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Abstract

This paper studies the inviscid limit of the two-dimensional incompressible vis-
coelasticity, which is a system coupling a Navier-Stokes equation with a trans-
port equation for the deformation tensor. The existence of global smooth solu-
tions near the equilibrium with a fixed positive viscosity was known since the
work of [35]. The inviscid case was solved recently by the second author [28].
While the latter was solely based on the techniques from the studies of hyperbolic
equations, and hence the two-dimensional problem is in general more challeng-
ing than that in higher dimensions, the former was relied crucially upon a dis-
sipative mechanism. Indeed, after a symmetrization and a linearization around
the equilibrium, the system of the incompressible viscoelasticity reduces to an
incompressible system of damped wave equations for both the fluid velocity and
the deformation tensor. These two approaches are not compatible. In this paper,
we prove global existence of solutions, uniformly in both time ¢ € [0, +00) and
viscosity u > 0. This allows us to justify in particular the vanishing viscosity
limit for all time. In order to overcome difficulties coming from the incompati-
bility between the purely hyperbolic limiting system and the systems with addi-
tional parabolic viscous perturbations, we introduce in this paper a rather robust
method that may apply to a wide class of physical systems of similar nature.
Roughly speaking, the method works in the two-dimensional case whenever the
hyperbolic system satisfies intrinsically a “strong null condition.” For dimen-
sions not less than three, the usual null condition is sufficient for this method to
work. © 2019 Wiley Periodicals, Inc.

1 Introduction

One of the common manifestations of anomalous phenomena in complex flu-
ids comes from the elastic effects. The different rheological and hydrodynamic
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properties can be attributed to the special coupling between the transportation of
the internal variable and the induced elastic stress. In the variational energetic for-
mulation, these properties can be attributed to the competition between the kinetic
energy and the internal elastic effects (see, for instance, [35]).

For isotropic, hyperelastic, and homogeneous incompressible materials, the mo-
tion can be described by the following (fundamental elastodynamic) system:
dtv+v-Vo+Vp =V-(%FT),

V.v=0.

Here v is the velocity field, p the scalar pressure (which is the Lagrangian mul-
tiplier due to the incompressibility constraint), W (F') the internal elastic energy
density, and F the deformation tensor.

The deformation tensor F' is often presented in a Lagrangian description using
a time-dependent family of orientation-preserving diffeomorphisms x(¢,-), 0 <
t < T. Material points y in the reference configuration are deformed to the spatial
positions x (¢, y) at time . We shall use y (¢, x) to denote the inverse of x(z, -). The

flow map x(z, y) is determined as usual by the velocity v(¢, x) via the following
ODEs:

(1.1)

XY — (1, x(1, ),

Such a map x(z, y) would be uniquely defined whenever the velocity field v(z, x)
is in an appropriate Sobolev space [11]. The deformation tensor is then defined by

Fp = 2

One simply identifies it as F (¢, x(¢,y)) = F(t,y) in the Bulerian coordinates

(t,x).
It is easy to check that the incompressible condition is equivalentto V- FT = 0
(see, for instance, [35]). In addition, one can also deduce that

0;F +v-VF = VuF,
ijvaik = FlkVIF,-j, i,j,m,k,l S {1,2,...,1’1}.

(1.2)

See, for example, [30,35]. The above (1.2) is essentially the compatibility condi-
tion for the velocity field and the flow map. In what follows, we use the following

notations:
(Vv)ij = Vjvi, (VuF)ij = (Vv)ixFrj, (V- F)i =V F;j,

and the summation convention over repeated indices will always be applied.
The equations for elastodynamics (1.1) may then be written equivalently as

atv—i—v-Vv-l—Vp:V-(%FT),
(1.3) 9,F +v-VF = VvuF,
V-v=0, V-FT =0,

with the compatible condition (1.2),.
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Taking into account of viscosity, one leads to the Oldroyd system of viscoelas-
ticity:

8,v+v-Vv+Vp=,uAv+V-(%FT),
(1.4) 0:F +v-VF = VuF,
V-v=0, V-FT=0.

Here 1 > 0 denotes the fluid viscosity. We notice that the nonlinear coupling
structure in (1.4) is universal, and it appears in many physical equations including
magnetohydrodynamic equations and liquid crystal flows; see [34].

A main goal of this paper is to justify the global-in-time inviscid limit from
the viscoelastic system (1.4) to the elastic system (1.3) in two dimensions. More
precisely, we will show that smooth solutions to (1.4) in certain weighted Sobolev
spaces exist uniformly in time ¢ > 0 and w > 0. This allows us to justify the
vanishing viscosity limit for all time.

The presence of viscosity requires the use of Eulerian coordinates. Following
the standard vector fields method of Klainerman and the “ghost weights” method
of Alinhac, a number of rather essential difficulties appear due to the incompati-
bility between these methods needed for the limiting hyperbolic systems and the
equations in the limiting process that possess additional parabolic viscous terms.
In particular, the viscous terms would result in “bad” commutators. A reformula-
tion of the system in these coordinates seems necessary in order for us to identify
a stronger notion of null condition, which is essential in the two-dimensional case.
With this strong null condition we will be able to do various modifications on
Klainerman’s and Alinhac’s methods. We shall discuss it in more detail in Section
2.2 below.

1.1 A Review of Related Results

The study of dynamics of isotropic, hyperelastic, and homogeneous materi-
als has a long history. Compressible elastodynamic systems (commonly referred
as elastic waves in literature), are quasilinear wave type systems with multiple
wave speeds. For three-dimensional elastic waves, John [19] showed the existence
of almost global solutions for small displacement (see also [25]). On the other
hand, John [18] proved that a genuine nonlinearity condition leads to formations of
finite-time singularities for spherically symmetric, arbitrarily small but nontrivial
displacements (see [46] for large displacement singularities). When the genuine
nonlinearity condition is excluded, the existence of global small solutions may be
expected even in nonsymmetric cases. The difficulty in obtaining global solutions
lies in the understanding of the interaction between the fast pressure waves and
slow shear waves at a nonlinear level. A breakthrough is due to Sideris [40,41]
and also Agemi [1], under a nonresonance condition which is physically consistent
with the system. The proof of Sideris is based on the vector field method of Klain-
erman [23,24] and the weighted Klainerman-Sideris L2 energy (introduced in their



2066 Y. CAIET AL.

earlier work [25]). The proof of Agemi relies on a direct estimate of the fundamen-
tal solution. We note that the nonresonance condition complements John’s genuine
nonlinearity condition. With an additional repulsive Poisson term, a global exis-
tence was established in [15] which allows a general form for the pressure.

For the incompressible elastodynamics, the only waves presented in the isotropic
systems are shear waves which are linearly degenerate. The global well-posedness
was obtained by Sideris and Thomases in [42,44] (see [43] for a unified treatment,
and [32] for some improvement on the uniform time-independent bounds on the
highest order energies). Based on the aforementioned achievements, the theory
of global existence of solutions for the three-dimensional elastic waves with small
initial data is relatively satisfactory.

In the two-dimensional case, the proof of long time existence for the elasto-
dynamics is more difficult due to the weaker time decay rate. The first large time
existence result is the recent work [31], where the authors showed the almost global
existence for the two-dimensional incompressible elastodynamics in Eulerian co-
ordinates. By observing an improved null structure for the system in Lagrangian
coordinates (see also discussions in Section 2.2), the second author [28] proved the
global well-posedness using the energy method of Klainerman and Alinhac’s ghost
weight approach. Afterwards, Wang [47] gave a new proof of this latter result using
spacetime resonance method [12] and a normal form transformation.

When the viscosity is present and strictly positive, the global well-posedness
near equilibrium state was first obtained in [35] for the two-dimensional case. In
this case, after a symmetrization and linearization around the equilibrium state, the
system becomes a nonstandard (incompressible) damped wave systems for both
velocity field and the deformation tensor; see also [34,36]. This method works
both in two-dimensional and three-dimensional cases. Lei and Zhou [33] obtained
similar results by working directly on the equations for the deformation tensor
through an incompressible limit process. For many related discussions we refer
to [30], [9], and [13, 14, 16, 26, 27, 29, 38, 39, 48] and the references therein. In
all these works, a dissipative structure of the viscoelastic systems (with a strictly
positive viscosity) is a key ingredient to study the long time behavior. Thus the
size of the initial data depends on the viscosity in order to have global-in-time
existence. Consequently, these arguments cannot be applied to study the vanishing
viscosity problem. For the latter, one has to deal with a nonlinear coupled system
of equations in which both parabolicity and hyperbolicity can’t be ignored.

As in the study of vanishing viscosity limits for classical fluid dynamics, one
expects that when the fluid viscosity goes to 0, the limit of solutions to the vis-
coelastic system converges to a solution to the elastodynamic system. In the case
of Navier-Stokes equations, a lot has been learned since the work of Kato [21] and
Swann [45] (see also a recent article by [37]). These results are not expected to
hold globally in time. If one tries to prove global-in-time convergence, the matter
is completely different.
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The work of Kessenich [22] established the global well-posedness theory for
three-dimensional incompressible viscoelastic materials uniformly in the viscosity
and in time. Here, though the presence of viscosity prevents natural hyperbolic
scaling invariance, nevertheless Kessenich used the scaling operator. His strategy is
to apply first this operator directly to the system, then to deal with the commutators
between the scaling operator and the viscosity terms. Sufficiently fast decay rates
in three dimensions are the key.

Another important ingredient in [22] is a Hardy-type estimate. It is used to
compensate for the derivative loss problem caused by commuting with the viscous
terms. In the two-dimensional case neither of these two key steps can be accom-
plished easily. One of the main reasons is that, while the ghost weight of Alinhac
seems to be a necessary tool for the highest-order energy estimates in the two-
dimensional problems, one cannot directly apply it here because it would create
extra nondecaying terms involving commutators with the viscous term.

Let us also discuss some closely related historical works on quasilinear-wave-
type equations. For quasilinear wave equations in dimension 3, and for small initial
data, one can obtain an almost global existence [20]. When the spatial dimensions
are not bigger than three, the global existence would depend on two basic assump-
tions: the initial data should be sufficiently small, and the nonlinearities should sat-
isfy a type of null condition [41]. For nonlinear wave equations with sufficiently
small initial data and the null condition not satisfied, the finite-time blowup was
shown by John [17], Alinhac [4] in three dimensions, and by Alinhac [2, 3, 6] in
two. Under the null condition, the fundamental work on global solutions for the
three-dimensional scalar wave equation were obtained by Klainerman [24] and by
Christodoulou [10]. In two dimensions, the global solutions were proven by Al-
inhac [5] under the null condition and under the assumption that the initial data is
compactly supported.

1.2 Difficulties and Key Ideas

To simplify the presentation, we will focus only on the Hookean elasticity that
corresponds to W(F) = %|F |2. The general case differs only by the cubic and
higher-order terms, which won’t make much difference in our arguments; see also
the comments in [28,47]. In the zero viscosity limit, the viscoelastic systems tend
to a hyperbolic system. One would naturally try to follow the generalized energy
method of Klainerman. An attractive feature of this method is of course that it
suffices to use the weighted Sobolev inequalities involving the invariance of the
system: translations, rotations, scaling, and the Lorentz invariance. It avoids the
delicate estimates of fundamental solutions of wave equations [41]. Similarly, the
Alinhac’s ghost weight method may enable one to apply Klainerman’s general-
ized energy method to the two-dimensional wave equations [5]. Alinhac’s method
seems to be a most valuable tool currently to get the highest-order energy estimates
for two-dimensional problems in order to obtain a critical decay in time. The latter
is needed for global-in-time existence; see for examples [5,28, 31].
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As in Alinhac’s works, we would introduce “good unknowns” and explore cer-
tain damping mechanisms for these good unknowns due to the outgoing energy
flux when ghost weights are applied (very much like the excess term in the en-
ergy monotonicity formulae). In the standard energy estimates, the viscosity may
also give rise to some dissipative effects, which is good news. However, due to
the additional viscous terms that violate hyperbolic scaling, it creates various “bad
commutators” when either the vector field method or the method of ghost weights
is applied (see (1.5)). As we mentioned earlier, the ghost weights are not needed
in the three-dimensional case as one has already established the critical decay in
time in estimates of the highest-order energies (see [22]) without using the usual
null condition assumption. In addition, there is (see [22]) a Hardy-type inequality
that is useful for getting around the difficulties caused by viscosity. Hence for the
two-dimensional case, we definitely need a new strategy.

Let us observe more closely how the ghost weight method causes new prob-
lems with the highest-order energy estimates for the viscoelastic systems: Let
w = x/|x|, 0 = r —t,and g(0) = arctanc. Suppose one tries to estimate
the highest-order energy for the viscoelastic systems (1.4) with the ghost weight
¢99)  Formally one has

1d
__/ (|ZKU|2+|ZK(F_I)|2)€qu+/L/ |VZKU|26qu
2dt R2 R2
« K(F — 2 K(F _ 12
(1.5) +l/ |20 + Z4(F = Dol® +|Z*(F = D' P ,
R2 1402

1
= —M/ |Z¥v|>Ae? dx + --- .
20 Jr2

Here Z represents a generalized vector field (see Section 2 for precise definitions).
Note the estimate is for the difference F' — I as we consider the problem when
the deformation tensor perturbs around the (equilibrium) identity matrix. The two
coercive terms on the second line are due to the viscosity and the ghost weight,
respectively. It will be important, and become clear later on, that we observe the
quantities v + (F — I)w and (F — I)w' as “good unknowns.” Suppose, for the
sake of argument, that we can handle the nonlinear terms (this is far from being
trivial and requires the notion of the strong null condition), we are still facing the
difficulty of obtaining the expected energy estimates. Since the right-hand side
involves the viscous term, it is not clear at all how one can treat them. In fact, these
terms cannot be absorbed directly by the coercive terms since a spatial derivative
is missing. Moreover, it is not integrable in time as |Ae?| ~ 1 near the light cone
r~t.

Our first idea to solve this difficulty is to take advantage of the viscous terms
presented in the energy estimates at lower-order derivative levels. To do so, we ap-
ply operators (1.5), with VZ*~! instead of Z¥; namely, one of the derivatives has
to be a spatial regular derivative and we combine it with an energy estimate (with-
out the ghost weight) when operators Z*~! are applied. The good viscous terms in
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the lower-order energy estimates are then used to absorb these commutators from
the former one. In what follows, we will use & to denote energy estimates with
VZ* 1 and E,_ to denote energy estimates with all the vector fields Z*~1. We
will call £, the modified generalized energy and E,_; the generalized energy.

In carrying out this procedure, there are a few new difficulties coming from the
nonlinear terms. Our second key idea is to transform the viscoelastic system to a
fully nonlinear one, together with a transformed fully nonlinear constraint. It turns
out that in this fully nonlinear system, the good unknowns in the nonlinear terms
always possess an extra spatial derivative and thus the transformed system satisfies
the strong null condition (see the definition in Section 2.2). In fact, since v and F"
are divergence free, there exist potential functions V' and H = (Hy, H») such that

v=VtV, (F-1)"=V'H.

Then we can reformulate the system of Hookean viscoelasticity as follows (see
Section 2 for a detailed derivation):

9,V —uAV —V-H =
(1.6) VL.V ATY(=VV @ VLV + VIH ® VI H),
3H—VV =VLtHVYV,

with the constraint
(1.7 Vi.H =V'H, -VH;.

As in [28], the strong null condition would also mean that in these nonlinear
terms, there are always good unknowns in each individual term. The resulting
nonlinear structure permits one to perform various integrations by parts and to
obtain desired decay estimates. For related discussions on this strong null condition
in a more general setting for nonlinear wave equations, we refer to a forthcoming
paper [8] on a simplified wave model.

Now we state the main result of this paper as follows:

THEOREM 1.1. Let M > 0and0 < y < %be two given constants, (VVy, VHy) €
Hl’i_l, and (Vy, Hy) € Hx_l with k > 12. Suppose that Hy satisfies the con-
straint (1.7) and

(VVo, VHo) | =1 + [|(Vo, Ho)l| g1 = M, [|(Vo, Ho)l| e < €.

There exists a positive constant €y < e ™M that depends on M, k, and y such that,
if € < €9, then the incompressible Hookean viscoelastic systems (1.6) with initial
data

V(x,0) = Vo(x), H(x,0)= Hp(x),
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has a unique global classical solution such that
&) + Ec—1(2)

t
T Z M// (IASeT*V(0))* + |VS*TV(r)[*)dx dt
0 JR2

| +lal<k—1

< CoM?{1)",

t
Ecs)+ Y. n / [ VSTV (1)|? dx dt < Coe2eCoM
0 JR2

la|+]al<k—3

for some Co > 1 uniformly for 0 <t < oo and uniformly for u > 0.

Here E,—1 jmd E_3 are generalized energy, and &, is new modified general-
ized energy. S and I' are generalized vector fields. A more detailed discussion
follows in Section 2.

Remark 1.2. Here we only need to assume that the viscosity is smaller than a given
constant, say & < 1. When p > 1, one can use the parabolic method of [30, 35]
to get the uniform bound. In the following arguments, we will always make this
assumption.

Remark 1.3. One can easily adapt our method to the three-dimensional case. In
fact, the conclusion in [22] could be improved slightly by stating that the uniform
bound (in terms of the viscosity) for the highest-order energy holds; see also [32].

Remark 1.4. When there is no viscosity, namely p = 0, the system is reduced
to the two-dimensional incompressible elastodynamics. In this case, our proof of
global existence also works, and it can be substantially simplified as there is no
need to use the modified &.

Remark 1.5. The uniform global a priori estimates allow one to justify the vanish-
ing viscosity limit by a usual compactness argument; see, for example, [21,37,45].

Let us end this introduction by discussing a couple of additional technical dif-
ficulties that one has to resolve in proving the above theorem. The first one is
the issue of derivative loss due to the presence of viscous terms, whenever one
performs the weighted energy estimates. Heuristically, for the system of elasto-
dynamics, under some smallness assumption, one can verify that X,,—; < E,_;.
Here, X, represents the weighted L? generalized energy. We need to clarify here
that these quantities are not the ones from [28]; rather they resemble what were de-
fined in [44] (see Section 2 for precise definitions). However, when the viscosity
is present, one can only show that X,_» < E,_;. Consequently, when one deals
with energies outside of the light cone, one has to be extra careful. The transfor-
mation of the original system into a fully nonlinear one turns out to be useful here.
Its advantage as discussed above is the presence of an extra spatial derivative in
nonlinear terms. It provides more flexibility in using the weighted L? energies
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along with the integration by parts. In the three-dimensional case [22], Kessenich
obtained one extra spatial derivative using a Hardy-type inequality along with the
weighted (L*° — L?)-estimate. But in the two-dimensional case, Hardy’s inequality
has an additional logarithmic factor, and it is no longer useful. To estimate X,_1,
we introduce a modified weighted energy Y,—;. The latter is useful to capture a
better decay property of the good unknowns as in Alinhac’s works. The estimates
for Y, —1 are similar to X,—;. Thus the derivative loss problem persists for Y,_1
in treating the highest-order energy estimates as well. Fortunately, at this stage we
can borrow the full ghost weight energies to close the estimates.

The newly formulated (1.6) elastodynamic system becomes a nonlocal fully
nonlinear system. Generally speaking, for quasilinear or fully nonlinear systems,
one needs certain symmetries to avoid the derivative loss. For (1.6), a careful and
lengthy examination of the nonlinearities shows that the system indeed possesses
the desired symmetry.

The proposed method also needs decay-in-time estimates for the lower-order
energies as usual. For the two-dimensional case, solutions often decay like (t)_l/ 2
for wave equations. Since the viscoelastic system satisfies the usual null condition,
one obtains a critical decay for energies and hence the implication of an almost
global existence result; see [31]. For the global existence of classical solutions,
the strong null structure used here for the system may be needed. One of the
contributions of this article is to show that the viscoelastic system possess a strong
null condition under Eulerian coordinates. Here it is worth pointing out that, for the
scalar quasilinear wave equations that satisfy the usual null condition, Alinhac [5]
used a Hardy-type inequality for compactly supported solutions to overcome the
issue with critical decays. Here, due to the nonlocality of terms in the system, the
compact support property of the initial data would not be preserved.

The remaining part of this paper is organized as follows. In the following sec-
tion, we will formulate the system of incompressible elastodynamics in Eulerian
coordinates and present its basic properties. In Section 3, we will give some linear
and nonlinear estimates; then the weighted L? norm and some L% norm will be
given. The last section corresponds to the various higher-order and lower-order
energy estimates.

2 Equations and Basic Properties

In this section, we will rigorously introduce the concept of the strong null con-
dition for general fluid systems and will reformulate the system as a fully nonlinear
one in which the strong null condition can be verified explicitly. Then we introduce
some necessary notations and discuss the vector fields applied to the system.

2.1 The Equations of Motion

Due to the presence of the viscous term, we will consider the problem in Euler-
ian coordinates. Here, partial derivatives with respect to Eulerian coordinates
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are written as d;, = % and J; = % Spatial derivatives are abbreviated as
1
V = (01, d2). For convenience, we also use the following notations:

w = e r=|x|, ot = (a)f‘a)é‘) = (—w3z, w1), vi = (—02,01).

We shall consider the equations of motion for incompressible Hookean elastic-
ity (general nonlinear elasticity can be treated similarly), which corresponds to the
Hookean strain energy functional W(F) = %lF |2. When the deformation ten-
sor perturbs around its equilibrium, ' = I + G, the incompressible viscoelastic
system (1.4) can be rewritten as

v —puAv—V-G=-Vp—v-Vo+V-(GG"),
2.1) 0:G — Vv =—-v-VG + VuG,
V.v=0, V-G'=0.

In the two-dimensional case, it’s easy to see that (1.2), is equivalent to
22) (VH-G)i = GaViGin = GnViGia.

Before we reformulate the system, let us explicitly introduce the strong null condi-
tion.

2.2 Strong Null Condition and Reformulation
of the Viscoelastic System (2.1)—(2.2)

The strong null condition is a more restricted notion of the null condition, which
was originally introduced and applied in [28] in the proof of the global well-
posedness of incompressible elastodynamics.

We start with the following scalar quasilinear wave equation:

(2.3) afu — Au = Q(du, 9%u).
Here Q is a bilinear form.
DEFINITION 2.1. (Strong null condition) We say Q satisfies the strong null condi-
tion if
Q(du, Pu) = Q1(3u, g(du)) + R,

where the reminder R satisfies
|[0u||0Zu| r+1
—_— > —.

I+t 2

Here the expression g(du) is a good known in the sense of Alinhac [5]:

IR| <

gu) = wisu + Vu.

Remark 2.2. One can compare the strong null condition with the null condition.
We say that Q satisfies the null condition if

Q(du, 3*u) = Q1(du, g(u)) + 02(g, #u) + R,
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where the reminder term R satisfies
|Tu||0%u| + |0u||0T u| . r+1
1+1¢ T2
The main point is that by “null condition” we mean that O contains at least one
good unknown of g(u) or g(du). By the strong null condition, it requires that O

must contain the good unknown g(du). In general, a quasilinear wave equation
(2.3) with null condition may not satisfy the strong null condition.

IR| <

In [28], it was observed that writing (2.1)—(2.2) in Lagrangian coordinates,

D2x —Ayx + FTVyp =0,

24 det(Vyx) =1,

and after applying a curl-free Riesz operator, one may discover that (2.4) satis-
fies the strong null condition. Here D; and V), are derivatives with respect to
Lagrangian coordinates.

Now we give a few more examples of physical systems for which the strong null
condition is valid.

For the 2D fully nonlinear wave equations which are considered in [8],

(2.5) (07 — A)u = Nypuvda0gud,dvu,
where Ngyg,, satisfies the condition
Noguv Xa Xp X Xy =0
forall X € X, where ¥ = {X € RT x RZ:Xg = X12 + X22} The equations

(2.5) satisfy the strong null condition. Moreover, it was shown in [8] that a class of
quasilinear wave equations where the null condition is satisfied can be transformed
into (2.5).
For ideal magnetohydrodynamic systems:

d;v+v-Vo+Vp=5b-Vb,
(2.6) 0tb+v-Vb=>b-Vvu,

V-v=0, V:-b=0.
Consider the case where the background magnetic field is e = (1,0,...,0) € R”.
We introduce the following good unknowns:

AT =v+(b-oe).

Then (2.6) can be rewritten as

8tA+—e~VA++A_~VA++Vp=O,
A" +e- VAT +AT - VA~ +Vp =0,
V'A+:O, V'A_:O.

It’s obvious now that the strong null condition is satisfied [7].
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Inspired by the above examples, we believe there is a large body of physical
systems where the strong null condition is satisfied.

Coming back to the system (2.1)-(2.2), following Lei-Sideris-Zhou [31], we
call v + Gw and Gw good unknowns. They are similar in spirit to the concept of
good unknowns g of Alinhac [5]. One writes the nonlinear terms in the momentum
equation as

v-Vu—V-(GGT)

= (v 4 Gw) - Vv — (Gw);(Vjv + V;Gw) — (Got),;V;Got

= 01(8. Vv) + 02(Gw, g(Vu)) + 02(g.8(Vu)).
We note that the system now is of first-order (if we ignore the viscosity term).
It does explain why there is one spatial derivative less on the unknowns in the
nonlinear term. Obviously, @1 (which is a transport term) must present and thus
system (2.1)—(2.2) doesn’t explicitly exhibit the strong null structure. One can
observe a similar fact for the G-equation in (2.1)—(2.2).

We reformulate the system in order to show the strong null structure explicitly.

Since v and G' are divergence free, there exist potential functions V and H =
(H1, H3) such that

v=viy, GT=V'iH.
Then one has the following:
LEMMA 2.3. For classical solutions, the system (2.1) is equivalent to (1.6):
3V —puAV —V-H=V+.V. AT (-VIV @ VIV + V1H @ V1 H),
H—VV =VLtHVY,

and (2.2) is equivalent to (1.7):
Vi.H =ViH, VH;.
Here V& - V- A"V VLV @ VEV) and V+ -V - A~Y(VLH @ VL H) are given by
VL. VAT VY @ VEY) = VAV AL VAV VEY),
VL.V ATY(VIH ® VIH) = VIV, AT (VH - Vi H).

Before proving the above lemma, let us check first that the above system satisfies
the so-called strong null condition. The good quantities here are V + H - @ and
H - w*. We can calculate that

ViVViV —ViH -Vi-H
= (V}'V + ViH - 0)ViV —VirH -o(V;V + Vi H - )
—ViH o' ViiH o™

The strong null condition has clearly shown up on the right-hand side of the above
equation since all good quantities have an extra spatial derivative. The presence of
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the extra zeroth-order nonlocal Riesz type operator V- - V- A~1 in (1.6) is an extra
issue that we have to deal with later.

Remark 2.4. At first glance, the resulting system (1.6) seems to be more compli-
cated than the original one (2.1). The nonlinearities of (1.6) have one more deriva-
tive than that of (2.1)), which makes (1.6) a fully nonlinear system (in the inviscid
case); see also a related formulation in [47]. But the key point is that, together
with the use of the modified generalized energy &, we can yet apply the ghost
weight method along with the strong null condition in this formulation. More-
over, we can avoid the derivative loss in deriving the estimates X,—» < Er—1 and
YK—2 < Ex—l-

PROOF. We begin by rewriting the first equation of (2.1) as
Jv—puAv—V-G=-Vp—-V-(v®v)+V-(GG").
Using (V, H) instead of (v, G) and applying V- to the above equation, one has
A@;V —pAV =V -H)=V+.V.(=VV @ V1V + VI H @ V1 H).

Applying A~ to the above the equation yields the first equation of (1.6).
For each component of (2.1),, the same substitution gives

0, V-H; — V;VV = —Vi-VV, Vi H; + V, V-V Vb H;.

Note that
~Vi*VV,H = V;VVi-H,

hence,
VA0, Hj — V;V) = -Vi*VV, Vi H; + VVEVViEH;
= V,VV{Vi-H; + V,Vi-V Vit H;
= Vi (ViVV[ Hj),
which implies
3 Hj —V;V =V, VVi-H;.

Thus the second equation of (1.6) is obtained.
For (2.2), the same substitution gives

VH(VE-H) = Vi-HoViVEHy — ViRH YV VEH.
By the identity
—Vi-H\V Hy = V;H Vi H»,
we deduce that
VH(VE-H) = ViR H,V VR H — ViEH Y VEH,
= Vi H,V, Vi Hy + Vi H V-V H
= VH(Vi-HoV Hy),
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which implies (1.7).

In all the above argument, the calculation can be reversed if the solution has
enough regularity. Hence (2.1) and (2.2) are equivalent to (1.6) and (1.7) for clas-
sical solutions. O

2.3 Commutation Properties

Now let us take a look at the various vector fields that play a central role in the
proofs. Since the application of the vector field theory is now classical, we sketch
the rough ideas and indicate the differences with the classical theory. For related
discussions, we refer the reader to [22,28,41].

The scaling operator is defined by

S=t8t+r3r.

Here, due to the scaling of V and H, we will use the modified scaling operator S,
which is defined as

S=5-1
Applying the scaling operator S to (1.6) and (1.7), we get
3SV —uAS-1)V-V.-SH
=VL.V. AT (-VISV @ VIV + VLS H ® VL H)

@.7) + VL.V AN (VLY @ VLSV + VLIH @ VLS H),
3SH —VSV =VLSHVV + VLHVSV,

and

(2.8) vit.SH =VtSH, VH, + V*H, -VSH;.

We see from the above expressions that, when y = 0, the modified scaling operator

commutates well with the inviscid systems, but when p > 0, there is an extra

term —1 coming from the commutation between the viscosity term and the scaling

operator. This extra commutator term is troublesome and requires some extra care.
In the two-dimensional case, the rotation operator is defined by

Q=x1t-V=20,.
Applying the rotation operator to (1.6) and (1.7), we get
3, QV — uAQV —V.-QH
=V V. AN (=-VIQV @ VIV + VIQH @ V1 H)
+VE VL ATH(-VAY @ VAQY + VEH @ VIQH),
3:QH —VQV = VLQHVV + VLHVQV,

2.9

and

(2.10) Vt.QH =V+QH, -VH, + V1H, - VQH;,
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where
Qv =Qv,
QH =QH - H*.
Hence, the rotation operator commutates well with the system. In view of this, we

will separate the scaling operator from regular derivatives and the rotation operator:
Let I' be any of the following differential operators

T e {9;,01,0,, Q).

Following the above arguments, repeatedly using (2.7)—(2.8) and (2.9)—(2.10), we
have

3:SeTV — uA Yo CL(=1)*7ISITey — V- §*T°H = f |

@Dy Sepay _ySeray = 12,

and

(2.12) vi.SereH = £3
where

fL= 3y cbcbvt.v. A (—VvLiSETEY @ VLSYTCY

pla + VLSBTPH @ VASYTCH),
Q13 1= X Cclch(vESPTHVS T D),

b+c=a

B+y=«a

s= Y ClchvtSPrm, - v3YTeH)).

b+c=a

Bt+y=«a
Here @ € N and I'* stands for ' = I'“! ...T'4, where a is multi-index a =

(a1,a3,a3,a4) € N4. We indicate that the generalized vector field Z used in
Section 1.2 refers to

Z €{0;,01,02, 8,5},
We also use the abbreviation T¥V = {T%V:|a| < k}and T*H = {T'°H:|a| <
k}. The binomial coefficient Cf is given by
a!
ch=_"
¢ bl(a—b)!
We remark that the above commutation relation (2.11)-(2.13) is essential in all

of the subsequent argument. Schematically, we write the following commutation
relationship

[[,T]=0d, I[I,S]=.4.

This fact is frequently used implicitly throughout the whole argument.
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In order to simplify the presentation, we abbreviate S*T'?V as V (®@) and ab-
breviate S®T¢H as H@_ Also, we denote V@®la) = (y@b).|p| < |a|},
H@lah) — ¢ @b). p| < |q|}. Thus (2.11) and (2.12) can be written as

9, V(a,a) _ ILA Z(lx=0 Col[(—l)a_l V(l,a) B v H(a,a) — fozla’

2.14
. 3 H®D _yy@a = (2
and
1 a) _
2.15) v g — g3
We will also use the notation fl‘]"” to denote
(2.16) i‘]’.‘a = Z Cf Cf (3iV(l3,b)3jV(V,c) _9; HBD . ajH(y,c)),
b+c=a
B+y=a

where 1 <1i,j < 2. Hence, fala = Rl.J-ijof{; where RiLRj = ViLVjA_l.

2.4 Some Notations

Now we explain some important concepts and notations used throughout the
paper. The spatial derivatives can be decomposed into radial and angular compo-
nents:

a)J_
(2.17) V = wd, + —dg.
r

where 3, = w -V, dg = x - V. This fact plays an important role in the following
argument.
We will use Klainerman’s generalized energy, which is defined, for « > 1, by

Ecw)= Y U7,
la|+|al<k
where U = (V, H). Moreover, we introduce the modified generalized energy
)= Y VU@ )3,
la|+|al+1<k

Here the word “modified generalized energy” is used to insist on the fact that one
of the derivatives has to be a regular derivative. The use of the modified energy &,
at the highest derivative level is imposed by the ghost weight method and will lead
to some difficulties.

We also use the weighted energy norm of Klainerman-Sideris [25]:

Xe)= > |r—nvueo)z,,
loe|+]al+1=<k

in which we denote (0) = /1 + 02.



VANISHING VISCOSITY FOR INCOMPRESSIBLE VISCOELASTICITY IN 2D 2079

In addition, we introduce a new weighted energy for good quantities V + H - w

and H - ot
Yey= Y (Ir@Ve® +a,H* 0|7, + |rd, H - o |7,).
la|+]al+1=k

The weighted energy Y, is used to describe the good decay properties of the good
unknowns V 4+ H - and H - o near the light cone. We emphasize that we need
to treat the derivative loss in what follows when estimating X, and Y.

To describe the space of initial data, we introduce (see [41])

A={V.Q,rd —1}
and
Hj =

(f9): 3 IAfl2 + 1A%l < oo}

lal<k
with the norm

I/ )as = Z (1A fllz2 + 1AgllL2).
lal<k

for scalar, vector, or matrix function f and g. Then as in [41], we define

HE(T) = {(f, 9:0.7) > RxR2 (f.g) € () €/ ([0.7): H™)
j=0

Solutions will be constructed in the space Hp (7).

Throughout this paper, we will use A < B to denote A < CB for some positive
absolute constant C, whose meaning may change from line to line. We remark
that, without specification, the constant only depends on k but never on p or 7.

For the global existence result, we will establish the following a priori estimate:

Ee(t) + E—1(1)

t
> u [ [ aveamp vy eomPard:
0 JR2

la|+]al<k—1

< /0 t(r)‘l(é’x(r) + Ec1 (D) EY3(1)d T + Ec(0) + E—1(0)

(2.18)

and
t
Eea 4 Y u[ [ 19veompPaxar
(2.19) la|+|al<k—3 0 R
t
S B + [ (0P Eea@EL 0,
0

for k > 12. Once the above estimates are obtained, the main result holds by a
standard continuity method. For the details, one can consult the differential version
in [28].
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So from now on, our main goal is to prove the two a priori estimates (2.18) and
(2.19). In Theorem 1.1, by taking an appropriately large Cyp and small y, we can
assume that E;_3 < 1, which is always assumed in the following argument.

2.5 Energy Estimate Scenario
To see the underlying ideas more clearly in these long computations, we sketch
the energy estimates in various scenarios as follows:

The modified energy estimate:

Ee + Di+1 + Gy +  LinearCommutatory
—— ~——
modified dissipative energy ~ ghost weight energy  due to viscosity and scaling operator

+ LinearCommutatory, < C + Nonlinear-terms .

due to viscosity and ghost weight
LinearCommutator can be absorbed by Dy 41.

LinearCommutator, is absorbed by D, +1 and D, (note that D, will be contained
in the standard higher-order energy estimate Ey_1).

Nonlinear-terms| represent derivative loss problems that are present due to the
highly fully nonlinear effect, nonlocal effect, and the use of ghost weights. After
a long, delicate, integration-by-parts procedure, one can save one derivative. It is
important that the null condition be satisfied. Thus one can continue to employ Gy
to improve the decay rate to the critical rate. Here one also needs to take care of
the derivative loss in dealing with X,,—; + Y,—1 < Ey.

The standard higher-order energy estimate:

Ee 1+ D, +  LinearCommutators
——

dissipative energy  due to viscosity and scaling operator

< C + Nonlinear-terms,.
LinearCommutators is absorbed by D,.

Nonlinear-termsy: G, is used to improve the decay (note G, has been used in
the modified energy estimate £). One also takes care of the derivative loss in
derivations of X,—1 + Yie—1 < Ek.

The lower-order energy estimate:

Ec3+ Dy 4+  LinearCommutatory
——

dissipative energy  due to viscosity and scaling operator
< 2 + Nonlinear-termss.
LinearCommutatory is absorbed by Dy_».

Nonlinear-termss are those that satisfy a strong null condition.
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3 Estimates for the Special Quantities

In this section, we are going to estimate the weighted L? energies X, and Y.
The weighted energy X, was first introduced by Klainerman and Sideris [25]
for proving almost global solutions of three-dimensional quasilinear wave equa-
tions and later on used in [31] for proving almost global existence for the two-
dimensional incompressible elastodynamic system. The energy Y is new and used
here to estimate the good unknowns. Due to the fact that r is not an 4, weight in
two dimensions, the modified one is introduced in [28] to get the global solution of
two-dimensional incompressible elastodynamics. Here by transforming the origi-
nal quasilinear system (2.1) into a fully nonlinear one (1.6), we can simply use the
earlier ones introduced by Klainerman-Sideris for X,.. This advantage is based on
the inherent structure of the system, which enables us to simplify the proofs.

3.1 Sobolev-Type Inequalities

The following weighted Sobolev-type inequalities will be used to prove the
decay of solutions in the L.°° norm. A much stronger version of (3.3) appeared
in [28]. Since we are able to transform the original system into a fully nonlinear
one, the form of (3.3) is enough for us here.

LEMMA 3.1. Forall f € H?(R?), there holds

(3.1) PP S D [10-20 112, + 194 £13.].
a=0,1

B2 re=r?IfOP S D0 [ =ro-Q° f1IZ. + It — Q% fII7.).
a=0,1

33 (O fllzee=wy S Y It =)o fllz2.
la|<2

provided the right-hand side is finite.

The proof of this lemma can be found in [31] (the three-dimensional version can
be found in [44]); we omit the details here.

3.2 Estimate of the Good Quantities

In this section, we are going to explore the good properties of some special com-
binations of unknowns. Both the linearities and the nonlinearities will be investi-
gated. The exploration of these special quantities is a prerequisite for the estimate
of weighted L? energies X, and Y,. On the other hand, they are also crucial for
the energy estimate that will be conducted in the next two sections.
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In order to simplify the presentation, we first introduce some notation. Suppose
that (V, H) € Hf solves (1.6) and (1.7). Define

Le= Y |[U®9]

|| +lal<k

NIC+1 = Z (Z‘fala‘+t‘fo¢2a‘+(t+r)}fa3a})’
|| +lal<k

NK+2 = Z t}v'faza}’
la|+lal<k

where L, represents some linear quantity, and Ny and N4, represent some
nonlinear quantities.

Remark 3.2. The term N4 will be used when we multiply systems (2.14) and
(2.15) by some ¢ or r factor. The term N, will appear due to the presence of
viscosity (see Lemma 3.6).

Remark 3.3. One can also use a stronger version of Ny 41 by defining
Newi = Y (| faal + @+ D12+ + )| fa])-
|| +lal<k

However, one cannot include 7| f,} | in Ny since r is not an A, weight for a
singular integral in two space dimensions.

Now we are going to analyze the linear part of the system and establish several
estimates. Before doing so, we need an elementary iteration lemma.

LEMMA 3.4 (Iteration lemma). Let { f;}, {g;}, and {F;} be three nonnegative se-
quences where 0 < [ < k. Suppose that

Jfo + go < Fo.
andforall1 <1l <k,
J1+g —g-1<F.

Z (fm +gm) < Z Fm

o<m<l 0<m=<l

Then there holds

forall0 <1 < k.

Remark 3.5. This lemma plays a role in dealing with the commutators between the
viscosity term and the scaling operator and will frequently be used throughout the
whole paper.

PROOF. We prove the lemma by induction on /. Obviously, the lemma is correct
when/ = 0. Let 1 < < k. We assume the lemma is correct for [ — 1. This means
that

(3.4) Y (ntem)=C > Fnm

o<m<l—1 o<m<Il—1
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On the other hand, we have
(3.5 fi+81—8g-1=CFH.
Multiplying (3.4) by 2 and then adding (3.5), we get
2 ) (Untem+Sitg+2fii+g1<2C Y Fn+CF,
0<m<l-2 0<m=<i—1

which is the required estimate for /. Thus the lemma is proved. U

Now we are ready to state two lemmas for the special linear quantities. These
two lemmas are requisite for the estimate of the weighted L? norms X, and Y.

LEMMA 3.6. Suppose that (V,H) € Hf_l solves (1.6) and (1.7). Then for all
|a| + |a| < k — 3, there holds

oy 405 1O+ s sy e |
< vX|g+lal+1 + CU I Lia)+1al+1 1172 + Cob* 1L g)+lal+2]l7 2
+ ClINg+1al+1 1172 + Cor® INiaj+1al+217 2

provided the right-hand side is finite, where v can be any positive constant, C,, is
a constant that depends only on o, a, and v, and C depends only on o and a.

Remark 3.7. While the lemma becomes trivial if there is no viscosity, the viscous
version is nontrivial. The viscosity is the main reason we only have an L? bound
rather than a pointwise bound as in the next lemma.

Remark 3.8. The terms on the left-hand side are of order || + |a| + 1 except for
the viscous term, but on the right-hand side, the order is |«| + |a| 4+ 2. This means
that we will encounter the problem of losing derivatives in future discussions. If
@ = 0, one has no problem with derivative loss.

PROOF. Denote
J = |ra, v +v. @22, 4 i(c;)znumv(’ﬂ)niz.
=0
We first claim that the following fact holds:
J < 6§(c;)2||umv<”“>||§2 + |t —r)V - H@D)2,
l

=0
(3.6) + C{u) %I L g +la+1 172 + Cort® | Lig)+1al+2]17 2

+ ClINig+lal+1117 2 + Cor® INjg)+1a)+2]17 2+

where v can be any positive constant, and C,, is a constant depending only on «, a,
and v.
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Once assertion (3.6) becomes true, noting the assumption . < 1, one can im-
mediately see that Lemma 3.6 is proved by applying Lemma 3.4 to (3.6). Thus it
suffices to prove (3.6).

Multiplying the first equation of (2.14) by ¢ and using the scaling operator, one
gets

o
rarV(a,a) +1V. H(Dt,a) + /,l,tA Zcolz(_l)a_lv(l’a) = SV(D(,(J) _ tfala.
=0

Taking the L2 norm for the above equation, one has
o
J==2| @3, v®D +v.-H@D) AN cl-1* vl aax
3.7 R2 I—0
+ sy —rl|2,.

To prove (3.6), we need to deal with the right-hand side of (3.7).
By separating the highest-order terms from the lower-order ones, (3.7) can be
organized as

J = —2/ 1V - H@D -,u,tAV(""“)dx—2/ ro, V@D L AV @D g
R2 R2

J] J2

a—1
3.8) - 2/ (ra, V@D 41V HOD) . A S -1y EDax
R2 =0

+|svea —ifll7,.

J3

Here J3 refers to the lower-order term, and J; and J, refer to the higher-order
terms.
By Holder’s inequality, J3 can be estimated by

1 a—1
3 |ra, Ve 4 ov. HE@D |7, 423 (Ch)? uravio)2,
=0
2
+21SVED T, + 2]t f 72
For J3, one can deduce from integration by parts that
- _ (a,a) (@a) 7, —
Jo = 2[ ro,V - wt AV dx = 0.
R2
It remains to estimate Jq, which cannot be treated simply by the Cauchy in-

equality due to an extra r-factor. We will refer to the inherent structure of the
systems.
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Applying the divergence operator to the second equation of (2.14), one gets
AV@D = §v. @) _y. f2

Inserting the above expression into J; and employing the scaling operator, we have

Ji = _Z/RJVH(“’“) (19, V- HO® =1V f2 )dx

=-2 /Rz 1V . H(@a) _M(_rarv CH@d) L gy, gea iy, faza)dX.
In view of the fact that
2/2N'H(a’“) prd, V- H@Ddx = —2/2m|v.H(a,a>|2 dx,
we get ) R
J1 = —2[Rzzv-H(%a> S (SV-H®D v . £2)dx.

Now we need to estimate the integral in different regions separately. To do this,
define a radial cutoff function ¢ € C*°(IR?) that satisfies

1 if3<r<$
= 4= = Vo| < 1.
¢ {0 ifr<%orr>§, Vel <
For each fixed t > 1, let ¢’ (x) = ¢(x/(t)). Clearly, one has
1 for 3 <, < 880)
Po=1 S S
0 forr <=torr= =,
and
V! ()| < ()7
Consequently,

Ji < —2/R2IV-H(“’“)-M(SV-H(“’“) —tV- f2)dx

= —2f (1— " (x)V-H®D . y(SV-H@D V. £2)dx
R2

J11

—2/ Q' (X)V-HE®D .y (SV-H®D V. £2)dx.
R2

Ji2

We now estimate J11. Note on the support of 1 —¢?(x), we have r < (¢ —r). Thus
one can estimate Jq1 as follows:

Ji < vl =r)V-H@D |2, 4 126, (ISV - HED 2, 4 1V - £2,]3.),
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where v can be any positive constant and C,, is a constant depending on v.
For Ji,, employing the first equation of (2.14), we have

o
=0

u(SV-H®D —¢v. £2)dx

J121
o
+2 f w’(X)(mA Y oci-ntyta 4 rfo}a)
R? =0

u(SV-H@D V. £2)dx

J122

J122 can be directly bounded as follows:

1
J122 <

1

o
S(CH) It av D2, + 52| SV H@D v 2|7,
1=

0
+ Htfala HiZ

=

FNp-

o
2
SO(CH I AVED|2, 4 10p2|SY - HED||
=0

+10p2 [0V - f2 070 + I fa 17 2

Finally, we write

Ji21 = 2/ <pt(x)u(r8rV(“’a) — SV(“"’)) . (SV CH@D) vy faza)dx
R2

R2

Ji211

—2/&2 @' (OuSV@D) . (SV. H@D _¢v. £2)dx

Ji212

J1212 can be bounded by

2
Ji212 < 2|SV@D |2, 4 1 2SV-H@D |2, 1 12tV - 2] 75,
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For J1211, note on the support of ¢’ (x), we have (t) ~ r. Hence one deduces that

Ji211 = 2/R2 (pt(x)urarV(“’“) . (V SH® _v. faza)dx
-2 /R ZV((pt(x),urarV(“’a)) (SH@D —1£2)dx
< Z/RJVgot(x),urarV(a’a) . (§H(a’a) - tfaza)‘dx

+2/]Rz @' ()| VYV @D | |SH@D 1 f2 |dx
+ 2/R2 @' (x)urd, Vv @D . (§H(°"“) —tf2,)dx

1 5 2
< W2 IVVED Ty + Ll VAV D T + C|SHED —if 7 |-

Combining all the above estimates, we conclude by the commutation between the
generalized operators that

o
J = [ra,v@® 4 1v . H@D| 7, 137 (Ch)P prav )2,
=0
1 2 1
< 5Hrarv(""“) +1V-HE@D |, + 5||;um/(0"“>||§2
a—1 )
+33 (C) Mt AVED |2, vt — 1)V - HED |2,
=0

+ C{W) 2L a1 +lal+1 172 + Cot® | Lig)tia)+2]17 2

+ C||N|a|+|a|+1 ||iz + Cvﬂzllj\[la\—i-la\—i-Z”iz-

Absorbing the first two terms on the right-hand side in the above yields (3.6). Thus
the lemma is proved. U

We have the following pointwise estimates:

LEMMA 3.9. Suppose that (V,H) € Hf_l solves (1.6) and (1.7). Then for all
|| + |a| < k — 2, there holds

G:9) (V- H® Do +1VV ]S Ligi a1 + Nialtlal+1,
(3.10) It £ r)(VV @) L v. g@a)y,))

< Ligitlal+1 + Niallal+1 + |13, V@D +1v . HE&D)|
(311) r‘arH(a,a)'(l)J_| 5L‘a|+|a|+1 +N|a|+|a|+1,
(3.12) r‘ar[/(ot,a) + arH(a,a) a)‘

< Ligjtial+1 + Naltlal+1 + |rarV(oe,a) +1V- H(oe,a)“
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PROOF. Multiplying the second equation of (2.14) by ¢ and using the scaling
operator, we can rearrange the resulting systems as follows:

(3.13) rd, H® 4 vy ©@a) = gg@a _r2
Employing (2.17), one has

rd, H®® 4 vy @)
= (o, H*Y . 0o + (rd, H*Y . oMot + VY @)
= (V- -H*No — (QH*Y . ot)w + (V. HED Yot
+ (QH®? . p)ot + vy @)
= (V- -HOo + VY@ 4 pf3 ot
—(QH®? . 0N + (QH®D . p)ot.

(3.14)

In view of the relation between S and S , (3.9)is clear from (3.13) and (3.14). Next,
note that

(3.15) rvvV@d 4 (V.- H®D) = (r3, V@D 4 V- H@Dg + QVo™t.

(3.10) is a direct consequence of (3.9) and (3.15).
The estimate of (3.11) follows directly from (2.15) and (2.17). To check (3.12),
by analogy with the above proof, we write

r(@, V@D 49, H®D . o)
=w-[rvV@® 4+ (3, H®D . w)o]
=w-[rvv@d 4 v. gDy (QH@D . ph)e)],

from which (3.12) follows from (3.10). O

Next we are going to estimate the nonlinearities. The following lemma says that
the nonlinearities have the good pointwise decay property near the light cone if we
disregard the Riesz transform. This lemma not only is used in the estimate of the
weighted L2 norm in this section, but also plays one of the key roles in the energy
estimate in the next section.
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LEMMA 3.10. Let f,2, and f,3, denote the nonlinearities in (2.13). Then for all
|| + |a| < k — 3, there holds

1
(3.16) ‘faza‘ < - Z |V(\f3|,|b|+1)||H(|y|,|c’|+1)|’

1B1+7]<|el
bl +|c|<|al

1
(3.17) ‘ffa‘ < - Z |H(\ﬂ|,|b\+1)||H(|y|,|0|+1)|’

1B1+]y|<|e|
b|+|c|<|al

Z |V(IB|,|b|+2)||H(|ﬂ\,|6|+2)|‘

1Bl+]y|<l|e|
|bl+]c|<lal

Furthermore, recall the definition of fé{l in (2.16). Then there holds

]
A R SN (VO RN TR T L)

|b]+]c|<|al
[Bl+yI<lal

(3.19) + Y (10, VED 4o, HED | (IVV T 4+ |[VHT))

b+c=a
Bt+y=a

(3.18) V- f] <

N | =

+ 18, HED by, HY) . ot].

Recall that the introduction of fof{, came from fala by dropping the Riesz trans-
forms.

Remark 3.11. Note that all the nonlinearities satisfy the strong null condition, and
our estimates always contain one spatial derivative in the good unknowns or gain
(t)~! near the light cone.

Remark 3.12. In the highest-order energy estimate of the next section, this lemma
cannot be used since it causes a derivative loss.

PROOF. Employing (2.17), we write

1= > cbcbviuBhvyra)
b+c=a
B+y=a
1
= Y cbch (arH(ﬂ’b) ® vt — ;391‘1(5’[)) ® w)

b+c=a
B+y=a

1
_ (a)arv(y»c) n ‘“—aev(%c))
r

1
= > bl HPP v — gDy 00,

b+c=a
B+y=a
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Thus (3.16) is clear from the commutation between d, and S, T'. Note that (3.17)
can be estimated exactly in the same fashion; we omit the details.

To estimate (3.18), we use (2.17) to get that

Vefa =V Y cbcivtaBDIvyray

b+c=a
Bty=a

= Y clcb(VivinP vy @ 4 v g Py, vy )

b+c=a
B+y=«a

1
- Z Cf Cab (0-V; Hi(ﬂ’b)ag Y0 _ 9,V H,-(ﬂ’b)arv(m)

b+c=a
B+y=a

1
+- ) cda (8, HP P 3w, v ) — gg HPD g, v,y ),

b+c=a
B+y=a

By the commutation between the generalized operators, (3.18) is clear.
To estimate (3.19), from (2.17) we can deduce that

y |
= D Cfcf[(wiarlf(ﬂ”’) + ;wf‘QV(ﬁf”))

b+c=a
B+y=a

(oo Lopavoo)
r

1

_ (wiarH(ﬂ,b) L _wiLQH(ﬂ,b))
r
1

. (a)j 9, HYC) 4 _ij—QH(V,C))j|

r

= > cg?cj[wia)j(arv(ﬂ’“arv(%c)—a,H(ﬂ’b%a,H(%C))

b+c=a

B+y=a 1

+ ~w; w;_ar yB.b) qQy(ve)
r

1 1

+ ;wii-gv(ﬂ,b) (wj 9, Ve 4 ;a)]J‘Q V(y,c))
1

— —wjwid, HFP . QO
;i

I I
~Lotau®h. (wj 019 1 Loto H(y,c))]‘
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Thus (3.19) is obtained by the following grouping:
arV('B’b)arV(y’c) _ arH('B’b) . arH(yﬁc)
= @3, VED 5, HED . 4)5, v )
- arH(ﬂ’b) * Cl)(ar V(y’C) + arH(y’C) * Cl)) - 8rH(B’b) * Q)J_arH(y’C) * CI)L.

This completes the proof of the lemma. U

3.3 Estimate of the Weighted L2 Energy
In what follows, we will show that the weighted energy can be controlled by the

generalized energy under the smallness assumptions on lower-order energies.

LEMMA 3.13. Suppose that (V, H) € Hl’f_l solves (1.6) and (1.7). Then for all
|| + |a| <k — 3, there holds

2
| Niajtal+1 + Mal+lal+2] 12
< Elaj+lal+2E1(al+1ah/21+4 + Yial+lal+1 E[(al+]al)/2]+3
+ Ela|+lal+2(X[(al+lal)/21+4 t Y[(al+lal)/2]+3)-

PROOF. In view of the definition of Njg|4|q+1 and Ng|4|q|+2, it suffices to
prove

V| £k + e[ f2 ]+ @+ | £ + 1|V - £2] 72
S Elal+lal+2E[(al+lal /2144 T Yial+lal+1 E[(al+]al)/2]+3
+ Eja|+lal+2(X[(a|+lal)/21+4 T Y((a|+lal)/21+3)-
Let us first treat [|£] £,2,| + (¢t +7)| .2, ||%2. Recall that £,2, and f,3, were defined

in (2.13). We need to estimate the norm in different regions separately. When
r <(t)/2, wehave (t) < (t —r); thus

2
] faal + ¢ + D feal | L2 <001/2)

:b) .02
S D VU INUO| Lo,y

B+y=a

b+c=a
By the symmetry between the multi-index » and ¢ and the symmetry between f
and y in the above, we assume |c| + |y| < |b| 4+ |B| without loss of generality.
Thus |y| + |c¢|] < [(« + |a|)/2]. Hence thanks to (3.3), the above can be further
bounded by

3 IVUBDN2, 1) VU2 <y

B+y=a,b+c=a
lyl+lel<[(e+lal)/2]

S Elaf+lal+1X[(lal+]al)/2]+3
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For r > (t)/2, one infers by (3.16), (3.17), and Sobolev embedding that

] fara] + (2 + r)‘fa?’a‘leﬁ(rz(t)/Z)

< Z H|U(|,3|,|b|+1)||U(|V|,|CH-1)|”iz(rz(

Bl +|y|<|a|
[bl+c|<l|al

1)/2)

< Elaf+lal+1 E1(al+lal)/2]+3

Now we turn our attention to ||££, ||;2. Recalling that f,}, is defined in (2.13),
by the L? boundedness of the Riesz transform, one has

[tfaallz s 22 Nefail oo

1<i,j=<2

where féja is defined in Lemma 3.10. Hence in the following, we focus our atten-
tion on ||t fyn |12 When r < (t)/2, we can estimate similarly to ||z £,2, l22¢-<(2)/2)
to deduce that

.. 2
ltfa L2 <t1/2) < Elel+lal+1 X (el +lal/2)+3-

When r > (t)/2, by (3.19), one has

.
[t/ 2220129
< Y OByl | g OBLBD )yl 2

[b|+|c|<lal
[Bl+1yI<lel

G200 @V 4, HED o) (VYOO 4 VHEO) |2,

b+c=a
B+y=a

Y [raHED oy, HOO L2,

b+c=a
B+y=«a

For the first and third terms on the right-hand side of (3.20), one can use the tradi-
tional Sobolev inequality to deduce that they are bounded by

E\g|+lal+1 E[(al+lal) /2143 T Yial+lal+1 E[(al+]al)/2]+3-

The remaining second terms of (3.20) need further work. Making use of the fact
that

dg(V@D L H@D . ) = Qy@ad L Q@D )
= S*Qrev + S*QreH - w
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and by (3.1), one gets

1@ V) 4+ 9, HD - 0) 7 o202

< Y {1920 @, VYD + 9, HY - w)]|7,
d=0,1

14 @6V + 8, HPO - 0)]]7.)
S Yyltlel+3 + Elyllel+2-

This allows us to control the second line of (3.20) as follows:

b+c=a

Yo @ VB 4o, HED )V OO 4 [VHTO |2,
B+y=a

)/2)

~

S 2 @V £ HED )7, VU T |
B+y=a,b+c=a
IBI+1b]=ly[+]c]

LD
B+y=a,b+c=a
[BI+1bl<ly|+]c]

IVUPONZ 0@V B+ 0, HED - 0) [ F ooy 1))
< Ela+lal+1 E1(al+lah/21+3 + Yial+lal+1 E[(al+1al)/2]+3
+ Elg+lal+1Y[(al+lal)/21+3-

Finally, we are going to show that

2
16V - fauli2 S Elaltlal+2(Elal+lah/21+4 + X[(al+la)/2]+4)-
For r < (t)/2, by (3.3) we have

2
”ZV'fotZaHL2(r5(t)/2)5 Z |

b+c=a

[t =) IV2ULD VUL,
B+y=a

}/2)

S Elaf+lal+2X[(lal+]al)/2]+4-
For r > (t)/2, one deduces by (3.18) that

2 2

[0V Sl 22072 Y Sl 262102

< Z ”|V(|ﬂ|,|b|+2)||H(Iy|,\0|+2)|HL2( N
~ r=
[b]+]c|<lal

t)/2)
[Bl+ly|<|e]

S Elaf+lal+2E[(lal+1al)/2]+4-
This finishes the proof of the lemma.

Now, we state a lemma that allows us to estimate the weighted L2 norms

2093
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LEMMA 3.14. Suppose that (V, H) € Hf_l solves (1.6) and (1.7) with k > 12.
Then there hold
(3.21) Xe—a+Ye—a S Ex—3+ Ye—aEx—3+ Ex—3X¢—a+ Ex—3Ec—4
and
(3‘22) XK—Z + YK—Z < E/c—l + EK—IXK—4 + YK—ZEK—4
+ Ev—1Yi—4 + Ex—1Eic—a.

PROOF. For the proof of this lemma, we recall and prove the following simple
lemma:
LEMMA 3.15. For vector K, there holds

It =) VK2 S 166 =)V - K2 + [t =)V K22 + K] 2,

provided the right-hand side is finite.

PROOF. The proof is rather simple and the version for matrices has appeared
in [31]. For completeness we include the proof for vector K. It suffices to prove
the lemma for K € CO2 (IR?); the general case can be established by a completion

procedure.
For any vector K, we write

IVK]? = |V K[>+ V' K[? =201 K132K2 + 92K191 K>,
By integration by parts and Young’s inequality, we have

It =) VK> =1t =)V - K> = 1t =)V - K75

= /]1&2 2(t — r)?[~01(K102K2) + 32(K101 K2)]dx
= [ 40 = Do KibaKs + o2 Kidh Kold
R2

1
=Sl = r)\VK|7. + CIK|7..

The lemma then follows from the fact that the first term of the right-hand side can
be absorbed by the left-hand side. O

We go back to the proof of Lemma 3.14. First we show that
Xio|+lal+1 t Yia|+la|+1
(3.23) S Ealtlal+2 + Elal+lal+2(X[(al+la/21+4 T Yi(al+lal)/2]+3)
+ (Xjg|+lal+1 + Yia|+lal+ 1) El(al+lal)/2]+3
+ Ejal+lal+2E[(a|+lal)/2]+4-
Actually, by Lemma 3.13, we only need to show

2
Xial+lal+1 + Yiaj+ial+1 S Elal+lal+2 + N +ial+1172

(3.24)
+ [Mal+fal+2]72-
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In view of the fact that

1 1
vy @a) — E[VV(""“) + (V- H®D)g] 4+ E[VV(oe,a) — (V- H@D)y),

(V- HE®D)g = %[vv(w) + (V- H@®D)p) - %[vv(m — (V- H@Y)g),
we deduce that
(£ =r)(VV @D+ |V HED))
S{+n)vve) v . HED | 4 (1 —r)(VV @D — V. H@Dg))|.
By (3.10), the above can be further bounded by
Ligial+1 + Najtjar1 + [ro- V&) 41V . H®D)|,
Hence by Lemma 3.6 and Lemma 3.15, we have
It = r)VV D12, (= r)VH @7,
S =) VYD, + (e =) V- HOD|7,
+ e =)V HOD )T, + | H D2
S vXjg+lal+1 + IL+ia+2ll7 2 + Coll Naj+ial+1 1172 + CollNa)+1a1+2117 2
for any positive v. This further implies that
Xia+lal+1 S vXal+lal+1 + 1 Ljei+lal+2]172 + Coll Ngj+1a1+1 117 2
+ CollMal+lal+272-

Taking v > 0 small enough, the first term on the right-hand side in the above is
absorbed by the left-hand side. This yields

(3.25)  Xjal+lal+1 S ILia+ial+2072 + [N +ia+11l7 2 + INig)4la+2ll7 2
The estimate for ¥|g|4|q)41 in (3.24) is obvious from (3.11), (3.12), (3.25), and
Lemma 3.6. Thus (3.24) is proved.

Now we turn to the proof of the first inequality in the lemma: Let x > 12,
|| + |a] + 1 <k —4; one has [(Ja| + |a|)/2] + 4 < k — 4. Hence, by (3.23), we
have

X/c—4 + Y/c—4 < E/c—3 + YK—4EI€—3 + EK—3XIC—4 + EK—3EK—4-
Next, for || + |a| + 1 < k — 2, there holds [(|a| + |«|)/2] + 4 < k — 4. Hence
one can derive from (3.23) that
X/c—2 + YK—Z < E/c—l + EIC—IXIC—4 + YK—ZEK—4 + EIC—IYK—4 + E/c—lE/c—4-
O
The following lemma gives the control of weighted generalized energies and

weighted good quantity energies in terms of Klainerman’s generalized ones. Note
that we have one derivative loss with respect to similar estimates in [28,31,41].
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LEMMA 3.16. Suppose that (V, H) € Hf_l solves (1.6) and (1.7) with k > 12,
and suppose E,_3 < 1. Then, we have

X/c—4 + YK—4 5 Elc—3a XIC—2 + YK—2 5 Elc—l-

Remark 3.17. When u = 0, we can modify Lemma 3.13 and Lemma 3.14 and
finally get a non-derivative-loss version of Lemma 3.16:

XK—3 + YK—3 5 Elc—3a ch—l + Yx—l 5 EK—I-

PROOF. The first estimate follows from (3.21) and the assumption E,_3 < 1.
The second one follows from (3.22), the assumption, and the obtained first esti-
mate. [l

3.4 Strengthened L°° Estimate for the Good Unknowns

We now complete the decay estimate for the L°° of the good unknowns dV +
0H - w and 9H - w' near the light cone.

LEMMA 3.18. Suppose that (V,H) € HF_I solves (1.6) and (1.7) with k > 12
and suppose E_3 < 1. Then for all |a| + |a| < k — 7 and fori = 1,2, we have

(3.26) (1)¥2 ||V V@DV HED o) +|V; HOD || e o /2 S Ealse

PROOF. In view of (2.17) and (3.1), we only need to show

1 1/2
‘W |”L°°(rz(t)/2) S Els

(t)3/2 H |8rV(Ol,a) + a,H(“’“) o + |8rH(°"“)
Note that
(V@D 4 g@a) )y = Qrv@a L GH@D .
By (3.1) and Lemma 3.16, one gets
||r3/2(8rV(a,a) + arH(a,a) . w)llim(rz(l)/z)

< Y {993 V@D + 9, HOD . 0)]|2,
1Ry 4 g, e )2}
< 3 {|r(@284v @D 4 284 gD . )2,
T 10, @tvea 4 g5l e ollz2
+ @87V @D 1 8,84 HED . )2,

< Yigl+lal+3 t Elgj+jal+2 < Ex—3-

The first part of (3.26) is clear from the fact that r > (¢)/2. The proof for the
remaining part of the inequality is similar. We omit the details. U
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4 Energy Estimate

This section is devoted to the energy estimate. We split the proof into three
subsections, which correspond to the highest-order modified energy estimate, the
highest-order standard energy estimate, and the lower-order standard energy esti-
mate, respectively. Here in this section, both &, and E, will be called energies. To
avoid confusion, we will call E, the standard energy and still call &, the modified
energy.

4.1 Higher-Order Modified Energy Estimate

We first take care of the highest-order modified energy estimate. One needs to
be very careful about the derivative loss problem. Ignoring the diffusion, at first
glance, we will always lose one derivative in the highest-order modified energy
estimate due to the fully nonlinear effect. The nonlocal effect and the application
of the ghost weight make this problem even more complicated. Luckily, a delicate
analysis of the nonlinearities shows that the system has the requisite symmetry,
which is hidden in the Riesz transform. Actually, we can integrate by parts in a
way that will produce a Laplacian operator in the worst terms (the worst terms
refer to the terms with a derivative loss; the other terms do not have such problems
and the null structure is satisfied). Moreover, after gaining the one derivative, the
null condition is present again. Then we can take full advantage of this condition
by the ghost weight method.

Letk > 12, |a| 4+ |a| <k —1,0 =r —t,and g(o) = arctan ¢. We write e? =
(%) for simplicity. After applying V to (2.14), we take the L2 inner product of the
first and second equations of the resulting system with VV (@ ¢4 and V H (@@ ¢4,
respectively, then adding them up, we get

li/ (|VV(“’”)|2 + |VH(“’“)|2)e’1 dx
2dt Jr2
o
- / VA o=ty . vy @ded gy
(4.1) - 1=0
1 |viV(ot,a) + ViH(ot,a) . w|2 + |vl,H(a,a) . wJ-|2
P A

q
2 e?dx

1<i<2
- /]Rz (Vfotla ' VV(a’a) + Vfaza : VH(a,a))eq dx = I + I,
where
I = / V[VE (V- AT (-Vived @ viy 4 vig©@d) g vig)
R2
+ vi.v. A—l(_vl[/ ® viy(@a) + vig ® VJ_H(oe,a))]
VYV @Dl gy

+ / V(VEH@IVY 4 VIHVY @2y VH@Ded gy,
R2
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and
L= Y {cg?cj/ V[VE. V. AT (VY D) g vy o)
B+y=a,b+c=a R2
IBI+1B], +VEHED) @ vEE)]. vy @Ded gx
|y |+lc|<lal+]al

- Co‘?Cf/ZV(VJ-H(ﬂ’b)VV(V’C)) L VH @1 dx}.
R

Here I; consists of the terms that contain the highest-order derivatives, namely
when all derivatives hit the same factor in the nonlinear term. To avoid notational
confusion, we mention that V; H @@ . and V; H@® . 1 appearing in the ghost
weight energy (4.2) mean (V; H@®) . o and (V; H@®) . L. This notation
convention will always be used in the following argument. Also, we define (see
the third line of (4.1))

42) Ge(t):=

Y Oy [ |V;V@® 4 v, H@D . 2 4 |V; H@&D . |2
R? (t—r)?

eldx.

la|+|al<k—11<i<2

Step 1. Estimate of the highest-order term /.
We divide /; into five terms:

I =11+ I+ 13+ I1a + 115,

where

I = —/ V[VE. V. AT (VY @D @ viy)]. v @aed gy,
R2

iy = / V[V V. AUV H@D @ VL )] VY@t gy,
RZ

Lz = —f V[V V. AT (VY @ vEv@a))]. vy @aed gy,
R2

I = / V[VE- V. ATY(VLH @ VEH@D)]. vy @Dt gy,
R2

Lis = / V(VEH@DVY 4 vEigvy@a)) . v @aed gy,
R2
Now we transform /17 to I15 step by step. The goal is take advantage of the
symmetric nature of the original system to get rid of the derivative loss that appears.
Due to the good property of the original system, it is expected that one can get rid

of the derivative loss; however, this requires some lengthy calculations. For 711,
we deduce by integration by parts that

I = _f VL. V. AT (VY @) @ viy) . vy @aed g
R2

= — / Vi ViV AT VAV @OV Vv @@el dx =
R2
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:_/ ViV ATV VAV @OV YV v @@e dx
f VAV AT (VEV @OV VYV v @Dt dx
=/ ViV ATH (Ve V@OVEVEY )V v @D e dx
/ VEVEV ATV V@OVEY )V v @@ e dx
/ NV @Dy, VYV vy @Ded gx
- fR ) viv,aT! (VkV(“’“)ViJ‘V;‘V)VkV(""“)eq dx
Jr%/R2 VY @D 12, (Vi Ve?)dx
- /R . ViV ATH VRV @DV VY )V v @@ e
Next, for 11, we get by integration by parts that
VVL. V. ATHVAY @ VAV @) vy @a)ed g

I =—

Vi VAV AT (VY VY @@) v, v @@t gx

J

J
- _/R ViV ATV VAV VRV @)y v @@ g x
/R ViV ATH VAV Vi VY @@) g, 1y @@ed gx
/R ViV AT (Vi ViV VY @)y, v @@t gy
+ /Rz ViV ATH VAV YV V@) v v @@ed g

Then for I3, we write
I3 = /Rz VVE .V AN (VEE®D @ VEH) - v @Ded gy

= [R Vi ViV ATH(VEH @D VEH) Vv @@ e dx

= | VIV ATV VEH@D VRV @D el dx

+/ ViV ATHVEH @DV VEH) VY @D el dx =
R2

2099
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= /Rz VEVEV AT (Ve H D V)V V@D e dx
—/R2 ViV AT (Ve H @D ViV H) Vv @@ e dx
+ /R . ViV ATHVEH @D VeV H) YV @D e dx
- _/Rz ViH @ . VEHV; (Vi V@Dt )dx
—/R2 ViV AT (Ve H @D VAV H) Vv @D e dx

+ f VAV AT (VEH@D ViV H) Vv @@ e dx
R2
For 14, we deduce similarly to /1, that

114:/ V.V ATH VA H @ VIH@D) . vy @a)ed g
/Rz ViVHV; AN (VEH - Vi H@D) W v @D et dx
/ ViV AT (Vi VEH - Vi H@D) v 1 @@e dx
R2
+f ViV ATHVEH -V Vi H @DV W v @D et dx

ViV AT (Vi VEH - Vi H @)W, v @Ded dx
RZ

—/Rz ViV ATY(VAVEH -V H@D) v v @@e dx,
For 15, we have

115 = Az vk (V;-Hl(a,a)vjv + VJJ_HI v] V(Ol,a))vk Hi(a,a)eq dx
= /RZ (Vi Vf— Hi(ot,a)vj v+ VJJ_Hi(oe,a) ViV V)V Hi(a,a)eq dx

+ f (VHH; ViV V@D + Vi VEH; Y, y @)y gDt gx
R2

1
= /R2 |VH @D 12V (V; Vel)dx

+ /R ] VA H ViV V@OV H el dx

(VEHS OV Y+ VieVEH; Vv @D Vi D e dix.
Rz
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Inserting the above equalities from /1 to /15 into /7, we get

I = f2 ViV AT (VEH@D v Vi H
. VLV(“’“)VkV]-LV)Vk V(@@ ed g
+/2VJ-V ATH (Vv @DvEvity
. — Ve H®D . VEVEH)V V@D et dx
/ ViV ATH (Vi VEH - Vi H @)
— Vi ViV VY @)y p@a)ed gy
/ ViV ATH(VEVE YV v @)
— ViV H - Vi HOD) W, v @@t g

4.3) .
+ —/ VYV @D 2V, (Vi Ved)dx
2 Jr2

1
— E/RZ |VH @D 12V (V; Vel )dx

-~ /R . Vi H @ . VEHV; (Vi V@Dt )dx
1 /R ] Vi H ViV V@D v gD el dx

" / (V- H 0V, v
R2

+ Vi VEH V; V@)V gD dx.

In view of (4.3), one can see that we have gained one derivative compared with the
original expression. We still need to make the strong null condition appear.

We start by treating the first four lines on the right-hand side of (4.3). It is
obvious that they have the same structure, so we only treat the first one. By the L?
boundedness of the Riesz transform, the first term is bounded by

(4.4) S ViH®D Vi Vi H = ViV @OV VY| [ VV D o,
1<i,j,k<2

Now, to see the strong null condition, we apply the orthogonal decomposition to
the radial and transverse directions:

45) V;H®D .V, V,H —V;V @y, v,y
=V,H®Y) .oV ViH -0 + Vi H®D .01V, V,H - 0t
—-ViVGLQV%Vyvrz
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= (ViV@D) LV, H@D . )V, ViH -0
—ViV@DV V¥V + Vi ViH -0) + ViH®Y .0tV V,H - ot

Now we are ready to estimate (4.4). When integrating over the domain {r >
(t)/2}, we use (3.2), Lemma 3.16, and Lemma 3.18 to get

Yo IViH®D Vi H = ViV @OV 25 2068
1<i,j k<2

sZ(

(4.6) 1<i,jk<2

v;V(@a Ly gl .,
‘ | (r —lt> L= 0VieVi -0l Loz /28

F ViV VeV V + ViV H - 0 oo s (1)) 602

+ Vi H @D )| 2| ViV H - a)J_||L°°(rz(l)/2)5/3/2)

S NG+ Cy(t) ' Ee By + (1) 26 B3
for any n > 0. For the region {r < (¢)/2}, the bound for (4.4) is easier. By (3.3)
and Lemma 3.16, one has
Z IV H®D Ve Vi H = ViV EDVVV | 1220 /2)
1<i,j,k<2
< [IVHCO V2 H| + [VVEDNVV L cy2)
4.7
< I[VH @D L2V H || Loor<(e)/2)
+ VYV @D 2| V2V | oo r<4r)/2)
_ 1/2 - 1/2
<72 X < (nT1EPE,
Consequently, inserting (4.6) and (4.7) into (4.4) gives that
Z HV,‘H(‘X"I) . VijH — Vi V(a’a)VijVHLZHVV(O["Z)HLz
1<i,j,k<2
S nGe + Cy(t) 6B,
Here we have used the a priori assumption E,_3 < 1.

Then, we estimate the fifth and sixth integrals of (4.3). For these two integrals,

the decay is much better. Direct integration by parts shows that they are equal to
1 el
- —[ (VH@DP2 4 |vy @25,y —— dx
2 Jr2 r{t—r)

el
+ f Vi H@D 9, HV, V@D~ gx.
R2 I’(Z — r)2

By (3.1), the above can be further estimated by
(1) 32EEMN2.
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Finally, we treat the last two integrals of (4.3). To show the null structure, we
employ the orthogonal decomposition into radial and transverse directions to get
that

(VEHS VYV + ViV ;7 @0) g g9
48) = (V;FH@D  wViV;V + Vi Vi H - oV V@)V H @D g
+ (VEH®D . 0tV ViV + Vi VEH - 0tV V@) v g @9 ot

For the expression inside the parentheses on the first line of the right-hand side of
(4.8), one can rewrite it as follows:

VEH®D ViV V + Vi VEH - 0V, V(@)
= (V; H@D .0 + VFVED) VYV + (Vi VEH -0 + Vi Vi V)V 7 @@
— ViV @DV v, v — v Vi v, v o
= (V;H@D .0 + VFVED)\V VY + (Ve ViH -0 + Vi VY)Y, 7 (@9,
Here we have used the fact that
VYV @DV 4+ Vi VRV Y @) = o,

Hence, for the last line of (4.3), by (3.2), Lemma 3.16, and Lemma 3.18, we can
estimate the integral over the region {r > (¢)/2} by

[(Vi @D 0 + ViVEN TV | 12 | Vi C - 0] 12
+ (Ve Vi H -0 + Vi VYV 7 @9 | [V H @D . ]
kYj kYj J L2(r=(1)/2) | Yk L?
+ [(VEH@D oV V; V + Vi VEH - 0V, 7 @9) v g @)
ViH@a) . 4 4 viy@a
< ” ! ! It = 1) V2V | oo s (1) /2y En7
(t—r) L2
+ VeV -0 4+ Vi ViV | oo 2 [V V@9 126
V]g-H(“’“) cot
(t—r)
< -1 —3/2 1/2
SNGie + Cplt) " EcEc—3 + () EE/S.

wL||L1(,Z(t)/2)

[t = P)IVU @D V2U | 2o

|

L2|

In the region {r < (t)/2}, we can easily estimate the last line of (4.3), similarly to
(4.7), to deduce that it is controlled by

(1) EEL

K—3"

Thus we gather the estimates in Step 1 to conclude that

I S 1G, + Cy(t) '€ ELA.
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Step 2. Estimate of the lower-order term /5.
We introduce f*¢ given by

:(])'[I? _ Z CO/? C(?Vk (Vi V('B’b)Vj y@e) _ v; HB.b) . VJ.H(%C))

B+y=a,b+c=a
IBI+16Lly 1 +]cl<la|+]al

and
fa — 3 cEchvvtHBDvy o)y

B+y=a,b+c=a
|BI+16],ly |+l <|a|+al

Using these notations, we can control I5 from the L? boundedness of the Riesz
transform by

SN A2 NV @D 2+ | S22 IV H @D 2
ijk

Thus to estimate /5, we only need to take care of fea and f~ xa,
ijk 2

First we treat f;‘jxg One easily has

Vi (Vi V(ﬂ,b)vj Y e _ ViH(‘B’b) . VjH(V,C))
=V, V; V(ﬂ’b)VjV(y’c) _ VkV,'H(ﬂ’b) . VjH()/,C)
+ ViV(ﬂ’b)VijV(y’c) _ V,'H(ﬂ’b) ) kajH()/,C)'

In view of the fact that the last two lines above are similar, we concentrate only on
the first one. To estimate || f;;"]? |72, we still divide the integral domain R? into two
different subdomains.

In the region {r < (t)/2}, we have

F 277(B.b) (29)
@) 1kl ee<mm = 22 IVUCPUVUT N ooy
B+y=a,b+c=a
1BI+1b1,ly|+lcl<lal+lal

Here and in what follows, thanks to the fully nonlinear effect of the new formula-
tion, we always have one derivative in the lower-order terms. Thus one has room
to use the weighted L2 norm X, even though we are facing the derivative loss
Xe—2 < Ex—1-

For (4.9), if |c|+]|y| < |b|+|B], then there holds |b|+|B]|+2 < «, |y|+]|c|+3 <
[(le| + ]al)/2] + 3 <k — 4. By (3.3) and Lemma 3.16, we have

DI (N Ll P

B+y=a,b+c=a
[yI+lcl<|Bl+|bl<|a|+|al

< > () THIVEUBD | () VU ) | posr<iy)2) S

B+y=a,b+c=a
[yI+lc|=IBl+Ibl<|a|+|al

1)/2)
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1o1/2 1/2 l1eol/2 1/2
S 2 G b2 X iyisierrs S () 8T E
B+y=a,b+c=a

lyI+lcl=IBl+1bl<|al|+]al

If (D] +[B] < le[+yl then |y|+c|+1 <k, |b|+|B|+4 < [(la|+]a])/2] +4 <
k — 4. We can similarly obtain

2 b 8
Z Hlv U(ﬂ )||VU(VC)|HL2(I‘§(I)/2)
B+y=a,b+c=a
IBI+1bI<ly |+ el <lal+1al
1o1/2 1/2 1c1/2 1/2
< Z O et Xigreipira S 07 ETTE,

B+y=a,b+c=a
|.3|+|b|<|)/|+|0|<|a\+|a\

Thus we arrive at

| /3 20 <)/2) S S()TEPES

In the region {r > (t)/2}, we need to employ the null structure to get some extra
decay in time. A natural idea is to use a variant version of Lemma 3.10; however,
this doesn’t work due to the derivative loss Y,—» < E,—_1. To solve this problem,
we will use the ghost weight energy at all derivative levels.

For f; y o » we organize similarly to the decomposition (4.5):
v,V v (B:b) v ye) _ v V,'H(ﬂ’b) . VJ.H(V,C)
= (Vi Vi y(B:0) 4 vkvl.H(ﬂ,b) - w)V;j 174829
v Vl.H(ﬂ,b) - o(Vj 174829 + VjH(%C) - )
_ VkViH(ﬂ’b) . wJ-VjH(V,C) cwt
Thus

“ ﬁ;xl? ||L2(r5(t)/2) IVV @D

= Y (Vv ED L Vi HED )€y e

B+y=a,b+c=a
@4-10) 51 {1114 el <lal+lal

+ ||VkViH(ﬂ’b) . C()(Vj V(y,c) + Vj H(y,c) . 6())||L2(r5(t)/2)€,g/2
+ ||V V; H®D -wJ‘VjH(y’C) 'wJ'||L2(r5(t)/2)5/3/2)-
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When |y|+|c| < |B|+|b], by (3.2), Lemma 3.16, and Lemma 3.18, the right-hand
side of (4.10) can be bounded by

2. 2

1<i,jk<2 |B|+|b|<|a|+|al
lyl+lel<[(lal+lal)/2]

ViViVED L v, v, HBD)
{t—r)

+ ViV H D - 0ll 2| (VY 4+ 0, HOD - 0) | oo <(0)/2) 6

1/2
La=nv, VOO oo <ty Er

+ Ve Vi HED o) 2|V HOO -wL||Loo<,5<t>/z>5é/2)
S NGy + Cyp(t) " EEes + (1) 325, EM2,.

Repeating the above procedure, we can control the right-hand side of (4.10) in the
case |B] + |b] = [y| + |c| by

NGy + Cy(t) ' EcEcs + (1) 326 EL/?

K—3"

Thus, we get
[ 751209V @9 12 <0G + Col) T 6 LS

Here we have used the a priori estimate that E£,_3 < 1.
We turn our attention to || f7*¢||z 2. Since the estimate is similar to || fl;"]? 72, we

only sketch the main line of argument. We still divide the integral domain R? into
two different parts to estimate them separately. For the integral over the domain

{r < (t)/2}, the estimate is exactly the same as the one for || i%‘ l22(r<(t)/2)- For
the region {r > (t)/2}, we still need to make full use of the appropriate null struc-

ture. The estimate is similar to one for || l‘]",‘c‘ l22¢r> (¢1)/2) once the null structure of

;"‘“ is present. Hence we only show the strong null structure of f;"‘“ below.
Employing the orthogonal decomposition into radial and transverse directions,
any term in the sum defining /> can be decomposed as

> chcivi(vinEP v,y o)
B+y=a,b+c=a
|BI+1B1,ly | +Ic|<lel+lal
— > clciviviH Dy @9 4 v gEDY vy o) =

B+y=a,b+c=a
IBI+1bL,ly I +]el<lal+]al
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— Z I:COA? Cf (Vz‘ VJJ-H(ﬁ,b) . a)Vj V(V,C) + v]J-H(ﬁ,b) - wV; Vj V(%C))w

+y=a,b+c=a

B
|BI+1L.ly [ +lc|<lec|+]al + Cfo(ViVjJ'H(ﬂ’b) -a)J'Vj v €)

+VFHOD . otV vy 09) o]

= 3 [CLch( v HED . 0 4+ VivFVED)Y, v

y=a,b+c=a

B+
|BI-+lb LIy 1+ el <lal +lal +CECH(VEHBD .oy 1+ VY B0y, v,y o)

+Clch(ViviHED) . vy

+ VEHED Vv v 9) ot .

Here we have used the fact that

Z chchviviv by o
B+ +c=a
B el el
b b
+ > chclvvveraviyEh — g,

B+y=a,b+c=a
|BI+1bL1y|+lcl<la|+]al

Thus, we can estimate f;"‘ as fl ko get that

[ )2 [VH @D 12 S 06 + Cott) T 6B

Finally, we gather our estimates for (4.1) to derive that

2dtf (VV @D |2 4 |V H@D|2)ed gx

—f wVA Z(—1)“—’V(”“) VYV @D gy
(4.11) RZ 1=0

1 [ VY@ L ya@a) . 42 L |yH@a) . L2
E[Rz (t —r)2
< NGy + Cot) 'EEN2.

e?dx
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The viscosity terms can be estimated as follows:

o

—/ UVAY Cl=1)* v GO vy @ded gy

]RZ
=0

a—1
= ,L/ |AV (@@ |24 g x +/ pA Y Co(=1 Tty Ay @@t g
RZ ]RZ
=0

o
+ / pA Y Cl=1) Y EOVY @D . ved gy
R> 120

a—1
> u/ |AV @D 204 gy — Z(Coll)zf |AV ED|264 g x
R2 =0 R2

1 1 & >
— - AV @@ 2,9 gy~ c! / AV D) 12,4 g
T A () [ lav e
—;L/ |V @a)|209 g
R2

1 a—1
> E,u/ |AV @D 264 gy — 2 Z(Colt)zf |AVED|264 g x
R2 =0 R2

—;L/ |VV @) 1264
R2

Consequently,

1d
5%/ (VY @2 1|y H@a)|2)e4 g
R2

1 a—1
+ E“/ AV @D 264 gx — 2y Z(CO’,)Z/ AV D) 204 g
R2
=0

—/,L/ |VV(@D|204 g
R2

1 |VV(oe,a) 4 VH(ot,a) _w|2 4+ |VH(oz,a) _lez
—/ el dx
R2 (t—r)?

2
<nGy + Cr/<t>_lng,:£23-
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Integrating both sides of the above inequality in time on [0, #), we get
1
3 | ATV EOOR VD0t da
2 Jr2
1 t
+ m// |AV @D ()26 dx dt
2 0JR2
a—1 t
—2u Z(cg,)Z// |AVED (1)2e dx dt
= 0 JR2

t
(4.12) —u// |VV(°"“)(t)|2€qudr
0 JR2

. /t/ VYD (@) + VH@D(1) - 0f? + [VH @ (1) - 0 2
2 0 JR2

T eldxdr

< n/()t Ge(v)dt + Gy At(f>_15K(T)E33(T)dT

1
+ 5/ (IVV@D ()2 + |VH @D (0)]2)e? dx.
R2

These two terms on the left of (4.12) will be absorbed by the viscous dissipation
coming from the lower orders and the standard energy estimate of the next subsec-
tion (see (4.19)).

4.2 Highest-Order Standard Energy Estimate

Now we proceed with the highest-order standard energy estimate. Here we have
one less regular derivative to estimate and we will not use the ghost weight. Hence
we don’t need to handle the commutators between the ghost weight and the viscos-
ity terms, but only handle the commutators between the scaling operator and the
viscosity terms. We remark that here the estimate of the nonlinearities is slightly
different because of the absence of the extra regular derivative.

Let k > 12 and |a| + |a| < k — 1, and let us take the L? inner product of the
first and the second equation of (2.14) with V(@ and H @) respectively. Then
adding up the resulting equations, we get

1d
2dt

o
. A l -1 a=ly,(,a) v (a,a)
(4.13) /Rz“ l;‘)ca( ey y(@a) gy

v eor @R
R2

- / ] flve@dgy ¢ / . f2 - H@Ddx.
R R

Since the estimate for the first term and that for the second one on the right-hand
side of (4.13) are very similar, we give the details for only the first one.
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It follows easily from the L2 boundedness of the Riesz transform that

[ v s
Z Z ||ViV(’3’b)VjV(y’c) _ Vl.H(ﬂ,b) . VjH(V,C)||L2||V(0t,a)||L2.
B+y=al1<i,j<2

b+c=a

In the region {r < (t)/2}, we have

Yoo > IVivEIVYeO v HED G HO )0
Bt+y=al1<i,j<2

b+c=a
b s
< 2 IVUPIVUCI| i)
B+y=a
b+c=a
Sb ’
< Z HWU(ﬁ )||VU(VC)|HL2(r§(t)/2)'
b+c=a,p+y=a
[b]+B1=lc|+]y|

Here we used the symmetry between the index in the last inequality. Note that
due to the derivative loss X,—» < Ex—1 and since |b| + |B| > |c| + |y|, one has
lyl+ lc| + 3 < [(le] + |a])/2] + 3 < k — 4. By (3.3) and Lemma 3.16, the above
quantities can be controlled by

Yo TIVUCP () VU P | Lo <0 2)

b+c=a,B+y=a
[b]+B1=lc|+]yI

< 1e1/2 1/2

IS Yo T s X S elaa
b+c=a,p+y=0a
b1+ 1B1=lc| +y]

<&l xA s 0EPES,

In the region {r > (¢)/2}, we need to employ the null structure to get extra time
decay. An important trick here is that we need to use the appropriate null structure.
The situation is similar to the estimate of /5 in the last subsection. A natural idea is
to use Lemma 3.10, but this doesn’t work due to the derivative loss Yi—» < Ef—1.
To solve this problem, we combine the highest-order standard energy estimate and
the highest-order modified energy estimate. More precisely, we will use the good
term G that comes from the ghost weight energy obtained in the modified energy
estimate.
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Employing the orthogonal decomposition into radial and transverse directions,
we have
v; V(ﬂ,b)vj y o) _y, gB:b) . VjH(y’C)
— Viv(ﬂ,b)vjv(%c) _ ViH(ﬂ’b) 3 ijH(V,C) ‘W
_ V,-H(ﬂ’b) ,wlij(%C) cot
= (V; y (B:b) + V,'H('B’b) - 0)V; v )
—V; H#:D) (V) y e 4 VjH(V’C) - )

Consequently,

Z Z Vi V(ﬁ,b)vj V(V,C) —V; H(ﬁ,b) . VjH(y,C) ||L2(r2(t)/2) I V(Ol,a) 2

B+y=a 1<i,j<2
b+c=a

, b 1/2
S Y > IIViHED o 4 vy ED VU 0 B
ﬂ+y o 1<i<2
b+c=a
1/2
+ 3 3 i HED otV HYD o s ESS

B+y=a1<i,j=<2
b+c=a

4.14)

In the above inequality, we used the symmetry between the index b and ¢ and the
symmetry between 8 and y. For (4.14), if |8]| + |b| = |y| + |c|, by (3.2), Lemma
3.16, and Lemma 3.18, it can be further bounded by

2 X

B+y=a,b+c=a 1<i<2
|BI+6|=]y[+]cl

> Y IVHEEY Vi HYO ot a0 BN
B+y=a,b+c=al1<i<2
[BI+1b|=]y|+]cl

<SNGye + Cplt) Bt E_s + (1) 328 2EV2 E1/2.

k—1"k-3"

Vi VB L v, HBD) .
(t—r)

1/2
T i L

If |B| 4+ |b| < |y| + |c|, we can repeat a similar procedure to deduce that the
right-hand side of (4.14) can be bounded by

- 1/2 121/2
()PP EL B,
It then follows by gathering the above estimates that

/ [ VEDdx <0Gy + Cp(t) ™" (Ec + Ec—1)EN3.
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The estimate of [> f.2, - H @ dx is similar to [go fl, - V@ dx. The key
point is to explore the appropriate null structure for £,2,. We will prove that

|f(12a| 5 Z |V]J_H(ﬁ’b) -a)J‘VjV(ysC)‘

b+c=a
B+y=a

b+c=a
B+y=a

(4.15)

from which we can deduce that
- 1/2
| Sl @D dx £ G+ Col) ™! E + Ee-n) B,

Hence in what follows, we only show (4.15).
Employing the orthogonal decomposition onto radial and transverse directions,

we have

fa= Y CCUTFHOPTV0)

b+c=a
Bt+y=a

= Y CECE(VtHPD .0V v )

b+c=a
B+y=a

+ Y CEC(VEHED vy ) pt,

b+c=a
Bty=a

For the first line on the right-hand side in the above, we rewrite it as as

Yo cbch(viHED oV V9w

b+c=a
B+y=a

= Y CECO(VFHPD .0+ VEVED) Yy,
b+c=a
B+y=a
Here we have used the fact that
Y clebvivEDy vy =o.
b+c=a
B+y=a

This yields (4.15).
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Finally, we gather our estimate for (4.13) to derive that

35 L AveDR s e

(4.16) _/ MAZCOZZ(_I)a—lV(l,a)_V(a,a)dx
RZ
=0
<0G + Cot) " (& + Ec-D) EV.

We estimate the diffusion terms in (4.16) as follows:

o
—/ UA E Colt(_l)“—lV(l,a) Y @a) gy
]RZ
=0

— M/Rz VY @a)2 gy

(4.17) a-1
- [ uv Y ca-netyta . vy @ gy
R> 10

1 1 a—1 )
> 2M/ |VV(°"“)|2dx—§,u > o(ch) /Rz (VY@ 2 gy,
=0

Hence we can deduce that

3o Ve R & e Ry

-1
1 1 5
_ VV(O!,LI) 2d - Cl / VV(l,a) 2d
+2M/Rz| |* dx 2#2_(0,) R2| 12 dx

<0Ge(t) + Cylt) ™ (Ec + Ec—1)ELA.

Integrating both sides of the above inequality in time over [0, ), we get

1
3 [ VEO@R + 0P dx
R

1 t
+—/,L// |VV @D ()2 dx dt

—‘“Z /[ VVEa ()2 dx de

<3 / (VD)2 +H D (0))dx
R2

n[t Ge(r)dt + Cp /t(r)_l(é’x(r) + Ee1(n)) EYA(n)d.
0 0

2113
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Using Lemma 3.4, we deduce that

t
L veaor s peowpax [ [ 1vveompards
R2 0 JR2

t
@18) < Ee1(0)+7 [ Ge(v)dt
0

t
+Cy [ (076 + Ben @) EL 0

Now we are going to combine the highest-order modified energy estimate of the
previous subsection with the standard one to deal with the diffusion energy with
the negative sign in (4.12). Multiplying (4.18) by 4 maxyer €9(°) and then adding
(4.12), we get

[ vV e2@R + [VHED @Rt dx
RZ
t
+/ (IV(“’“)(Z)lz—i—|H(""“)(t)|2)dx+u// AV @D ()2 dx d 7
R2 0 JR2

oa—1 t
- Zucf |AVED 1268 gy 4 u/[ |VV @D (1)12dx dt
=0 R2 0 JR2

4.19
19 LIV @D (@) + Ve H@D (1) - 0 + [V H D (2) - o P
N
0 /JR2
t

eldxdr

1<k<2 (t - r)z
< Ge(t)d
<n /0 (0)d
t
e /0 (1) Ee(®) + Eee) EV2(0)d T + Ec(0) + Ex1(0).

Summing over all |«| + |a| < k¥ — 1 and using Lemma 3.4 to handle the negative
sign diffusion energy on the left-hand side of (4.19), we get that

t

Ec(t) + Eemr(t) + /0 Gy(v)dt

t
+u Y AV @D (1)]2 4 | VYV @D ()2 dx dr
0 JR2

lo|+]a|<k—1
t t
< /0 Ge(D)dt + Gy /0 () Ee (@) + Exr () E)2 (0)d

+ &c(0) + E—1(0).
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Taking n small enough, we conclude that

t

E() + Eer (1) + /0 Ge(v)dr

t
+ > M// |AV @D ()2 4 |V @D ()2 dx dt
0 JR2

e +lal<k—1

t
< /O () (Ee(®) + Exor (@) EM2(@0)dT + £c(0) + Ec1(0).

This is the desired a priori estimate (2.18).

4.3 Lower-Order Standard Energy Estimate

In this last subsection, we present the lower-order standard energy estimate. A
trick here is that we need to earn the maximum decay in time. In order to achieve
this, we are going to take full advantage of the inherent strong null structure.

Let |a| + |a| < k — 3. Taking the L? inner product of the first and second
equation of (2.14) with V@@ and H @@ respectively, we get

1d o
EE/ (|V(a,a)|2 + |H(a,a)|2)dx —/ nA Z Col,(—l)a_lV(l’“) ) g
® R2 =0

N / falaV(a’a) + faza ) H(a’a)dx
R2

< IAE N2V @D 2 + 1 £2 N 2 | H @9 2.

We have used the L2 boundedness of the Riesz transform in the last bound. Here
we recall that fl‘]"“ was defined in (2.16).
Now we are going to treat || fl‘]x“ || 7,2 First, we have

175 N 2=y /2) <

Z H|VV('B’b)||VV(V’C)|+|VH(ﬂ’b)||VH(y’

b+c=a
B+y=c

M 262072

Since the index (B, b) and (y, ¢) in the above quantity are symmetric, we can as-
sume that |y| + |c¢| < |B| + |b| without loss of generality. Thus |y| + |c| + 3 <
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[(le| + lal)/2] + 3 < k — 4. In view of (3.3) and Lemma 3.16, we get

145N 2 <0)/2)

< Z [ |VU(ﬂ’b)||VU(y’C)|HLz(rg(t)/z)

b+c=a,p+y=a
lel+ly1<[bl+18]

s Y e e =nvuEvuCI| L2

b+c=a,p+y=a
lel+ly1<[bl+18]

—2u1/2 1/2 2 u1/2 ,1/2
S O X Xy = 07 XEX
b+c=a,f+y=a

le|+]y1<|b]+]B]
<O2EN2OENZ ).

~ K

Moreover, in the region {r > (t)/2}, by (3.19), we get

| St 250y

1
- Z |V(\B\,Ile)V(\VI,ICHl)| + |H(\ﬁ\,lb\+1)||H|V\,|C|+1|

" b|[cl<lal
1Bl +ly[=lal
+| 3 [0 vED o, HED TV EO| 4 [V HE)

b+c=a
B+y=a

| S B k00
b

+c=a
B+y=a

<

~

L2(r=(t)/2)

(4.20)

L2(r=(t)/2)

L2(r=(t)/2)

For the first line on the right-hand side of (4.20), by the symmetry between the
index (B, b) and (y, ¢), we can assume that |b|+|B| < |c|+]|y|. Thus |b|+|B|+3 <
[(la] + |@])/2] + 3 < k¥ — 4. By (3.1), the first line can be estimated by

(0! > | PHEED oo 12 [ U T HEHD 2
bl+|c|+1Bl+|vI=<|a|+|a|
[bl+IBI=<lel+lyl
—3/2 1/2 1/2 —3/2 -1/2 1/2
< () ) Eciyl+1 Eprripies S 07 ESGED

bl+|c|+1Bl+]y|<|a|+|el
[bI+]Bl=<lcl+]y]



VANISHING VISCOSITY FOR INCOMPRESSIBLE VISCOELASTICITY IN 2D 2117

For the second line on the right-hand side of (4.20), if |b| + |B| > |c| + |y/|, then
by Lemma 3.16, we have

H > (arV(ﬂ’b)+8rH(5’b)~a))(|VV(V’C)|_|_|VH(%C))‘

2
b+c=a,p+y=a L?(r=(t)/2)
[bl+1B1=lcl+|y

s Y eV 10, HED - 0)] 2 VU T ez 02
b+4c=a,f+y=«
[BI+IBIZlc|+1y]

_3 1/2 1/2 3/2 1/2 1/2
SO 2 Vg Eyliess S O TPELE,
b+c=a,f+y=a

[bl+1B1=lc|+Iy]
Otherwise, if |b| + |B| < |c| + |y|, then by (2.17) and Lemma 3.18, we have
> 1@ vED o HED o) (VYOO 1 [VHYN) )
b+c=a,f+y=a
bl +1Bl=<lcl+Iyl
S > VP 8 HEY 0Lz VU 2
b+c=a,p+y=a
bl+1B<le|+ly]

— 1/2 ~1/2
S (t> 3/2EK£3EK£1'

The estimate of the third line of (4.20) can be treated exactly as the second line.
Thus we conclude by gathering the estimates that

175712 = 0P ESOES 0.

For || £,2,]| 1.2, we can use the same strategy used for the estimate of | S5 L2 to
get the same bound. Thus, we gather all the estimates in this subsection to deduce
that

2 dt / (lV(Ol a)|2 + |H(Ol a)|2)dx
- / A Z Cal-D* VD v @Ddx < ()PP ESE.
R =0
For the viscosity terms, by (4.17), we get

3 [AVeDr e ya
1 a—1
+5u/ VY @2 gy — Z“C/ VD12 dx < (1) E5E)3.
R2
=0

We can integrate in time on [0, 7) over the above inequality, then use Lemma 3.4 to
absorb the diffusion energy with a negative sign. Finally, summing over ||+ |a| <
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Kk — 3, we get

t
Ecs()+ Y M// |VV @ ()2 dxdt
0 JR2

la|+|a|<k—3
t

< Ees(0) + fo ()32 Ey_s(m EM2 (v)d.

This is the desired a priori estimate (2.19).
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