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Abstract

We study the stability of the Kolmogorov flows which are stationary solutions to the
two-dimensional Navier—Stokes equations in the presence of the shear external force.
We establish the linear stability estimate when the viscosity coefficient v is sufficiently
small, where the enhanced dissipation is rigorously verified in the time scale O(v’%)
for solutions to the linearized problem, which has been numerically conjectured and is
much shorter than the usual viscous time scale O (v~"). Our approach is based on the
detailed analysis for the resolvent problem. We also provide the abstract framework
which is applicable to the resolvent estimate for the Kolmogorov flows.
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1 Introduction

For nearly-inviscid fluids, turbulent phenomena often occur at transient time scales
that are much smaller than the viscous time scale. Describing the fluid, by means of
simple solutions, for such long transient times helps to understand turbulence. This
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is of course of great interest both physically and mathematically. But finding such
solutions and estimating their basin of attraction are in general not easy tasks both
experimentally and theoretically. To investigate this phenomena let us consider the
two dimensional incompressible Navier—Stokes equations in the domain M = T? or
M = R?,

U+ U -VYU+VP =vAU + F, t>0, (x,y)eM. (1.1

Here U = (U, Uz) : M? x (0,00) — RZ is the velocity field of a fluid, P :
M2 x (0, 00) — R is the pressure field, and v > 0 is the viscosity coefficient. The
vector field F describes a given external force. Setting the vorticity Q2 as Q =rot U =
0x Uz — dyU1, one can rewrite (1.1) in the vorticity form

»Q+ (U -V)Q = vAQ +r0t F. (1.2)

Recall that the velocity field can be formally recovered from its vorticity using the
Biot—Savart law:
U=Kps*xQ. (1.3)
Here the kernel K gg is given by Kps(x, y) = ﬁ ;Jyr;‘z) when M = R2, and * denotes
the convolution with respect to the spatial variables. In the sequel, we will review two
important examples of solutions to (1.2), the Kolmogorov flow and the Lamb—Oseen
vortex, and explain how the study of their stability is related to spectral problems for
non-self adjoint operators.
The Kolmogorov flow, which is the main object of this paper, is an explicit stationary
solution to (1.1) with a shear sourcing term F = (avsiny, 0), a € R, and is given by

U%(x,y) =a(siny,0), Q%x,y) = —acosy. (1.4)

By Iudovich [15] these solutions are known to be globally stable for initial pertur-
bations in Sobolev class with zero mean condition for the streamfunctions; see also
Marchioro [21]. By changing the length of the periodicity (e.g., for x) the detailed
bifurcation analysis has also been done, and there are a lot of important works in this
direction; see, for example, [1,15,22,24,25,30]. As a closely related subject of this
paper, there are also explicit solutions having the similar forms to (1.4) when F = 0,
but instead, the initial data is chosen as in (1.4). Indeed, in this case one can check
that U%(x, y, 1) = ae "' (sin y, 0) solves (1.1) with F = 0. These solutions describe
a quasi-steady state of the fluid, and are exact steady solutions to the Euler equations
when v = 0. These quasi-steady solutions are known as “bar-states” or also as the Kol-
mogorov flows, and they qualitatively match the maximum entropy solutions found
in [7,23,31]. Both numerical and experimental evidences [31] claim that solutions to
(1.1) rapidly approach bar-states on time scale (’)(\/L;) for high Reynolds number. Note

that the time scale O(ﬁ) is much shorter than the scale O(%) which is the scale for

the linear Stokes equation (and thus, heat equation in this problem) with the viscosity
V.
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The aim of this paper is to study this enhanced dissipation in view of the stability
analysis of the steady Kolmogorov flows (1.4). Expanding solutions to (1.2) around
(1.4) yields

0;w = L"“w + nonlinear term (1.5)

where we have set Q@ = Q¢ + o, and the linearized operator £L” is given by
LY = vAw —asiny d,(I + A Dw. (1.6)

We note that the linearized operator around the bar-state has the similar form but
becomes time-dependent as

LYo =vAw —ae V' siny dc(I + A DHw. (1.7)

Showing that the solution w to (1.5) decays rapidly within a nontrivial time scale
tK o0 (%) is a challenging mathematical problem, even in the linear case. In studying
the flows generated by (1.6) or (1.7) the main difficulty comes from the presence of
the non-local term in these linearized operators. In [2], Beck and Wayne proved the
stability and enhanced dissipation of the bar-states for the model linear problem by
removing the nonlocal term A~! from (1.7). Their method is based on hypocoercivity
arguments developed by Villani [26], and provide the decay in the time scale (’)(\%)

for solutions to the model linear problem in a suitable invariant subspace. However,
it is not clear how to extend their argument in the presence of the nonlocal term
A~L. Moreover, beside the nonlocality, the presence of A~lin (1.6) or (1.7) leads
to an additional difficulty in view of the symmetry of the operator. Indeed, although
the operator sin yd; is antisymmetric in the standard L? space, sin yd, (I + A™1) is
not. Very recently, the full evolution operator (1.7) and the corresponding nonlinear
problem were studied in details by Lin and Xu [19], and the enhanced dissipation
is verified at some time scale 0(%) for Quw, called the non-shear part of the solution
 in [19], where Q is the projection to the orthogonal complement of the kernel of
—sinyd, (I + A‘l) in L2, The core idea in [19] is to use the Hamiltonian structure
of the operator — sin yd, (I + A~") = JL with J = —sin yd, and L = I + A~ that
naturally leads to the use of the weighted L? space (L-, -);2 in which JL becomes
antisymmetric. Then one can apply the RAGE Theorem for the estimate of the group
'L and the argument of Constantin et al. [8], see also Zlatok [32], which study the
enhanced dissipation for the advection-diffusion equations. Note that the inner product
(L-, -) ;2 was a key tool also in obtaining the global stability of the Kolmogorov flows
with arbitrary amplitude a; cf. [15].

The argument and the result of [19] are verified without any change also for the
stability problem of the steady Kolmogorov flows (1.5)—(1.6). However, for a deeper
quantitative point of view, the spectral property of £"“ requires a further study. Indeed,

the argument in [19] provides little information on the required smallness of v to
IQw (/)2
O, 2

the linear solution w(r) = ¢'£"“w(0). In particular, the question whether or not the

achieve the smallness of , which depends on ¢ in an implicit way, even for
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B
smallness of % holds for some 8 € (0, 1), as solved in [2] with 8 = % for
L

the model problem to (1.7), has been a challenging problem; see Remark 1.2 below.

In this paper we will establish some resolvent estimate on the imaginary axis of the
resolvent parameters for the linearization (1.6) around the steady Kolmogorov flows.
Our resolvent estimate is related to the pseudospectrum as in the work by Gallagher,
Gallay, and Nier [11] of the spectral analysis for large skew-symmetric perturbations
of the Harmonic oscillator. As a main result, we will verify the enhanced dissipation
in a time scale O(ﬁ) for the linear flow e’ Lma)o; see (1.10) below. In particular,
our result gives an affirmative answer to the problem numerically conjectured in [2].
We expect that the similar enhanced dissipation will be true also for the linear flow
generated by the evolution operator £”¢(t) in (1.7), which is still under investigation
due to an obstacle from the time dependence of the operator. The nonlinear problem
(1.5) can also be handled based on the linear estimates of this paper, but here we focus
only on the linear problem.

By rescaling time as 7 — vt, one can rewrite the evolution problem 9,0 = L"%w
as, by relabeling the variable and the unknown again as ¢ and w respectively,

dow = Ao — Lsinya, (I + A . (1.8)
Vv

This problem is viewed in the more abstract form
0w = (A —alNw, (1.9)

where o > 0 is a large positive parameter, A is a dissipative operator, and A has a
Hamiltonian structure. It will be worthwhile investigating the spectral property for
such operators in the abstract level, which is handled in Section 2. The problem (1.8)
for the Kolmogorov flows is discussed in Section 3, and we will show the key estimate
for the resolvent with a rate on @ = % (Theorem 3.11), and then for the semigroup
(Theorem 3.12). In the original variables, our result in particular provides the bound
for the semigroup e’ L™ such as

v,a N 1
1Qe™™" woll ;2 < Ce V! |Qapll 2, ¢ > = (1.10)

see Corollary 3.14. Here C and c are positive constants independent of ¢, a, wg, and
sufficiently small v > 0. This implies the enhanced dissipation in the time scale

O(v’%) for 0 < v « 1, that is much shorter than 0(%) and provides a decay of

1Qw(t/vA)ll, 2

_ l . .
T O, 2 for B = 5 in the linear problem.

Remark 1.1 It should be emphasized that the semigroup estimate (1.10) is in fact new
even for the model problem considered by [2] in which the nonlocal operator A~ is
dropped, though our result does not handle the time-dependent operator as in (1.7).
More precisely, the argument used in [2] provides the semigroup bound of the model
problem in a weighted H' space whose norm has a dependence in v. In particular, the
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. . . _1 . -
norm introduced in [2] involves the term v™ 4 || Mcos y f || 2, in addition to the usual L?
norm. As a result, the estimate obtained in [2] shows that || Mcos yw (1) ]| 2 becomes

small in a time scale O(U_%) for the model problem, while in order to achieve the
dissipation in the usual L? norm it seems that one needs to take a slightly longer
time scale, e.g., O (v_% | log v|). Our result (1.10) gives the dissipation in the L? norm

exactly in a time scale O (v_%). Our proof is based on the detailed resolvent analysis
and is very different from the approach in [2].

Next let us briefly mention a topic which is closely related to the present work as
another example of (1.9): the asymptotic stability problem of the Lamb—Oseen vortex.
By working on M = R?, it is known that there exists a family of self-similar solutions
to the vorticity equation (1.2) given by

y X Y oo ¥
Q. y. =G and U(x,y, 1) = —VOG(—, =),
(.0 (ff) (”m<wm)
(1.11)
where the profiles are G(£) = f-e /4 and VG (&) = L |s|2(1 e~ IEP/4) The

constant y = fRZ Q(x,y,t) dxdy is the circulation at infinity of the flow. By the
significant work of Gallay and Wayne [14] it is known that this solution is the only
forward self-similar solution to (1.1) in R? with an integrable vorticity. This solution
is called the Lamb—Oseen vortex. It is well known that, through a suitable similarity
transformation, the asymptotic stability of the Lamb—Oseen vortex is equivalent with
the two dimensional stability of the Burgers vortex, which is a stationary solution to
the three dimensional Navier—Stokes equations in the presence of the axisymmeric
linear strain. The reader is referred to a recent review article [13] by Gallay and the
second author of this paper about the research on the stability of the Burgers vortex.
The two dimensional linearized problem for the Burgers vortex with circulation « is
given by

dew=(L—-—aNw, T>0, £cR?, (1.12)

where Lo = Aw + 15 Vo + o, and Aw = (VO - V)w + (Kgs * w - V)G. Here A
and V are now about the variables & = (&1, &). In the weighted L? space L2(R?, Gls)

the operator — L is nonnegative self-adjoint with compact resolvent, and A becomes
antisymmetric as proved in [14]. Hence the linear analysis falls into the analysis of the
operator of the form (1.9). In the space L2(R?, G~'d¢) with zero mass condition, we
have —L > %, and thus, the antisymmetry of A provides % spectral gap for £ — a A
for any «. This yields the linear stability with a uniform estimate in «. However,
this simple argument does not provide further informations for the fast rotation case
|| > 1, at the time when numerical and experimental evidence suggest that the basin
of attraction should be «-dependent, at least “away” from the kernel of the operator A.
In [20] the second author of this paper verifies a behavior of the pseudospectral bound
but without the information on the rate about ««. On the other hand, in [11] and Deng
[9] simplified model operators are studied in details, where the main simplification is
dropping the nonlocal term (K ps * w, V)G, and the optimal dependence on « of the
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pseudospectral bound that decays like || 3 is obtained for these model operators. The
same result is proved for the full linearized operator £ — oA in Deng [10] but in a
smaller subspace than the orthogonal complement of Ker A. Very recently, Li et al.
[17] gave a sharp pseudospectral bound as well as the spectral bound of L — A in the
orthogonal complement of Ker A, and this result is applied to the nonlinear problem
by Gallay [12].

Remark 1.2 In Li et al. [17] the key elegant idea is to introduce the wave operator
which converts the original skew-symmetric operator A, containing a nonlocal term
that leads to an essential difficulty, into a skew-symmetric operator for which the
nonlocal operator is removed and hence the approach of [11] is applied. As announced
in [17], it is recently shown by Wei, Zhang, and Zhao [28] (see also Li et al. [18] for
3D problem) that this approach for the Lamb—Oseen operator can be applied also for
the estimate of the enhanced dissipation around the Kolmogorov flows and the optimal
enhanced dissipation as in (1.10) is obtained together with the algebraic dissipation

in the time scale 0(1)_%) for the velocity field. We note that our approach for (1.10)
or Theorem 1.3 below is different and independent of [17,28], and in particular, does
not rely on the construction of the wave operator.

To summarize, the above two examples of the Kolmogorov flows and the Lamb—
Oseen vortex show that to measure the basin of attraction, it is important to obtain a
pseudospectral bound as sharp as possible for the operator in the abstract form given
in (1.9). We also note that the enhanced dissipation is one of the important subjects
in fluid mechanics, and recently, significant progress has been achieved around some
class of simple flows such as the Couette flow; see, e.g., [3-6].

This paper consists of two parts. The first one is an abstract result, in which the
spectral properties of some class of non self-adjoint operators are established. The
other one is the application of the abstract result to the linearized operator for the
Kolmogorov flows. As for the abstract part, we consider the operator in a Hilbert
space X of the form

Ly =A—aA, (1.13)
where —A is positive self-adjoint with compact resolvent, « € R, and A is a densely
defined closed linear operator relatively compact to A. For later use we set A by the
relation

A =iA. (1.14)
We denote by Dx (A) the domain of A in X. We are interested in the spectral property

of L, for large |«|. Since the effect of « is absent for functions in Ker A it is natural
to introduce the orthogonal projections

Q:X > Y :=(KerA)", (1.15)

where K - denotes the orthogonal complement space in X for a given closed subspace
K. We are interested in the estimate of QeZe for large «. Since the semigroup e'L«
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is expressed in terms of the resolvent of L, the problem is reduced to the estimate
of Q(ir — Ly)~ ! when i) belongs to the resolvent set of L,. When the invariance
QA C AQ holds, which will be assumed in this paper, the estimate of Q(iA — L) ™!
is reduced to the resolvent analysis of the operator QL in Y, which is realized as

Dy(QLy) = Dy(QA) := Dx(A)NY,

R (1.16)

QLqu = QAu — iaQAu, u € Dy(QLy).
Indeed, we have Q(ix — L)' f = (i — QLy) "' f for f € ¥ when QA C AQ.
In order to obtain the estimate of Qe'’e or ¢/@Le the following quantity plays an
essential role:

—1 —1
Wy (o; QLy) = (sup llGix — @La)—luy%y) = (sup llGix + @La)—lnyﬁy) :

reR reR
(1.17)

The quantity (1.17) was introduced in [11], where the basic pseudospectral property
and the relation with the semigroup estimate are also presented. For convenience we
call (1.17) the pseudospectral bound of QL. In our framework the operator A is not
necessarily antisymmetric, but instead, is assumed to possess a Hamiltonian structure;
see Assumption 2 in Section 2. This structural assumption is of course motivated
by the application to the Kolmogorov flows. There are two theorems in the abstract
part. The first one is a pseudospectral bound without a concrete dependence on «
(Theorem 2.4). The argument in Theorem 2.4 shares some common features with the
argument in [ 19]. While the result of [19] is based on the RAGE theorem, our argument
is much more elementary, though Theorem 2.4 does not necessarily give a stronger
result than [19]. The second result of the abstract part has a concrete dependence on «
(see Theorem 2.9), under additional assumptions on A. The key additional condition
is Assumption 4 which imposes some coercive estimate for p — A with o € R by
allowing a presence of the term yielding a “loss of derivative” but with a small factor in
front. This derivative loss with a small prefactor is controlled by the smoothing effect of
A at the end, and this balance determines the rate in « for the pseudospectral bound. In
Assumption 4 another key condition is imposed on the cross term Im (Au, Au)x, which
is useful in achieving the resolvent estimate with a sharper dependence on «. This type
of condition fits with the case when A is of the form A = —T*T and is related with the
commutator [T, A], and thus, our approach is highly motivated by the work of [11,26].

As an application of the abstract result, we study in Section 3 the rescaled version
of the linear operator (1.6), i.e., the problem (1.8). By taking the Fourier series in x,
the key is to analyze the operator only in the y variable in the space L?(T):

Loy = A —iald;, A= Mgay(I + A",
Here A; = 8y2 % a= %, Mgny f =siny f,and [ € Z\ {0}. The operator f\l has a
nontrivial kernel only when / = =1 which is spanned by the constant functions, and

thus, the projection Q; : L>(T) — L*(T) is defined by
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2

1
Qi f=f for|l| =2, Qlf=f—EO fdy for |l|=1.

The main effort is to check the coercive estimates described in Assumption 4 for ;1 — A
with i € R which is essential to achieve the pseudospectral bound with a rate in «.
We shall verify Assumption 4 by analyzing the ODE corresponding to the operator
@ — A;. The main difficulty here is the presence of the term Al_1 in A;, which makes
the problem nonlocal and also leads to some lack of invariance, namely the fact that
I — (@1)[\1 # 0 when [ = +£1. This loss of invariance is due to the absence of the
symmetry of Ay, and gives rise to an additional nonlocality coming from the projection
Qy. Therefore, we have to deal with two nonlocalities; the one in Al_1 and the one
in Q. For a given ;v € R the point y € T satisfying siny = u is called a critical
point of this problem. The difficulty coming from the nonlocality of AI_1 is significant
when the critical points are degenerate, and this corresponds to the case when |u|
is around 1 in the analysis of u — A;. The core part of the analysis is Lemma 3.8
which deals with this singularity. The key idea is to use a contradiction argument,
which enables us to focus on the functions concentrating around the critical points,
for which the nonlocal term essentially becomes a small order since the operator
Al_1 has a smoothing effect. On the other hand, the influence of the projection @
becomes relevant only when p is close to 0 in the analysis of u — Ay, for I — Qy is the
projection to the kernel of A;. As aresult, these two kinds of difficulty related to Al_l
and to QQ; appear in different parameter regimes of w, and thus we can handle them
separately. After establishing the key coercive bounds of p — Ay, which are stated
in Proposition 3.10, the resolvent estimate for L, is obtained in Theorem 3.11 by
applying the abstract result in Section 2. For convenience, it will be worthwhile stating
our resolvent estimate for the Kolmogorov flow in this introductory section:

Theorem 1.3 There exist C,ag > 0 such that the following statement holds for all
a € Rwith |a| > ag. Let . € Randl € Z \ {0}. Then

C
lal| (| 21 — 1) |a1|
C .
A+ L -1 — < if -
||(l @l a,l) ||Y[ Yy, = |(¥l|% |Oél|1 ol |Oél|
C 1
S ﬁyﬂ<1— :
ld|3(1 — |2 )3 al |l |2

(1.18)
Here Y; = Q;L2(T).

The estimate (1.18) actually gives more detailed information on the spectrum of QL ;
than the pseudospectral bound defined by (1.17), and seems to be considerably sharp
in view of the degeneracy of the critical points. In fact, we observe that the critical

. . . 1
points become degenerate when |il| ~ 1, and (1.18) claims that the rate is O (Jal|™ 2)
around this case. When | 7| is less than 1, the critical points are nondegenerate and

the rate is improved as O (|o/ _?). Note that these rates, O (|l _7) and O (|al _5),
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depending on the degeneracy of the critical points, are compatible with the result in
[11] and hence they are optimal if the nonlocal term Mg, yAfl is dropped from [\1.
Additional remark for the local operator A; — il Mg, y is that, near the critical point
siny ~ u, the operator is modeled by the complex Airy operator 8)2, + iy when p is
away from %1 (nondegenerate case) that is responsible for the exponent 2/3, while it
is modeled by 83 +iy? when u is close to &1 (degenerate case), resulting the exponent
1/2. Finally, if |(%| is larger than 1, the critical points are no longer present, resulting
in the rate O (Joel|™1).

This paper is organized as follows. In Section 2 we discuss the problem in an
abstract framework. Section 3 is devoted to the study of the linearized problem for
the Kolmogorov flows. The main results in Section 3 are Theorem 3.12 and its Corol-
lary 3.14 for the estimate of the semigroup (et £ }t=0. In Section 4 we also consider
the application to the Lamb—Oseen vortices by omitting some details of the proof
since the argument is similar to the case of the Kolmogorov flow. Section 4 provides
alternative approach for the result of [17].

2 Abstract Result

In this section we establish the abstract result in obtaining the resolvent estimate
for the operator (1.13), by taking into account the application to the stability of the
Kolmogorov flows. In fact, to prove the estimate stated in Theorem 1.3 requires a rather
complicated and long argument, and thus, the abstract result is useful in understanding
the basic strategy. First we state the basic assumption on A.

Assumption 1 The operator A : Dx(A) C X — X is self-adjoint in X with compact
resolvent, and — A is positive and satisfies

(—Au,u)x > |ul}, ue Dx(A). (2.1)

Remark 2.1 One can extend the result of this section to more general class of A such that
—A is m-sectorial satisfying the positivity Re(—Au, u)x > ||u||§( + C|Im(Au, u) x|
with compact resolvent, by slightly modifying the assumption on A. But for simplicity
we focus on the case when A is self-adjoint.

Next we state the conditions on the relation between A and A.

Assumption2 (i) Aisa densely defined closed operator and is relatively compact
to —Ain X.
(i) Set Y = (Ker [\)L, the orthogonal complement space of Ker A in X, and let
@Q : X — Y be the orthogonal projection. Then QA C AQ, Dx(A) C Dy (A*),
and there exists a positive constant C such that

|(Au,u)x| + |Im(—Au, Au)x| < C{—Au,u)x, u € Dx(A).

@ Springer
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(iii) There exist closed symmetric operators Bj, B;, and positive constants ¢; and C
such that A = B B;, Ker A = Ker B;, and

1
IBoul} < Cll(—A)zul}, u e Dx(A), (22)
(u, Bou)x > cillull% u e Dx(A)NY, (2.3)
Re(—Au, Bou)x > ci ||(—A)%u||§( ueDx(ANY. 2.4)

Remark 2.2 Assumption 2 (iii) states that A has a property similar to a closed sym-
metric operator. Indeed, if A is closed symmetric then it suffices to take By = A and

B, =Q.
Let us denote by Ran A the range of A, ie, RanA = {f e X|f
Ag forsome g € Dyx(A)}.
Assumption3 (i) Ker A C Dy (A*).
(ii)) Ker A NRan A = {0}.
(iii) A does not possess eigenvalues in R \ {0}.

Remark 2.3 (1) Assumption 3 (i) is imposed in order to justify the formal computa-
tion.

@) If A is closed symmetric then Assumption 3 (ii) holds. Indeed, it suffices to
use the orthogonal decomposition X = Ker A* @ Ran A** = Ker A* @ Ran A;
then for any f* we have the corresponding decomposition f = ¢ + ¥, and ¥ is
approximated by {1} such that v, = A¢n Then for any u € Ker ANRan A we
have

(I/l, f)X = (l’ts GO)X + (Mv 1//n>X + (Lt, W - 1//n>X = (M» l[/ - 1/’n>X -0 n — o0.

Hence u = 0.

First we state the abstract result of the spectral behavior of QL, with @ € R in the
limit || — oo, but without any information on the rate of convergence.

Theorem 2.4 Suppose that Assumptions 1, 2, and 3 hold. Let oy (QL,) be the set of
the spectrum of QLy, @ € R, in Y. Then we have

lim sup Reu = —o0, 2.5)
||~ yeoy (QLq)

and

lim sup||(ix — QLg) Mly—y =0. (2.6)

le|—>00 3 R

Moreover, for sufficiently large |a| the set {¢ € C | Re¢ > —1} is contained in the
resolvent set of Ly in X, and we have

lim sup |Q(iA — Lo) ™ [x—x = 0. 2.7

|| >00 3 R
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Proof The proof consists of several steps. Without loss of generality we may assume
that ¢ > 0.

Step 1: The operator QA in Y is a closed linear operator with compact resolvent.
This follows directly from the invariance QA C AQ and Assumption 1. We denote
by Ay the restriction of A to Y with the domain Dy (Aly) = Dx(A)NY.

Step 2: oy (QLy) C { € C|Reun < 0}.

Let ¢; > 0 be the number in (2.4). We have already seen that —A|y is bounded from
below in Y and has acompactresolventin Y. Then, since Alis relatively compactto A by
the assumption, we see that QL, = Aly —i aQA isalsoaclosed operator with compact
resolvent in Y. Thus, the spectrum of QL consists of isolated eigenvalues with finite
multiplicities. Let u € C be an eigenvalue of QL, in Y and letu € Dx(A) NY be an
associated eigenfunction such that ||u||x = 1. Note that —uu = —QLyu holds. By
taking the inner product with Byu, we have

—ulu, Bou)x = (—QAu, Bou)x + ia(QAu, Byu)x

. (2.8)
(—QAu, Bou)x +ia(B1Byu, QByu)x .

Here we have used A = BB, by Assumption 2 (ii). Moreover, we verify that
(I — Q)By = 0 since Bj is closed symmetric and Ker A = Ker B,. Hence
we have QB = B, which implies (B1Byu, QByu)y = (BiBu, Byu)x and
(—QAu, Bou)x = (—Au,QBru)x = (—Au, Bru)x. Therefore, since Bj is closed
symmetric in X, the real part of (2.8) yields

—(Rep)(u, Bou)x = Re(—Au, Bou)x

1
> el (=A)2ully = e (2.9)

Here we have used the assumptions (2.4) and (2.1) with ||« || x = 1. Hence, (2.3) yields

Cl

Thus, oy (QLy) C {u € C | Rep < 0} forall « > 0.

Step 3: The spectral limits (2.5) and (2.6) hold.
By Step 2 it suffices to show

lim sup [|(iA — QLy) ™ '|ly—y = 0. (2.11)

oa—>00 )\.ER
Suppose that (2.11) does not hold. Then there exist § > 0, {a,} C Ry, {1} C R,
and f, € Y with || f;||lx = | such that o;, — o0, and ||(iA, — (@La)_lfn lx > 8. Set
up = (iry, — QLy) ™! f,, which solves

ity — QAuy + icyQAuy, = f, . (2.12)
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By taking the inner product with B,u,, in the above equation, we obtain

idn{up , Boup)x + (—Auy , Bouy)x + ict,(B1Bouy , Bouy)x = (fu, Boun)x .
(2.13)

Here we have used QB, = Bj; as observed in Step 2. Since B and B, are symmetric,
the real part of (2.13) yields

Re(—Au, , Bouy)x = Re(fy, Bouy)x ,

and then the assumptions (2.2), (2.3), and (2.4) imply

1
ci{=Auy ,up)x <Re(fn, Boup)x < I fullxl|Bounllx < ClI(=A)2unllx .
Thus we obtain the uniform bound

1
sup [(=A)Zu,llx < oo. (2.14)
n

Now we recall that, since — A is positive self-adjoint with compact resolvent, (—A)%
also has a compact resolvent ([16, Theorem V-3.49]). Since (2.14) implies the uniform
bound of ||(—A)%un||x, {u,} is compact in X, and thus, in Y. Then there exists a
subsequence of {u, }, denoted again by {u, }, which strongly converges to some uo, € ¥
and satisfies ||(—A)%uoo||x < sup, ||(—A)%un||x < 00. By the strong convergence
we have | ux|lx > 8, S0 uso € Y is nontrivial. Let us go back to (2.12), and take the
inner product with u,,. Then we have

An 2 1 oA 1
l_”Mn”X + —(—Aup , up)x +i(Aup,up)x = _<fn s Un) X
oy, ay, ay,

and the imaginary part of this identity yields the bound

An

. 1
lunll% < (Aun . ) x|+ Am(fy un)x| < Cl(=A)Zun |k + [l fullx lallx

n

L2
< C(sup (—A)2u, |5 + 1) < 00.
n

Since ||u,||x > & we have the uniform bound

A

273

sup
n

< 0.

Set u, = (’}l—’; By taking a suitable subsequence we may assume that p, converges to
some oo € R. For any ¢ € Dx(A) we have from (2.12),

. i . ~ 1
ipn{un , @) x — —(un , AQe)x +i{uy, , A*Qf/?)x = —
Qp 27}

(fa 0)x
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and by taking the limit n — oo, we have

i oo (oo » ) x + i (oo , A*Qe)x =0,

and thus,
(oo , A*@)x = —floo (oo , 9)x + (oo, A*(I — Q)9) x -

Note that (1 — Q) : X — Ker A C Dx(A*) by the assumption, and thus, A*(I —Q)
defines a bounded operator in X by the closed mapping theorem. Then, since Dx (A)
is dense in X this identity holds for all ¢ € Dy (A*), which implies 1o, € Dx(A) and

[\uoo = —loolloo + (I — Q)[\”oo .

This shows Auoo € DX(f\) and

~

Atoe = — oo Al . (2.15)

Since we have shown that us, € Y and uso # 0, we conclude that f\uoo # 0. Thus,
— oo 18 an eigenvalue of A in X. Then, by the assumption of the theorem 1o, must be
0, which implies f\uoo € Ker A. Thus, f\uoo € Ran A NKer A, and by the assumption
we conclude that f\uoo =0, 1.e., uso € Ker A. On the other hand, we have also seen
U €Y = (Ker ZA\)J‘, and hence, u,, = 0. This is a contradiction, and (2.11) must
hold.

Step4: 0(Ly) C {¢ € C|Re¢ < —1} and (2.7) holds.

Let ¢ € CsatisfyRe¢ > —1l andlet f € X.Letv € Dy(QL,) be the unique solution
to

(¢ —QLv=0Qf, (2.16)

which is well-defined for all sufficiently large || by (2.5). Let w € Dx(A) be the
solution to

¢ —Aw=-PC—-Lv+Pf, P=1-0Q,

where the term —IP(¢ — Ly )v coincides with —iaPAv by the invariance QA C AQ
and v € Y. That is, we have the following formula for w:

w = —ia(t — A)T'PAC — QLy)'Qf + (¢ — AP . (2.17)
Note that (2.1) implies that ¢ € C satisfying Re¢ > —1 belongs to the resolvent set
of A, and thus the above formula is well-defined. Moreover, from QA C AQ and the

above equation, we get:

0=0Q¢ —Aw= (¢ —A)Quw.
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Hence we have Qw = 0, that is, w € Ker A.Then u = v + w solves

(¢ —Lou=(( —Lov+ (& —Aw=Qf +P({ — Lo)v + (£ — A)w
=Qf+Pf=f.

Hence u € Dx (L) solves the resolvent problem, and the above construction also
implies the uniqueness. Moreover, we have from the construction that

Q¢ —L) ' f =@ -QL)™'Qf, feX. (2.18)
Hence, (2.7) holds by (2.6). The proof is complete. O

Remark 2.5 From (2.17) and (2.18) we have the formula

(¢ -QLy™'Q,
—ia( — A)TPAC —QLy)T'Q + (¢ — AP,

Q¢ —Ly)7!

(2.19)
P(¢ — Lg)™!

Theorem 2.4 and its proof do not give any information on the rate of convergence
for || — oo. To obtain a rate we make further assumptions as follows.

Assumption 4 There exist C > 0, T € (0, oo], mp > 1, and bounded nonnegative
functions 4 : [mg, 00) x R — [0, 00), j = 1, 2, satisfying lim sup & ;(m, u) =0,
m_)OO[,LER

such that the following statements hold.

(i) Ker A C Dx(A).
(1) (a) It follows that

IBoullx < Cllullx, ueX. (2.20)
(b) For all u € R and m > my it follows that
~ 1
lull% < c(mznw — Nul% + h3m, M)II(—A)ZMI&)
if |u|>1 and u € Dx(A), (2.21)

lull} < C(m2IIQ(M — Null + him, mn(—A)%un%()

if || <7 and u € Dx(A)NY. (2.22)

(iii)) There exists a densely defined closed operator B3 : Dy (B3) — X such that
1
(a) Dx((—A)2) C Dx(B3) and

A~ 1
Hm(Au, Au)x| < Cl[(=A)2ullx||Bsulx .  u € Dx(A), (2.23)
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and
(b) for all u € R and m > my it follows that

A~ 1
| Bsull% < C(m2||(u — Nul% + h3m, M)II(—A)ZuH?()

if |u|>7 and u € Dx(A), (2.24)

N 1
| Bsull% < C<m2||@(u — Mul|% + h3m, mn(—A)mn%()

if || <7 and u € Dx(A)NY. (2.25)

Remark 2.6 (1) The condition (ii) (b) states quantitatively the absence of eigenval-
ues of A in R \ {0}. To be precise let us compare the conditions (2.21)—(2.22) with
Assumption 3. Assume that Ker AcC Dx(A) holds. Then (2.21)—(2.22) imply that A
does not possess eigenvalues in R \ {0}, otherwise one can take the limit m — oo in
(2.21)-(2.22) for the eigenvalue p and the eigenfunction u, which leads to a contradic-
tion. Moreover, if in addition Ker A2cD x (A), then for any u € Ker A NRanA there
exists f € Dx(A) NY such that u = f\f. Then (2.22) with £ = 0 implies f = 0,
which leads to u = 0. Thus, in this case we also have Ker A NRan A = {0}. As a con-
clusion, under Assumption 4 (ii) and the condition Ker A2 c Dx (A), Assumption 3
is automatically satisfied.

(2) The case T = oo means that the conditions (2.22) and (2.25) hold for all u € R. But
since Q is nonlocal in actual applications, in the case u is away from O the conditions
(2.21) and (2.24) will be easier to check. If A is closed symmetric then Q in (2.22)
and (2.25) is automatically dropped since PA = 0 in this case.

Remark 2.7 In fact, one can obtain the pseudospectral bound with some rate without
assuming (iii) (b) of Assumption 4. However, the condition (iii) (b) is useful in obtain-
ing the pseudospectral bound with a better rate in «. Indeed, when A is of the form
—A = T*T for some densely defined closed operator T as discussed in the work of
[26], a natural candidate of B3 is B1T (By — 1)+ [T, B1]B»; formally we can compute
as, in virtue of the symmetry of By,

IIm(Au, Au)x| = |Im(Tu, T ByBou)x| = Im(Tu, ByT Bou + [T, B11Bou)x|

= |Im(Tu, BiT (B, — Du + [T, B11Bou)x]| .
(2.26)

Thus, the estimate (2.23) is valid with By = B1T (B, — I) + [T, B1]B>. When Bj is
a smooth enough perturbation from the identity operator, then one can even expect to
take B3 justas [T, B1].

Remark 2.8 The key idea of Assumption 4 is that we reduce the whole analysis to
several coercive estimates of A. This idea is useful in actual applications. Indeed, when
A and A are (pseudo)differential operators, the order of A is lower than A —i af\, and
hence, the analysis of A itself is expected to be simpler than the combined operator
A —iaA.In principle, the operator A plays a role of recovering the regularity which

@ Springer



14 Page 16 of 84 S. Ibrahim et al.

was lost in the coercive estimates for A. The functions /; in the assumption describe

the degeneracy of the operator u — A, which leads to an essential influence to the
resolvent estimate for the full operator L.

The next theorem provides the information on the convergence rate, once we know
the behavior of the functions £ ;.

Theorem 2.9 Suppose that Assumptions 1, 2, and 4 hold. Then for any o € R the set
{¢ € C | Re¢ > 0} is contained in the resolvent set of L, in X and of QLy in Y.
Moreover, there exists a large number My > 0 such that if || > M then the following
resolvent estimate holds for any ) € R.

A
IQGA~+ La) xox = A +QLy) yoy < CF(a, =), (2.27)
where
2.2 2
m mim mihy(ma,
Fla,w= inf (=420 M 20m2 1) 2 my ) (2.28)
my,ma=mo \ || o lo]

and mq is given in Assumption 4. Here C is independent of o and A.

Remark 2.10 To evaluate F(w«, u) we first choose my so that m% = |alha(ma, p)
. . m2m? mzhz(mz,u) . . .
holds, which gives the balance =172 = —! Il for any mj. With this choice of
mim3

my, the number m is chosen so that "Zl—ll + + h%(ml, W) is minimized.

ol

Proof of Theorem 2.9 1t suffices to consider the case @ > 0. Set u = % andlet v €
(0, oo] be the number in Assumption 4. For simplicity of notations we write 4 ; instead
of hj(mj, u), j = 1, 2. In the following argument any constant which is independent
of a, A, m1, and my will be denoted by C, and thus, the constant C can change from
line to line.

(i) The case || < . From the definition, we have foru € Dx(A)NY,

QLo +i1) = QA — iaQ(A — 1)
and
(QLo + i, (A = p)uyx = (QAu, (A — p)u)x —ie| QA — wuly . (2.29)
By taking the imaginary parts of both sides, we obtain

allQ(A — wulk < Mm((QLg + iX)u, Q(A — p)u)x| + Im(—QAu, (A — p)u)x|
< (QLqy + iMullx |QA — p)ullx + [Tm(—Au, Au)x|

Here we have used that for u € Dx(A) NY, we have QAu = AQu = Au and
the self-adjointness of A, which gives Im(—QAu, nu)x = 0. For the mixing term
Im(—Au, Au)x, we use Assumption 4 (iii) (a) and arrive at the estimate
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A C . 1
)| Q(u — Aulk < ;II(QLQ +iMulk + Cll(—=A) 2ul x| Bsul x - (2.30)
Let us estimate || B3u||x. Fix my > mg. We have from (2.25) and (2.30),

~ 1
IBsull} < Cm3Q(u — Aull) + Ch3I(—A) 2 ull%

Cm3 (1 o 1 2 o2
= — 7\ 1 QLa +idjully + 1(=A)2ull x| Bsulx ) + hall(=A)2ully

Cm? ma
< —21@QLy +iMulk + c<—§
o o

2 L2
+ hz) [(=A)2ull . (2.31)
Then (2.30) and (2.31) imply

« C
1Q(n — A)ully < QL +inulk

¢ 1 m3 N L. 102
+ 1Al (P2 1@y + il + (2 + I I-A IR
Cc . m3  hy 1
= 1Qa +iMuly + C(23 + )= 2ulk . (232)

Then, by combining (2.32) with the assumption (2.22), we see

A 1
lull} < Cm?|Q(u — Mulk + ChII(—A)2u|%
sz m2m2 m2h .
< — 3 IQ@La + iMully + C(—;{2 2yt 2 +h%)||(_A)zu||§(_ (233)

Next we estimate ||[(—A) u ||%(. We observe that the following identity holds:
Re{((QLy +iMu, Bou)x = Re((Ly +iM)u, QBou)xy = Re{Au , Bou)x .
Here we have used QB, = By, Im(f\u,Bzu)X = Im(B1Byu, Bou)x = 0,
and Im(u, Bou)y = O since By and B, are symmetric. By (2.4) we have

Re(—Au, Bou)x > c1{—Au, u)x, which gives

1
I(=A)Zull < CIQLy + iMulxl|Boulx,  u € Dx(A)NY. (2.34)

Thus we conclude from (2.20), (2.33), and (2.34) that

2 m% m?mé m?h% 4 . 2
el = € =5 + =52 + =52 4 b} ) 1QLa +iMuly . ue Dx(A)NY.

(2.35)

Note that (2.35) is valid for any m, my > mg and o > 0.
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(i1) The case || > t. In this case we drop the projection @Q in (2.29) and use the
identity

(Lo +iMu, (A = p)u)x = (Au, (A = p)u)x — i (A — pwully, e Dx(A),
which gives by taking the imaginary parts,

all(A — pw)ully < I(La +iMullx|I(A — w)ullx + Im(—Au, Au)x| .
Thus, as in (2.30), we obtain

A Cc . 1
all(A = puly < — (e +iMulk + 1(=A)2ullx|Bsullx,  u € Dx(A).
(2.36)

. _1 . .
Then the estimates of the terms Bszu and (—A) ™ 2u are obtained in the same manner
as in the case (i), and we have

4
n,

2
1Bl < 72 (Lo + il + o ™2
2 X 0[2 a X 0[2

IA

+ h%)||<—A>iu||§,
(2.37)

2
(Lo + iMull% +C(22 + @)n(—A)%uuz
“ X o o X

(e — A)ullk 3

IA

— i
o2

Then u is estimated as follows, by arguing as in (2.33):

Cm? mim?  m2h,
2 1 . 2 17772 1
lullx < 7 ||(La+lk)u||X+C1< 2 +

+h%>||(—A)%u||§(. (2.38)

Next we observe that AP, where P = I — Q, is a bounded operator by the assumption
Ker A C Dx(A), which gives from QA C AQ,

I(=A)2ul% = (—Au, u)x = (—APu, Pu)x + (—AQu, Qu)x
< Col|Pull} + (—AQu, Qu)x .

Hence, for sufficiently large o and m ; so that

2.2 2

h 1
clcz<’"‘—'2”2 + L2 h%) <. (2.39)

o o 4

the estimate (2.38) yields
Cm? ) m2m? m2h2 1
el < —SHI(La + il + C(% == h%>||<—A>zQun§ :

(2.40)
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Since (—AQu, Qu)y is estimated as (2.34) but with u replaced by Qu, we obtain the
estimate like (2.35) such as

m2 m4m4 m4h2
||u||X<C—1||(L +m>u||X+C< L2 12 h%>||@(La+mu||§

2 4. 4 412

m msm mih

1 1M 12
<C|\— + +

<a2 P! 2

+h‘11) (L +iMull}%, u € Dx(A).
(2.41)

This is the desired estimate in the case |u| > 7. Note that (2.41) is valid for
any mi,my > mg and a > 0 satisfying (2.39). Such a set is not empty since

lim suph;(m;, ) = 0, and in particular, we can find a positive constant My
m/—>oo ER

umformly in A so that if @ > M| then there exists (m1, my) satisfying (2.39).
Now we recall that o(Ly), oy(QLy), and opx (A|px) consist only of discrete
eigenvalues. Moreover, we have from QA C AQ,

0(La) = 0y (QLa) Uopx (Alpx) (2.42)

and the formula (2.19) holds for all ¢ € C\ (a (La)). Indeed, let ¢ € C be in the
resolvent of QL in Y and also of A|pyxin PX. Let us show that { — L, is injective
in X, which shows that ¢ belongs to the resolvent of L, since o (Ly) in X consists
of eigenvalues. If u € Dx(A) satlsﬁes (& — Lou = 0, then (¢ — QLy)Qu = 0 by
the invariance QA C AQ and Au = AQu. Then Qu = 0 by the assumption, and
therefore, (¢ — A)Pu = 0, which also gives Pu = 0 by the assumption. Thus u = 0,
and we have shown the inclusion

0(Ly) Coy(QLy) Uopx(Alpx) .

On the other hand, let ¢ belong to the resolvent set of L, in X. Since opx (A|px) C
0 (Lg) holds by the assumptions QA € AQ and Ker AcC Dx (A), ¢ is also aresolvent
of Alpx in PX. If u € Dx(A) NY satisfies (¢ — QLy)u = 0 then by setting v €
Dx(A) NPX asv = —ia(¢ — A|pX)_1Pf\u we see that w = u + v solves from
QA C AQ,

(¢ — Lo)w = (¢ — L)u+ (¢ — Ly)v = (£ — QLo)u + iaPAu — iaPAu = 0.

Since ¢ is a resolvent of Ly in X, w = 0. This implies # = Qw = 0. Hence ¢ is a
resolvent of QL in Y. Thus (2.42) holds.

By arguing as in Step 2 of the proof of Theorem 2.4, we can show that oy (QL,) C
{¢ € C|Re¢ < 0} for all . Therefore, we observe fromo (A) C {¢ € C|Re¢ < —1}
and (2.42) that o (Ly) C {¢ € C | Re¢ < 0} for all @. In particular, iR belongs to the
resolvent set of L, and also of QL.

LetA € R.If | %I < 7 then (2.35) gives the estimate for the resolvent (iA +QLy) ™!

inY.If |§| > 1 then (2.41) yields the estimate of the resolvent (iA + Ly) Vin X as
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long as (2.39) is satisfied. The estimate of the resolvent (i1 + QLy)~!in Y is then
obtained from the formula

(ir+ QL) ' f=QGr+Le)"'f, fev,

and by using the inequality ||Qu| x < ||u| x. As a summary, there exists My > 0 such
that we have

2.2 2
. _ m; mim myho
IGA +QLo) Hly—y < c(—w| + —;2 2 4 _|;| +h%> : (2.43)

as long as « > M. The proof is complete.

Remark 2.11 From (2.34) in the proof of Theorem 2.9, we observe that

1

I(=A)2 (% + QL) Mly—y < CF <Ot, &>2 . (2.44)

o

Moreover, when m and my are the numbers such that the infimum in the definition
of F is evaluated, we have

2 1
B3+ QL) My ox < C(@ + (22 4 ham, ) F (o, 5)2>, (2.45)
ol " el «
1
10 (2 - 8) G+ QLo oy <+ (12 + 220 ) P D) 121 <,
o e Jo] || 2 o o

(2.46)

1
Aoal. _ 1 my  ha(ma, n)? AL A
I(Z = A)Gin + La) 1|\xﬁxsc<—+(—+7l)m,f>z e
o e Jo] la| 2 o o

2.1 On the Proof of Assumption 4 (ii) (b) and (iii) (b) in Actual Applications

In actual applications to the Kolmogorov flow or the Lamb—Oseen vortex, the most
trivial part is to verify the interpolation inequalities (2.21), (2.22), and (2.24), (2.25).
To find appropriate B3 itself is not a difficult task in these examples, by recalling
Remark 2.7. We will show these interpolation inequalities by a contradiction argument.
The approach using a contradiction argument is standard, and one can go back to the
very abstract and classical result as follows: Suppose that the triple of Banach spaces
(X,7Y, Z) satisfies the embedding property Z <><> X and Z < Y, in particular,
Z is compactly embedded in X (note that, for example in (2.21), we can consider
lully = (u — Aullx and |lullz = [[(—A)Zu|lx when it is assumed that & — A
is injective and that (—A)™ 2 is compact). Then for any € > O there exists Cc > 0
such that ||u|lx < Ce¢llully + €|lullz for any u € Z. Indeed, one can easily prove
this inequality, depending on €, by a contradiction argument. Since the assumption
of this abstract result is too general, we do not know how C. depends on €. But
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for concrete applications, we expect to be able to estimate the degeneracy of p — A
that gives an information about the concrete dependence of C¢ on € when |ully =
I(w— f\)u | x (this leads to a candidate of 41 (m, ) in (2.21)). Then we can try to prove
the interpolation-type inequality by a contradiction but together with the presence of
hi(m, w).

In the application to the Kolmogorov flow and the Lamb—Oseen vortex, the operator
Ais essentially of the form A1+A,, where A isa simple local operator (multiplication
operator) and Asisa nonlocal compact operator. Then we expect that the degeneracy of
n— A is dominated by u— A1, and thus, the interpolation-type inequality such as (2.21)
has a close relation to the similar inequality but with p — A replaced by u — A1. This
is indeed shown to be true in the above two examples, though the whole proof requires
a long argument. It will be useful to point out that the interpolation-type inequalities
in Assumption 4 are also related to the estimate of the limiting absorption principle
(LAP) typically stated as lim¢ || (—A)_% (utie— A)_1f||x < C||(—A)% flx, for
which a contradiction argument is a familiar tool in the proof. Indeed, our argument
in Lemma 3.8 for the Kolmogorov flow share a common feature with the proof of the
limiting absorption principle around the shear flows obtained by Wei, Zhang, and Zhao
[29]. But on the other hand, there are some differences in technical details between
the proof of (2.21) and the proof of LAP in [29], mainly due to the difference of the
regularity condition on f = (u — f\)u; in (2.21) we impose f € X, while in LAP it
is f € DX((—A)%). In fact, the lower regularity condition (u — f\)u € X in (2.21)
makes the argument more technical in the analysis around the critical points.

3 Application to Kolmogorov Flow

In this section we study the spectral property of the operator (1.8) related to the
linearization of the Kolmogorov flow. Set

2
X = L%(']Tz) = {a) e L*(T?%) | / w(x,y)dx =0 a.e.y € T} .
0

Let A be the realization of A = 32 + 8)2, in L3(T?), i.e.,

D(A) = W2X(T?) N LY(T?), Aw=Aw, we DA).
Next let us denote by M,, the multiplication operator with the multiplier g,i.e., My f =
gf. We denote by A the realization of —i 3y Mgin y( + A Yin L%(']I‘Z) which is given
by

D(A) = {w € L3(T?) | 8 Mgin yow € L3(T?)},
Ao = —i0, Mgny(I + Ao, we D(A).

Since idy is realized as a self-adjoint operator in L3(T?) and Mqny(I + A7") is
bounded in L%(Tz), the operator A is a closed operator. Moreover, since H LT n
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L%(’]I‘z) C D(f\), it is densely defined in L%(']IQ). We are interested in the spectral
property of

Ly =A—iah, D(Ly) = D(A). 3.1

Let us denote by Y the closed subspace of L%(Tz) defined by

2
Y = {w e L3(T?) | / (Piw)(x, y)dy =0, |I| =1, forallx € ’JI‘} . (32
0
where
1 [ 4 .
Prw)(x,y) = —f w(s, e ds ™, 1ez.
27 0

The orthogonal projection from L%(']IQ) to Y is denoted by Q. We observe that Y is
an invariant space under the action of A and that

Y is the orthogonal complement of {acosx + bsinx |a,b € C} in X.
The spaces L% (T?) and Y are diagonalized as
L3(T?) = @1en oy PILE(T?), Y = @iz o) PiY (3.3)
and each of PZL%(’IFz) and P;Y is identified with L2(T) and ¥; respectively, where

L*(T) if 141,

(feLXT)| [77 fdy=0} if [==+1. S

| =

The orthogonal projection from L%(T) to ¥; is denoted by Qy. Since PIL(Z)(TQ) and
‘PY are invariant spaces for L, the operator L, is also diagonalized as

Ly = @1ez\joyLa |7D,L%(T2) , (3.5)

where Ly|p, ;212 is the restriction of Lq to the invariant subspace PiL3(T?), which
is identified with Ly ; in L?(T) defined as follows:

Loi=A; —ialA;,  D(Lgy) = WHA(T), (3.6)

where

A=0} 1",  D(A)=W>T),

A » R (37)
Ar=Mgny (1 + 47, DAY =LX(T).

It is straightforward to see the following result.
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Proposition 3.1 Ler |I| > 1. (i) —A; is positive self-adjoint in L*(T) and satisfies
Assumptign lin Lz(T). Mpreover, tfte invariance @lAl C A;Qy holds.
(i) (Ker A))t =Y, Ran A; N Ker A; = {0}, and A; satisfies Assumption 2 (i).

Proof We give a proof only for the statement Ran A;NKer A; = {0} with [ = £1,
since the other statements are easy to check. Let f € Ran A; N Ker A; with [ = +1.
Then, since Ker A+; = {Const.}, there exists a constant ¢ and a function g € L*(T)

~

such that f = ¢ = A;g. By the definition of [\1, we have sin y (I + Al_l)g = c.
However, (1 + Al_l)g =

cannot belong to L?(T) if ¢ # 0. Hence, we must have

¢ = 0, that is, f = 0. The proof is complete. O

The following corollary immediately follows from the above proposition.

Corollary 3.2 (i) —A is positive self-adjoint in L%(’I['z) and satisfies Assumption 1 in
L(%(’]Tz). Moreover, the invariance QA C AQ holds.

(i) Ker A = {f =asinx+bcosx, a,b € C}, (Ker A)t =Y, Ran ANKer A = {0},
and A satisfies Assumption 2 (i).

3.1 Estimate Without Rate

In this subsection we aim to apply Theorem 2.4. Let us first check Assumption 2 (ii)
for Ly in L2(']I‘). ‘We observe that

Al =MgnyBri, By =(I+A;"), (3.8)
and By is bounded self-adjoint in Lz(T). We can also check that Ker [\1 = Ker By

without difficulty. The operator B, ; is positive in Y;. To see this we set ¢ = Afl f
for f € Y;, which satisfies

1ypll72 + 21172 = —(f . )2 < I Fll2llll 2 - (3.9)

Since f,¢ € Y1 we see 0,917, = 47, if L = +1, and [|0y¢]7, = Oif |I| > 2.
Thus we have

27Nl if =1,

< 3.10
Iz =0 2y pp,e e =2, G40
Hence, for |/| > 1 and f € 17,
(f Boi )2 =113+ (f. )2 = 1F 1 — I £l 2Nl 2
2 1 2 1 2
= Il = S0 = 511 - (3.11)

Since (2.4) is also not difficult to check, Assumptions 1 and 2 are satisfied by the above
operators. To apply Theorem 2.4 it remains to show
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Proposition 3.3 a(f\l) = [—1, 1]. Moreover, [\1 in Lz(T) does not have eigenvalues
in C\ {0}.

Remark 3.4 Proposition 3.3 and its Corollary 3.5 below are not new, and have been
proved in a more general framework; see Lin and Xu [19, Lemmas 2.4, 5.1]. We give
a proof here just for the convenience of the reader.

Proof of Proposition 3.3 We first observe that the spectrum of M, , in L2(T) consists
of the essential spectrum and is [—1, 1]. Since MsinyA[_1 is compact in L(T), the
essential spectrum of f\l coincides with the one of M, y, and thus, is [—1, 1]. Hence

it suffices to consider the existence of eigenvalues of A Suppose that f € L?(T) and
u € C\ {0} satisfies

Af=nf. (3.12)

We first consider the case u € R\ {0}. Then we have (siny — u) f +siny AI_1 f=0,
and thus,

sin y

———A ' f=0,  y¢Su, (3.13)
sy — @

f+

where S, = {0 € T | sinf = u}. Note that ¢ = A, ' f € W>2(T) is a C'*+3(T)
function for some § > 0 by the Sobolev embedding inequality. From (3.13) we see that
f € C3(T\ {S,}), and also (3.13) implies that ¢ (y,) = 0 for y, € S, otherwise

f cannot be in L2(T). By the bootstrap argument and (3.13), we see that f is smooth
inT \ {S,}. Thus ¢ is smooth in T \ {S,} and solves the ODE

(Msiny — AP+ Msiny(b =0.

By the identity Mgy y = Msiny — 1 + i, we have (Mginy — ) (A + 1) + n¢ =0,
and thus,

—(A+ D+ —E =0, yeT\(S,]). (3.14)
W —siny

Case (i) # > 0. When O < u < 1lety,, z,, € S, be the points such that y,, € [%n, ]
and z,, € [2m, %n] (they are uniquely determined). When 1 > 1 we simply take
Yu = %n and z,, = %n. Then ¢ —siny > O for y € (yu, z,), and we obtain

/”(—Az—1>¢¢3dy+/ " E sdy=o0. (3.15)
y H—Ssmy

» Y S1

Note that the second integral converges due to the regularity ¢ € C'*3(T) and ¢ ) =
¢(z,,) = 0 when 0 < u < 1. As for the first integral, the integration by parts and the
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condition ¢ (y,) = ¢(z,) = 0 when 0 < p < 1 and the periodicity of ¢ when p > 1

yield
J

“(—Az—l)m‘sdy:/ " loygl? + (2 — D¢ dy.

i Y

thus we have

Zp
/ 19yp|* + (12 — D]g|> dy +/
Y

Y

2

— B _gPdy=o0. (3.16)
M —siny

Hence ¢ = 0 in [y, z,]. When u > 1 we clearly have ¢ = 0 on [%n, %n]. When
0 < < 1 we see from ¢ € C1H9(T) that ¢ () = ¢'(y.) = 0. However, since the

1
singularity of ———— is first order when 0 < u < 1 it is easy to see that any C!1+?
n—smy

solution ¢ to the ODE (3.14) satisfying ¢ (y,) = ¢'(y,) = 0 must be trivial. Thus,
we have f =0in T.

Case (ii)) u < 0. The argument is the same as above, and we omit the details.

Case (iii) u ¢ R. Since —p f + Mgin y(I + Al_l)f = 0, by taking the inner product
with By ; f, we have —u(f, B2 f);2 + (MsinyBo, f, B2, f) 2 = 0. The imaginary
part of this equality gives (Imu){f, B2 f);2 = 0, and thus, from the definition of
By, weobserve that f = 0if |/| > 2 and f = constant if |[| = 1. On the other hand,
if |I| = 1 and f = constant then (I + Afl)f = By f =0, which gives —u f = 0.
Thus f = 0 since u # 0. The proof is complete. O

The above result for A; in L%(T) is easily translated to Ain L%(’H‘Z). Indeed,

~

A=B\By, Bi=—-idMgny, Ba=(I+A"D), (3.17)

and Bj is closed symmetric and B, is bounded self-adjoint in L%(']I‘z), and Ker A =
Ker B;. The operator B is positive in Y, for sois By in ¥; foreach ! € Z \ {0} with
a uniform lower bound in /. Proposition 3.3 therefore implies

Corollary 3.5 o (A) = R. Moreover, A in L%(']I‘z) does not have eigenvalues in C\ {0}.
Proof Let f € L3(T?) and set fi(y) = (P, f)(x, y)e "™.If ¢ € Cand Im¢ # O then
. — 1[\1 is invertible for any / € Z \ {0} and w; = (¢ — lf\[)_lfl satisfies

C
< — if |I| >2,
lwrll 2y < Iz | I fill 2ery if 1] =

lollz2ery < CUIMED| fillp2ery if 11 =1.
Here C is independent of / and C(|]Im¢|) depends only on |[Im¢ | (the concrete depen-
dence of C(|Im¢]) on |Im¢| is not needed in the argument below). Moreover, from

Sy — My By jw; = f, we also have
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I Main yor |l 2ry < 1MsinyA; @1l 20ry + 1€ el 20y + I fill 2y
= COIfill 2y

with C(¢) depending only on ¢ and independent of /. Hence, w (x, y) = ), €Z)\(0) y@1(y)

'™ satisfies w € Lz(Tz) and 0y Min yo € LZ(TZ) Clearly w solves (¢ — A)a) = f.
The uniqueness is also shown by taking the Fourier series in x. Thus ¢ belongs to
the resolvent set of A in Lg(']l‘z). This shows o (A) C R. Since o (IA)) = [, 1],

we conclude that a(f\) = R. If ¢ € R is an eigenvalue of Aandw € D(f\) is an
eigenfunction then there exists [ € Z \ {0} such that w;(y) = (Pio)(x, y)e s
nontrivial. Since wy satisfies (¢ — [A;)w; = 0, the number % must be an eigenvalue

of A; in L2(T), which is a contradiction. The proof is complete. O
We can now apply Theorems 2.4, which yields the following result.

Theorem 3.6 Let L, be as in (3.1). Then

lim sup [|(ix — QLq) ™! ||Y—>Y— hm sup |QGA — Le) lx—x =0. (3.18)
la|—00 ) cR 0 LeR

A similar result holds also for Ly, for eachl € 7.\ {0}.

3.2 Estimate with Rate

Theorem 3.6 does not give any estimates on the convergence rate. To apply Theorem 2.9
we focus on the study of A; = Mginy(I + A ! ) in L?(T). Note that

—AI =TT, Ti=dy -1
and therefore,
[Tl’ Bl] = Mcosy .

In particular, it is not difficult to show from By ; = I + Al_l,

Im(A;¢, M) 2| = Im(Typ, Ty By B2.19) 12|
= |Im(T;¢, B1T1 B2 1¢ + McosyB2,19) ;2]
= |Im(Tip, BiTiA; ' ¢ + Mcosy B21$) 2|
<T@l 2I(BITIA] " + MeosyBat)$ll 12 . (3.19)

which ensures Assumption 4 (iii) (a) with B3 = B]TIAI_1 + MeosyBry and X =
X = LZ(T). The result for A is obtained by the diagonalization A= Direz\(0)! f\l.
To simplify the notation we use the symbols # and v as scalar functions on T in this
subsection (i.e., in this subsection u and v do not mean velocity fields).
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Our goal is to show the coercive estimates of A; as stated in Assumption 4. The
main difficulty comes from the degeneracy of the critical points, i.e., the case when
(sin y)’|y=yﬂ = cos y,, vanishes for the point y, € sin~! . This is the case u = +1.
More precisely, the difficulty is to show (2.21) uniformly in a neighborhood of u = +£1,
rather than on the exact points © = 1. Below we divide the regime of u into three
parts. The first part, discussed in Lemma 3.7, corresponds to the case || > 1, though
we can take |u| slightly below 1 depending on the value m in (2.21). The second part,
which is the core part of this section and discussed in Lemma 3.8, is % < |ul < 1.
The last part is || < % and will be treated in Lemma 3.9, where the critical point is
nondegenerate, while we need to handle the additional nonlocality due to the presence
of the projection Q; when |{| = 1.

Lemma 3.7 There exist k € (0, 1) and C > 0 such that the following statements hold
forall 8 € (0, 11and € Z\ {0}. If u € R satisfies 1 — k8% < |u| < 1 + k8> then

_1
82wl 2 + | Meosy Bojull3 > + (=AD" 2ul|3
A~ 1
< C(872I (0 — Apulp, +84(=AD2ul7) . we HI(D),  (320)

while if || > 1 then

(el = D1 Bogull s + (el — Dl Meos y Ba.iull3 -

| " (3.21)
+lul(ul = DI=AD " 2ull7, < Cll(w — Apull?,.  ue HY(T).
Proof Set f = (1 — Ap)u foru € HY(T), i.e.,
(n — Msiny)u - MsinyAl_lu =f (3.22)

by the definition of f\l. Setting v = A;lu and using Mginy = Mginy — 0+ 1, (3.22)
is also written as

(= Msiny) (A + Dv —pv = f. (3.23)

Note that (A; + 1)v = By ju by the definition. Below we fix § € (0, 1) and take x > 0
sufficiently small. Taking the inner product with (A; 4+ 1)v and by considering the real
part, we obtain

2 :
W —siny
/0 2+ Dol dy + ol + 07 = Dol

_ %Rd Fo(A+ Do) (3.24)
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If0 < 1—/(82§u§ 1 + k82 then we have

2 :
1 —siny
f At D2 dy + [8yvll3, + (2 — Dvl%,
0

l—p [* 5 1
=— [(A; + Dv|“dy +Re—(f, (A; + Dv) ;2
w o Jo w

K82 [T ) 1
<5 [T DRy I+ Dl G25)

Thus, we have

2
/ (1 —sin y)[(A; + Dv>dy + 19,v]72 + (% = Dllvll3.
0

(3.26)
< Ck82(|(Ar + Dvl|72 + ClFll2 1A + Dol 2.
Next we compute
2
(1—siny)|(A1+1)v|2dy=/ ...dy—i—/ .. dy
0 ly—1m|=8 ly—4m|<8
> f ... dy
ly—3m|=8
2 2
= CONCA+ Dol 1oy
> C82[[(Ar + D)2, — C8 (A + Dv3 .
(3.27)

Thus, from [|[(A; + vz < C|lu||r~ with C independent of /, and (3.25)—(3.26),
we deduce that

S I(A; + Dvll7, + 19yv]17, + (2 = DIjvll3,

< C<K82||(Az + Doll7, + 8 llul T + £ 2 1A + 1)v||Lz) :
and if « > 0 is small enough but independently of x and §, then
S I(A; + Dvll7, + 19,0172 + (2 = Dljvll7, < c<63||u||%oo +52||f||iz> :
From A;v = u we finally obtain

_1 _ ~
8 lull?> + I(—Ap) mnizfc(a 2||(u—Az)u||iz+83||u||%oo>- (3.28)
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The argument is the same as above for the case —1 — K82 < n<-1+4+ k82 < 0,
and we have (3.28) also in this case. The details are omitted here. The estimate of
| Mcos x Ba,1u ||i2 follows from (3.26) and (3.28) by the inequality

cos’y = (1 —sin® y) < 2(1 £siny).

Then it suffices to apply the interpolation inequality ||u||2 < Cllullgllullz> and

lull g1 < ||(—A1)%u||Lz to obtain (3.20). Estimate (3.21) for the case || > 1 easily
follows from the identity (3.24). Indeed, (3.24) is written from (A; + 1)v = B2 ju,

1 1 [ ul
<1 - —> I B2 ull3 > + —/ (1 - — Sln)’) |By,ul* dy
[ [l Jo n

1
+l0yvli72 + 2 = Dvl7, = Re(f Bz,

which gives (3.21) for || > 1. The details are omitted here. The proof is complete.
O

The coercive estimate for || < 1 — x82 is more delicate, especially when « 8>
< |p £ 1] < o(l) as § — O due to the degeneracy around the points such that
(siny) = cosy = 0 and the nonlocality. To overcome the difficulty we apply a
contradiction argument. The contradiction argument is useful since it enables us to
focus on the functions which concentrate around the critical points, by which the
nonlocality is reduced since the nonlocal operator has a smoothing effect and thus
becomes a small perturbation of the local operator for such functions. The following
lemma, which requires a long proof, is the core result of this subsection.

Lemma 3.8 Letk € (0, 1) be the number in Lemma 3.7. There exists C > 0 such that
if6 €(0,1,1 € Z\ {0}, and . € Rwith § < |u| < 1 — &8>, then

_1 1 _
Sl + IAD T2l + ATl
6

~ 1
< c(a—znw — Apul3, + ||<—A,>2u||iz) . ue H'(T), (329

1= ful

and
A~ 1
| Mcos y Ba,jul2> < C<8_2||(M — Apul7, + 821 = |ul) ||<—A1)fu||iz> . ueH\(T).
(3.30)

The proof consists of several steps. We first consider (3.29).

Proofof (3.29) Since u is a real number and f\l and A; preserve the real valued,
without loss of generality it suffices to show (3.29) for real valued functions. We may
also assume that u is positive, for the case i < 0 is proved in the same manner. By the
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density argument it suffices to show the claim foru € H 2(T), rather than u € H'(T).
We make use of a contradiction argument. Suppose that the estimate

_1 1 _
8 lull, + (=AD" 2ul3, + T4 "2,

-2 N 2 56
< (870 = Apully + -

- Mn(—Az)iuniz) , (3.31)
1

§€(0,11, 1€Z\{0}, §§M<1—K|5|2, u € HX(T; R)

does not hold. Then there exist {5,, l,;, n}nen, 6n € (0,11, 1, € Z \ {0}, u, €
[%, 1-— /(8,%), and {u,} C H?2(T; R) such that

lim 8, = 8o € [0, 1], lim I, = I € {00} UZ\ {0},
n—oo n—>oo

. 1 5
m = poo € [5, 1 — k351,

and
1 1 _
82lunll2> + I1(=As) " Zun 2, + 1A, "unll2, = 1,
- Hn "
56 (3.32)
. _ N 1
lim_ <5n o = A2+ 2 ||(—Azn>zun||iz) =0.
Set
So= 8" (n — Ay, vy = A}y, (3.33)
and then v,, satisfies
(tn — Msiny)(Aln + Dvy — wpvp =84 frn - (3.34)

. ... . . . 1
The normalized condition in (3.32) implies 85 |ty ||i2 +1(=A,)2v, ||i2 + 1—1W vy, I|i2
= 1, and thus, from the integration by parts,

1
Sallunll? 2 + 19yvall32 + Lillvall 72 + qnvnuiz =1. (3.35)

n

Note that we have also from (3.35) and the interpolation inequality ||v, | <
1

1 1
CllvallZ llvnll? that

l[vnllze

n (3.36)
no |l = ppld
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Since sup,, [|v,]l g1 < oo, we may assume that, after taking a suitable subsequence,
{v,} converges to vs, weakly in H'(T; R), and thus, strongly in L>(T; R). First we
I(=A3,) 2 unll?,

exclude the possibility §o, > 0. Indeed, in this case we have =

(3.32), which implies

— 0 by

1
5 2
(= A 2 unll?,

v ll?, < C
"L I_Mn

1 1
Sallunllzs + I(=Ap)2vall, + ———
11— ]

This contradicts with the normalized condition in (3.35). Thus it suffices to consider
the case 6o = 0. Let S, = {y € T | siny = u,} be the set of critical points. Then
we have from (3.34),

/’ann(yu) + 6nfn(yu) =0, for any Yu € Suu . (3.37)

This fact plays an important role in the analysis.
Let us start from the following claim.

Step 1: lim &, unll,2 = O.
n—oo

The Taylor expansion implies for any y,, € S,,,

siny =y +cos yu, (v — yu,) + Rn(0)( — )’un)z ,

T 3w

R, <=C, ye [—5, 7} , (3.38)

and

11— ftn]? < Jcos yy, | = /1 — 2 < 27[1 — a2 . (3.39)

Here C is independent of n. Let k; > 0 be fixed but arbitrary small number. We
decompose the interval [—%, 37”] into [, and I = [—%, 37”] \ I,,, where

T 3w . 85
Li={ye|-=,=||dist(y,S,,) < ——1¢. (3.40)
2 2 ki1 — ptn2

Then we have from sup,, 8, || B2,;,ux |l 2 < C by (3.35),

1
Snll B2t unllp2z,) < 8nl1nl? || B, tn | Lo

Cs? 1 1
< %—"lllb’z,lnunllél I1B2,1,unll;»
K1 11— pnl*
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3
Csy 1
< T = ||BZ,lnun||?_11
K12 [T — pnl®
3 )
§C< - lI(= A])Zun”Lz) — 0 (n — oo, by (3.32)).
k1|1 — pnl?
Next, (3.34) gives
8
By ty = /”L”v"—_’_f" (3.41)
Wy — siny
We decompose I¢ as If = (IS N[5, 5D U IS N[5, ] = I UL, and we
find that there exists C > 0 independent of n such that
1
Ck 1 C
Z || lz2¢e ) < —11, Z ||—.||L°0(1rf )= 5
jora M TSIy TS (L)t S M sy Gy

(3.42)
Then we have from (3.41) with (3.42) and (3.36),

Snll Bayinlgy < Conllonlil-— =2y

1
Cs? —— |70
+ n”fn”LZ”Mn sy lLeeqre )

1

Ci} gl
< LR L Cllifullpe
| —an|4

1
= CK12 + C”fn”L2 .

The same estimate holds for 8, || B2.1, un |l 12 ) Thus we obtain 6, || B2,;, un ||Lz(,ﬁ) <
| .
Clcf + C|| fullz2- Since k1 > 0 is arbitrary and 1im I fullzz = 0, we have

lim sup 8, | B2,1,un |l ;2 = 0, which glves 11m Sn ||Mn||L2 = Oby the relation By ;,u, =
n—0o0

Uy + vy,. 5,
Step 2: lim Hltn ()l = lim Onlfn )l =0fory, € S,,.
oo [T — pnl? n_)oo|l_ﬂn|4
In virtue of (3.37) it suffices to show lim "|fn )| = O for y, € S,,. As in the
n—oo
11— a3

previous step, let y, | be the unique point of S,,, such that y, 1 € (0, %). Letxy; > Obe
2
fix but arbitrary small number and set /1,1 = (Yu.1, Yn,1 + KZLI]. There exists
11—pn |2
a point y, 1 € I1, 1 such that T | fn Gn, DI? < I fa ||L2(” , and thus, we have
[1—pn]2
. Then we see

SalfuGuDl Ml
1 1

[T—pn |4 /(27
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Sl fun, 1| < Sl f(yn,1) — SOn 1)l + Sul f (i, I

1 - 1 1
[1— wnl* [T — pnl* [T — pnl*
1
Snll Iy 1]2 I full 2
S n—nl”ayfn”Lz(lln_l)"" nl
[1— panl? 5
1
Ckj 82 Il full 2
< —5 10y full L2 g + =1 -
I — unl2 K22

To estimate the H'! norm of fu we observe that §,, 0y f,, is written from (3.34) as

Snayfn = (un — Siny)(ayun + 8yvn) —cosy (A, + Dv, — ,unayvn
= _McosyB2,lnun - Msiny ayvn + (un — Msin y)ayun . (3.43)

Fromcosy = cos y,.1 + O((y — yn,l)z) and (3.39) we observe that | cos y| < C|1 —
/L,ﬁ fory € I1,,1, and also |u, — sin y| < C82 for y € I, 1. Thus we have

1
”‘SnayanLz(H,,_,) < C|1 — uul2 || B2, unll 2 + C”ayvn“L2 + Ca;%||ayun”L2

(3.44)
Therefore, we arrive at
3 33
8l fu (v, 1) } C; 8 Ci; 8
S < O Sllunll 2+ —— 19y vall 2 + ——2 1Byl 2
1= pnl3 11— ptn2 11— ptal2
+ ”fn!]} ’
23

6n|fn(yn,l)| <

which shows from Step 1, (3.32), and 1 — u, > K(S,Zl that lim sup

B noo |1
C (K—z)%. Since k3 > 0 is arbitrary, the claim is proved. The estimate for the point
y,,gKe Su, N (%, ) is proved in the same manner.
Step 3: Estimate of ||vy ||iz.
Let y,.2, yn,3 € Sy, be the unique critical points such that y, > € (%, w)and y,3 €
(27, 3Z) (that is, Yn.3 = Yn.1 + 27). Then we have

Yn.3 Yn,3 Yn,3
[ = sin @~ o v dy o [ ay = [ v ay
Vi Vi

n,2 Yn,2
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and then, by the integration by parts,

Yn,3 . Yn,3 1 .
/ (1n — sin y)(18yv, 1> + (17 — Dv3) dy +f (pn = 3 siny) vy dy
Yn,2 Yn,2
1 2 41 Yn,3
=3 2 oG P eos yn j =, favn dy
j=2.3 Yn,2

Jon G )
<Ol = pal( Y T fullz) (by (3.39), (3.35), and 1y = k5D) .
=12 11 —,U«n|2
(3.45)

Note that u, — siny > 0 in (y,2, y»,3). When % < Ueo < 1 we have the bound
Un — % siny > ‘—11 for large n. Since the norm over the interval [y, 2, y,.3] is the same
as the norm over [—’27 , 35 1\ .15 Yn,2) for 27 periodic functions, we have when

3 < koo < 1, by using (3.45) with Step 2 and (3.32),

li ! 2
nLH;O 1 — n ”vnHLZ(

=232 NG 1yn2) (3.46)

Step 4: Estimate of [[(~A;,)* vall2,
The integration by parts and (3.34) yield for any ¢ € H?(T),
UnVn + 8 fi
(ayvnv ay‘p>L2 + (lyzl — D(vp, @)12 = _<BZ,ZH’4n’ Q)2 =— <M, (,0> .
Wy — Siny 12
(3.47)

Note that the term ’;" Ut/ belongs to L? in virtue of (3.37) and the Hardy inequality.

—siny

Let us estimate the right-hand side of (3.47).

big 3n
MnVn + fu 2 UpVy + Op fu 2 UpVy + Op fu
—(— 2= ———pdy— . ————pdy

Jon — sin y 1 pn —siny + Jn —siny

s Jile] + Lle].

We are interested in the case ¢ = v,,. Letus estimate Jy, for which detailed computation
isneeded. Let y, 1 be the unique point of S, N(0, 7). Let k3 > 0 be fixed but arbitrary

small number. Take b,, € (11—0, 10) such that

82 82
. 3 / n / n
sina,,1 =sina, |,  An1 =Yn1+Kk3———, G, = Yn1 — buk3

—
11— ual? 11— wnl?
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52 52
Set I11,1 = [yn,1 — bpk3—"—, yn,1 + k3—"—] and
[1—pap |2 [1—pn|2

1 82
]Vn,l = | Yn1 — k3|1 — pnl?, Yn,1 _an3—l
Il — panl2

8,21 1
U | Y1+ 63—, Yn1 H 3|l —pal2 | .
11— pal?

1 1
Then we have for a, 2 = y,.1 + 3|1 — pyl2 andal/l’2 = Yn.1 — k3|1 — pnl2,

cosydy

1
/zv,l,. (p — siny)

/ V I/Ln §
dS
sin [ n,1

= | — log(sinay 5 — jtn) + log(tun — sinay,1)
— log(i, — sinay, ;) + log(i, — sin a;)2)|

: I
Pn —sina, ,

sin an,2 — MUn

log <C. (3.48)

Here we have used the fact that sina, » — @, and @, — sin a,’1 , are approximated

by cos yu.1 k3|1 — ,un|% ~ k30(|1 — uyl); recall (3.38) and (3.39). Taking this into
account, we can decompose J; as

11:_(/ +/ +/ >=]1,1+J1,2+Jl,3-
111)1,1 IVn,l [_%s%]\(llln.lUIVn,l)

Since y,.1 € I11,,1, we have from |, —sin y| > C(’S%|y—yn,1|fory € I11,; and

the Hardy inequality,

[11le]l < - 19y (nvn + Sn f)ll 2rrr, @l L2110, 1)
C 1
= —l(Hayvn”LZ + ||5n8yfn||L2(111,l~1))|111n,1|2 llellLe
11— pnl?

1

CK378,1
< 3 (U 180y full 2, )0l e -
[T — panl?

Here we have used the normalized condition (3.35) for [|dyv,|l;2. The norm
16,0y fu 211, 1) is bounded as (3.44) by the definition of /71, 1, and thus, in virtue
of (3.32), we conclude that
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8
sup — T ||8n3yfn||[‘2(111n,1) <C<o0, (3.49)
|l = pgl2
which gives
3 el
[Jalell < Crg ———— (3.50)
11— pnl*
and in particular, by using (3.36),
1
IJ11[vall < Cis (3.51)
As for the term J; », we compute as
Ccosy V@ on fi
Ji20e] = —Mn/ —.n— dy —/ n—'f(p dy
IV, Mn —SIDYy COS Yy [Vyy Hp —SIDY
cosy Un®  Vn(Yn, )9 (Yn,1)
= —Mn . - dy
IV, Mp — SNy \ COSY COS yn,1
MV (Y, D@ (Y, 1) COSY 4y — / Sn fn dy
COS yp, 1 [Vpy Mn —siny [Vyy Hn —siny

=: Ji2.1le] + Ji2.200] + J123]0].

Then we have from | cos y| > é|l —,unlé foryelll, 1 UIV,,

[J12,1le]l < C %Il I%II?) o Il
211 — _n¥
1.2,1lell = Cks Hn "\ Cos y L2(I11, U1V, )

1 1 dy v, oo + ||vg|lLee |0 Up |l oo 00
< CK32|1 _MnH ” y n”LZ”QD”L ” :z”L ” _V(P”L2 + ” n“L ||(p|LL
11— wnlz [T — pnl®

(M + 19,0l2) (by (3.35) and (3.36)) . (3.52)

1T = ptnl®

W o=

< Ck

Hence we have

1

[J12,1[va]l < Ciy . (3.53)
The term Jj 22 is estimated from (3.48),

|Un(yn,l)§0(yn,l)|

12200l = C I
1T = pal?

(3.54)
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and thus,

2
[J12,2[vall < C'v"(y—’”)| (3.55)

1= pual?

As for Jj 2,3, we have from the definition of /V,, | and (3.42),

1
J <||—— ) 00
IJ1,2,3l0]l < IIM —siny”Lz(IV"’l)” nfull2llellz
Cs o0 C i~
- nIIfrILIIm!(pIIL(S - ”{n“Lz”‘p”? (3.56)
1= pnl? kg = k51— ptal
[1—pn|4
Thus it follows that
Cll full 12
1230l < —5E (3.57)

2
k3

Next we estimate Jj 3:

V, 8 ¥
Jl,3[¢]__/ Mdy—/ . ﬂdy
- 2

T INUL Iy (UIVyp) M — SINY JENU 1, UTV, ) Mn — SINY

sJuzlel + Ji320e].

Since p, — sin y is positive for y € [—%, Yn.1), we have from the definition of 111, ;
and / Vn,l’

1
V1 —K31=pn|2 2 z 2
: HnV 2 Hnv
Ji3,1[va] = —/ — _dy —/ —_dy
¥

1
tn — siny 143 1 —pin| 2 Mg — SINY

[SE ol

_ / _ Hava
1 .

Y13 1=, | 2 Hp — Sy

Cllvall?

IA

dy

LZ([yn 1:Yn, 2]) (3 58)
3(1 — py)

On the other hand, for general ¢ € H 2(T) we have

Mn(Vn — Va(Yn,1)) ¢
|11,3,1[¢]I§|f =0
[-Z. 53N\ 11, 1UIV, 1) MUp —SIny

%
/.** ENU T VIV, 1) M — sin y
C||8 vnllellfﬂlle N C|an,,(yn D ||‘P||L2

dyl

(3.59)
1=l 11—l
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The estimate of J; 37 is similar to J; 2,2, and we have

1
[J1.3.200]l < ”M_—Siny||LZ([—%,%]\(llln,lulvn.l))||8nfn||L2||(p||L°°
n
Cénll fall2ll@ll Lo
- 1 1 1
1= ]2 -5 11— pnl?
_ Cllfall2llelle

= 1 (3.60)
K32 [T — wnl?
Hence,
Cllfull 2
UmMMS—@L. (3.61)
KZ
3
Collecting (3.51), (3.53), (3.55), (3.57), (3.58), (3.61), we have
Cllvall?, 2 ¢ !
Tilv,] < i (SRBTE P |Un(yn,l)|1 n IIfnllle +Cil (3.62)
k3(1 — ) 11— w,l2 K3§

The estimate of J; is exactly the same as J;. Hence we have

19y vall?2 + (7 = Dllvall72 = Jilval + Ja[va]

2
C ||Un ”LZ([yn.l,yn,Z])
13(1 = ptn)

2
) C 1
[Vn (Y, ) + ”f"IHLz + CK32 . (3.63)

+C T T
j=12 [T — pnl2 /(32

By Step 2 and lim || f;||;2 = 0, we conclude that
n—o0

2
v
I ””quyn,l,yn.z]) +CK3%7

(3.64)

. c .
limsup (||dyvn 172 + (7 — Dllvall7,) < — limsup
n—00 K3 n—o0 11— Mn

for any small k3 > 0. Suppose that % < oo < | and l<2>o € [1, 00). In this case we
have from (3.50), (3.52), (3.54), (3.56), (3.59), (3.60),

|<ayvo<n ay(p>L2| = ’nli)nolo(ayvna ay(p>L2|
. vy + 8
s@—m%mﬂ+mmﬂﬂL#@ﬁ|
n— 00 /J«n - Slny LZ
< (% = Dlveollz2ll@liz2 + Cliell 2 - (3.65)

for any ¢ € H?(T).
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Case % < Uoo < 1.

Let us first consider the case o < 1. If [ = o0 then (3.64) implies that
lim ||vn||i2 = 0, and then, again by (3.64) and 1, < 1, wehave lim ||8yvn||i2 =0,
n— oo n—o0

since k3 > 0 is arbitrary small. By recalling that ,,1520 83||un ||i2 = 0 by Step 1, we
achieve the contradiction with the normalized condition (3.35). Hence we conclude
that [oo < oo. In this case, in virtue of (3.64) and the assumption ps < 1, we
may assume that inf,, ||v,|l;2 > 0. Since v, converges to v strongly in L%(T), the
limit vy, is a nontrivial function. Moreover, we see from (3.65) that v, belongs to
H?(T). The direct computation using the weak formulation implies that v, satisfies
(Moo — sinY)(Ar, + Do — fooVoo = 0 for y € T\ S, . Since we have already
shown that vy € H 2(']I‘), we conclude that uo, = Aj_veo 1S an eigenfunction of
[\loo in L2(T). By Proposition 3.3 this is a contradiction since oo € [%, 1). The case
% < oo < 1is settled.

Case (oo = 1.
In this case we need additional steps to achieve the contradiction.
loall3 2,
Step 5: lim sup WLm1:202D () when Moo = 1.
n—o00 1-— MUn

2
Ly Tr——

Suppose that oo = 1 and lim = 0. Then (3.46) implies

5 n— o0 —_ l’l’l’l
lonll
il S 0, and (3.64) implies lim ||8yvn||i2 = 0 as well. Since
n—oo | — Un n—00

lim 8,2l lup ||iz = 0 by Step 1, we achieve the contradiction due to the normalized
n— o0

condition (3.35).
Step 6: Rescaling and limiting process for the case po = 1.

Mol L
By Step 5 we may assume that inf -2 > 0 (by taking suitable subse-
n —u
quence if necessary). Set !
1 b4 1
n(®) = (F+1-mlie). sel221. (66
— MUnl*
Let ¢,, > 0 be the number such that
g 1 s 1
Yu1 == — |1 — pnl2cy, Yn2 ==+ |1 — pul2c,. (3.67)

2 2

Note that

. . 1 ym 2 1 ym 4
,U«n=sm)’n,j=5m5_§(5_3’",1) +I(—_yn,j) +eee
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which gives

2
(s =2) =20 =+ 001 = ).

Hence we see from (y,,; — %)2 =(1-— ,un)c;‘.: by its definition,

en =2+ 0(1 = 11,7). (3.68)
In particular, we have
1<c¢, <2 foralllarge n,  lim ¢, = 2. (3.69)
n—oo

In virtue of the normalized condition (3.35) and Step 5, we have

2
loal2

<1,
11— pnl

”aé wl’l”iZ(_z’z)) + ”wn”%‘Z((_z’z)) S ||8yvn||iz +
loall2 (3.70)
Unlly 2
R A D
1 — pn

inf 0.

Hr}f ”wn ||L2((_Cmcu)) - n

That is, the sequence {w,} is uniformly bounded in H 1 ((—2,2)), and thus, we may
assume that w, weakly converges in H'((—2,2)) to some ws, € H'((—2,2)) and
strongly converges in L?((—2,2)) as well as in C"([—2, 2]) for some n > 0. More-
over, by the uniform lower bound in (3.70), the limit w, is nontrivial. The direct
computation shows that w,, satisfies

wwwm®¥w=u—m(wrm%aﬁ—nw+ww+%&)

£e(=2,2).
(3.71)

Here we have set
. . T 1 _1 T 1
sing & = sin (3 + 11— mal€) . ga®) = 11— pual ™5 fu (3 + 11— pual?é) .
On the points § = +c¢, we have
1 _1
Wn(=cn) = |1 = pnl 30 (n,1) . walen) = [1 — pnl 40 (yn2) . (3.72)
Thus Step 2 gives

Woo(£V2) = 0. (3.73)

@ Springer



On pseudospectral bound for non-selfadjoint... Page410f84 14

Next we see
. Lomo 1 1
siny € = sin = — |1 — € + 11— punPE* -
and
. . T L 1 2, | 2 4
M =smyn,2=sm(5+ll _Hn|2cn):1_§|l _Mnlcn+47|1_ﬂn| Cpt e
which gives

Csin E = et 2 _
Mp — sin, § = 2|1 Ml ) (1 + 1 an'%l@))-

Here g, is a smooth function on [—2, 2] satisfying the uniform bound
SUP” gk S 0o((=2,2)) <00 for k=0,1,2.

Thus (3.71) is written as

1
@€ —c,%)(l +11 —unlqn)agwn

1 (3.74)
= S1 =l = DE - c,%)(l +11 - unmn)wn + LWy + 8 gn
Note that, from 1 — p, > /(82 and || full;2 = Oasn — oo,
o
Snllgnllz2—2,2) = ——lfalllz2 >0  n—o0. (3.75)
I — pnl2
We have from (3.74) that for any test function ¢ € C§°((—2, 2)),
— (0 wy, 3&§0>L2((72,2)) =[1- Mn|(l,2, — 1) (wp, <P)L2((72,2))
3
+2<“”w2" + 8 ¢ > . (3.76)
§°—¢y L+ 1 — unlgn L2((=2,2))

Let us focus on the second term of the right-hand side of (3.76).

<ann + 6n8n % >
SZ_C% ' L+ 11— wnlgn L2((—2,2))

1 [ 1
Y — ] dy+/ [h ] dy.
v/[o,z] g2 -2l 2.0 &2 —c2L "1
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Here

<//«nwn + 8ngn>§0

h, =
1+ |1T = pulgn

o gl ©) =q ) —q(Fcn) .

where we have used (u,wy, + 8,8,)(Ec,) = 0. Let us decompose A, as

HnWp@ Sngne

hy =hp1+hn2, hp)=—"7—""", hpp=—""""—.
e ! T+ = walgn YT+ = walgn

Then, by the weak convergence in H' for w, and strong convergence to zero in H?>
for |1 — 1y lqn, it is not difficult to show the convergence

1 1
h ] d +/ —[h ] d
[0,21 52—05[ e Y [—2.0) £2 —¢2 T d

! 1 2 Weoo®
w d +/ S |w d =/ de .
[0.2] 52—2[ ww]m R P 52—2[ “‘”](_) =%
3.77)

d

Here [woog](4)(§) = (Woo®)(€) — (Woop) (E2) = (Woop) (&) is used in the last
line since woo(:t\/i) = 0. Next we show

1 [ 1
—_In ,2] dy‘ + V —[h ,2] dy‘ S0, (378
/[0,2] g2—c2l " e (2.0 &2 —c2 L e

It suffices to consider the integral over [—2, 0]. Recall from lim w,(—c,) = 0 and
n—oo

(Mnwy + 6,8n)(Ecn) = 0 that we have lim §,g,(—c,) = 0. Then we have
n—oo

1 1
—_— h d = - A 8 d + o ] ’
/[‘_ZO] %_2 _ Cl% I: n,2:| (_) E /[._2’0] %,2 _ C’% I: l’lgn:l(_) (pn s ( )

o= —
" L+ 11— pulgn
~ 2 2
We take arbitrary small «” > 0 and set I1,, = [—c,, — «” lf';hl, —cp +K//1E—'I'Ll]. Then
we have
[80n] o 0| = COst 2180l Il
- < _ o S -
i, &2 -l o™ =z

2% Sn
< C)? ———18a0y full L2,y ll@ Il Lov -
[T = pal?
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2 2
Here I, = [y,1 — «” S Ty Yn1 + &7 S r1, and the norm ||8,dy full 12, is
[1—pn] 2 1—pn]2
already estimated as in (3.49). Thus we have

1 © |
lim su —[5 ] —®  del<cwhe.
n—>00p|/1:1n %—2_01% nn O 1+ 1= pnlgn $|

On the other hand, we have

1
s ] d
| /[‘_2’0]\1:” 52 . C% [ ngn (_)(ﬂn S‘

1
< 5 0n&nen d&
’/[2,01\ﬁn E2—c2 """ |

Yn — @n(—cp)
18 8n(—cn) / on = ncn) 4
e aon, &2 —c |

1
+ 18n8gn(—cn)pn(—cn) - d§
R T s on, £2 ¢ |

CIl = pia?

— M

= —1n||5ngn ||L2((—2,2)) l@nllLoe + Cllenll g1 18ngn(—cn)l
(k)28

C
(//)l||fn||L2+C|5ngn(_Cn)| -0 (n— 00).
k"2

1
Here (3.75) and sup P ——
| [-2.0nf, &2 =i
taking k" — 0 after n — oo. Collecting these, we conclude that

dé§| < oo are used. Hence (3.78) holds, by

2L <ann + Sng” ¢ >
im PR
o £2 — c? 1+ 11— wnlgn L2((=2,2)
2
=2 20 de, waV2) =0, G.79)
2 E2-2

(i) When lim sup |1 — 1, |(I2 — 1) = oo:

n—o0
In this case we may assume that lim |1 — un|(l,% — 1) = oo by taking a suitable
n—0oo

subsequence. Then we divide both sides of (3.76) by |1 — ,unl(l,% — 1) and consider
the weak formulation with arbitrary test function ¢ € C3°((—2, 2)):

—1
I = pal(@3 = 1)
2 MnWy + 8p&n %
+ 2 2 2 ’ :
|1_Mn|(ln_1) %_ —C 1+|]_MH|QH L2((=2,2))

(Ogwn, 06 @) 12((—2,2)) = (Wns @) 12((~2,2)
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Then, by taking the limit n — oo in the above weak formulation and using (3.79), we
obtain ws, = 0, which is a contradiction.
(ii) When lim sup |1 — 1, |(I2 — 1) < oo:

n—oo
In this case we may assume that ILm 1 — /Ln|(l,% — 1) = dy € [0, 00) by taking
a suitable subsequence. Then, by ncorﬁidering the weak formulation for (3.76) with
arbitrary test function ¢ € C3°((—2, 2)) as above, we verify from (3.79) that the limit
Woo € HY((—2,2)) satisfies woo(£+4/2) = 0 and

2
Woop
— (0 Woo, 0£@) 12((—2,2)) = doo(Woos ¥)12((—2,2)) T 2/2 ﬁ d¢.  (3.80)

By the Hardy inequality the second term in the right-hand side of (3.80) is bounded
from above by C|lwso || 1 ll¢|l;2, which implies woo € H?((—2,2)). In particular,
Woo € CH7((—=2,2)) for some n > 0. By considering the test function of the form
(2 —2)p with ¢ € C3°((—2,2)), we also have from (3.80) that

(€% = 2)02Wo0 = doo(6? — Do + 2weo, £ € (—=2,2) \ {£V2},
Woo(£V2) = 0. (3.81)

We can show from (3.81) that weo € HZ((—Z, 2)) is smooth except for the points
&= ++/2, and thus (3.81) is satisfied pointwise in (—2,2) \ {£+/2}. Our aim is to
show that ws, = 01in (-2, 2), for it leads to the contradiction. The difficulty is that the
polynomial £2 — 2 satisfies (3.81) at least when d, = 0, therefore we need to derive
some additional estimate for w,. The key is the estimate of v, outside the interval
(¥n.1, Yn,2), which is obtained in Step 3. Indeed, (3.66) implies that

.
/ o d&
-2

N T 1
1=t [l (511 =l be) Pae

1 Yn,1 )
= / , v, dy,
U= ttn Jg—2j1-p,12

7=

and hence, since 0 < % - 2|1 — ,un|% < ¥n,1, estimate (3.46) leads to

—cp

lim lw,|?dé = 0.

n—>oo | _,
That is, wee = 0 for & € (—2, —v/2). Since woe € C1H1((=2, 2)) we conclude that
B Woo(—v/2) =0, (3.82)

Note that the singularity (62 — 2)~! at £ = —+/2 is first order. Then it is easy to
show that the solution weo € H2((=2,2)) to (3.81) satisfying the initial condition
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Weo(—v2) = dswoo(—+/2) = 0 must be trivial, i.e., we = 0 in (=2,2). This
contradicts with |weoll12((—2,2)) > 0. The proof of (3.29) is complete. m]

Proof of (3.30) Again we will use the contradiction argument. Suppose that there exist
{8 L tn}nen 80 € (0, 11,1, € Z\ {0}, jtn € (=14 k82, —51U[5, 1 — k52), and
{un} € H*(T; R) such that

lim 8, = 800 € [0, 1], lim I, = s € {£00} UZ\ {0},
n—o0 n—oo

nlggoun=uooe —1+K800,—§ U 5’1_K8°° ,

and

2
||Mc0syB2,l,,”n||L2 =1,

Jim (8n2||(un — Ay )unllfz + 8301 — |un|)||<—Az,,>5un||iz) —o. O
As in the previous lemma, set
fo=08" un — Apun . va= A uy (3.84)
Since u,, is real valued, so is v,, and v,, satisfies
(tn — Msiny) (A, + Dvg — vy = 8u fo - (3.85)
From (3.29) and the condition 1 — |u,| > K(S,zl, we have
lim_ (63||un||’iz + 13y vall?5 + 1_—W|nvnniz) =0, (3.86)

which is essential in the proof below. It suffices to consider the case §», = 0; otherwise
we have lim |u,||;2 = 0 by (3.86), which implies lim |[Mcosy B2 ,unll 2 = 0 and
n—o00 n—oo

we achieve the contradiction. We also note that we may assume u,, > % for all n, for

the case u, < —% is handle in the same manner. Let us recall that y, ; € §,,, are the
critical points, sin y, j = jt,, such that y, 1 € (0, 7) and y, > € (3, 7). Then (3.85)
gives the identity

:unvn(yn,j) +5nfn(yn,j) =0. (3.87)
Let k5 > 0 be fixed and sufficiently small number. We decompose the interval
[-Z., 3 into I, and [ = [-Z, 321\ I, where

- T 37 .
1” = {y € |:__v 71| |dlSt (y’ Sﬂn) = KSS”} :
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We also set

~ ~ ~ ~ bid ~ RF/4
IIn=IIn,1UIIn,27 IIn,1=|:_57yn,1+K58ni| IIn,2=|:Yn,2_K55n»7i| .

Note that I, C 11, and |I~In,j| > éhold. Then we have from | cos y| < C|1 —,un|%
fory e I, and |cosy| > %|1 —u,,|% fory e I~I,,,1 UI’VI”’2,

~ 1 1
||McosyB2,lnun||L2(jn) < Cln|211 = pal? ”BZ,lnun”Lm(in)

1 1 1 1
< COF 1L = il WBos,tnll gy I Botnll o

1 1 1 1 1
=< Carf [T — p,l? ”(_Al,,)zun ”Zz ||McosyB2,l,,un||iz(fIn)

} : -
= Cop [l — pnl* (= Ap) 2unll
-0 (n— 00).

Here we have used (3.83) in the last line. Next, (3.85) gives
v, +6
Bo, Uy = 'u”"—"f” (3.88)

Mn — siny

We decompose Ifas I$ = (IEN[0, 5D U U N[F. A U SN[, 2m]) =: I | U
Inc’2 U In”’3. Then, since % < u, < 1 we find that there exists C > 0 such that

| cos y|

|in — sin y| > y=yual,  yell,,

| cos y|

|pn — siny| > v = yn2l,  yelS,, (3.89)
. 1 ”
|Mn—SIHY|Z§, yel,s.

Here y,, ; is a unique point of S, such that y, 1 € (0, 5) and y, > € (5, 7), respec-
tively. Then we have from (3.88) and the definition of I:f 1>

Un — vn(yn,l)

| Mcos yBZ,l,lun ||L2(]";‘,1) <C

Y = Yn,1 Lz(fr(l-l)
cosy Cénll full 12
+ tn|vn (Yn, 1| H— +”—”L
My — SNy Lz(i;.‘l) K58n
Clun(yn, )|  C )
< Clloyvnl 2 + SnOnDl ”JK”"”L ,
Ks 8y 5

@ Springer



On pseudospectral bound for non-selfadjoint... Page470f84 14

The same estimate holds for || Mcosy B2, 1, un |l 2 () while we have from (3.89),

MnVn + O [
1Meosy Baytnllpagry ) = 1= == lage ) < Clunllz 8l fulz2)

Collecting these, we obtain from (3.86),

C v i
lim sup || Mcos y B2, nll 2 < — Z lim sup M (3.90)

n—oo KSZ ]:],2 n—oo 83

M It suffices to consider the case j = 1, for the case j = 2 is

&
handled in the same manner. The argument is similar to Step 2 in the proof of (3.29).
For sufficiently small «” > 0 as above, we set T}, as

Let us estimate

~ 2 T
T, = [Yn,lv Yn1+ K 3,1 C (0, E) .
We take z, 1 € Tn so that
C C
2 2 2
| f(zn,DI" = m“fn”LQ@M = m”fn”Lz-

Then we have from (3.85),

Mnlvn(yn,l)| = (Snlfn(yn,1)| =< (Snlfn(yn,l) - fn(Zn,l)| +8n|fn(zn,l)|
1
3 Cs;?
< CK'83 10y full 2y + o Wl
Next by using the identity (3.43) for 8,y f, and also (3.83),

1
(Sn”ayfn”LZ(Tn) = ”McosyBZ,lnun”LZ(Tn) + 10y vnllz2 + Copll — wnl2[|0yunll 12

S C 9
and thus,
lim sup —|Un(yln,l)| <Ck'=>0 (k= 0).
n—oo 63

Hence (3.90) implies lim sup || Mcos y B2,1, un |l 12 = 0, which contradicts with (3.83).
n—od
The proof of (3.30) is complete. This completes the proof of Lemma 3.8. O

Finally we consider the case || < % The proof is similar to Case 2 in the proof of
Lemma 3.8. The only difference is the influence of the projection Q; when / = +1,
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which yields an additional nonlocal term in the limit equation when we perform the
contradiction argument.

Lemma 3.9 Letk € (0, 1) be the number in Lemma 3.7. There exists C > 0 such that
if6 € (0,11, 1 € Z\ {0}, and n € R with |u| < % then

_1 _
S lull® + (=AD" 2ull, + I A; w3,

~ 1
< C(S_ZIIQZ(M — Apullf + 86||(—A1)2u||iz) : (3.91)
and
2 -2 A 2 2 L2
| Meos y Bo,qull7> < c(a IQi = Apull> +38 II(—A1)2u||L2>, (3.92)

forallu € H'(T) N Y;. Here Q; : L>(T) — Y; is the orthogonal projection on Y.
Again the proof consists of several steps. We first consider (3.91).

Proofof (3.91) The proof is very similar to the proof of (3.29) and is based on the
contradiction argument. Again it suffices to consider real valued functions and to

show the claim foru € HX(T) N ¥;. Suppose that the estimate

_1 _ _ N 1
82 Mul2y + (=AD" 2ul3, +IA] i, < C<s 21Qu (= Apull?, +s6n<—A/)2uniz),
(3.93)

1
Be .11, LeZ\{0}, Inl< 5, ue HAT;R)NY,

does not hold. Then there exist {8, L, i }nen. 8n € (0, 11,1, € Z\{0}, ;1 € (—5. 3).
and {u,} ¢ H*(T; R) N Y;, such that

lim 8, = 800 € [0, 1], 1im I, = lso € {£00} UZ\ {0},
n— 00 n—oo

11

nlgroloun = Uoo € [_5» E] »

and

_1 _
Sollunllza + (= AL) " 2unllys + 1A unly =1,
) ) . ) 6 Lo (3.94)
lim (8; 1Qi, (tn = Ag)unll7> + a,,||<—Aln)zun||Lz> =0.
n—o0

We first observe that §o, = 0, otherwise we have ||(—A1n)%un||Lz — 0 (n — o0) due
to the second condition in (3.94), from which we easily reach a contradiction to the
normalized condition in (3.94). Moreover, if |[»| 7 1 then the situation is exactly the
same as the case % < oo < 1in the proof of Lemma 3.8, for ; = I when |/| # 1.

Therefore, it remains to consider the case |loo| = 1 and |poo| < % Let us focus on the
caseloo = land 0 < oo < %; the other cases are handled in the same manner. Then
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we may assume that [, = 1 for all n by taking a subsequence if necessary, though we
often keep the notation [, for convenience.
Set

Fo=8" n — Apun . vy = Ay (3.95)

We may assume that v, converges to a function vy, strongly in L>(T) and weakly in
H(T). Since u,, is real valued, so is vy, and v, satisfies (un — Msiny)(Az,, + D, =
UnVy + 8 fn, and then by l,% =1,

(tn = Misiny)05Vn = tnn + S fo - (3.96)

It is convenient to introduce the value

1 2

ﬁn 5nfndy»

:EO

which gives 8, f, = 8,Qy, fu + ¥4. The value ¥, is computed from (3.96) and the
condition v, € Y}, as

1 2 1 2
Oy = ——/ sin y 92v, dy = —f sin y v, dy . (3.97)
27 Jo u 27 Jo
Then (3.96) is written as
(n — Msiny)a)z;vn = pVp + Oy + 8,Q, fr - (3.98)
The trace relation of (3.37) in the present case is

ann(yuy,) + %, + Sn(@l,, fn)(ym,) =0, Yu, € SM,, . (3.99)

Here S, is the set of critical points. A key difference from the proof of (3.29) is
that the role of 1, v,(ys,;), where y, ; is the critical point, has to be replaced by
WnVn(Yn, ) + Oy, and similarly, the role of f, is replaced by Q, f.. The other part of
the argument is similar to the proof of (3.29) for the case (oo < 1. Indeed, the same
argument as Step 1 in the proof of (3.29) leads to
lim 8,||unll;2 =0, (3.100)
n—>0oo
while the argument of Step 2 gives
lim (ann()’n,j) + ¥,) = lim an(an)fn(Yn,j) =0.
n—o0 n—oo

In particular, we have

Moovoo()’uoc) + U0 =0, Yoo € Suoo s (3.101)
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where
1 2 1 2
Voo = lim — sinyvndy:—/ Siny veo dy .
2 0

n—o0 21 Jo

To estimate ||9y vy, ||i2 we use

Py + 8
8)2,1),, _ MnUn + n"j annfn . (3.102)
Hn — sy
By taking the inner product with v,, we obtain
2 ¥ (ann + U +8annfn)Un
8yvnlly. = — . dy. (3.103)
—z Up —Siny

Then we apply the argument of Step 4 by replacing u, v, and f, there by w,v, + U,
and Qy, f, respectively. We obtain the estimate of the form

n—00 3 n—>o0

C 1
lim sup ||8yvn||%2 < P lim sup ||Un||iz + CK32 (3.104)

for any sufficiently small 3 > 0, and also obtain the estimate
{8y s, 3y9) 12| < Cllgll 2 (3.105)

for any ¢ € H 2(’]I‘). This ensure the regularity voo, € H 2('11‘). Estimate (3.104)
together with (3.100) and the normalized condition (3.94) implies that we may assume
inf, ||v,|lz2 > 0, and thus, the limit v, must be nontrivial. We can also show that the
limit vao € H2(T) N Y satisfies

(Koo = SIN Y)33 V00 = LooVoo + Poo - (3.106)

If woo = 0 then 9o, = 0 by (3.101), and thus, Byz.voo = 0 by (3.106). Hence v is
a constant. Since vy, € Y] we conclude that the constant v, must be zero. This is
a contradiction. The proof is complete for the case o = 0. When 0 < oo < %
let Yoo j € Suns J = 2,3, be such that yoo 2 € (%, 7) and y, 3 € (27, °Z). Then

Moo —siny > 0 fory € (yso,2, Yoo,3). Thus we see

Yoo,3 Yoo,3 i) + 1} 2
f 92000 (toovoo + Poc) dy Z/ (Boovoo F Vo)™ -
y 7 Voo.2 Moo — Slny

00,2

which makes sense by the H? regularity of v, and the condition (3.101). The inte-
gration by parts and (3.106) imply

Yoo,3 Yoo,3 ) 2
,uoo/ Iayvoo|2dy+/ (““’OU"O——’_‘OO)dy:o‘ (3.107)
¥ Yoo.2 Moo — SH1Y

Voo,2
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Therefore, we conclude that (ooVoo + Poo = 0 0N [Yoo,2, Yoo,3]- Set Woo = V0 €
H! (T), which then satisfies woo = 0 0n [Yoo,2, Yoo,3]. Moreover, from (3.107) and
also from ¥op = — oo ¥V(Yoo, ), WE See

HooVoo + Voo Moo Y
dyWeo = - = - Woodz, ¥ > Yoo,2,
Hoo — Siny Moo —SINY Jy
Woo(Yoo,2) = 0. (3.108)

Then it is easy to see that weo = 0 for y € (¥o0.2, Yoo,2 + 7) for some v > 0, and
thus, wee = O forall y > ys 2. Hence woo = 0, i.€., v is a constant. Since v € Y1
we must have vy, = 0, which is a contradiction. The proof of (3.91) is complete. O

Proofof (3.92) The proof is again very similar with the proof of (3.30) and is based on
a contradiction argument. Then the problem is reduced to the analysis of the sequence
{it,}, where it,, = Mcos yBo i, tn, Uy € H*(T)N Y;,. As in proof of (3.91), it suffices
to consider the case |/,,| = | and 6o = 0, and without loss of generality we may
assume that [, = 1 for all n. From the hypothesis of the contradiction argument, we
have the convergence

. _ ~ 1
lim (6,, 2 (n — Agunll?s + a,%n(—Azn)mnuiz) =0, (3.109)
n—>0oo

and therefore, from (3.91) we have
lim (8 llun 3> + lIvall ) = 0. (3.110)
n—o0
Then we can apply the same argument as in the proof of (3.30), for the argument there
relies only on (3.109) and (3.110). The only difference from the proof of (3.30) is that

the role of j,v, and f, is again replaced by w,v, + ¥, and Q, f,,, respectively. We
omit the details. The proof of Lemma 3.9 is complete. O

Letussetform > 1and u € R,

0 TR
1 . kM K
hy(m,p) =4 m 2 if 1——<u=1+—, (3.111)
-1 _1 . n K n
m—(1—|uh~2 if |u[<1—-—,
m
0 il > 1+ =,
_2 . K m K
hao(m, pu)y = m if 1-—<ul=1l+—, (3.112)
m m

—1 1 . K
m— (1 —|u)? if ul=1l-—,
m
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and

0 if |u|>l+%,
m

ha(m, ) =1 m™2 it l—— <lul<l+-—, (113
m m

_ _1 . K
m>3A — )72 if ul=1-—5.

Note that each £ satisfies hj(m, —u) = h;j(m, ) and lim sup h;(m, u) = 0.
m— 00 weR

Moreover, we have h3(m, u) < Chy(m, ). By Lemmas 3.7, 3.8, and 3.9, we obtain

Proposition 3.10 There exist C, k > Osuchthatforallm > 1, u € R, andl € 7\ {0},

~ 1
lull?, < C<m2||(u — Apull?, + hi(m, p) ||(—Az>2u||iz) :

. (3.114)
we H'(T), = <ul<1+~—,
2 m
~ 1
lull?, < C<m2||(@z(u — Apull, + hi(m, p) ||(—Az>2u||iz> :
: (3.115)
ue HMNY, |ul< 3
~ 1
| Meos y Ba,sull?, < C<m2||(u — Apull3, + h3(m, p) ||(—Az)2u||iz) :
| (3.116)
we H'(T), = <lul <1+ —5,
2 m
~ 1
| Meosy Bajul2> < C<m2||Q1(M — Apull, + h3(m, p) ||<—Az>zu||iz) :
. (3.117)
ue H'(T)NY, Il <,
and
_1 N 1
(=AD" 2ull7, < C<m2I|(M — Apull3, + h3(m, p) ||(—A1)2u||iz> :
| (3.118)
weH'T). S=lul <1+,
m
1 ~ 1
(=AD" 2ull;, < C(m2||@z<u — Apull3, + h3(m, p) ||(—Az)2u||iz) :
(3.119)

1
ue H'(MNY;, ul <5
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On the other hand, if ||| > 1 then

C N
lull7> < G- Apul?,.  ueHY(T), (3.120)
C N
| Mecosy Baull?> < L Apuli,, weH'(T), (3.121)
and
-2 ¢ A 112 1
I(=AD"2ulz < e = Aulf . we HI(T). (3.122)

Note that the constants C and m in Proposition 3.10 are independent of [ € Z\ {0}.
Let us recall that L, ; is defined as Ly = A; — ilA;, and thus, it is convenient to
introduce

a=al)=oal. (3.123)

We are interested in the estimate of || (il + QL. D7 v,—v, by applying Theorem 2.9.
In particular, the dependence of the estimate on & is important. Let us recall that
By = BiTiA; " 4 MeosyBay = Miiny(8y — DA + Meos y B2y, and hence,

1
|Bsull;2 < CII(—=AD " 2ull g2 + | Mcos yBajull 2 -

Since h3(m, u) < Chy(m, n) by their definitions, it suffices to consider the function
F(a, ) defined as

F@@ p) = inf

mjy,ma=m

2.2 2

m mims  miha(ma, ) 2

— h , . 3.124
(I&I = H + hi(my, 1) ( )

Here h  are defined by (3.111) and (3.112). Our aim is to obtain the upper bound for
F(a, ).
Casel: |u| > 1+

3
% In this case let us take
a|2

||

my = m? = — 2% (3.125)
1= = . .
27 qul—1
Then we have
. _
R
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Thus, i j(mj, n) = 0 by the definition, and
mp 2K
&l lal(ul =1
m%m% - C
a? a@(lul = D3 7 lal(ul = 1)
Hence we obtain
my  mim3  mihy(ma, 1)
— 5 + hi(my, M) -, (3.126)
lee| o || | [(Ju] = 1)
as desired. 3
i
Case 2: 1 — d - < |ul =1+ . In this case we take m| and m, as
|oe|2 &2
2 11
my =m5 = k2|2 (3.127)
Then we see from « € (0, 1)
1—-1 3
K K K72 K*
=—=—T>—7=[l-lu
miyoomy a2 a2

_1
Hence hy(my, ) = my *

and hy(ma, n) = mz_2 for this choice of m and m,. We
can also check that there exist C, C’ > 0 depending only on « such that

2.2 2 2
lm1m2 - m1h2(m2a )

2
mim
< C'hy(m;, p)? <Cc—2

c a2 = H = Chi(my, n)” = C—3

Let us compute the size of each term as in Case 1

3
mi K2 m%m% K2
~ = 1 ~ - 1
@l )2 a g
Thus we have
2.2
my  mim3  mihy(ma, ) 2
- = + hi(my, p)” =
|oe] a o

(3.128)
||
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K% )
Case 3: |u| <1— - In this case we take m and m> as
loe|2

1

A% _ 1\
’"‘=<1—|u|> , m2=(|06|(1—|u|)2> .

(3.129)
Then we have

2
K K K |&|% ’ 1
= i 7 = T 3 =k2 <1,
mi(L=1uD) &350 —uh3 &) \ «?
and
N
K K K AR
B =" T3 3 =1.
my=1uh @3 = uh3  jals \ €1

— _1
Hence /i (my, 1) = my' (1 = |u))™2 and ha(ma, p)
definitions. Thus it follows that

my (1 = |ul)? by their
mim3 — miha(ma, )

32 @l forany m; > 0,

and we can also check the balance

m3hy(ma, 1) — hy(my. w)?
|oe] B

Let us now compute the size of each term in the right-hand side of (3.124) for m and
my defined as (3.129):

m 1
&l @ (1= uhs
2.2 ~ 2
msm 3 1
L2 = L R
o 1 —ful)3

=2 T
lee|3 (1 — |ul)3
Thus we have
mi m%m%

m3ha(ma, 1)
|| a?

C
— +hi(my, p)? £ —5—r . (3.130)
] @13 (1 — [uh)3

Here C is also independent of /.
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As a summary, we have arrived at the upper bound of F (&, p) such that
F(@ ) < Clal™* = Clal| 2, (3.131)

where C is independent of «, i, and /. Then Theorem 2.9 implies the following result.

Theorem 3.11 There exist positive numbers ¢ and C such that the following statement
holds for all sufficiently large |a|. Let A € Randl € Z \ {0}. Then Q;Ly,; in Y; =
Q;L2(T) satisfies

sup Rel < —clal|?, (3.132)
¢eo(QiLay)
and
¢ if |)‘ | > 1+
_ if |—| > ,
""é' (141-1) ol |l |2
. 1 - if 1-— <=1 <1+
IGA+ QiLo)” lly,»y < ol|3 wl]s ol Wi
2 1 if |_l| =< 11— T
jal|5 (1 —1241)3 o |al|2
(3.133)

Here ¢ and C are independent of a and .

Recall that Ly ; = A} — ial[\l. Theorem 3.11 follows from Theorem 2.9 and the
estimates (3.126), (3.128), (3.130), and (3.131) for Fj(a, u) with @ = «l. Note that
Q; =1 when |I| > 2.

3.3 Estimate for Semigroup

The resolvent estimates in Theorem 3.11 provide a crucial information on the solution
to the following nonstationary problem both in qualitative and quantitative point of
views.

d
—w—Lawzo, t>0,
dr (3.134)

wli=o = f € L{(T?).

Note that the operator L, = A — i aA is diagonalized in terms of the Fourier series
with respect to the x variable:

Ly = @rezn0y Lai» Loy = A; — ialA; . (3.135)
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Hence the estimates of the solution u to (3.152) are obtained from the estimates for
each Fourier mode Pju, which is given by the semigroup generated by Ly ; in L>(T).
For the estimate of the semigroup e'Le/ it is convenient to use the representation in
terms of the Dunford integral

1

wy(t) = e'tel f = —/ (¢ — Loy frde . (3.136)
2mi Jr

Here f; = (P; f)e~'™* € L*(T), and T is first taken as

F:{;e(ClRei:—%, |Imc|s4|oel|}

u{g e C|Im¢ =:|:(Re§+%):l:4|al|, Re¢ 5—%}

=: Fo,f% + Fi,—% , (3.137)
which is oriented counter-clockwisely. We note that
I = L) 2 v S —— ImZ| > 4a|l] (3.138)
a, L*(T)—L*(T) = [Im¢ | ’ = .

hold with a constant C independent of «. Set P; = I — Q;, where Q; : L>(T) —
Y; = (Ker A;)~ is the orthogonal projection as used in the previous section. Note that
P, = O when |/| > 2. Our aim is to establish the estimates for Q;e’Le! and Pje Ll For
the part QeLe! the fast dissipation is expected for large o, while for the part Pe!Le
the strong amplification is expected through the interaction term

P AQ, =1,

which does not vanish due to the lack of the invariance of the space ¥; = Q;L3(T)
under the action of Ay, or in other words, due to the lack of the symmetry of A;, for
this term automatically vanishes if A; is symmetric. To estimate Q' «! we observe

1 1
Que'tel f = — / QU — Loy) ' frde = — / (¢ — QLo Qi fide .
L Jr 2mi r

The last identity follows from (2.19). We observe that for each A € R the set

1
Clig—in
{; eClIg—irl < Gr — QiLet) M y,>y, }

is contained in the resolvent set of QL ; by the standard Neumann series argument,
and in particular, we have

¢ = QiLa) sy < 2064 — QLa) ™ lv-y (3.139)
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. . 1 . . .
if [ —iA] < ML ooy, Then, in virtue of Theorem 3.11, we can shift the

integral [1. d¢ to [, d¢ by the Cauchy theorem, where

o= f e o L e e

k=1,2,3 k=1,2,3

where, with the notation of & = «l,

s - .2 -1
Fop1=1¢= s+t(| 3 +lal)| —clal’ <s < —cla]2t,
Fogo={c=—clal®+is| lal-1a® ss<ja+@}, G140

s ~ ~ L
Lo ={¢=s+i(==+ah| s=—cla].

and each 'y _ ¢ is a reflection of I'y 4 x with respect to the real axis. Here c is a
positive constant which is independent of || >> 1 and also of /. Let us estimate each
integral by applying Theorem 3.11 and (3.139). As for the integral on I'y, 1 | we see

1
||2—/ e — QLe) ' Qufide |2
T JTy 41

—elal? 1+ ~9;06
SC/ et — I - ds [|Q fill 2
_C‘q|§ |a|§(1 — ‘Ofl |;| 3 + |a|))

1
C —cla|2
t
5—/ L Isle™ ds Qi fill 2
3

1
e Qe (3.141)

&

where ¢’ = § and @ = «l. The integral on I’y > is estimated as

1
||—/ ¢4 = QuLay) " Qufide ] <
l—‘at,+,2

_ _ 1
c sl g
/ L e G Qe
|

|2 Jia—alz

.1
Ce P NQ, f1;2. (3.142)

2

As for the integral on I'y 4 3, we have

1
52 | €~ QLan Qi
T Fo4.3

o

, V142
< / o Y1EC il
o) Js<—claz (=% +lah —1
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~ds
- c/ sl
s

<—cl@gz sl

C
e WENQ fill 2 - (3.143)
o2t

IA

The estimates on the curve 'y _ x are obtained in the same manner. Hence, by rewriting
¢’ by ¢ for notational convenience, we have arrived at, from & = al,

1 1 3 1
L Clz+—) e QA >0
Qe fill 2 < 125 ot |21 (3.144)
Ce P NQ filla, 1> Jall 2.

On the other hand, the simple energy computation for % (ur(t), Bojuy(t)) L2(T) gives
the identity

d
E< 15 Bojur) 2oy = 2(Agug, Bajup) 2ty -

The term in the right-hand side is bounded from above by — (2! 2_1)) 1Quy ||i2 T <

—21% = D{uy, By jup) 2Ty, where we have used (uj, B jui) 2y < ”@1””22(1‘)'
Thus we have from the coercive estimate (3.11),

1 2
Qe fill 2 < 2¢7 2@ DNQ fill 2, 1> 0. (3.145)
This estimate is useful for a short time period. When |/| > 2 we have obtained the
desired semigroup bound since Q; = I in this case. For the estimate of Pje'Le’ in
the case |/| = 1 we cannot shift the curve I" as in I',, and it has to be computed in a

different way. By the construction of the resolvent in the proof of Theorem 2.4, see
(2.17), we observe that

Pi(¢ — Las) ' fi = —iad(C — ADT'PIAI(C — QiLa)) ' Qufi + (2 — AD TP £
(3.146)

Since [[(¢ — AD) "Ml 2ry— 22y < 1¢17", we have

1 _ A _
IBree fillz < ol fr ¢4 — A 'BIAIE — QuLan) Qi e

1 _
+||T/€[§(C — AP fidel e
Tl Jr
=ali+ I,
and it is not difficult to see

ILlx <e P fill2,  t>0, JIl=1 (3.147)
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by the estimate for the semigroup generated by the self-adjoint operator A; in L*(T).
As for I, we replace I" by 'y, where

Ty = f_%,i +Tos14+ T2+ Tats,

where I'y + j with j = 2, 3 are the curves as in (3.140), while T'_ 1y (Rep. T %ﬁ) is
the segment connecting { = —3 L and a point py.4+ of Iy 41 (Resp Pa,— of Ty — 1),
and l;a,i,l is the part of 'y 41 Wthh therefore connects p,, + and the end point of
Iy +.2. We will take py + as [Impy +| = %, thus, they are away enough from the
degenerate case such as |Im¢| ~ |al| = |¢|. On the curve f‘_%’i we have ||(¢ —

QL)) vy, < -5 by the choice of py, 4. Thus we have

ol 3

1 ~
2—/ e — ADTPIAI(C — QiLay) T QS de
Tl

F—%-i L?
$=pa.+
_c, 7/ ]
— 2
la|3 t=—1 I
Clloga| _:
< Qi fill 2
o] 3

As for the integrals on the curve 'y + 1 and Ty 4+ » we compute asin (3.141) and (3.142)
respectively, but the difference in this case is the presence of the factor (¢ — A;) ™ 'P; Ay,
which is bounded by
Ay 2 C C
I =AD" "PiAll o2 < AR

on f‘a,i,l and I'y, 4+ 2. Moreover, we need to compute the integral so that the singularity
at t = 0 does not appear. Hence we have

1 R
L /F ¢ — AN BIAL(C — QiLay) " Qufi dg
o,+,1

2mi

L2

C —cla|2
5—/ L Isle® ds Q1 fill 2

|Ol|2 —clal|3

C !
— t
< —ePNQ fill2,
lor| 3
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and similarly,

1 ~
L /F ¢S — A)TBIAN(C — QiLay) " Q1 fi de
a,£.,2

2mi

L2

1
C er|+]o|2 otk C _ .4
< e ds |Qufill 2 < —e P PNQ fill 2
|

lo|2 V||| 2 |ex|

Finally, the integrals over I'y + 3 is computed as in (3.143), and we have

1 ~
_/F ¢F (¢ — ADTPIANC — QiLa) " Qi fi dE
o,+.,3

2w
VT+c?
(Is] + o) (g (=2 + lel) — 1)

1
< C/ e ds |Qu fill 2
s<—claz (S| +lals| L

Clloga| _. 3
< ¢ AlQ fill 2 -

L2

C
ds [|Qu fill 2

< = 1 ts
lod| s<—cla|2

e

Collecting these above, we have
1 t
|11 < Clee|3 [ loga|e™2[|Q fill 2 - (3.148)
Combining (3.147) and (3.148), we obtain

1 t
IPre' ! fill 2 < Clal3 [logel e 2|Q; fill 2 + e ' IP fill 2, t>0, [I]=1.
(3.149)

Thus we have arrived at the following theorem. Let us recall that Q : L3(T?) — ¥
is the orthogonal projection on to Y.

Theorem 3.12 For all sufficiently large |o| the following statement holds. The semi-
group {e'"e};~q generated by Ly, in L(z)(’]I‘z) satisfies for any | € 7 \ {0},

_L1mp2_
2¢7 2 DNQP, fll 212y s t>0,

1 . (3.150)
Ce™ ™2 NQP £l 21y » > lal|"2,

1QPre™ fll 2(r2) <

while

1 _r
I — QPre'™ fll 2(r2y < Clal3 | logal e 2 |QPf I 212

+e NI =QPifll2rey. >0, [lI=1.
(3.151)
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Here C and c are independent of «, [, and f.

Remark 3.13 Recently Wei [27] obtained a refined version of the Gearhart-Priiss the-
orem for semigroup in terms of the pseudospectral bound. If one applies this general
result of [27] then the semigroup estimate (3.150) is a direct consequence of the pseu-

dospecral bound sup || (iA + (QZLW)_l ly,—y, < in Theorem 3.11, and thus the

= 1
reR |al|§

proof of Theorem 3.12 is much shortened.

Theorem 3.12 immediately leads to the estimate of the solution to

d
—w—ﬁ"’“a)zo, t>0,
dr (3.152)

wli=o = f € Ly(T?).

Here £V is defined asin (1.7) witha € R\ {0} and 0 < v « 1. Indeed, by introducing
the rescaling w(x, y, t) = w(x, y, vt) which gives o« = ‘;’ in Theorem 3.12, we obtain

Corollary 3.14 For all sufficiently small 7 > 0 the following statement holds. The
semigroup {e’m’a}tzo generated by L"% in L%(Tz) satisfies for any | € 7 \ {0},

rva 2@7%(21271)1”||szlf”L2(T2) , [ > 0’
QP Fli2ey = _ 1

Ce™¢ alllvt P ’ 7

e IQP f Il 212 Z Tl
(3.153)

while
v,a a 1 a v
17 = QP Fllzrey = €3 g Jle™ 2 IQPLf 2

+e N = QPif N2 (3.154)

t>0, [I]=1.

Here C and c are independent of v, a, I, and f.

4 Application to the Lamb-Oseen Vortices

In this section we consider the operator related to the Lamb—Oseen vortices. For details
of the derivation of the operators below, the reader is referred to Deng [10] and Li

1 _ 1 Sr) 2
et al. [17]. Let HLO(RJF) ={f e Hy(Ry) | ,rf(r) € L~(Ry)}. Let A be the

;
realization in L2(R+) of

Ao ] @.1)
ST 4 16 2 '
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with the maximal domain D(A) = {f € H{ ,(Ry) | Af € L*(Ry)}. Itis known that
the operator A is conjugate to the two-dimensional Harmonic oscillator restricted to
the angular Fourier mode =1, and hence, A is a self-adjoint operator in L>(R ) with
compact resolvent and —A is strictly positive. Moreover, we have the equivalence
between the norms such as

1 u
I=A)zulize ~ orulp2 + 12l + llrull 2. (4.2)

2
This fact will be frequently used in the analysis below. Let g(r) = e™ ¥ and we denote
by Y the orthogonal complement space in L(R ) to the one-dimensional subspace

spanned by r 3 g(r), that is,
3 1 . 2
Y ={r2g(r)} in L°(Ry). “4.3)

Then Y is known to be invariant under the action of A. Let p () be the function defined
by

—e
r2/4

=%

p(r) = 4.4

The direct computation shows that p(0) = 1, p’'(0) = 0, p”(0) < 0, and p'(r) <0
for » > 0. We also introduce the nonlocal operator Z as

ZIF1r) =2 / " Fs)g(s)s? ds. (4.5)
0

Then Z belongs to the Hilbert—Schmidt class, for the kernel k(r, s) = r -3 g(s)s2
X{0<s<r) belongs to LZ(R,. x R, ). We define the self-adjoint operators A1, Ay, and

A, as
[\1=Mp, AZZ—Z*Z, [\Z[\l—l—[\z, 4.6)
where Z* is the adjoint of Z in L2(R,.), that is,
X 3 [ _3
Lf1(r) = g(r)r2 fs)s™2 ds. 4.7)
r
The explicit representation of Ay is given by
g( ) [~ (TS 1
Ratfl) = =537 | pomin {2} )20 s
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We are interested in the resolvent estimate of the operator in Y defined as
Ly =A—ial, Dy(Ly) = Dy(A) = D(A)NY.

We note that, by Proposition 4.1 (1) below and by the fact that Y is invariant under the
action of A, the operator L, is indeed well-defined as the operator from D(A) NY to
Y. As observed in [17], the operator L, is conjugate to the linearized operator around
the Lamb—Oseen vortex with the total circulation « in the self-similar variable (that is,
L — a A introduced as in (1.12)), when it is restricted to the angular Fourier mode +1
(and it is known that this case is the most difficult to analyze). It will be convenient to
see that the inverse of Z, denoted by W, is given by

Wvl(r) = (rv() (4.8)

g(r)r%

and the domain of W is D(W) = {v € Hll’o(RJr) | Wv] € L2(R+)}. The operator
W is densely defined and closed in L?(R ). Let W* be the adjoint of W in L>(R.).
Then the direct computation shows

= (i )
=—?(Af+§f/+<§—%)f)- 4.9)

Note that — WW*[A\Z = I. We have the following estimates for f\g:

*

=Clflz2,

1 *
+|—z*f
rg

H_a,z
1+r)g L2
IIm(Af, Ao f) 2] < ClIMy fll 21 Zf Il 2 - (4.10)

The second inequality in (4.10) follows from A* = A and
r2 1\ ~
Ahsf = —g*WW* Azf——— Aof —(=—7) A
r2 1
f———Azf 5 1 Ao f,

where (4.9) is used. Indeed, this identity implies

Im(Af, Az f) 2] = [Im(f, 3 z°zf+ 2 Z*Zf>L2|
=< ||Mp’f||L2(lleLp,BrZ*Zflle + M 2 Z*Zf || 2)
8o’

= ClIMy fll 20 Z1 N 2 -
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Here we have used the first inequality in (4.10) in the last line. As for A, the following
properties are known.

Proposition 4.1 (1) Each A j is bounded and self-adjoint, and Ay is compact in
L2(Ry).

2) G(A) [0, 1], where O'(A) is the spectrum ofA in L2(R+) Moreover, {r2g(r)}
is the eigenspace for the eigenvalue O ofA in L>(R,), and A does not possess the
eigenvalues except for the eigenvalue 0.

Indeed, the statement (1) is clear from the definition of A j above (the fact As is
self-adjoint is firstly observed by Gallay-Wayne [14] in the original formulation of
the hnearlzed operator around the Burgers vortex). As for the statement (2), the fact
o(Al) = Ran (,0) = [0, 1] with no eigenvalues is trivial from the definition of A1,
and then, since A is compact, the essential spectrum of A must coincides with that
of A 1, i.e., it is the interval [0, 1]. The structure of the eigenvalues of A follows from
[20], which also gives o (A) = [0, 1].

We also have the following proposition, which implies the choice of B3 = M,y in
applying the abstract result.

Proposition 4.2 |Im(Af, A f);2| < Cl[(=A)2 fll,2| My fll 2 forany f € D(A).

Proof In virtue of (4.10) for the estimate of AA, it suffices to show

Im(Af, A1 f) 2] < C”(_A)%f”LZHMp’f”LZ :

To see this, we observe that Af = (—T*T + %)f, where T = 0, + % + % and
T* = -0, + 21—r + 7. Thus we have

m(Af,Arf) | = —Im(Tf, TMyf) 2 = =Im(Tf, [T, Myl )2
= —Im(Tf, My f);2

Then the desired estimate follows from || (— A)2f||L2 = (=Af, )2 = ||Tf||i2 —
§||f||L2 and || fll;2 < C||(—A)2f||Lz. The proof is complete. O

Let hy(m,n),m > 0and u € [—%, %] be the nonnegative function whose square
is defined as

1 1 1
P m>—2and0<u§§,
1 1 1
him,w?>=14{ u m<msu— and0<u<§ (4.11)
1 1
_ 0 <
m 10] |

Note that & (m, u)z =

1
m
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Lemma4.3 Let —% < u =< % Then there exists C > 0 such that for § € (0, 1] and

ueDANY,

SMpyull 7, + 1 Zull7, + 112 Zull7, < C872( (1 — Mull3,
1
+ OO Pl=A2ull7,,  (412)

and
_ A 1 1
lull?, < €872 — Mul2, + Chi(s. WA (=A)2ul?, . (4.13)

Here 1o = max{u, 0}.

Proof of (4.12) Again we will use the contradiction argument. Suppose that (4.12) does
not hold. Then there exist {8,, ity }nen. 8n € (0, 11,y € (=3, 41, and {u,} C D(A)
such that

11
lim §, = 6 € [0, 1], H_{golln:/iooe[_— —i| )
n

n—00 272

and
SAMpyunl?s + 1 Zunll s + 125 Zun |2, = 1,
. Dy ~ ) 6 3 T (4.14)
tim (8,72 (n — D22 + 851 Gen) 4 P 1 (—A) 2un |7, ) = 0.
n—0o0
Set
fo =8 un — Duy . vy = Z* Zuy (4.15)

and then, u, = WW%"v,. Since Z* is compact, by (4.10), we may assume that v,
converges to v strongly in L2(R.), W*v, converges to W*vs, weakly in LZ(R,.).
Since u,, is real valued, so is v,, and v,, satisfies v, (0) = 0 and

(n — Mp)WW* v, = v, + 84 f r>0. (4.16)

Letr, € [ﬁ, oo] be the critical point, i.e., r;, = ,o’l (up) for u, € (0, %] andr, = oo
for u, € [—%, 0]. Then from (4.16) we have

U (1) =+ 8 fu(rn) = 0, 4.17)
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which is valid also for the case r, = oo by setting v,(c0) = f,(co0) = 0. The
following estimates will be frequently used:

p® @) <ca+r27k, k=0,1,2, (4.18)
| 1 - Cr,(1 +rmin{r, r,}) ’ vk, 4.19)
M — p(r) [y —r|
_1
=" (un) A 21, 0 for 0 <, <K 1. (4.20)

When r,, = oo estimate (4.19) is interpreted as C(1 + r2). We define the operation

1
oo.0=0.oo=0andset@ — 00 below.
Step 1: fim 207 _ g 2SO _

n00 p'(ry)  n>00 p'(rn)

Since % =00-0=0and % = 00 -0 = 0, it suffices to consider the case
0 < r, < ooforall n. In this case i, > 0 for all n. First we consider the case oo = 0,

that is, lim r, = oo. In this case we compute as
n—oo

o0
2 1 ’
[vn (rp)|” < 2/ [vvnl dr < 2flv, [l 2 llvnll L2, .00))
n

¢ 8
g 1 Zunll2[|(1 4+ 1) vall 2

T+t
< 1 Zull}, .
—C(l4r,)8 L
. ’ _3 . Un (rn)
Hence, since p'(r) = —2r=°(1 + o(1)) for r > 1, we have lim |——
n—>o0 | p’(ry)

)
< lim = 0. Then we also have lim M
n—o0 | +ry, n—o00 p/(rn)

we consider the case s € (0, %], that is, sup, r, < oo and sup, m < o0. Let

= 0 by using (4.17). Next

k1 > 0 be fixed but arbitrary small number. We find 7, € [r,, r, + K%(S,%] such that

~ ~ 1
AEa P < W allf, o yasm = 1Ml e and thus, 8,1 fu ()l < -l fall2 On

the other hand, we have
180 fn (rn) — Sn fr(Fn)| < CK]‘Sn”ar(snfn“Lz([r,,,fn])
and (4.16) yields

10r8u full .20, 7, < C(1tn — Mp)drunll 2 iy, 7,7y + 1 Mprttnll g2 + 10-vall2)
< Cif82)10,unll 2 + C + C8y 4.21)
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since |, — p'(r)] < C Kl for r € [ry,m+ /c128 ] and the normalized condition
(4.14). Then (4.14) implies

lim sup |8, f, (ry)| < lim sup (|6, fr, () — 3nfn(;n)| + I(snfn(;n)D

n—o0 n—oo

< limsup
n—oQ

(”f"”“ +C83(— A)2un||L2 +C/q) < Ck.

Since k1 > 0is arbitrary, we have lim §, f,, (r,) = 0, which also gives lim v, (r,) =
n—oo n—oo

0 in virtue of (4.17). This proves the claim in the case sup, r, < 0o.
Step 2: lim sup 8, || My uy |2 < Clim supS \Z*Zuy|l 2.

n—o0

Let k> > 0 be fixed but arbitrary small number Let r, < oo (thus, w, > 0). Then, by
setting u,(r) = 0ifr <0,

rnJri C
/ |M ’un| dr < ’”n” 52
rn_‘(% K2 ([rn_r OO))
2 2
= co; (| Mpunl
u
= L2([r—500p 7" L2<[rn—%,oo))
)(2 15
- Cé, Y I
U
= p"Un Lz([r,,—%,oo))
2
Ccs, 1 3 1
Emll( A)2upllz2 < Coppn I(=A)2up| 12 .
Here we have used || 0| > + 1" 52 < C(1+r,) 3. Note that

L ([rn— 4 ,00)) L ([ru— 4 00))
) 2

the above estimate is valid also for the case u, € (_i’ 0], for r, = o0 in this case.
On the other hand, we have from (4.16), when r,, < o0,

2 2
/ /
p o
= HM —Pvn 2 5 57 +Hp, —psnfn 2 82 27
v e ([oted]) e (i)
3 2 2 2
/ /
P P
— lvnllze + Hi 57y N18n fullr2
H Hn — P L2<|: —% r,,+%:| ) Hn — P L°°<|:r,,—%,rn+%] ) !
K2 K K2 K.

2 2

)
< lvnllLee + I fullg2 -
S O
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2 2
When r,, = oo (and thus, u, € [—%, 0]), we see [r, — i—’;, rn + i—’;]” = [0, o0) and
2 2
o1~ 1ol
Tn—pl = , and thus,

/ /

o o
IMpunllp2 < ”;”Lm”vn”[} + ||;||L°°||8nfn||L2 < Cllvallpz + Conll full 2 -

Since ||v, ||~ < C by (4.14) and the interpolation inequality, collecting these above,
we have

3 1 L
Sull Myunll 2 < C(831 ()12 1(=A)2uyll2) % + Cia + Cll full L2 + Cpllvall 12 -

This shows from (4.14) that lim sup 8, [| My u,| ;2 < Ckz + Climsup 8, ||v, || 2, and
n—oo n— o0
the claim is proved since k> > 0 is arbitrary.

Step 3: Estimate of || Zu, |2 .
Let us recall from (4.16) that

% « Up + 8n fu %
(W, Wie) 2 = Jlg] := (—p,fﬂ)L% p € D(W"). (4.22)

n—

Here the right-hand side is well-defined in virtue of (4.17). Let k3 > 0 be fixed but
arbitrary small number. We decompose J as J; + J», where

rn+l<328,% v, + 8 f
J1[<p]=/ L gdr,  Jhlel = Jlel - Jlel.
rn—KSZ(S% Hn —p

Let us estimate J;. In virtue of (4.17), we have

R VI B
|Jl[<ﬂ]|§/ 30 0/ vy — v () + 80 (for = fulra))]

dr M1 gl
n—k353 ln — pI o 3,000

< Ck3dn 0, vl L2 ll@ll DW= + CK35y2,||arfn||L2([rn_,(§5’%,rn+,(353])”Q‘)”D(W*) :
Here l¢llpow = IW*@ll 12+ ll¢ll;2, and we have used inf,, 7, > 0 (by the condition
Mn = %) and ||M%¢||Loo([%,oo)) < Cllollp(w+). As in (4.21), it follows from (4.16)

that

-3
Sully full 2,252,y is2)y < CR3OR (L4 r) Bt 2

+ CliMpunliz2 + Cllorvall2,

and thus,

3 1
il = Crsllgllar + C (831012 I=A) 2 unll 2 + )l b

3 1
= O8I0+ 1A 2wl 2 + 3 ) gl v - (4.23)
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As for Jo, we decompose it as Jp 1 + J22 + J2.3, where

1 v v, ()
12,1[90]:] (—'j— L )(p,o/dr,
[y —262, rytx2621c n — P NP p'(rp)
Uy (r) 1
o' (rn) Jir,— K282, ry+ic3821 Mn —

Sn f;
J23l0] =/ g pdr.
[ra—K362, rp+12821° Mn — P

. . _ 7% 10| Cry
The terrp Jo,1 is estimated as, from v, = Z*Zu,, Tin =71 < |r,17r|(l+r)’and the Hardy
inequality,

Joalel = 5 pp dr,

*

YAV
I 21lell = CliA + 7)o, ;

u
") l2llell2 < CllZunll2ll@ll 2 (by (4.10)).

Note that this estimate is valid also including the case 7, = co. Next, when k3 > 0 is
sufficiently small, we can check that when r,, < o0,

r,,—K%tSﬁ rp+1 1
/ +/ o' dr
rp—1 ra+k282 ) Mn — P

by considering the change of the variable p(r) = s. Hence, when r,, < oo we have

<C, (4.24)

[vn ()| rm—1 rn—x3283 rm+1 00
l2.2lgll < / Cdr| 4+ / +/ ---dr+/ edr
[0’ (rn)] 0 rp—1 r,,+l(328,2, rn+l
242
[V ()| / r,,—l(38n rm+1 /0,
< Lol (] otz + oo |([ 4 [ dar
lp" )l \ [l tn = 2122 (10,70 —17) rn—1 ru+ic2s2 ) o = p
r;l*K325,21 rm+1 ,0, ,
+ /r,,_l +/rn+x32 ) 00 @+ 1 el 2)
[vn (rn) | [vn ()|
lellgr =C llel
o )| = T ) POV
When r,, = oo we have J» 2[¢] = 0 since ;’7((:”)) = 00-0 = 0. Finally it is not difficult
n
to show
/
[J23le]l < C|| ||L2([,”_,(352 Fut262]¢ ey l18n fall 2 ll@llLoe

A

l2llellg = K—3I|fn||L2||<p||D(W*)

for ¢ € D(W™). Hence, we have

|vn(rn)|

lp'(r n)l

||fn||L2) lellpows, ¢ € D(W").
(4.25)

| Llell = CllZupll 2 ll@ll 2 + C (
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Estimates (4.24) and (4.25) with (4.14) yield for ¢ € D(W™),

3 1
[(Zu, W) 2] = 1]l = Cliglz + C (8104 1 (= A) 22

st [vn (ra) n Il fnllz 2)

10" (rn)]

lollpow=y s (4.26)

that is, from (4.14) and Step 2,

(W oo, W @) 2] = [(W*voo, W¥@) 2| = limsup |(Zun, W*e) 2|
n—oo

<Clel,z, ¢eDW. (427

Moreover, by taking ¢ = Z*Zu, in (4.26), we conclude that

* 3 3 1 [Vn ()|
I Zupllp2 = ClIZ" Zupll 2 + C(5n|(m)+|2 [(=A)2unlz2 +«3 + o )]
n
n I fullz 2) '
K3
which gives again from (4.14) and Step 1,
limsup || Zuy||;2 < Climsup | Z* Zuy||;2 , (4.28)
n—oo n—oo
by taking k3 — 0 after n — oo.
Step 4: Completion of the proof of (4.12).
Suppose that limsup |Z*Zu,|l;2 = 0. Then Step 2 and (4.28) imply that
n—oo

lim sup 8, | M yruy |l 2 = limsup || Zu, || ;2 = 0, which contradicts with the normalized
n—oo n—o0

condition (4.14). Hence we may assume thatinf, | Z*Zu,||;2» > 0 by taking a suitable
subsequence if necessary. This implies that the limit voo = lim Z*Zu, € L*(Ry),
n—o0

W*vso € L2(R), is nontrivial. Moreover, (4.27) shows that W*vs, € D(W). Then it
is not difficult to show from (u, — M) WW*v, = v, + 8, fu that use = WW* v, €
L2(R) satisfies (oo — Mp)loo = Voo = Z*Ztoy in L?>(R.), that is, /1o must be
an eigenvalue of A in L>(R,) and us is the associated eigenfunction. To achieve
the contradiction it remains to show that u, € Y. This is proved as follows: since

W*(r’ g) = 0 by the definition of W*,
(Uoos 728) 2 = (WW*vso, 72 g) 12 = (W¥veo, WE(r2g)) 2 = 0.

The proof of (4.12) is complete. O
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Proofof (4.13) Note that (4.13) is equivalent with [|u]|7, < C§~*| (1 — f\)ulliz +
Chl(al—z, /L)2||(—A)%u||iz for any 8 € (0, 1], and this is equivalent with

_ A 1 1
Sz, < CO72(u — AMullgs + C8hi (55, W I (=A)2ullz, 80,11
(4.29)

Hence we shall prove (4.29) by contradiction argument. Suppose that (4.29) does not
hold. Then there exist {8, it }nen, 85 € (0, 11, iy € (—%, 51, and {u,} C D(A) such
that

. . 11
lim Sn:8006[07 1]7 nll)II;OMnZMOOE[_Ea_]9

n—00 2

and

. . A 1 1
Sallunllz =1, lim (6n2||(un = Munllgs + 8 (55, un>2||<—A>2unniz) =0.
n
(4.30)

We set
fo =08 un — Dun . vy = Z*Zuy, (4.31)

By the definition of h?, we see

2
6 30 ANS . 112 2 1 ANE 2
Spl(n)+ 17 I1(=A) 2uplly, < Co 527 Hn I(=A)2upll;, >0 (n— 00).
n

4.32)
Hence, (4.12) implies that
lim_ <8n||Mp/un||L2 1 Zunll 2 + ||Z*Zun||Lz) —0. (4.33)
Ifé < 10‘1%', then we see hl(é, Un) = 8, and

1 1
5n||un||L2([2L ) = C82lrunll 2 < Cthl(a_z, (=AY 2upl 2,
n

Sn °
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while from u,, = ”’;:;3 pf" and ~— 28 <2,
S f;
‘Sn”un”LZ ]) < ” ||L2 )+8 ” e ”LZ [0, 71 )

< Cs,l +r>2vn||Lz +dullo— o, o 130 2

< C8u (1 + 1) *vpll 2 + Csn -5, 2||6nfn||Lz
< C8ullZupll2 + Cl full 2 -

Thus, we conclude when iz < 101 ,
8y [l

1 1
Sullunllpz < Céphi <5—2 ,un> I(=A)2unllp2 + Conll Zunll g2 + Cll fullp2 . (4.34)
n

1
If u, > 0 and ﬁ < SLZ < %,thenrn < o0 and we see hl(alz,un) = w7 and
n n n n

1 1
5n||un||L2(["7n,oo)) = nbn 1(=A)2uy |2

1 1
< Canhl((s—z, )l (=A)2upll L2,
n

Vn+3n fn

while from u, = T
n

Un

Hn —p

Sn fn
Hn —p

+ 3y

S llun ||L2([O,%]) <
L2([0,%])

L2([0,2))
1
< C8ull(1+ 7)?vpll 2 + 8 ||M ||Loo([o o 18n full 22
n

scan||(1+r)2vn||Lz+ca 1 ||8nfn||Lz

||L2

Thus, we conclude when p,, > 0 and 5— 10# <L< L

1 1
Snllunllz2 < C5nh1(5—27 )l (=A)2upll2 + Conll Zunll 2 + Cll fullp2 . (4.35)
n
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Next we consider the case , > 0and 6% > # Inthiscaser, < ooand i (5%, Uy) =
n n n

2
5—"3. We observe that

i
2
rn+6f"3
3 4 4 3
2 ) s ’ Cs 1
5n/ g Undr = 3 lunlzee < —5 10 unll2llunllp2 < —5-I1(=A)2unll 2
Ty M M M
M
1 1
< C3nh1((§, u) [(=A) Zunllp2 .
n
On the other hand, we have from u, = %,
n
Un
Sn llunll ) 52 2 ]° < 2 2 7
L 'n=—3/7" V;I+Tﬂ Hn — P Lz([rnfﬁ,i‘n+37"/2i| )
My 2 M M
Sn fn
Hn — p L2<|:rn—%,rn+%] )
/Ln H.n
/
<4, L e Ml
Hn — p L2(|:r,,— Ay Fnt 3’}2i| > °
Hn Hn
1
TPy pu——— N TR
Hn —p Loo([rn_gin/zvrn“l‘gin/z] )
Hn Hn
3

4

Wi 1
<Cé,- (S—IIZMnIILz +C4, - (1 +rn)38_2”3nfn”L2
n n

< CllZunllp2 + Cll fall 2 -
_1
iy 2 for 0 < u, < 1. Thus,

%

Here we have used the fact that r,f wr < C since ry

we have when é > Ml%,
1 1
Snllunllpz < C5nh1(5—2, )l (=A)2upll 2 + Cll Zupll 2 + Cll full2 . (4.36)
n

Collecting (4.34), (4.35), and (4.36), we obtain by applying (4.14) and (4.33),

lim §,lluyll;2 =0.
n—oQ
O

This contradicts with the normalized condition (4.30). The proof of (4.13) is complete

The analysis of the case || > % is similar to the case of the Kolmogorov flow.
First we observe that
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Lemma 4.4 There exist k € (0, 1) and C > 0 such that the following statements hold
forall § € (0, 1]. If u € R satisfies 1 — k8% < nw=<1+4+ k82 then

_ N 1
Slullzs + IMyulz, < CE 2w — Aull, +8*(=A)2ul,),  ue DA,
(4.37)

while if u > 1 then
(=D ul7z + (= DIMpyul;, < Cli(e — Mull7,.  ue D). (438)
Moreover, if u < 0 then
W ull?s + IMpul7, < Clle — Mull?,.  ueDA)NY. (4.39)

Proof The bounds ||u|;> < ﬁn(u — A)ull;2 when o > 1 and ||ju||;» < ﬁn(u —

Au ;2 when o < 0, stated in (4.37) and (4.38) respectively, is a direct consequence
of the fact that A is a self-adjoint operator in L? (R.) with the spectrum o (A) =10, 1].
Then (4.39) is proved, for the desired estimate of || M, ul|;2 in the case u € [—%, 0]
is already shown in Lemma 4.3, while the estimate for the case u < —% follows from

the estimate of ||u| ;2. To show the other estimates we set f = (u — [A\)u. Then we
have

o0
fo (1= p)ul> dr + | Zull7, = (1 = w)lull7, + (f, u) 2. (4.40)
Since there exists Cop > 0 such that (p')2 < Co(1 — p) in [0, 00), (4.40) implies
2 o 2 2
IMyull7, < cofo (1= p)ul>dr <CA—wluly, + C{f u)2.  (441)

This proves (4.38) for the case © > 1. Moreover, if © > 1 — 82 then (4.41) gives

||Mp/u||i2 < C52||u||2L2 + C8’2||f||i2, and thus, it suffices to consider the estimate

of ||u ||i2 for small enoughé to complete the proof of (4.37). We see

0 00 2 oo
2 2 4 2
(1 = p)lul” dr = (I =p)ul”dr = — ul” dr
0 5 CJs

82 2 s 2
E(”“”LZ‘fO ul? dr)
2

v

> & (lulz, = CSllulli)
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This gives from (4.40), by taking « > 0 small enough,
Slull?, < Ca8*|ull2, + Cll fll2llull 2 + C8> ullfo
-2 112 4 L2
< CO2| fI2, + C8* I (—A) 22, .
Estimate (4.37) is proved. The proof is complete. O

The proof of the following lemma is very parallel to the proof of Lemma 3.8.

Lemma4.5 Letk € (0, 1) be the number in Lemma 4.4. There exists C > 0O such that
if § € (0, 1], and n € R with % <u<l1 — k82, then

1
S lull, + 1 Zull7, + ng*Zuniz

6

< c(sznw — Mul7, + ||<—A)5u||iz) . ueD(A), (442

I—pn
and

_ A 1
IMyul?, < C(S 2w = Dull, + 821 - p ||<—A>zu||iz) , ueD(A).
(4.43)
Proof of (4.42) We only state the outline of the proof, for the argument is parallel to the

proof of Lemma 3.8. Suppose that (4.42) does not hold. Then there exist {§,,, tty}neN,
8n € (0,11, jun € [5,1 —«82), and {u,} C D(A) such that

n—o0

1
lim 8, =000 € [0, 1], lim jiy = ptoo € [5,1—/(5@0} ,
n—

and
Sallun 2 + 1 Zunll 72 + 5 . 1Z* Zunll2, = 1,
- Mn
56 1 (4.44)
lim_ <6n2||<un = Munlga + 5 m— ||<—A>2un||iz> =0.
Set

Fo=08" Gt — Mun . v =Z"Zuy.  ra=p"(uy) €0,10), (4.45)
and then v, satisfies

(n — MOW*Wu, = vy, + 8n fir - (4.46)
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Note that
U (Fp) + 8 fu(rn) =0 (4.47)

holds. We may assume that §oo = 0 (otherwise the contradiction is easily achieved).
We may also assume from (4.44) that v, converges to a limit v, strongly in L>(R )
and W*v, converges to W*vs, weakly in L?(R, ). The direct computation implies
that

C
=<1 ()l <

T, (4.48)
Cll — pyl2 [T — pul2

for p'(r) < 0 and p'(r) &~ —7% near r = 0. As in the proof of Lemma 3.8, we can

show the following claims.

1)
Step 1: lim &, |lun|;2 = 0. Step 2: lim v”(r")l — lim n Sfn(rn) _
n—00 —

0 p ()2 T 0 ()2

=0. Step 4: Estimate of | W*v, || .

0.

Upll 2
Step 3: lim —” - ”L/ ([ra,00))
=00 [0 (ru) ) .
Recall that W*v, = Zu,. In Step 4 we verify the estimates

C 1
lim sup |W*v,||;2 < — lim sup + Cxj (4.49)

n—00 4 n—oo [o" (ry)l

for any sufficiently small k4 > 0, and we can also show when % < oo < 1,
(W v, W) 2| < Cllgll2. ¢ € DIWY), (4.50)

The details of the proof of the above steps are omitted here. In virtue of (4.49),

[lvn ”LZ (0,7 1)
. . A e .
subsequence if necessary), otherwise we achieve the contradiction to the normalized

condition (4.44). If % < Moo < 1 then the limit v, is nontrivial, and (4.50) implies
that W*vs, € D(W), that is, use = WW*vs € L>(R,) is an eigenfunction to the
eigenvalue (o of Ain L?(R.), which contradicts with the absence of the eigenvalues
in [%, 1]. It remains to consider the case o = 1, for which we need a rescaling
process. Set

Step 1, and Step 3 we may assume that inf,, > 0 (by taking a suitable

1 1 'n
wn(S)=—lvn(|1—Mn|2S), s € [0, 107, Sp =

o —
[T — |3 [T — pnl2

Then we have

[
2 2 2 L
”asw"”Lz([O,lO]) + ”w"||L2([0,10]) = ||arUn||L2 + ﬁ = 1 P
4.51)
. 2 ||Un||iZ([0 rnl) (
lgf ”w"”Lz([O,cn]) == 12 —1 — > 0
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Hence we may assume that w, converges to a limit wy, weakly in H 1([0, 10]) and
strongly in L2([0, 10]). The lower bound in (4.51) implies that ws, is nontrivial.

Since ,o(r) =14 2(— 2) + = (—Tz)2 , we have from w, = p(r,) that 1 — u,
(1 -5 + O(r}h) for 0 < 1 — pu, < 1, which gives

ra = 2V2(1 = )2 (14 0(D))
and hence,
sn=2V2(1+002)) — 2v2 (n— 0). (4.52)
By Step 2 and Step 3 we also have
Weo(s) =0 s €[2+/2,10]. (4.53)

To obtain the equation for w, we observe that

W ==L (P () == i (- =),

Hence, (1, — p(r)) WW*v,, = v, + 8, f, is written as

(l—un—§+0(r4))(v +—v +<IZ ! —i)vn>=g2(vn +5nfn)

2" 4r2
and then, v, (r) = |1 — ,u,,lﬁwn( ) shows
11—ptn|2
| 52 B 11— pnls 3
(1= % + @) (w0 + === w, + (= 55 + pa(o))wn)

= (1+ba(®))wn + fr),  (454)

2
where 1 - +¢,(sy) =0, nlggo (Ilgnllct qo,10n + Pl o, 10p +1Bnll 1 g0,10p) = O,
and

~ Sn
Jo = ——— fal 11— al?s) (4.55)
[T — pnl*
which satisfies
3 511
I fullz2qo10p = —— Mfulllz2 =0 (n = 00). (4.56)
1 — pnl2
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Let x5 > 0 be fixed but arbitrary small number. Then, by arguing as Step 6 in the proof
of Lemma 3.8, we can show

’<aswooa 3s¢>L2([K5,101)‘ < Cys ||‘P||L2([K5,1()J) ) (28 C8°((K5, 10)) . (4.57)
Here C, depends only on 5. This implies Weo € H*((ks, 10)). Since k5 > 0 is

arbitrary, we conclude that we, € ((0, 10)) N H'([0, 10]). We can also check
from (4.54) that woo satisfies

l oc

2

1- %)(wgo Weo, 5 €(0,10)\{2v2).  (458)

3
_ mwoo) _

The regularity ws, € IDC((O 10)) N HL([0, 10]) with (4.53) yields woo(Z\/_)

aswoo(Z\/E) = 0, and it is easy to show that any solution to (4.58) in H lm (0,10) N
H'([0, 10]) satisfying the condition Woo (24/2) = d5wo0(2+/2) = 0 is trivial. This is
a contradiction. The proof of (4.42) is complete. O

Proof of (4.43) The argument is parallel to the proof of (3.30) in Lemma 3.8. Suppose
that (4.43) does not hold. Then there exist {5,,, s }nen,Sn € (O, 11, u, € [%, 1 —KS,ZL),
and {u,} C D(A) such that

1
lim 8, =800 €[0, 1],  lim p, = poo € [=. 1 —&82]1,
n—oo n—oo 2

and
. - N 1
IMpunllpz =1,  lim (8,12”(#,, — N3, +87(1 — un>||<—A)2un||iz) =0.
(4.59)
Set
Fo=8 n = Dup . vy =Z"Zuy,  rn=p""(un) € 0,10),  (4.60)

and then v,, satisfies

(tn — M)W W, = vy + 8, fr - (4.61)
Note that
Un(rn) + 8n fu(rn) =0 (4.62)
holds. Since —||( A)2un||2 <C8(1 — ,JLn)||(—A)%un||i2 — 0 (n — 00), we
have from (4. 42) that
im (83 llunll7> + 1 Zun |72 + 12" Zunll72) = 0. (4.63)
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Then, as in (3.90), we can show

) ) v (r
limsup | Muyll 2 < Climsup | n(ln)| .
n—oo n—oo Sf

n

The factlim sup [V (Tn) |

n— 00 87
n

= Oisproved in the same manner as in the case of Lemma 3.8,

by investigating &, f,, (r,,) (here, recall (4.62)). We omit the details. The proof is com-
plete. O

Let k € (0, 1) be the number in Lemma 4.4. Taking (4.11) into account, we refine
hi(m, ,u)z for m > 100 and u € R as follows.

0, w>14+—,
1 K
_7 1__<l’l/§1+_5
m m
1 <1 K
5 T< M= -
m2(1 — ) 2
5 1 H’ 1 1
1 - 1
— < —
’ om ~H=01
1 1 _ - 1
m 10m M1_10m’
0, ey
=" 10m
Wealsodeﬁnehz(m,,u)2formzlOOandueRas
0, w=>1+—,
1
—> l-—<pu=sl+—,
i 1
h3(m, ) = = sl (4.65)
n 2 m
.U~_2 O<u=<—,
m
0, nw=<0

Note that lim sup & ;(m, ) = 0 holds. Lemmas 4.3, 4.4, and 4.5 yield
m— 00 weR

Proposition 4.6 Let m > 100 and € R. Let hj(m, u), j = 1,2, be the nonneg-
ative function defined by (4.64) and (4.65). Then there exists a positive constant C
independent of m and | such that for anyu € D(A)NY,
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A 1
lull?> < Cm*|[(w — Mull3, + Chi(m, u)n(—A)funiz (4.66)

IMyuly, < Cm?|(w = Mull7, + Chi(m, w)ll(— A)Zulle (4.67)

To obtain the resolvent estimate by applying Theorem 2.9 we need to evaluate the
function

A ) mi m%m% In%hz(mz, ) 2 A
F(a, =)= inf <—+ &+ hi(m —).
( Ol) mimy=100 \ |at] o? rq 1m0
Set u = %
Case 1: © > 1+ —X. Take m; = m% = = 1,forwhlchl+— =1+
ee|2

ng =1+ “771 < 1 holds. Then hy(my, w)* = ha(ma, ©)> = 0 and we have

C
Flo. ) = g
Case2: 1 — %+ < u < 1 + . Take m; _m2_|(x|2 forwh1ch1+—=

IOlI2 \alz

l—i—m— Ial% > m1 =l—m—zholds.Thenhl(ml,M)zzmiland
ha(ma, n)* = 4, which gives F(«, pn) < —.
IOtI2
1
Case3: 1 <pu<1- W Take m; = ({20)5 and my = k73 (jerl(1 — 1)) %,
o
for which .- = % = (‘ |2)3K3(1 —M)3 < K3(1 —u) <1—p,and
o o
4
4
L= K3 = (K51 <1 — . Then hy(my, p)? = % and
2 el3A-m3 a2 (w3 mid=m
ha(my, w)? = =L, which gives F(a, p) < —S—.
2 lol3 (A=) 3
Case 4: % < un < % Take m| = % and m, = |a|%u%, for which
o3
1
5 3
L= A~ 1. Then hy(mi, p) = ”1’;—3, which gives
m2 o] 2
F(a1 /’L) = 2
loe] 3
Case 5: .~ < p < —-. Take m; = |a|u and my = |oz|%,u,i for which
loe|2 |3
3 .
m‘—,nl = m < 4 < p. Then hy(my, w)* = p and hy(ma, p)* = 575 which
gives F (o, n) < Cp.
1
Case 6: —ﬁ < u =< ﬁ Take m; = % and my = |a|%|u|%, for which
o o
3
4l < -1+ = g Then Ay (m1, 1)? = ;- and ha(ma, p) < 25, which gives
o2 2
Fa,p) < <.
|2

@ Springer



14 Page820f84 S. Ibrahim et al.

Case7:u < —%.Takeml = Wllandmz = 100, forwhichpyu = —|u| = —m% <
|2
—ﬁ. Then hi(my, w)? = ha(ma, p)* = 0, which gives F(a, p) < =S

lorf {pe]”

Summarizing these above, we obtain

Theorem 4.7 The exist positive numbers C and o such that the following resolvent
estimate holds for all ). € R and for all a with || > .

1 A 1
—_— if = > 14+ —,
|051|(5—1) o || 1
1 l.f 1- 1 <—-= 1 + 1
ik a2 @ ik
1 'fl A -
— — < — = —_— s
|a|]%(1—|§|>% 2] o] 1 o
. A

IG3+La)lly—y < € vy if —p <— =3,

jal3 2 |3

A o1 A 1

— if <—=<-—,

“ o2 @ als

1 lf - 1 (; =< 10

|2 |2 |2

1 A 1

J— lf - < — -

|A] o la|2

(4.68)

C
In particular, we have sup ||(i\ + Lo[)f1 ly->y < -

AER || 3

C
The bound sup ||(ix + Le)! ly—>y < - is firstly shown in [17] by constructing
reR ||3
the wave operator, and in [17] the optimality of the rate 0(|0[|_%) is also proved.
Theorem 4.7 gives a different proof of their result without using the wave operator.
Although (4.68) looks complicated, the dependence on « in each regime is compatible
with the optimal result [11] for the case when A does not contain a nonlocal part. We

note that the rate 0(|a|_%) appears in the regime % ~ 0(|a|_%) and is related to the
behavior of p(r) ~ ;iz forr > 1.
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