Z∗Zun‖L2 , (4.28)

by taking κ3 → 0 after n → ∞.

Step 4: Completion of the proof of (4.12).
Suppose that lim sup

n→∞
‖Z∗Zun‖L2 = 0. Then Step 2 and (4.28) imply that

lim sup
n→∞

δn‖Mρ′un‖L2 = lim sup
n→∞

‖Zun‖L2 = 0,which contradictswith the normalized

condition (4.14). Hence wemay assume that infn ‖Z∗Zun‖L2 > 0 by taking a suitable
subsequence if necessary. This implies that the limit v∞ = lim

n→∞ Z∗Zun ∈ L2(R+),

W ∗v∞ ∈ L2(R+), is nontrivial. Moreover, (4.27) shows thatW ∗v∞ ∈ D(W ). Then it
is not difficult to show from (μn − Mρ)WW ∗vn = vn + δn fn that u∞ = WW ∗v∞ ∈
L2(R+) satisfies (μ∞ − Mρ)u∞ = v∞ = Z∗Zu∞ in L2(R+), that is, μ∞ must be
an eigenvalue of 
̂ in L2(R+) and u∞ is the associated eigenfunction. To achieve
the contradiction it remains to show that u∞ ∈ Y . This is proved as follows: since

W ∗(r 3
2 g) = 0 by the definition of W ∗,

〈u∞, r
3
2 g〉L2 = 〈WW ∗v∞, r

3
2 g〉L2 = 〈W ∗v∞,W ∗(r

3
2 g)〉L2 = 0 .

The proof of (4.12) is complete. ��
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Proof of (4.13) Note that (4.13) is equivalent with ‖u‖2
L2 ≤ Cδ−4‖(μ − 
̂)u‖2

L2 +
Ch1(

1
δ2

, μ)2‖(−A)
1
2 u‖2

L2 for any δ ∈ (0, 1], and this is equivalent with

δ2‖u‖2L2 ≤ Cδ−2‖(μ − 
̂)u‖2L2 + Cδ2h1(
1

δ2
, μ)2‖(−A)

1
2 u‖2L2 , δ ∈ (0, 1] .

(4.29)

Hence we shall prove (4.29) by contradiction argument. Suppose that (4.29) does not
hold. Then there exist {δn, μn}n∈N, δn ∈ (0, 1],μn ∈ (− 1

2 ,
1
2 ], and {un} ⊂ D(A) such

that

lim
n→∞ δn = δ∞ ∈ [0, 1] , lim

n→∞ μn = μ∞ ∈ [−1

2
,
1

2
] ,

and

δ2n‖un‖2L2 = 1 , lim
n→∞

(
δ−2
n ‖(μn − 
̂)un‖2L2 + δ2nh1(

1

δ2n
, μn)

2‖(−A)
1
2 un‖2L2

)
= 0 .

(4.30)

We set

fn = δ−1
n (μn − 
̂)un , vn = Z∗Zun , (4.31)

By the definition of h21, we see

δ6n |(μn)+|3‖(−A)
1
2 un‖2L2 ≤ Cδ2nh1

(
1

δ2n
, μn

)2

‖(−A)
1
2 un‖2L2 → 0 (n → ∞) .

(4.32)

Hence, (4.12) implies that

lim
n→∞

(
δn‖Mρ′un‖L2 + ‖Zun‖L2 + ‖Z∗Zun‖L2

)
= 0 . (4.33)

If 1
δ2n

≤ 1
10|μn | , then we see h1( 1

δ2n
, μn) = δn and

δn‖un‖L2([ 1
2δn

,∞)) ≤ Cδ2n‖run‖L2 ≤ Cδnh1(
1

δ2n
, μn)‖(−A)

1
2 un‖L2 ,
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while from un = vn+δn fn
μn−ρ

and 1
2δn

≤ rn
2 ,

δn‖un‖L2([0, 1
2δn

]) ≤ δn‖ vn

μn − ρ
‖L2([0, 1

2δn
]) + δn‖ δn fn

μn − ρ
‖L2([0, 1

2δn
])

≤ Cδn‖(1 + r)2vn‖L2 + δn‖ 1

μn − ρ
‖L∞([0, 1

2δn
])‖δn fn‖L2

≤ Cδn‖(1 + r)2vn‖L2 + Cδn · δ−2
n ‖δn fn‖L2

≤ Cδn‖Zun‖L2 + C‖ fn‖L2 .

Thus, we conclude when 1
δ2n

≤ 1
10|μn | ,

δn‖un‖L2 ≤ Cδnh1

(
1

δ2n
, μn

)
‖(−A)

1
2 un‖L2 + Cδn‖Zun‖L2 + C‖ fn‖L2 . (4.34)

If μn > 0 and 1
10μn

≤ 1
δ2n

≤ 1
μ2
n
, then rn < ∞ and we see h1( 1

δ2n
, μn) = μ

1
2
n and

δn‖un‖L2([ rn2 ,∞)) ≤ Cδn

rn
‖run‖L2 ≤ Cδnμ

1
2
n ‖(−A)

1
2 un‖L2

≤ Cδnh1(
1

δ2n
, μn)‖(−A)

1
2 un‖L2 ,

while from un = vn+δn fn
μn−ρ

,

δn‖un‖L2([0, rn2 ]) ≤ δn

∥∥∥∥ vn

μn − ρ

∥∥∥∥
L2([0, rn2 ])

+ δn

∥∥∥∥ δn fn
μn − ρ

∥∥∥∥
L2([0, rn2 ])

≤ Cδn‖(1 + r)2vn‖L2 + δn‖ 1

μn − ρ
‖L∞([0, rn2 ])‖δn fn‖L2

≤ Cδn‖(1 + r)2vn‖L2 + Cδn · r2n‖δn fn‖L2

≤ Cδn‖Zun‖L2 + Cδ2n

μn
‖ fn‖L2 .

Thus, we conclude when μn > 0 and 1
10μn

≤ 1
δ2n

≤ 1
μ2
n
,

δn‖un‖L2 ≤ Cδnh1(
1

δ2n
, μn)‖(−A)

1
2 un‖L2 + Cδn‖Zun‖L2 + C‖ fn‖L2 . (4.35)
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Next we consider the caseμn > 0 and 1
δ2n

≥ 1
μ2
n
. In this case rn < ∞ and h1( 1

δ2n
, μn) =

δ2n

μ
3
2
n

. We observe that

δ2n

∫ rn+ δ2n

μ

3
2
n

rn− δ2n

μ

3
2
n

u2n dr ≤ Cδ4n

μ
3
2
n

‖un‖2L∞ ≤ Cδ4n

μ
3
2
n

‖∂r un‖L2‖un‖L2 ≤ Cδ3n

μ
3
2
n

‖(−A)
1
2 un‖L2

≤ Cδnh1(
1

δ2n
, μn)‖(−A)

1
2 un‖L2 .

On the other hand, we have from un = vn+δn fn
μn−ρ

,

δn‖un‖
L2

([
rn− δ2n

μ
3/2
n

, rn+ δ2n

μ
3/2
n

]c) ≤ δn

∥∥∥∥ vn

μn − ρ

∥∥∥∥
L2

([
rn− δ2n

μ
3/2
n

, rn+ δ2n

μ
3/2
n

]c)

+ δn

∥∥∥∥ δn fn
μn − ρ

∥∥∥∥
L2

([
rn− δ2n

μ
3/2
n

, rn+ δ2n

μ
3/2
n

]c)

≤ δn

∥∥∥∥ ρ′

μn − ρ

∥∥∥∥
L2

([
rn− δ2n

μ
3/2
n

, rn+ δ2n

μ
3/2
n

]c) ‖M 1
ρ′ vn‖L∞

+ δn

∥∥∥∥ 1

μn − ρ

∥∥∥∥
L∞

([
rn− δ2n

μ
3/2
n

, rn+ δ2n

μ
3/2
n

]c) ‖δn fn‖L2

≤ Cδn · μ
4
3
n

δn
‖Zun‖L2 + Cδn · (1 + rn)

3μ
3
2
n

δ2n
‖δn fn‖L2

≤ C‖Zun‖L2 + C‖ fn‖L2 .

Here we have used the fact that r3nμ
3
2
n ≤ C since rn ≈ μ

− 1
2

n for 0 < μn � 1. Thus,
we have when 1

δ2n
≥ 1

μ2
n
,

δn‖un‖L2 ≤ Cδnh1(
1

δ2n
, μn)‖(−A)

1
2 un‖L2 + C‖Zun‖L2 + C‖ fn‖L2 . (4.36)

Collecting (4.34), (4.35), and (4.36), we obtain by applying (4.14) and (4.33),

lim
n→∞ δn‖un‖L2 = 0 .

This contradicts with the normalized condition (4.30). The proof of (4.13) is complete.
��

The analysis of the case |μ| ≥ 1
2 is similar to the case of the Kolmogorov flow.

First we observe that
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Lemma 4.4 There exist κ ∈ (0, 1) and C > 0 such that the following statements hold
for all δ ∈ (0, 1]. If μ ∈ R satisfies 1 − κδ2 ≤ μ ≤ 1 + κδ2 then

δ2‖u‖2L2 + ‖Mρ′u‖2L2 ≤ C
(
δ−2‖(μ − 
̂)u‖2L2 + δ4‖(−A)

1
2 u‖2L2

)
, u ∈ D(A) ,

(4.37)

while if μ > 1 then

(μ − 1)2‖u‖2L2 + (μ − 1)‖Mρ′u‖2L2 ≤ C‖(μ − 
̂)u‖2L2 , u ∈ D(A) . (4.38)

Moreover, if μ < 0 then

μ2‖u‖2L2 + ‖Mρ′u‖2L2 ≤ C‖(μ − 
̂)u‖2L2 , u ∈ D(A) ∩ Y . (4.39)

Proof The bounds ‖u‖L2 ≤ 1
μ−1‖(μ − 
̂)u‖L2 when μ > 1 and ‖u‖L2 ≤ 1

|μ| ‖(μ −

̂)u‖L2 when μ < 0, stated in (4.37) and (4.38) respectively, is a direct consequence
of the fact that 
̂ is a self-adjoint operator in L2(R+)with the spectrum σ(
̂) = [0, 1].
Then (4.39) is proved, for the desired estimate of ‖Mρ′u‖L2 in the case μ ∈ [− 1

2 , 0]
is already shown in Lemma 4.3, while the estimate for the case μ ≤ − 1

2 follows from

the estimate of ‖u‖L2 . To show the other estimates we set f = (μ − 
̂)u. Then we
have

∫ ∞

0
(1 − ρ)|u|2 dr + ‖Zu‖2L2 = (1 − μ)‖u‖2L2 + 〈 f , u〉L2 . (4.40)

Since there exists C0 > 0 such that (ρ′)2 ≤ C0(1 − ρ) in [0,∞), (4.40) implies

‖Mρ′u‖2L2 ≤ C0

∫ ∞

0
(1 − ρ)|u|2 dr ≤ C(1 − μ)‖u‖2L2 + C〈 f , u〉L2 . (4.41)

This proves (4.38) for the case μ > 1. Moreover, if μ ≥ 1 − κδ2 then (4.41) gives
‖Mρ′u‖2

L2 ≤ Cδ2‖u‖2
L2 + Cδ−2‖ f ‖2

L2 , and thus, it suffices to consider the estimate

of ‖u‖2
L2 for small enoughδ to complete the proof of (4.37). We see

∫ ∞

0
(1 − ρ)|u|2 dr ≥

∫ ∞

δ

(1 − ρ)|u|2 dr ≥ δ2

C

∫ ∞

δ

|u|2 dr

≥ δ2

C

(‖u‖2L2 −
∫ δ

0
|u|2 dr

)

≥ δ2

C

(‖u‖2L2 − Cδ‖u‖2L∞
)
.
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This gives from (4.40), by taking κ > 0 small enough,

δ2‖u‖2L2 ≤ Cκδ2‖u‖2L2 + C‖ f ‖L2‖u‖L2 + Cδ3‖u‖2L∞

≤ Cδ−2‖ f ‖2L2 + Cδ4‖(−A)
1
2 u‖2L2 .

Estimate (4.37) is proved. The proof is complete. ��
The proof of the following lemma is very parallel to the proof of Lemma 3.8.

Lemma 4.5 Let κ ∈ (0, 1) be the number in Lemma 4.4. There exists C > 0 such that
if δ ∈ (0, 1], and μ ∈ R with 1

2 ≤ μ < 1 − κδ2, then

δ2‖u‖2L2 + ‖Zu‖2L2 + 1

1 − μ
‖Z∗Zu‖2L2

≤ C

(
δ−2‖(μ − 
̂)u‖2L2 + δ6

1 − μ
‖(−A)

1
2 u‖2L2

)
, u ∈ D(A) , (4.42)

and

‖Mρ′u‖2L2 ≤ C

(
δ−2‖(μ − 
̂)u‖2L2 + δ2(1 − μ) ‖(−A)

1
2 u‖2L2

)
, u ∈ D(A) .

(4.43)

Proof of (4.42) We only state the outline of the proof, for the argument is parallel to the
proof of Lemma 3.8. Suppose that (4.42) does not hold. Then there exist {δn, μn}n∈N,
δn ∈ (0, 1], μn ∈ [ 12 , 1 − κδ2n), and {un} ⊂ D(A) such that

lim
n→∞ δn = δ∞ ∈ [0, 1] , lim

n→∞ μn = μ∞ ∈
[
1

2
, 1 − κδ2∞

]
,

and

δ2n‖un‖2L2 + ‖Zun‖2L2 + 1

1 − μn
‖Z∗Zun‖2L2 = 1 ,

lim
n→∞

(
δ−2
n ‖(μn − 
̂)un‖2L2 + δ6n

1 − μn
‖(−A)

1
2 un‖2L2

)
= 0 .

(4.44)

Set

fn = δ−1
n (μn − 
̂)un , vn = Z∗Zun , rn = ρ−1(μn) ∈ (0, 10) , (4.45)

and then vn satisfies

(μn − Mρ)W ∗Wvn = vn + δn fn . (4.46)
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Note that

vn(rn) + δn fn(rn) = 0 (4.47)

holds. We may assume that δ∞ = 0 (otherwise the contradiction is easily achieved).
We may also assume from (4.44) that vn converges to a limit v∞ strongly in L2(R+)

and W ∗vn converges to W ∗v∞ weakly in L2(R+). The direct computation implies
that

1

C |1 − μn| 12
≤ |ρ′(rn)| ≤ C

|1 − μn| 12
, (4.48)

for ρ′(r) < 0 and ρ′(r) ≈ − r
4 near r = 0. As in the proof of Lemma 3.8, we can

show the following claims.

Step 1: lim
n→∞ δn‖un‖L2 = 0. Step 2: lim

n→∞
vn(rn)

|ρ′(rn)| 12
= lim

n→∞
δn fn(rn)

|ρ′(rn)| 12
= 0.

Step 3: lim
n→∞

‖vn‖L2([rn ,∞))

|ρ′(rn)| = 0. Step 4: Estimate of ‖W ∗vn‖L2 .

Recall that W ∗vn = Zun . In Step 4 we verify the estimates

lim sup
n→∞

‖W ∗vn‖L2 ≤ C

κ4
lim sup
n→∞

‖vn‖L2([0,rn ])
|ρ′(rn)| + Cκ

1
2
4 (4.49)

for any sufficiently small κ4 > 0, and we can also show when 1
2 ≤ μ∞ < 1,

|〈W ∗v∞,W ∗ϕ〉L2

∣∣ ≤ C‖ϕ‖L2 , ϕ ∈ D(W ∗) , (4.50)

The details of the proof of the above steps are omitted here. In virtue of (4.49),

Step 1, and Step 3 we may assume that infn
‖vn‖L2([0,rn ])

|ρ′(rn)| > 0 (by taking a suitable

subsequence if necessary), otherwise we achieve the contradiction to the normalized
condition (4.44). If 1

2 ≤ μ∞ < 1 then the limit v∞ is nontrivial, and (4.50) implies
that W ∗v∞ ∈ D(W ), that is, u∞ = WW ∗v∞ ∈ L2(R+) is an eigenfunction to the
eigenvalueμ∞ of 
̂ in L2(R+), which contradicts with the absence of the eigenvalues
in [ 12 , 1]. It remains to consider the case μ∞ = 1, for which we need a rescaling
process. Set

wn(s) = 1

|1 − μn| 14
vn(|1 − μn| 12 s) , s ∈ [0, 10] , sn = rn

|1 − μn| 12
.

Then we have

‖∂swn‖2L2([0,10]) + ‖wn‖2L2([0,10]) ≤ ‖∂rvn‖2L2 + ‖vn‖2L2

1 − μn
≤ 1 ,

inf
n

‖wn‖2L2([0,cn ]) = inf
n

‖vn‖2L2([0,rn ])
1 − μn

> 0 .

(4.51)
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Hence we may assume that wn converges to a limit w∞ weakly in H1([0, 10]) and
strongly in L2([0, 10]). The lower bound in (4.51) implies that w∞ is nontrivial.
Since ρ(r) = 1 + 1

2 (− r2
4 ) + 1

6 (− r2
4 )2 + · · · , we have from μn = ρ(rn) that 1 − μn

= r2n
8

(
1 − r2n

12 + O(r4n )
)
for 0 < 1 − μn � 1, which gives

rn = 2
√
2(1 − μn)

1
2
(
1 + O(r2n )

)
,

and hence,

sn = 2
√
2
(
1 + O(r2n )

) → 2
√
2 (n → ∞) . (4.52)

By Step 2 and Step 3 we also have

w∞(s) = 0 s ∈ [2√2, 10] . (4.53)

To obtain the equation for w∞ we observe that

WW ∗vn = − 1

gr
3
2

d

dr

(
r3

d

dr

( vn

gr
3
2

))
= − 1

g2

(
v′′
n + r

2
v′
n +

( r2
16

+ 1

4
− 3

4r2

)
vn

)
.

Hence, (μn − ρ(r))WW ∗vn = vn + δn fn is written as

(
1 − μn − r2

8
+ O(r4)

)(
v′′
n + r

2
v′
n +

( r2
16

+ 1

4
− 3

4r2

)
vn

)
= g2

(
vn + δn fn

)

and then, vn(r) = |1 − μn| 14 wn(
r

|1−μn |
1
2
) shows

(
1 − s2

8
+ qn(s)

)(
w′′
n(s) + |1 − μn|s

2
w′
n +

(
− 3

4s2
+ pn(s)

)
wn

)

= (
1 + bn(s)

)
(wn + f̃n) , (4.54)

where 1− s2n
8 +qn(sn) = 0, lim

n→∞
(‖qn‖C1([0,10])+‖pn‖C1([0,10])+‖bn‖C1([0,10])

) = 0,

and

f̃n = δn

|1 − μn| 14
fn(|1 − μn| 12 s) , (4.55)

which satisfies

‖ f̃n‖L2([0,10]) ≤ δn

|1 − μn| 12
‖ fn‖L2 → 0 (n → ∞) . (4.56)
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Let κ5 > 0 be fixed but arbitrary small number. Then, by arguing as Step 6 in the proof
of Lemma 3.8, we can show

∣∣〈∂sw∞, ∂sϕ〉L2([κ5,10])
∣∣ ≤ Cκ5‖ϕ‖L2([κ5,10]) , ϕ ∈ C∞

0 ((κ5, 10)) . (4.57)

Here Cκ5 depends only on κ5. This implies w∞ ∈ H2((κ5, 10)). Since κ5 > 0 is
arbitrary, we conclude that w∞ ∈ H2

loc((0, 10)) ∩ H1([0, 10]). We can also check
from (4.54) that w∞ satisfies

(1 − s2

8
)
(
w′′∞ − 3

4s2
w∞

) = w∞ , s ∈ (0, 10) \ {2√2} . (4.58)

The regularity w∞ ∈ H2
loc((0, 10)) ∩ H1([0, 10]) with (4.53) yields w∞(2

√
2) =

∂sw∞(2
√
2) = 0, and it is easy to show that any solution to (4.58) in H2

loc((0, 10)) ∩
H1([0, 10]) satisfying the condition w∞(2

√
2) = ∂sw∞(2

√
2) = 0 is trivial. This is

a contradiction. The proof of (4.42) is complete. ��
Proof of (4.43) The argument is parallel to the proof of (3.30) in Lemma 3.8. Suppose
that (4.43) does not hold. Then there exist {δn, μn}n∈N, δn ∈ (0, 1],μn ∈ [ 12 , 1−κδ2n),
and {un} ⊂ D(A) such that

lim
n→∞ δn = δ∞ ∈ [0, 1] , lim

n→∞ μn = μ∞ ∈ [1
2
, 1 − κδ2∞] ,

and

‖Mρ′un‖2L2 = 1 , lim
n→∞

(
δ−2
n ‖(μn − 
̂)un‖2L2 + δ2n(1 − μn)‖(−A)

1
2 un‖2L2

)
= 0 .

(4.59)

Set

fn = δ−1
n (μn − 
̂)un , vn = Z∗Zun , rn = ρ−1(μn) ∈ (0, 10) , (4.60)

and then vn satisfies

(μn − Mρ)W ∗Wvn = vn + δn fn . (4.61)

Note that

vn(rn) + δn fn(rn) = 0 (4.62)

holds. Since δ6n
1−μn

‖(−A)
1
2 un‖2L2 ≤ Cδ2n(1 − μn)‖(−A)

1
2 un‖2L2 → 0 (n → ∞), we

have from (4.42) that

lim
n→∞

(
δ2n‖un‖2L2 + ‖Zun‖2L2 + ‖Z∗Zun‖2L2

) = 0 . (4.63)
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Then, as in (3.90), we can show

lim sup
n→∞

‖Mρ′un‖L2 ≤ C lim sup
n→∞

|vn(rn)|
δ
1
2
n

.

The fact lim sup
n→∞

|vn(rn)|
δ
1
2
n

= 0 is proved in the samemanner as in the case ofLemma3.8,

by investigating δn fn(rn) (here, recall (4.62)). We omit the details. The proof is com-
plete. ��

Let κ ∈ (0, 1) be the number in Lemma 4.4. Taking (4.11) into account, we refine
h1(m, μ)2 for m ≥ 100 and μ ∈ R as follows.

h21(m, μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , μ > 1 + κ

m
,

1

m
, 1 − κ

m
< μ ≤ 1 + κ

m
,

1

m2(1 − μ)
,

1

2
< μ ≤ 1 − κ

m
,

1

m2μ3

1

m
1
2

< μ ≤ 1

2
,

μ
1

10m
< μ ≤ 1

m
1
2

,

1

m
− 1

10m
≤ μ ≤ 1

10m
,

0 , μ < − 1

10m
.

(4.64)

We also define h2(m, μ)2 for m ≥ 100 and μ ∈ R as

h22(m, μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , μ > 1 + κ

m2 ,

1

m4 , 1 − κ

m2 < μ ≤ 1 + κ

m2 ,

1 − μ

m2 ,
1

2
< μ ≤ 1 − κ

m2 ,

μ3

m2 0 < μ ≤ 1

2
,

0 , μ ≤ 0 .

(4.65)

Note that lim
m→∞ sup

μ∈R
h j (m, μ) = 0 holds. Lemmas 4.3, 4.4, and 4.5 yield

Proposition 4.6 Let m ≥ 100 and μ ∈ R. Let h j (m, μ), j = 1, 2, be the nonneg-
ative function defined by (4.64) and (4.65). Then there exists a positive constant C
independent of m and μ such that for any u ∈ D(A) ∩ Y ,
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‖u‖2L2 ≤ Cm2‖(μ − 
̂)u‖2L2 + Ch21(m, μ)‖(−A)
1
2 u‖2L2 (4.66)

‖Mρ′u‖2L2 ≤ Cm2‖(μ − 
̂)u‖2L2 + Ch22(m, μ)‖(−A)
1
2 u‖2L2 . (4.67)

To obtain the resolvent estimate by applying Theorem 2.9 we need to evaluate the
function

F(α,
λ

α
) = inf

m1,m2≥100

(m1

|α| + m2
1m

2
2

α2 + m2
1h2(m2,

λ
α
)

|α| + h21(m1,
λ

α
)
)

.

Set μ = λ
α
.

Case 1: μ > 1 + κ

|α| 12
. Take m1 = m2

2 = 2κ
μ−1 , for which 1 + κ

m1
= 1 +

κ

m2
2

= 1 + μ−1
2 < μ holds. Then h1(m1, μ)2 = h2(m2, μ)2 = 0 and we have

F(α, μ) ≤ C
|α|(μ−1) .

Case 2: 1 − κ

|α| 12
< μ ≤ 1 + κ

|α| 12
. Take m1 = m2

2 = |α| 12 , for which 1 + κ
m1

=
1 + κ

m2
2

= 1 + κ

|α| 12
≥ μ > 1 − κ

m1
= 1 − κ

m2
2
holds. Then h1(m1, μ)2 = 1

m1
and

h2(m2, μ)2 = 1
m4
2
, which gives F(α, μ) ≤ C

|α| 12
.

Case 3: 1
2 < μ ≤ 1 − κ

|α| 12
. Take m1 = (

|α|
1−μ

)
1
3 and m2 = κ− 1

3
(|α|(1 − μ)

1
2
) 1
3 ,

for which κ
m1

= κ(1−μ)
1
3

|α| 13
= ( κ

|α| 12
)
2
3 κ

1
3 (1 − μ)

1
3 ≤ κ

1
3 (1 − μ) < 1 − μ, and

κ

m2
2

= κ
4
3

|α| 23 (1−μ)
1
3

= ( κ

|α| 12
)
4
3 1

(1−μ)
1
3

≤ 1 − μ. Then h1(m1, μ)2 = 1
m2
1(1−μ)

and

h2(m2, μ)2 = 1−μ

m2
2
, which gives F(α, μ) ≤ C

|α| 23 (1−μ)
1
3
.

Case 4: 1

|α| 13
< μ ≤ 1

2 . Take m1 = |α| 13
μ

and m2 = |α| 13 μ 1
2 , for which

1

m
1
2
1

= μ
1
2

|α| 16
< μ. Then h1(m1, μ)2 = 1

m2
1μ

3 and h2(m2, μ)2 = μ3

m3
2
, which gives

F(α, μ) ≤ C

|α| 23 μ
.

Case 5: 1

|α| 12
< μ ≤ 1

|α| 13
. Take m1 = |α|μ and m2 = |α| 13 μ 1

2 , for which

1
10m1

= 1
10|α|μ <

μ
10 < μ. Then h1(m1, μ)2 = μ and h2(m2, μ)2 = μ3

m2
2
, which

gives F(α, μ) ≤ Cμ.

Case 6: − 1

|α| 12
< μ ≤ 1

|α| 12
. Take m1 = |α| 12

10 and m2 = |α| 13 |μ| 12 , for which
|μ| ≤ 1

|α| 12
= 1

10m1
. Then h1(m1, μ)2 = 1

m1
and h2(m2, μ) ≤ |μ|3

m2
2
, which gives

F(α, μ) ≤ C

|α| 12
.
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Case7:μ ≤ − 1

|α| 12
. Takem1 = 1

|μ| andm2 = 100, forwhichμ = −|μ| = − 1
m1

<

− 1
10m1

. Then h1(m1, μ)2 = h2(m2, μ)2 = 0, which gives F(α, μ) ≤ C
|α| |μ| .

Summarizing these above, we obtain

Theorem 4.7 The exist positive numbers C and α0 such that the following resolvent
estimate holds for all λ ∈ R and for all α with |α| ≥ α0.

‖(iλ + Lα)−1‖Y→Y ≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

|α|( λ
α

− 1)
if

λ

α
> 1 + 1

|α| 12
,

1

|α| 12
if 1 − 1

|α| 12
<

λ

α
≤ 1 + 1

|α| 12
,

1

|α| 23 (1 − | λ
α
|) 1

3

if
1

2
<

λ

|α| ≤ 1 − 1

|α| 12
,

1

|α| 23 λ
α

if
1

|α| 13
<

λ

α
≤ 1

2
,

λ

α
if

1

|α| 12
<

λ

α
≤ 1

|α| 13
,

1

|α| 12
if − 1

|α| 12
<

λ

α
≤ 1

|α| 12
,

1

|λ| if
λ

α
≤ − 1

|α| 12
.

(4.68)

In particular, we have sup
λ∈R

‖(iλ + Lα)−1‖Y→Y ≤ C

|α| 13
.

The bound sup
λ∈R

‖(iλ + Lα)−1‖Y→Y ≤ C

|α| 13
is firstly shown in [17] by constructing

the wave operator, and in [17] the optimality of the rate O(|α|− 1
3 ) is also proved.

Theorem 4.7 gives a different proof of their result without using the wave operator.
Although (4.68) looks complicated, the dependence on α in each regime is compatible
with the optimal result [11] for the case when 
̂ does not contain a nonlocal part. We

note that the rate O(|α|− 1
3 ) appears in the regime λ

α
∼ O(|α|− 1

3 ) and is related to the
behavior of ρ(r) ≈ 4

r2
for r � 1.
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