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Abstract A well-known question of Perelman concerns the classification of
noncompact ancient solutions to the Ricci flow in dimension 3 which have
positive sectional curvature and are κ-noncollapsed. In this paper, we solve
the analogous problem for mean curvature flow in R

3, and prove that the
rotationally symmetric bowl soliton is the only noncompact ancient solution
of mean curvature flow in R3 which is strictly convex and noncollapsed.

1 Introduction

This paper is concerned with the classification of ancient solutions to mean
curvature flow. By definition, an ancient solution is a solution which is defined
for t ∈ (−∞, T ] for some T . Ancient solutions play an important role in
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36 S. Brendle, K. Choi

understanding singularity formation in geometric flows. For example, Perel-
man’s famousCanonicalNeighborhoodTheorem [22] states that, for a solution
to the Ricci flow in dimension 3, the high curvature regions are modeled on
ancient solutions, which have nonnegative curvature and are κ-noncollapsed.
Moreover, Perelman [22] proved that every noncompact ancient κ-solution in
dimension 3 has the structure of a tube with a positively curved cap attached
on one side.

Results of a similar nature hold for mean curvature flow, assuming that
the initial hypersurfacer is mean convex and embedded (see [6,12,13,16,17,
25,26]). In particular, Huisken–Sinestrari [16,17] proved that, for any mean
convex solution to mean curvature flow, the high curvature regions are almost
convex. Under the stronger assumption of two-convexity, one can show that
the mean curvature flow will only form neck-pinch singularities. Moreover,
the flow can be continued beyond singularities by a surgery procedure similar
in spirit to the one devised by Hamilton and Perelman for the Ricci flow (see
[6,13,18]).

Our goal in this paper is to classify all convex ancient solutions to mean
curvature flow in R

3 which are α-noncollapsed in the sense of Sheng and
Wang [23]. Recall that a mean convex surface is called α-noncollapsed if, for
each point x on the surface, there exists a ball of radius α

H in ambient space,
which lies inside the surface and which touches the surface at the given point
x . Examples of noncollapsed ancient solutions include the shrinking cylinders
and the rotationally symmetric bowl soliton (cf. [1]). In this paper, we show
that these are the only ancient solutions which are noncompact, convex, and
noncollapsed:

Theorem 1.1 Let Mt , t ∈ (−∞, 0], be a noncompact ancient solution of
mean curvature flow in R

3 which is strictly convex and noncollapsed. Then
Mt agrees with the bowl soliton, up to scaling and ambient isometries.

By combining Theorem 1.1 with known results in the literature (see [12],
Theorem 1.10, or [25,26]), we can draw the following conclusion:

Corollary 1.2 Consider an arbitrary closed, embedded, mean convex surface
in R

3, and evolve it by mean curvature flow. At the first singular time, the
only possible blow-up limits are shrinking round spheres; shrinking round
cylinders; and the translating bowl soliton.

Let us indicate how Corollary 1.2 follows from Theorem 1.1. Suppose we
evolve a closed, embedded, mean convex surface in R

3 by mean curvature
flow. At the first singular time, every blow-up limit is an ancient solution
which is weakly convex and noncollapsed (cf. [25,26], or [12]). Indeed, every
blow-up limits must be 1-noncollapsed by [4]. If a blow-up limit is compact
and strictly convex, then the original flow eventually becomes convex, and
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Uniqueness of convex ancient solutions 37

therefore converges to a family of shrinking round spheres (cf. [14]). If a
blow-up limit is noncompact and strictly convex, then that blow-up limit is the
bowl soliton by Theorem 1.1. Finally, if a blow-up limit is not strictly convex,
then it splits off a line, and is a family of shrinking round cylinders.

We next discuss the background of Theorem 1.1. Note that an ancient solu-
tion which is mean convex and two-sided noncollapsed is necessarily convex
(cf. [12]), but it is not uniformly convex unless it is a family of shrinking
spheres (see [19]). Theorem 1.1 can be viewed as a parabolic analogue of the
classical Bernstein theorem, which classifies entire solutions to the minimal
surface equation. Theorem 1.1 can be generalized to higher dimensions, if we
assume that the solution is uniformly two-convex (see [5]).

Daskalopoulos, Hamilton, and Šešum obtained a complete classification
of all compact ancient solutions to the Ricci flow in dimension 2 (cf. [9]).
Moreover, they were able to classify all compact, convex ancient solutions
to curve shortening flow in the plane (cf. [8]). Remarkably, these results do
not require any noncollapsing assumptions. In a very important recent paper
[2], Angenent, Daskalopoulos, and Šešum studied compact, convex ancient
solutions to the mean curvature flow. Under suitable symmetry assumptions,
they obtained precise asymptotic estimates for the solution as t → −∞.

A special case of ancient solutions are solitons; these are solutions that
move in a self-similar fashion under the evolution. In a recent paper [3], the
first author proved that every noncollapsed steady Ricci soliton in dimension
3 is rotationally symmetric, and hence is isometric to the Bryant soliton up
to scaling. Using similar techniques, Haslhofer [11] subsequently proved that
every noncollapsed, convex translating soliton for the mean curvature flow in
R
3 is rotationally symmetric, and hence coincides with the bowl soliton up to

scaling and ambient isometries. A related uniqueness result for the bowl soliton
was proved in an important paper by Wang [24]; this relies on a completely
different approach.

In Sect. 2, we study the asymptotic behavior of the flow as t → −∞. To that

end, we write Mt = (−t)
1
2 M̄− log(−t). As τ → −∞, the rescaled surfaces M̄τ

converge inC∞
loc to a cylinder of radius

√
2with axis passing through the origin.

More precisely, we show that M̄τ can be approximated by a cylinder up to error
termsof orderO(e

τ
2 ).As in [7], amajor difficulty is the presenceof a non-trivial

eigenfunction for the linearized problemwith eigenvalue 0. This eigenfunction
corresponds to the second Hermite polynomial. Using the convexity of M̄τ

and the Brunn-Minkowski inequality, we show that this eigenfunction cannot
become dominant as τ → −∞.

In Sect. 3, we show that lim inf t→−∞ Hmax(t) > 0. To do that, we consider
the complement Mt\B

8(−t)
1
2
(0). This set has two connected components, one

of which is compact and one of which is noncompact. By combining the
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38 S. Brendle, K. Choi

asymptotic analysis in Sect. 2 with a barrier argument, we prove that the
bounded connected component ofMt\B

8(−t)
1
2
(0)has diameter at least∼ (−t).

This implies that Hmax(t) is uniformly bounded from below as t → −∞.
In Sect. 4, we establish the Neck Improvement Theorem, which asserts

that a neck becomes more symmetric under the evolution. This result does
not require that the solution is ancient; it can be applied whenever we have a
solution of mean curvature flow which is close to a cylinder on a sufficiently
large parabolic neighborhood.

In Sect. 5, we iterate the Neck Improvement Theorem to conclude that Mt
is rotationally symmetric.

Finally, in Sect. 6, we analyze ancient solutions with rotational symmetry,
and complete the proof of Theorem 1.1.

2 Asymptotic analysis as t → −∞
LetMt , t ∈ (−∞, 0], be a noncompact ancient solution ofmean curvature flow
in R

3 which is strictly convex and noncollapsed. We first recall some known
results concerning the blowdown limit as t → −∞. Given any sequence t j →
−∞, we can find a subsequence with the property that the rescaled surfaces

(−t j )−
1
2 Mtj converge in C∞

loc to a smooth limit, which is either a plane, or a

round sphere, or a cylinder of radius
√
2 with axis passing through the origin

(see [12], Theorem 1.11). Since the original flow Mt is noncompact, the limit
cannot be a sphere.Moreover, it follows fromHuisken’s monotonicity formula
[15] that the limit cannot be a plane. Therefore, the limit must be a cylinder.

In the following, we consider the rescaled flow M̄τ = e
τ
2 M−e−τ . The

surfaces M̄τ move with velocity −(H − 1
2 〈x, ν〉)ν. Given any sequence

τ j → −∞, there exists a subsequence with the property that the surfaces
M̄τ j converges in C∞

loc to a cylinder of radius
√
2 with axis passing through

the origin. To fix notation, we denote by � = {x21 + x22 = 2} the cylinder of
radius

√
2 whose axis coincides with the x3-axis.

Proposition 2.1 For each τ , we have

∫
M̄τ

e−|x |2
4 ≤

∫
�

e−|x |2
4 .

Proof Every convex surface is star-shaped, hence outward-minimizing by a
standard calibration argument. This implies area(M̄τ ∩ Br (p)) ≤ Cr2 for all
p ∈ R

3 and all r > 0. We next consider an arbitrary sequence τ j → −∞.
After passing to a subsequence, the surfaces M̄τ j converge inC

∞
loc to a cylinder

of radius
√
2 with axis passing through the origin. This gives
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Uniqueness of convex ancient solutions 39

∫
M̄τ j

e−|x |2
4 →

∫
�

e−|x |2
4

as j → ∞. On the other hand, Huisken’s monotonicity formula [15] implies
that the function

τ �→
∫
M̄τ

e−|x |2
4

is monotone decreasing in τ . From this, the assertion follows. �

In view of the discussion above, there exists a smooth function S(τ ) taking

values in SO(3) such that the rotated surfaces M̃τ = S(τ )M̄τ converge to
the cylinder � in C∞

loc. Hence, we can find a function ρ(τ) with the following
properties:

• limτ→−∞ ρ(τ) = ∞.
• −ρ(τ) ≤ ρ′(τ ) ≤ 0.
• We may write the surface M̃τ as a graph of some function u(·, τ ) over

� ∩ B2ρ(τ)(0), so that

{x + u(x, τ )ν�(x) : x ∈ � ∩ B2ρ(τ)(0)} ⊂ M̃τ ,

where ν� denotes the unit normal to � and ‖u(·, τ )‖C4(�∩B2ρ(τ)(0)) ≤
ρ(τ)−4.

In the next step, we fine-tune the choice of S(τ ). To that end, we fix a smooth
cutoff function ϕ ≥ 0 satisfying ϕ = 1 on [−1

2 ,
1
2 ] and ϕ = 0 outside [−2

3 ,
2
3 ].

By the implicit function theorem, we can choose S(τ ) ∈ SO(3) such that
u(x, τ ) satisfies the orthogonality relations

∫
�∩Bρ(τ)(0)

e−|x |2
4 〈Ax, ν�〉 u(x, τ ) ϕ

(
x3

ρ(τ)

)
= 0

for every matrix A ∈ so(3). Finally, we can arrange that the matrix A(τ ) :=
S′(τ )S(τ )−1 ∈ so(3) satisfies A(τ )12 = 0. (Otherwise, we replace S(τ ) by
R(τ )S(τ ), where R(τ ) is a rotation in the x1x2-plane. This does not affect the
orthogonality relations above.)

Our next two results are straightforward adaptations of powerful estimates in
[2]. These estimateswill play a key role in the subsequent arguments. Recall the
foliation by self-shrinkers�a and �̃b given in [2] (see also [20]). As explained
in [2], the union of all the leaves in this foliation contains a truncated cone of
the form {x ∈ R

3 : |x3| ≥ z0, x21 + x22 ≤ b20x
2
3} for some large constant z0
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40 S. Brendle, K. Choi

and some small constant b0 > 0. Let νfol denote the unit normal vector to this
foliation.

In the following, we denote by 	τ the region in between the cylinder �

and the surface M̃τ . If L is sufficiently large, then the set 	τ ∩ {|x3| ≥ L} is
contained in the truncated cone where the shrinker foliation is defined.

Proposition 2.2 (cf. [2], Lemma 4.10) There exists a constant L0 such that
for all L ∈ [L0, ρ(τ )]
∫
M̃τ ∩{|x3|≥L}

e−|x |2
4 −

∫
�∩{|x3|≥L}

e−|x |2
4 ≥ −

∫
	τ ∩{|x3|=L}

e− x2
4 |〈ω, νfol〉|,

where ω = (0, 0, 1) denotes the vertical unit vector in R3.

Proof Since each leaf of the foliation is a self-similar shrinker, the normal

vector νfol satisfies div(e−|x |2
4 νfol) = 0. Note that νfol = ν� at each point on

the cylinder �. Using the divergence theorem, we obtain

∫
M̃τ ∩{L≤|x3|≤z}

e−|x |2
4 〈ν, νfol〉 −

∫
�∩{L≤|x3|≤z}

e−|x |2
4

≥ −
∫

	τ ∩{|x3|=L}
e− x2

4 |〈ω, νfol〉| −
∫

	τ ∩{|x3|=z}
e− x2

4 |〈ω, νfol〉|.

We know 〈ν, νfol〉 ≤ 1 on M̃τ . The convexity of M̃τ implies that the area of
	τ ∩ {|x3| = z} is at most Cz2. Hence, passing to the limit as z → ∞ gives

∫
M̃τ ∩{|x3|≥L}

e−|x |2
4 −

∫
�∩{|x3|≥L}

e−|x |2
4 ≥ −

∫
	τ ∩{|x3|=L}

e− x2
4 |〈ω, ν f ol〉|,

as desired. �

Proposition 2.3 (cf. [2], Lemma 4.7) There exists a constant L0 such that

∫
�∩{|x3|≤L}

e−|x |2
4 |∇�u(x, τ )|2 ≤ C

∫
�∩{|x3|≤ L

2 }
e−|x |2

4 u(x, τ )2

and
∫

�∩{ L2 ≤|x3|≤L}
e−|x |2

4 u(x, τ )2 ≤ CL−2
∫

�∩{|x3|≤ L
2 }
e−|x |2

4 u(x, τ )2

for all L ∈ [L0, ρ(τ )].
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Uniqueness of convex ancient solutions 41

Proof Lemma 4.11 in [2] implies that |〈ω, νfol〉| ≤ CL−1 |x21 + x22 − 2| for
each point x ∈ 	τ ∩ {|x3| = L}. This gives
∫

	τ ∩{|x3|=L}
e− x2

4 |〈ω, νfol〉| ≤ CL−1
∫

	τ ∩{|x3|=L}
e− x2

4 |x21 + x22 − 2|

≤ CL−1
∫

�∩{|x3|=L}
e−|x |2

4 u2.

Using Proposition 2.2, we obtain

∫
M̃τ ∩{|x3|≥L}

e−|x |2
4 −

∫
�∩{|x3|≥L}

e−|x |2
4 ≥ −CL−1

∫
�∩{|x3|=L}

e−|x |2
4 u2

[compare [2], equation (4.33)]. On the other hand,

∫
M̃τ ∩{|x3|≤L}

e−
|x |2
4 −

∫
�∩{|x3|≤L}

e−
|x |2
4

=
∫ L

−L

∫ 2π

0
e− z2

4

⎡
⎣e− (

√
2+u)2
4

√√√√(
√
2+u)2

(
1+
(

∂u

∂z

)2)
+
(

∂u

∂θ

)2
−e− 1

2
√
2

⎤
⎦ dθ dz.

Since L ≤ ρ(τ), we have |u| + | ∂u
∂z | + | ∂u

∂θ
| ≤ o(1) for |x3| ≤ L . This gives

∫
M̃τ ∩{|x3|≤L}

e−|x |2
4 −

∫
�∩{|x3|≤L}

e−|x |2
4

≥
∫ L

−L

∫ 2π

0
e− z2

4

[
e− (

√
2+u)2
4 (

√
2 + u) − e− 1

2
√
2 + 1

C
|∇�u|2

]
dθ dz

≥
∫ L

−L

∫ 2π

0
e− z2

4

[
−Cu2 + 1

C
|∇�u|2

]
dθ dz

where C > 0 is a large numerical constant. Putting these facts together, we
obtain

∫
M̃τ

e−|x |2
4 −

∫
�

e−|x |2
4 ≥

∫
�∩{|x3|≤L}

e− z2
4

[
−Cu2 + 1

C
|∇�u|2

]

− CL−1
∫

�∩{|x3|=L}
e−|x |2

4 u2.
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42 S. Brendle, K. Choi

By Proposition 2.1, the expression on the left hand side is nonpositive. Thus,
we conclude that

∫
�∩{|x3|≤L}

e−|x |2
4 |∇�u|2

≤ C
∫

�∩{|x3|≤L}
e−|x |2

4 u2 + CL−1
∫

�∩{|x3|=L}
e−|x |2

4 u2.

The divergence theorem gives

L
∫

�∩{|x3|=L}
e−|x |2

4 u2

=
∫

�∩{|x3|≤L}
div�(e−|x |2

4 u2 x tan)

=
∫

�∩{|x3|≤L}
e−|x |2

4

(
u2 − 1

2
x23 u

2 + 2u 〈x tan, ∇�u〉
)

≤
∫

�∩{|x3|≤L}
e−|x |2

4

(
u2 − 1

4
x23 u

2 + 4 |∇�u|2
)

,

hence

L2
∫

�∩{|x3|≤L}
e−|x |2

4 u2 + L
∫

�∩{|x3|=L}
e−|x |2

4 u2

≤ C
∫

�∩{|x3|≤L}
e−|x |2

4 |∇�u|2 + CL2
∫

�∩{|x3|≤ L
2 }
e−|x |2

4 u2.

Putting these facts together, we conclude that

∫
�∩{|x3|≤L}

e−|x |2
4 |∇�u|2

≤ CL−2
∫

�∩{|x3|≤L}
e−|x |2

4 |∇�u|2 + C
∫

�∩{|x3|≤ L
2 }
e−|x |2

4 u2.

If L is sufficiently large, the first term on the right hand side can be absorbed
into the left hand side. This gives

∫
�∩{|x3|≤L}

e−|x |2
4 |∇�u|2 ≤ C

∫
�∩{|x3|≤ L

2 }
e−|x |2

4 u2.
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Uniqueness of convex ancient solutions 43

This proves the first statement. Using the inequality

0 ≤
∫

�∩{|x3|≤L}
e−|x |2

4

(
u2 − 1

4
x23 u

2 + 4 |∇�u|2
)

,

the second statement follows. �

Let us denote by H the space of all functions f on � such that

‖ f ‖2H =
∫

�

e−|x |2
4 f 2 < ∞.

We define an operator L on the cylinder � by

L f = 	� f − 1

2
〈x tan, ∇� f 〉 + f.

In coordinates, L takes the form

L f = ∂2

∂z2
f + 1

2

∂2

∂θ2
f − 1

2
z

∂

∂z
f + f.

The eigenfunctions of L are of the form Hn
( z
2

)
cos(mθ) and Hn

( z
2

)
sin(mθ),

where m and n are nonnegative integers and Hn denotes the Hermite polyno-
mial of degree n. The corresponding eigenvalues are given by 1− n+m2

2 . Thus,
there are four eigenfunctions that correspond to positive eigenvalues of L, and
these are given by 1, z, cos θ , sin θ up to scaling. The span of these eigenfunc-
tions will be denoted by H+. Moreover, there are three eigenfunctions of L
with eigenvalue 0, and these are given by z2 − 2, z cos θ , z sin θ up to scaling.
The span of these eigenfunctions will be denoted byH0. The span of all other
eigenfunctions will be denoted by H−. Clearly,

〈L f, f 〉H ≥ 1

2
‖ f ‖2H for f ∈ H+,

〈L f, f 〉H = 0 for f ∈ H0,

〈L f, f 〉H ≤ −1

2
‖ f ‖2H for f ∈ H−.

Lemma 2.4 The function u(x, τ ) satisfies

∂

∂τ
u = Lu + E + 〈A(τ )x, ν�〉,

where E satisfies the pointwise estimate |E | ≤ O(ρ(τ )−1) (|u| + |∇�u| +
|A(τ )|).
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44 S. Brendle, K. Choi

Proof Recall that the rescaled surfaces M̄τ move with velocity −(H −
1
2 〈x, ν〉)ν. Hence, the rotated surfaces M̃τ = S(τ )M̄τ move with velocity
−(H− 1

2 〈x, ν〉−〈A(τ )x, ν〉)ν, where x ∈ M̃τ . Therefore, the function u(x, τ )

satisfies the equation

∂

∂τ
u = − 1

〈ν�, ν(x + uν�)〉 H(x + uν�)

+ 1

2〈ν�, ν(x + uν�)〉 〈x + uν�, ν(x + uν�)〉

+ 1

〈ν�, ν(x + uν�)〉 〈A(τ )(x + uν�), ν(x + uν�)〉)

for x ∈ �. By assumption, ‖u‖C4(�∩B2ρ(τ)(0)) ≤ O(ρ(τ )−2). This gives

∣∣ν(x + uν�) − ν� + ∇�u
∣∣ ≤ O(ρ(τ )−2) (|u| + |∇�u|)

and

∣∣∣∣H(x + uν�) + 	�u + 1

2
u

∣∣∣∣ ≤ O(ρ(τ )−2) (|u| + |∇�u|).

Putting these facts together, we obtain

∂

∂τ
u = Lu + E + 〈A(τ )x, ν�〉,

where E satisfies the pointwise estimate |E | ≤ O(ρ(τ )−1) (|u| + |∇�u| +
|A(τ )|). �

Lemma 2.5 The function û(x, τ ) = u(x, τ ) ϕ

( x3
ρ(τ)

)
satisfies

∂

∂τ
û = Lû + Ê + 〈A(τ )x, ν�〉 ϕ

(
x3

ρ(τ)

)
,

where Ê satisfies ‖Ê‖H ≤ O(ρ(τ )−1) (‖û‖H + |A(τ )|).
Proof We compute

∂

∂τ
û = Lû + Ê + 〈A(τ )x, ν�〉 ϕ

(
x3

ρ(τ)

)
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Uniqueness of convex ancient solutions 45

where

Ê = E ϕ

(
x3

ρ(τ)

)
− 2

ρ(τ)

∂u

∂z
ϕ′
(

x3
ρ(τ)

)
− 1

ρ(τ)2
u ϕ′′

(
x3

ρ(τ)

)

+ x3
2ρ(τ)

u ϕ′
(

x3
ρ(τ)

)
− x3ρ′(τ )

ρ(τ)2
u ϕ′

(
x3

ρ(τ)

)
.

Using Lemma 2.4, we deduce that

|Ê | ≤ O(ρ(τ )−1) (|u| + |∇�u| + |A(τ )|)
for |x3| ≤ ρ(τ)

2 . Moreover, since |ρ′(τ )| ≤ ρ(τ), we obtain

|Ê | ≤ O(1) |u| + O(ρ(τ )−1) (|∇�u| + |A(τ )|)
for ρ(τ)

2 ≤ |x3| ≤ ρ(τ). Using Proposition 2.3, we conclude that

∫
�

e−|x |2
4 |Ê |2 ≤ O(ρ(τ )−2)

∫
�∩{|x3|≤ ρ(τ)

2 }
e−|x |2

4 u2

+ O(1)
∫

�∩{ ρ(τ)
2 ≤|x3|≤ρ(τ)}

e−|x |2
4 u2

+ O(ρ(τ )−2)

∫
�∩{|x3|≤ρ(τ)}

e−|x |2
4 |∇�u|2

+ O(ρ(τ )−2) |A(τ )|2

≤ O(ρ(τ )−2)

∫
�∩{|x3|≤ ρ(τ)

2 }
e−|x |2

4 u2

+ O(ρ(τ )−2) |A(τ )|2

≤ O(ρ(τ )−2)

∫
�

e−|x |2
4 û2

+ O(ρ(τ )−2) |A(τ )|2.

Thus, ‖Ê‖H ≤ O(ρ(τ )−1) ‖û‖H + O(ρ(τ )−1) |A(τ )|, as claimed. �

Lemma 2.6 We have |A(τ )| ≤ O(ρ(τ )−1) ‖u‖H and

∥∥∥∥ ∂

∂τ
û − Lû

∥∥∥∥
H

≤ O(ρ(τ )−1) ‖û‖H.

Proof The orthogonality relations imply that û is orthogonal to 〈Ax, ν�〉 for
every A ∈ so(3). Since this is true for each τ , it follows that ∂

∂τ
û is orthogonal
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46 S. Brendle, K. Choi

to 〈Ax, ν�〉 for every A ∈ so(3). Moreover, since the function 〈Ax, ν�〉 is
an eigenfunction of L with eigenvalue 0, we deduce that Lû is orthogonal
to 〈Ax, ν�〉 for every A ∈ so(3). Consequently, ∂

∂τ
û − Lû is orthogonal

to 〈Ax, ν�〉 for every A ∈ so(3). Therefore, Ê + 〈A(τ )x, ν�〉 ϕ
( x3

ρ(τ)

)
is

orthogonal to 〈Ax, ν�〉 for every A ∈ so(3). In particular,

∫
�

e−|x |2
4

(
Ê + 〈A(τ )x, ν�〉 ϕ

(
x3

ρ(τ)

))
〈A(τ )x, ν�〉 = 0.

Using the fact that A(τ )12 = 0, we obtain

|A(τ )|2 ≤ O(1)
∫

�

e−|x |2
4 〈A(τ )x, ν�〉2 ϕ

(
x3

ρ(τ)

)

≤ O(1)
∫

�

e−|x |2
4 |Ê | |〈A(τ )x, ν�〉|

≤ O(1) ‖Ê‖H |A(τ )|
≤ O(ρ(τ )−1) (‖û‖H + |A(τ )|) |A(τ )|,

where in the last step we have used Lemma 2.5. Consequently, |A(τ )| ≤
O(ρ(τ )−1) ‖û‖H. Using Lemma 2.5, we obtain

∥∥∥∥ ∂

∂τ
û − Lû

∥∥∥∥
H

≤ ‖Ê‖H + O(1) |A(τ )| ≤ O(ρ(τ )−1) ‖û‖H,

as claimed. �

We now define

U+(τ ) := ‖P+û(·, τ )‖2H,

U0(τ ) := ‖P0û(·, τ )‖2H,

U−(τ ) := ‖P−û(·, τ )‖2H,

where P+, P0, P− denote the orthogonal projections toH+,H0,H−, respec-
tively. Using Lemma 2.6, we obtain

d

dτ
U+(τ ) ≥ U+(τ ) − O(ρ(τ )−1) (U+(τ ) +U0(τ ) +U−(τ )),∣∣∣∣ ddτ
U0(τ )

∣∣∣∣ ≤ O(ρ(τ )−1) (U+(τ ) +U0(τ ) +U−(τ )),

d

dτ
U−(τ ) ≤ −U−(τ ) + O(ρ(τ )−1) (U+(τ ) +U0(τ ) +U−(τ )).

123



Uniqueness of convex ancient solutions 47

Clearly, U+(τ ) + U0(τ ) + U−(τ ) = ‖û‖2H → 0 as τ → −∞. Moreover,
U+(τ ) +U0(τ ) +U−(τ ) = ‖û‖2H > 0 since M̃τ is strictly convex.

Lemma 2.7 We have U0(τ ) +U−(τ ) ≤ o(1)U+(τ ).

Proof Applying an ODE lemma of Merle and Zaag (cf. Lemma 5.4 in [2] or
Lemma A.1 in [21]), we conclude that eitherU0(τ )+U−(τ ) ≤ o(1)U+(τ ) or
U+(τ ) +U−(τ ) ≤ o(1)U0(τ ).

The second case can be ruled out as follows: Suppose U+(τ ) + U−(τ ) ≤
o(1)U0(τ ). Then û(·,τ )

‖û(·,τ )‖H converges with respect to ‖ · ‖H to the subspace

H0 = span{z2 − 2, z cos θ, z sin θ}. On the other hand, the orthogonality rela-
tions used to define S(τ ) imply that the function û(·, τ ) is orthogonal to the
function 〈Ax, ν�〉 for each A ∈ so(3). In other words, the function û(·, τ ) is
orthogonal to the functions z cos θ and z sin θ . Consequently, û(·,τ )

‖û(·,τ )‖H con-

verges with respect to ‖ · ‖H to a non-zero multiple of z2 − 2.
Let �τ denote the region enclosed by M̃τ . Moreover, we denote byA(z, τ )

the area of the intersection�τ ∩{x3 = z}. By the Brunn-Minkowski inequality,
the function z �→ √

A(z, τ ) is concave. Since M̃τ is noncompact, it follows
that the function z �→ √

A(z, τ ) is monotone.
For |z| ≤ ρ(τ), we have the exact identity A(z, τ ) = 1

2

∫ 2π
0 (

√
2 +

u(θ, z, τ ))2 dθ . Thus, the function z �→ ∫ 2π
0 (2

√
2 u(θ, z, τ )+u(θ, z, τ )2) dθ

is monotone. In particular, we either have

∫ −1

−3

∫ 2π

0
(2

√
2 u(θ, z, τ ) + u(θ, z, τ )2) dθ dz

≤
∫ 1

−1

∫ 2π

0
(2

√
2 u(θ, z, τ ) + u(θ, z, τ )2) dθ dz

≤
∫ 3

1

∫ 2π

0
(2

√
2 u(θ, z, τ ) + u(θ, z, τ )2) dθ dz

or

∫ −1

−3

∫ 2π

0
(2

√
2 u(θ, z, τ ) + u(θ, z, τ )2) dθ dz

≥
∫ 1

−1

∫ 2π

0
(2

√
2 u(θ, z, τ ) + u(θ, z, τ )2) dθ dz

≥
∫ 3

1

∫ 2π

0
(2

√
2 u(θ, z, τ ) + u(θ, z, τ )2) dθ dz.
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However, neither of these possibilities is consistent with the fact that the limit
of û(·,τ )

‖û(·,τ )‖H is a non-zero multiple of z2 − 2. This is a contradiction. This
completes the proof of Lemma 2.7. �

Lemma 2.8 For each ε > 0, we have ‖u(·, τ )‖C4([0,2π ]×[−100,100]) ≤
o(e

(1−ε)τ
2 ) and |A(τ )| ≤ o(e

(1−ε)τ
2 ).

Proof Recall that U0(τ ) +U−(τ ) ≤ o(1)U+(τ ) by Lemma 2.7. This directly
implies

d

dτ
U+(τ ) ≥ U+(τ ) − o(1)U+(τ ).

Consequently, for every ε > 0, we have U+(τ ) ≤ o(e(1−ε)τ ). This gives
U0(τ ) +U−(τ ) ≤ o(1)U+(τ ) ≤ o(e(1−ε)τ ), hence

‖û‖2H = U+(τ ) +U0(τ ) +U−(τ ) ≤ o(e(1−ε)τ ).

Using Lemma 2.6, we obtain |A(τ )| ≤ o(1) ‖û‖H ≤ o(e
(1−ε)τ

2 ). Finally, the

inequality ‖u(·, τ )‖C4([0,2π ]×[−100,100]) ≤ o(e
(1−ε)τ

2 ) follows from standard
interpolation inequalities. This completes the proof of Lemma 2.8. �


Recall that A(τ ) = S′(τ )S(τ )−1. Since |A(τ )| ≤ o(e
(1−ε)τ

2 ) by Lemma 2.8,
the limit limτ→−∞ S(τ ) exists. Without loss of generality, we may assume

that limτ→−∞ S(τ ) = id. Clearly, |S(τ ) − id| ≤ o(e
(1−ε)τ

2 ).

Lemma 2.9 We have

sup
M̄τ ∩{|x3|≤e− τ

10 }
|x21 + x22 − 2| ≤ e

τ
10

if −τ is sufficiently large.

Proof Using Lemma 2.8 and the estimate |S(τ )− id| ≤ o(e
(1−ε)τ

2 ), we obtain

sup
x∈M̄τ ∩B10(0)

|x21 + x22 − 2| ≤ o(e
(1−ε)τ

2 ).

The convexity of M̄τ implies

sup
M̄τ ∩{|x3|≤e− τ

10 }
(x21 + x22) ≤ 2 + e

τ
10
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if −τ is sufficiently large. Let

�a = {(x1, x2, x3) : x21 + x22 = ua(−x3)
2, −a ≤ x3 ≤ 0}

denote the self-similar shrinker constructed in [2]. By Lemma 4.4 in [2],
ua(2) ≤ √

2− a−2. Since M̄τ converges to � in C∞
loc, the surface M̄τ ∩ {x3 ≤

−2} encloses the surface�a∩{x3 ≤ −2} if−τ is sufficiently large (depending

on a). On the other hand, since infx∈M̄τ ∩B10(0)(x
2
1 + x22) ≥ 2− o(e

(1−ε)τ
2 ), the

boundary M̄τ ∩ {x3 = −2} encloses the boundary �a ∩ {x3 = −2} provided
that −τ is sufficiently large and a ≤ e− (1−ε)τ

4 . By the maximum principle,
the surface M̄τ ∩ {x3 ≤ −2} encloses �a ∩ {x3 ≤ −2} whenever −τ is

sufficiently large and a ≤ e− (1−ε)τ
4 . Using Theorem 8.2 in [2], we obtain

ua(y) ≥ √
2(1 − a−2y2) for all y ∈ [0, a], provided that a is sufficiently

large. Putting these facts together, we obtain

inf
M̄τ ∩{−e− τ

10 ≤x3≤−2}
(x21 + x22) ≥ 2 − e

τ
10

if −τ is sufficiently large. An analogous argument gives

inf
M̄τ ∩{2≤x3≤e− τ

10 }
(x21 + x22) ≥ 2 − e

τ
10

if −τ is sufficiently large. Putting these facts together, we obtain

inf
M̄τ ∩{|x3|≤e− τ

10 }
(x21 + x22) ≥ 2 − e

τ
10

if −τ is sufficiently large. This completes the proof of Lemma 2.9. �

Lemma 2.10 Let ε0 > 0 be given. If −τ is sufficiently large (depending on
ε0), then every point in M̄τ ∩ {|x3| ≤ 1

2 e
− τ

10 } lies at the center of an ε0-neck.

Proof Suppose that there exists a sequence of times τ j → −∞ and a sequence

of points q j ∈ M̄τ j ∩ {|x3| ≤ 1
2 e

− τ j
10 } such that q j does not lie on an ε0-

neck. Using Lemma 2.9 and the noncollapsing property, we conclude that the
mean curvature at q j is bounded from below by a positive constant. We now

consider the triangle in R
3 with vertices q j , (0, 0, e− τ j

10 ), and (0, 0, −e− τ j
10 ).

Using Lemma 2.9 and the convexity of M̄τ j , we conclude that this triangle
lies inside M̄τ j . Moreover, the angle at q j converges to π as j → −∞. We
now dilate the surface M̄τ j to make the mean curvature at q j equal to 1√

2
.

Passing to the limit as j → ∞, we obtain a noncollapsed ancient solution of

123



50 S. Brendle, K. Choi

mean curvature flow which is weakly, but not strictly convex. By the strong
maximum principle, the limit splits off a line. By Lemma 3.6 in [12], the limit
is a round cylinder. Therefore, the point q j lies on an ε0-neck if j is sufficiently
large. This is a contradiction. �


After these preparations, we now state the main result of this section:

Proposition 2.11 We have

sup
x∈M̄τ ∩B10(0)

|x21 + x22 − 2| ≤ O(e
τ
2 ).

Proof In view of Lemmas 2.9, 2.10, and standard interpolation inequalities,
we may write M̄τ as a graph over the cylinder�∩B

e− τ
100

(0), and theC4-norm

of the height function is bounded by O(e
τ
100 ). We now repeat the argument

above, this timewithρ(τ) = e− τ
1000 .As above,we consider the rotated surfaces

M̃τ = S(τ )M̄τ , where S(τ ) is a function taking values in SO(3). We write
each surface M̃τ as a graph over the cylinder, so that

{x + u(x, τ )ν�(x) : x ∈ � ∩ B
2e− τ

1000
(0)} ⊂ M̃τ ,

where ‖u(·, τ )‖C4(�∩B
2e

− τ
1000

(0)) ≤ O(e
τ
200 ). We choose the matrices S(τ ) in

such a way that the orthogonality relations

∫
�∩B

e
− τ
1000

(0)
e−|x |2

4 〈Ax, ν�〉 u(x, τ ) ϕ(e
τ

1000 x3) = 0

are satisfied for all A ∈ so(3). As above, the function û(x, τ ) =
u(x, τ ) ϕ(e

τ
1000 x3) satisfies

∥∥∥∥ ∂

∂τ
û − Lû

∥∥∥∥
H

≤ O(e
τ

1000 ) ‖û‖H.

Hence, if we define

U+(τ ) := ‖P+û(·, τ )‖2H,

U0(τ ) := ‖P0û(·, τ )‖2H,

U−(τ ) := ‖P−û(·, τ )‖2H,
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then

d

dτ
U+(τ ) ≥ U+(τ ) − O(e

τ
1000 ) (U+(τ ) +U0(τ ) +U−(τ )),∣∣∣∣ ddτ

U0(τ )

∣∣∣∣ ≤ O(e
τ

1000 ) (U+(τ ) +U0(τ ) +U−(τ )),

d

dτ
U−(τ ) ≤ −U−(τ ) + O(e

τ
1000 ) (U+(τ ) +U0(τ ) +U−(τ )).

As above, the ODE lemma of Merle and Zaag implies that either U0(τ ) +
U−(τ ) ≤ o(1)U+(τ ) or U+(τ ) + U−(τ ) ≤ o(1)U0(τ ), and the latter case
can be ruled out as above using the orthogonality relations and the Brunn–
Minkowski inequality. Thus, U0(τ ) +U−(τ ) ≤ o(1)U+(τ ). This gives

d

dτ
U+(τ ) ≥ U+(τ ) − O(e

τ
1000 )U+(τ ),

hence U+(τ ) ≤ O(eτ ). This implies U0(τ ) + U−(τ ) ≤ o(1)U+(τ ) ≤
O(eτ ). From this, we deduce that ‖û‖H ≤ O(e

τ
2 ). Using Lemma 2.6,

we obtain |A(τ )| ≤ O(e
τ
2 ). Since limτ→−∞ S(τ ) = id, it follows that

|S(τ ) − id| ≤ O(e
τ
2 ). Finally, we observe that u satisfies an equation of

the form ∂
∂τ
u = L̃u + 〈A(τ )x, ν�〉, where L̃ is an elliptic operator of second

order whose coefficients depend on u, ∇u, ∇2u, and A(τ ). As τ → −∞,
the coefficients of L̃ converge smoothly to the corresponding coefficients
of L. Using standard interior estimates for parabolic equations, we obtain
‖u(·, τ )‖C4([0,2π ]×[−100,100]) ≤ O(e

τ
2 ). Since |S(τ ) − id| ≤ O(e

τ
2 ), we con-

clude that

sup
x∈M̄τ ∩B10(0)

|x21 + x22 − 2| ≤ O(e
τ
2 ).

This completes the proof of Proposition 2.11. �


3 Lower bound for Hmax(t) as t → −∞
Let Mt , t ∈ (−∞, 0], be a noncompact ancient solution of mean curvature
flow in R

3 which is strictly convex and noncollapsed. For each t , we denote
by Hmax(t) the supremum of the mean curvature of Mt .

Proposition 3.1 For each t, Hmax(t) < ∞.

Proof Let us fix a time t and a small number ε. By Proposition 3.1 in [13],
we can find a compact subset of Mt with the property that every point in the
complement of that set lies at the center of an ε-neck. Hence, if Hmax(t) = ∞,
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52 S. Brendle, K. Choi

then the surface Mt contains a sequence of ε-necks with radii converging to
0, but this is impossible in a convex surface. �

Corollary 3.2 The function Hmax(t) is continuous and monotone increasing
in t.

Proof The pointwise curvature derivative estimate of Haslhofer and Kleiner
[12,13] gives | ∂

∂t H | ≤ CH3 for some uniform constant C . Consequently,
Hmax(t) is continuous in t . In particular, Hmax(t) is uniformly bounded from
above on every compact time interval. Hence, we can apply Hamilton’s
Harnack inequality [10] to conclude that Hmax(t) is monotone increasing
in t . �

Proposition 3.3 We have lim inf t→−∞ Hmax(t) > 0.

Proof Proposition 2.11 gives

sup

x∈(−t)−
1
2 (Mt∩B

10(−t)
1
2
(0))

|x21 + x22 − 2| ≤ O((−t)−
1
2 ).

By assumption, Mt is noncompact and strictly convex. Hence, Mt has exactly
one end. Without loss of generality, we may assume that Mt ∩ {x3 ≤ 0} is
compact and Mt ∩ {x3 ≥ 0} is noncompact. We can find a large constant K
such that the curve

(−t)−
1
2 (Mt ∩ {x3 = −2(−t)

1
2 })

lies outside the circle

{x21 + x22 = (
√
2 − K (−t)−

1
2 )2, x3 = −2}

if−t is sufficiently large. Let us consider the self-similar solutions constructed
in [2]. For a > 0 large, there exists a surface

�a = {(x1, x2, x3) : x21 + x22 = ua(−x3)
2, −a ≤ x3 ≤ 0}

which satisfies the shrinker equation H = 1
2 〈x, ν〉. Hence, the surfaces

�a,t := (−t)
1
2 �a + (0, 0, Ka2)

= {(x1, x2, x3) : x21 + x22 = (−t) ua((−x3 + Ka2)(−t)−
1
2 )2,

Ka2 − a(−t)
1
2 ≤ x3 ≤ Ka2}

evolve by mean curvature flow.
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Wewill use the surfaces�a,t∩{x3 ≤ −2(−t)
1
2 } as barriers for the flowMt∩

{x3 ≤ −2(−t)
1
2 }. As t → −∞, the rescaled surfaces (−t)− 1

2 Mt converge
in C∞

loc to the cylinder {x21 + x22 = 2}. Moreover, as t → −∞, the rescaled

surfaces (−t)− 1
2 (�a,t ∩{x3 ≤ −2(−t)

1
2 }) converge to�a∩{x3 ≤ −2}, which

is a compact subset of {x21 + x22 < 2}. Therefore, �a,t ∩ {x3 ≤ −2(−t)
1
2 } lies

inside Mt ∩ {x3 ≤ −2(−t)
1
2 } if −t is sufficiently large (depending on a).

We next examine the boundary curves Mt ∩ {x3 = −2(−t)
1
2 } and �a,t ∩

{x3 = −2(−t)
1
2 }. By our choice of K , the curve

(−t)−
1
2 (Mt ∩ {x3 = −2(−t)

1
2 })

lies outside the circle

{x21 + x22 = (
√
2 − K (−t)−

1
2 )2, x3 = −2}.

Moreover, the curve

(−t)−
1
2 (�a,t ∩ {x3 = −2(−t)

1
2 })

is a circle

{x21 + x22 = ua(2 + Ka2(−t)−
1
2 )2, x3 = −2}.

Using Lemma 4.4 in [2], we obtain ua(2) ≤ √
2 and ua(2) − ua(1) ≤ −a−2

if a is sufficiently large. Moreover, by Lemma 4.2 in [2], the function ua :
[0, a] → R is concave. Hence, we obtain

ua(2 + Ka2(−t)−
1
2 ) ≤ ua(2) + Ka2(−t)−

1
2 (ua(2) − ua(1))

≤ √
2 − K (−t)−

1
2

for −t ≥ 4K 2a2. Therefore, the curve �a,t ∩ {x3 = −2(−t)
1
2 } lies inside

the curve Mt ∩ {x3 = −2(−t)
1
2 } whenever −t ≥ 4K 2a2 and a is sufficiently

large. Using themaximum principle, we conclude that the surface�a,t ∩{x3 ≤
−2(−t)

1
2 } lies inside the surfaceMt∩{x3 ≤ −2(−t)

1
2 }whenever−t ≥ 4K 2a2

and a is sufficiently large. For −t = 4K 2a2, the tip of �a,t has distance

a(−t)
1
2 −Ka2 = Ka2 = − t

4K from the origin. Consequently, the intersection
of Mt with the halfline {x1 = x2 = 0, x3 ≤ t

4K } is non-empty if −t is
sufficiently large. From this, we deduce that lim supt→−∞ Hmax(t) > 0. Since
Hmax(t) is monotone increasing in t , we conclude that lim inf t→−∞ Hmax(t)
> 0. �
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4 The neck improvement theorem

Definition 4.1 Let K be a vector field in R
3. We say that K is a normalized

rotation vector field if there exists a matrix S ∈ O(3) and a point q ∈ R
3 such

that K (x) = SJ S−1(x − q), where

J =
⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ .

Note that we do not require that the origin lies on the axis of rotation.

Lemma 4.2 There exists a large constant C and small constant ε0 > 0 with
the following property. Suppose that M is a surface in R3 and let x̄ be a point
on M. We assume that, after rescaling, the surface M is ε0-close (in the C4-
norm) to a cylinder S1 × [−5, 5] of radius 1. Suppose that K (1) and K (2) are
normalized rotation vector fields with the following properties:

• |K (1)| H ≤ 10 and |K (2)| H ≤ 10 at the point x̄ .
• |〈K (1), ν〉| H ≤ ε and |〈K (2), ν〉| H ≤ ε in a geodesic ball around x̄ in M
of radius H(x̄)−1.

Then

min

⎧⎨
⎩ sup

B100H(x̄)−1 (x̄)
|K (1) − K (2)|, sup

B100H(x̄)−1 (x̄)
|K (1) + K (2)|

⎫⎬
⎭ H(x̄) ≤ Cε.

Proof By scaling, we may assume that H(x̄) = 1. We argue by contradiction.
If the assertion is false, then there exist a sequence of surfacesM ( j), a sequence
of points x̄ j ∈ M ( j) satisfying H(x̄ j ) = 1, sequences of normalized rotation
vector fields K (1, j) and K (2, j), and a sequences of real number ε j → 0 with
the following properties:

• The surfaces M ( j) are 1
j -close (in the C4-norm) to a cylinder M = S1 ×

[−5, 5] of radius 1. Moreover, we may assume that the axis of the cylinder
is the x3-axis.

• |K (1, j)| ≤ 10 and |K (2, j)| ≤ 10 at the point x̄ j .
• |〈K (1, j), ν〉| H ≤ ε j and |〈K (2, j), ν〉| H ≤ ε j in a geodesic ball around x̄ j
in M of radius 1.

• supB100(x̄ j ) |K (1, j) − K (2, j)| ≥ jε j .

• supB100(x̄ j ) |K (1, j) + K (2, j)| ≥ jε j .

Note that the distance of x̄ j from the axis of rotation of K (1, j) is at most
10. Hence, after passing to a subsequence if necessary, the vector fields
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K (1, j) converge to a normalized vector field K (1). Similarly, the vector fields
K (2, j) converge to a vector field K (2). Clearly, K (1) and K (2) are tangential
to the cylinder S1 × [−5, 5]. Consequently, we have K (1)(x) = ±J x and
K (2)(x) = ±J x , where J is defined as above. Without loss of generality,
we assume that K (1)(x) = K (2)(x) = J x . For each j , we define δ j :=
supB100(x̄ j ) |K (1, j) − K (2, j)| ≥ jε j . Clearly, δ j → 0. We next consider the

Killing vector field V ( j) := δ−1
j (K (1, j)−K (2, j)). Then supB100(x̄ j ) |V ( j)| = 1,

and |〈V ( j), ν〉| H ≤ 2δ−1
j ε j ≤ 2 j−1 in a geodesic ball around x̄ j in M of

radius 1. Hence, after passing to a subsequence, the vector fields V ( j) con-
verge to a non-trivial Killing vector field V on R

3 which is tangential to the
cylinder S1 × [−5, 5]. Since K (1, j) and K (2, j) are normalized rotation vector
fields, the limit vector field V must be of the form V (x) = [A, J ]x − Jb for
some matrix A ∈ so(3) and some vector b ∈ R

3. However, such a vector field
cannot be tangential to the cylinder S1×[−5, 5] unless V vanishes identically.
This is a contradiction. �


As in [18, pp. 189–190], we denote byP(x̄, t̄, r, τ ) the set of all points (x, t)
in space-time such that x ∈ Bg(t̄)(x̄, r) and t ∈ [t̄ − τ, t̄]. Moreover, we put

P̂(x̄, t̄, L , θ) = P(x̄, t̄, L H(x̄, t̄)−1, θ H(x̄, t̄)−2). We say that (x̄, t̄) lies on
an ε-neck if the parabolic neighborhood P̂(x̄, t̄, 100, 100) is, after rescaling,
ε-close (in the C10-norm), to a family of shrinking cylinders.

Definition 4.3 Let Mt be a solution of mean curvature flow with positive
mean curvature. We say that a point (x̄, t̄) is ε-symmetric if there exists a
normalized rotation vector field K on R

3 such that |K | H ≤ 10 at the point
(x̄, t̄) and |〈K , ν〉| H ≤ ε in the parabolic neighborhood P̂(x̄, t̄, 10, 100).

Note that the condition that |K | H ≤ 10 at the point (x̄, t̄) is equivalent to
the condition that the distance of the point x̄ from the axis of rotation of K is
at most 10 H(x̄, t̄)−1.

Theorem 4.4 (Neck Improvement Theorem) There exists a large constant L
and a small constant ε1 with the following property. Let Mt be a solution
of mean curvature flow, and let (x̄, t̄) be a point in space-time. Suppose that
every point in the parabolic neighborhood P̂(x̄, t̄, L , L2) lies on an ε1-neck.
Moreover, suppose that every point in P̂(x̄, t̄, L , L2) is ε-symmetric, where
ε ≤ ε1. Then (x̄, t̄) is ε

2 -symmetric.

Proof Without loss of generality, we assume t̄ = −1 and H(x̄, −1) = 1√
2
.

Throughout the proof, we assume that L is sufficiently large, and ε1 is suffi-
ciently small depending on L . In the parabolic neighborhood P̂(x̄, t̄, L , L2),

we can approximate Mt by a cylinder S1((−2t)
1
2 ) ×R, up to errors which are

bounded by C(L)ε1 in the C100-norm.
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Step 1Byassumption, for every point (x0, t0) ∈ P̂(x̄, −1, L , L2), there exists a
normalized vector field K (x0,t0) such that |K (x0,t0)| H ≤ 10 at the point (x0, t0),
and |〈K (x0,t0), ν〉| H ≤ ε on the parabolic neighborhood P̂(x0, t0, 10, 100). A
repeated application of Lemma 4.2 gives

min

{
sup

B10L (0)
|K (x̄,−1) − K (x0,t0)|, sup

B10L (0)
|K (x̄,−1) + K (x0,t0)|

}
≤ C(L)ε

for all (x0, t0) ∈ P̂(x̄, −1, L , L2). Without loss of generality, we may assume
that

sup
B10L (0)

|K (x̄,−1) − K (x0,t0)| ≤ C(L)ε

for all (x0, t0) ∈ P̂(x̄, −1, L , L2). Moreover, we may assume without loss of
generality that K̄ = K (x̄,−1) is an infinitesimal rotation around the x3-axis,
so that K̄ (y) = J y, where J is defined as in Definition 4.1. Finally, we may
assume that the point x̄ lies in the plane {x3 = 0}.

Let us write Mt as a graph over the x3-axis, so that

{
(r(θ, z, t) cos θ, r(θ, z, t) sin θ, z) : θ ∈ [0, 2π ], z ∈

[
−L

4
,
L

4

]}
⊂ Mt .

By assumption, the difference r(θ, z, t) − (−2t)
1
2 is bounded by C(L)ε1 in

the C100-norm. The unit normal vector to Mt is given by

ν = 1√
1 + r−2

(
∂r
∂θ

)2 +
(

∂r
∂z

)2

·
[
(cos θ, sin θ, 0) − r−1 ∂r

∂θ
(− sin θ, cos θ, 0) − ∂r

∂z
(0, 0, 1)

]
.

We define

u = 〈K̄ , ν〉 = 1√
1 + r−2

(
∂r
∂θ

)2 +
(

∂r
∂z

)2
∂r

∂θ
.

Step 2 For each point (x0, t0) ∈ P̂(x̄, −1, L , L2), we know that

|〈K (x0,t0), ν〉| ≤ Cε (−t0)
1
2
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on the parabolic neighborhood P̂(x0, t0, 10, 100). Moreover, we can find a
matrix S ∈ O(3) and a vector q ∈ R

3 (depending on (x0, t0)) such that
K̄ (y) − K (x0,t0)(y) = J y − SJ S−1(y − q) and |S − id| + |q| ≤ C(L)ε.
Consequently, there exist real numbers a0, a1, b0, b1 (depending on (x0, t0))
such that

|a0| + |a1| + |b0| + |b1| ≤ C(L)ε

and

|〈K̄ − K (x0,t0), ν〉 − (a0 + a1z) cos θ − (b0 + b1z) sin θ | ≤ C(L)ε1ε

on the parabolic neighborhood P̂(x0, t0, 10, 100). Note that the numbers
a0, a1, b0, b1 account for the fact that the rotation vector fields K (x0,t0) and
K̄ may have different axes of rotation.
Putting these facts together, we obtain

|〈K̄ , ν〉 − (a0 + a1z) cos θ − (b0 + b1z) sin θ | ≤ Cε(−t0)
1
2 + C(L)ε1ε

on the parabolic neighborhood P̂(x0, t0, 10, 100). To summarize, given any
point (z0, t0) ∈ [− L

2 , L
2 ] × [− L2

4 , −1], there exist real numbers a0, a1, b0, b1
(depending on (z0, t0)) such that

|a0| + |a1| + |b0| + |b1| ≤ C(L)ε

and

|u(θ, z, t) − (a0 + a1z) cos θ − (b0 + b1z) sin θ | ≤ Cε(−t0)
1
2 + C(L)ε1ε

for z ∈ [z0 − (−t0)
1
2 , z0 + (−t0)

1
2 ] and t ∈ [2t0, t0].

Step 3 The function u = 〈K̄ , ν〉 satisfies the evolution equation
∂

∂t
u = 	Mt u + |A|2u.

Since |u| ≤ C(L)ε, it follows from standard interior estimates for parabolic
equations that |∇u| + |∇2u| ≤ C(L)ε for z ∈ [− L

4 , L
4 ] and t ∈ [− L2

16 , −1].
Hence, we obtain

∣∣∣∣ ∂∂t u − ∂2

∂z2
u − 1

(−2t)

∂2

∂θ2
u − 1

(−2t)
u

∣∣∣∣ ≤ C(L)ε1ε

for z ∈ [− L
4 , L

4 ] and t ∈ [− L2

16 , −1].
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58 S. Brendle, K. Choi

Let ũ be the solution of the linear equation

∂

∂t
ũ = ∂2

∂z2
ũ + 1

(−2t)

∂2

∂θ2
ũ + 1

(−2t)
ũ

in the parabolic cylinder {z ∈ [− L
4 , L

4 ], t ∈ [− L2

16 , −1]} such that ũ = u on

the parabolic boundary {|z| = L
4 }∪{t = − L2

16 }. Using the maximum principle,
we obtain

|u − ũ| ≤ C(L)ε1ε

in the parabolic cylinder {z ∈ [− L
4 , L

4 ], t ∈ [− L2

16 , −1]}.
Step 4Wenow analyze the function ũ using separation of variables. Form ≥ 1,
we put

vm(z, t) = 1

π

∫ 2π

0
ũ(θ, z, t) cos(mθ) dθ

and

wm(z, t) = 1

π

∫ 2π

0
ũ(θ, z, t) sin(mθ) dθ.

The functions vm and wm satisfy the evolution equations

∂

∂t
vm = ∂2

∂z2
vm + 1 − m2

(−2t)
vm,

∂

∂t
wm = ∂2

∂z2
wm + 1 − m2

(−2t)
wm .

Consequently, the functions v̂m = (−t)
1−m2

2 vm and ŵm = (−t)
1−m2

2 wm sat-
isfy the linear heat equation

∂

∂t
v̂m = ∂2

∂z2
v̂m,

∂

∂t
ŵm = ∂2

∂z2
ŵm

for m ≥ 1.

Step 5 We first consider the modes with m ≥ 2. For m ≥ 2, we have

|vm | + |wm | ≤ (Cε + C(L)ε1ε) (−t)
1
2

in the parabolic cylinder [− L
4 , L

4 ] × [− L2

16 , −1]. This implies

|v̂m | + |ŵm | ≤ (Cε + C(L)ε1ε) (−t)1−
m2
2
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in the parabolic cylinder [− L
4 , L

4 ] × [− L2

16 , −1]. Using the solution formula
for the one-dimensional heat equation with Dirichlet boundary condition on
the rectangle [− L

4 , L
4 ] × [− L2

16 , −1], we may express v̂m(z, t) and ŵm(z, t) as
integrals of initial and boundary data. This gives

|v̂m(z, t)| + |ŵm(z, t)|

≤ (Cε + C(L)ε1ε)

(
L

4

)2−m2

+ (Cε + C(L)ε1ε)L
∫ t

− L2
16

e− L2
100(t−s) (t − s)−

3
2 (−s)1−

m2
2 ds

≤ (Cε + C(L)ε1ε)

(
L

4

)2−m2

+ (Cε + C(L)ε1ε)L
−1
∫ t

− L2
16

(−s)
1−m2

2 ds

≤ (Cε + C(L)ε1ε)

(
L

4

)2−m2

+ (Cε + C(L)ε1ε)L
−1m−2(−t)

3−m2
2

for z ∈ [−20, 20] and t ∈ [−400, −1]. Therefore, we obtain

|vm(z, t)| + |wm(z, t)| ≤ (Cε + C(L)ε1ε)

(
L2

16(−t)

) 2−m2
2

+ (Cε + C(L)ε1ε)L
−1m−2

for z ∈ [−20, 20] and t ∈ [−400, −1]. Summation over m ≥ 2 yields
∣∣∣∣∣

∞∑
m=2

vm(z, t)

∣∣∣∣∣+
∣∣∣∣∣

∞∑
m=2

wm(z, t)

∣∣∣∣∣ ≤ CL−1ε + C(L)ε1ε

for z ∈ [−20, 20] and t ∈ [−400, −1].
Step 6 We next consider the modes with m = 1. We have

∂

∂t
v1 = ∂2

∂z2
v1,

∂

∂t
w1 = ∂2

∂z2
w1.

Moreover, given any point (z0, t0) ∈ [− L
4 , L

4 ] × [− L2

16 , −1], there exist con-
stants a0, a1, b0, b1 (depending on z0 and t0) such that

123
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|a0|, |a1|, |b0|, |b1| ≤ C(L)ε

and

|v1(z, t) − a0 − a1z| + |w1(z, t) − b0 − b1z| ≤ Cε(−t0)
1
2 + C(L)ε1ε

for z ∈ [z0 − (−t0)
1
2 , z0 + (−t0)

1
2 ] and t ∈ [2t0, t0]. Using standard interior

estimates for the linear heat equation, we obtain

∣∣∣∣∂
2v1

∂z2

∣∣∣∣+
∣∣∣∣∂

2w1

∂z2

∣∣∣∣ ≤ (Cε + C(L)ε1ε) (−t)−
1
2

in the parabolic cylinder [− L
4 , L

4 ]×[− L2

16 , −1]. As above, we can use the solu-
tion formula for the one-dimensional heat equation with Dirichlet boundary

condition on the rectangle [− L
4 , L

4 ] × [− L2

16 , −1] to express ∂2v1
∂z2

and ∂2w1
∂z2

as
integrals of initial and boundary data. This gives

∣∣∣∣∂
2v1

∂z2
(z, t)

∣∣∣∣+
∣∣∣∣∂

2w1

∂z2
(z, t)

∣∣∣∣
≤ (Cε + C(L)ε1ε)

(
L

4

)−1

+ (Cε + C(L)ε1ε)L
∫ t

− L2
16

e− L2
100(t−s) (t − s)−

3
2 (−s)−

1
2 ds

≤ (Cε + C(L)ε1ε)

(
L

4

)−1

+ (Cε + C(L)ε1ε)L
−2
∫ t

− L2
16

(−s)−
1
2 ds

≤ (Cε + C(L)ε1ε) L
−1

for z ∈ [−20, 20] and t ∈ [−400, −1]. Consequently,we canfind real numbers
A0, A1, B0, B1 such that

|v1(z, t) − A0 − A1z| + |w1(z, t) − B0 − B1z| ≤ CL−1ε + C(L)ε1ε

for z ∈ [−20, 20] and t ∈ [−400, −1].
Step 7 Finally, we consider the mode with m = 0. Using the identity

∫ 2π

0
u

√
1 + r−2

(
∂r

∂θ

)2
+
(

∂r

∂z

)2
dθ =

∫ 2π

0

∂r

∂θ
dθ = 0
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together with the estimates |u| ≤ C(L)ε, | ∂r
∂θ

| + | ∂r
∂z | ≤ C(L)ε1, we obtain

∣∣∣∣
∫ 2π

0
u(θ, z, t) dθ

∣∣∣∣ ≤ C(L)ε1ε,

hence
∣∣∣∣
∫ 2π

0
ũ(θ, z, t) dθ

∣∣∣∣ ≤ C(L)ε1ε

for z ∈ [−20, 20] and t ∈ [−400, −1].
Step 8 To summarize, we have shown that there exist A0, A1, B0, B1 such that

|ũ − (A0 + A1z) cos θ − (B0 + B1z) sin θ | ≤ CL−1ε + C(L)ε1ε

for z ∈ [−20, 20] and t ∈ [−400, −1]. This directly implies

|u − (A0 + A1z) cos θ − (B0 + B1z) sin θ | ≤ CL−1ε + C(L)ε1ε

for z ∈ [−20, 20] and t ∈ [−400, −1]. In particular, |A0|+|A1|+|B0|+|B1| ≤
C(L)ε. Hence, there exists a normalized rotation vector field K̃ such that

|〈K̃ , ν〉| ≤ CL−1ε + C(L)ε1ε

in the parabolic neighborhood P̂(x̄, −1, 10, 100). Therefore, (x̄, −1) is
(CL−1ε + C(L)ε1ε)-symmetric. In particular, if we choose L sufficiently
large and ε1 sufficiently small (depending on L), then (x̄, −1) is ε

2 -symmetric.
�


5 Proof of rotational symmetry

Let Mt , t ∈ (−∞, 0], be a noncompact ancient solution of mean curvature
flow in R3 which is strictly convex and noncollapsed.

Lemma 5.1 If−t is sufficiently large, then there exists a unique point pt ∈ Mt,
where the mean curvature attains its maximum. Moreover, the Hessian of the
mean curvature at pt is negative definite. In particular, pt varies smoothly in
t .

Proof Weknow thatMt∩B
8(−t)

1
2
(0) is a neckwith radius (−2t)

1
2 . The comple-

ment Mt\B
8(−t)

1
2
(0) has two connected components, one of which is compact

and one of which is noncompact. On the noncompact connected component,
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62 S. Brendle, K. Choi

the mean curvature is bounded from above by C (−t)− 1
2 . On the other hand,

we have shown in Proposition 3.3 that Hmax(t) is bounded away from 0. Con-
sequently, if −t is sufficiently large, then the maximum of the mean curvature
is attained at some point pt ∈ Mt .

We next consider an arbitrary sequence t j → −∞, and define M ( j)
t :=

Mt+t j − pt j , where pt j is the point on Mtj where the mean curvature attains

its maximum. After passing to a subsequence if necessary, the sequence M ( j)
t

converges inC∞
loc to a smooth eternal solution.Moreover, there exists a point on

the limit solution where the mean curvature attains its space-time maximum.
By work of Hamilton [10], the limit solution must be a translating soliton. By
[11], the limit is the bowl soliton. Hence, if −t is sufficiently large, then pt is
the only point on Mt where the maximum of the mean curvature is attained,
and theHessian of themean curvature at pt is negative definite. This completes
the proof of Lemma 5.1. �


Let ε1 and L be the constants in the Neck Improvement Theorem. Since
Hmax(t) is uniformly bounded from below, Proposition 3.1 in [13] implies that
there exists a large constant � with the property that every point x ∈ Mt with
|x − pt | ≥ � lies at the center of an ε1-neck and satisfies H(x, t) |x − pt | ≥
106 L .

Lemma 5.2 There exists a time T < 0 with the following property: suppose
that t̄ ≤ T , and x̄ is a point on Mt̄ satisfying |x̄ − pt̄ | ≥ �. Then |x̄ − pt | ≥
|x̄ − pt̄ | for all t ≤ t̄ .

Proof If −t is sufficiently large, then Mt looks like the bowl soliton near
the point pt . Hence, if −t is sufficiently large, then the vector d

dt pt is almost
parallel to−ν(pt , t). Consequently, we can find a time T < 0with the property
that 〈x − pt ,

d
dt pt 〉 > 0 whenever t ≤ T and |x − pt | ≥ �. This implies

d
dt |x − pt | = −〈 x−pt

|x−pt | ,
d
dt pt 〉 < 0 whenever t ≤ T and |x − pt | ≥ �.

We will show that T has the desired property. To prove this, we consider
a time t̄ ≤ T and a point x̄ ∈ Mt̄ such that |x̄ − pt̄ | ≥ �. We claim that
|x̄ − pt | ≥ |x̄ − pt̄ | for all t ≤ t̄ . Indeed, if this is false, then we define t̃ :=
sup{t ≤ t̄ : |x̄ − pt | < |x̄ − pt̄ |}. Clearly, t̃ < t̄ , and |x̄ − pt | ≥ |x̄ − pt̄ | ≥ �

for all t ∈ [t̃, t̄]. In view of our choice of T , we obtain d
dt |x̄ − pt | < 0 for all

t ∈ [t̃, t̄]. Consequently, |x̄ − pt̃ | > |x̄ − pt̄ |, which contradicts the definition
of t̃ . This completes the proof of Lemma 5.2. �

Proposition 5.3 If t ≤ T , x ∈ Mt and |x − pt | ≥ 2

j
400 �, then (x, t) is

2− jε1-symmetric.

Proof We argue by induction on j . For j = 0, the assertion is true. Suppose
now that j ≥ 1 and the assertion holds for j − 1. We claim that the assertion
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holds for j . Suppose this is false. Then there exists a time t̄ ≤ T and a point

x̄ ∈ Mt̄ such that |x̄ − pt̄ | ≥ 2
j

400 � and (x̄, t̄) is not 2− jε1-symmetric. By
the Neck Improvement Theorem, there exists a point (x, t) ∈ P̂(x̄, t̄, L , L2)

such that either (x, t) is not 2− j+1ε1-symmetric or (x, t) does not lie at the
center of an ε1-neck. In view of the induction hypothesis, we conclude that

|x − pt | ≤ 2
j−1
400 �. Since t ≤ t̄ ≤ T , Lemma 5.2 gives |x̄ − pt̄ | ≤ |x̄ − pt |.

Putting these facts together, we obtain

|x̄ − pt̄ | ≤ |x̄ − pt |
≤ |x − pt | + |x − x̄ |
≤ 2

j−1
400 � + 10 L H(x̄, t̄)−1

≤ 2− 1
400 |x̄ − pt̄ | + 1

1000
|x̄ − pt̄ |

< |x̄ − pt̄ |.

This is a contradiction. �

Theorem 5.4 The surface Mt is rotationally symmetric for each t ≤ T .

Proof Let us fix a time t̄ ≤ T . For j sufficiently large, we denote by �( j) the

set of all points (x, t) in space-time such that t ≤ t̄ and |x − pt | ≤ 2
j

400 �. If

j is sufficiently large, then H(x, t) ≥ 2 · 2− j
400 for each point (x, t) ∈ �( j).

By Proposition 5.3, every point (x, t) ∈ ∂�( j) is 2− jε1-symmetric. In other
words, for each point (x, t) ∈ ∂�( j), there exists a normalized rotation vec-
tor field K (x,t) such that |〈K (x,t), ν〉| H ≤ 2− jε1 on P̂(x, t, 10, 100). Using
Lemma 4.2, we can control how the axis of rotation of K (x,t) varies as we vary
the point (x, t). More precisely, if (x1, t1) and (x2, t2) are two points on ∂�( j)

satisfying (x2, t2) ∈ P̂(x1, t1, 1, 1), then

min

⎧⎨
⎩ sup

B10H(x2,t2)−1 (x2)
|K (x1,t1)−K (x2,t2)|, sup

B10H(x2,t2)−1 (x2)
|K (x1,t1)+K (x2,t2)|

⎫⎬
⎭

≤ C 2− j H(x2, t2)
−1.

Hence, there exists a single normalized rotation vector field K ( j) with the

following property: if (x, t) is a point in ∂�( j) satisfying t̄ − 2
j

100 ≤ t ≤ t̄ ,
then

min{|K (x,t) − K ( j)|, |K (x,t) + K ( j)|} ≤ C 2− j
2
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at the point (x, t). This implies |〈K ( j), ν〉| ≤ C 2− j
2 for all points (x, t) ∈

∂�( j) satisfying t̄ − 2
j

100 ≤ t ≤ t̄ . Moreover, we clearly have |〈K ( j), ν〉| ≤
C 2

j
100 for all points (x, t) ∈ �( j) with t = t̄ − 2

j
100 .

We now define a function f ( j) : �( j) → R by

f ( j) := exp(−2− j
200 (t̄ − t))

〈K ( j), ν〉
H − 2− j

400

.

Using the estimate for 〈K ( j), ν〉, we obtain

| f ( j)(x, t)| ≤ C 2− j
2

2 · 2− j
400 − 2− j

400

≤ C 2− j
4

for all points (x, t) ∈ ∂�( j) satisfying t̄ − 2
j

100 ≤ t ≤ t̄ , and

| f ( j)(x, t)| ≤ exp(−2− j
200+ j

100 ) · C 2
j

100

2 · 2− j
400 − 2− j

400

≤ C 2− j
4

for all points (x, t) ∈ �( j) with t = t̄ − 2
j

100 . Using the identities

∂

∂t
H = 	H + |A|2H

and

∂

∂t
〈K ( j), ν〉 = 	〈K ( j), ν〉 + |A|2〈K ( j), ν〉,

we compute

∂

∂t
f ( j) = 	 f ( j)+ 2

H − 2− j
400

〈∇H, ∇ f ( j)〉

−2− j
400

(
|A|2

H − 2− j
400

− 2− j
400

)
f ( j).

On the set �( j), we have

|A|2
H − 2− j

400

− 2− j
400 ≥ 1

2

H2

H − 2− j
400

− 2− j
400 ≥ 1

2
H − 2− j

400 ≥ 0.
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Using the maximum principle, we conclude that

sup

(x,t)∈�( j), t̄−2
j

100 ≤t≤t̄

| f ( j)(x, t)|

≤ max

⎧⎨
⎩ sup

(x,t)∈∂�( j), t̄−2
j

100 ≤t≤t̄

| f ( j)(x, t)|, sup

(x,t)∈�( j), t=t̄−2
j

100

| f ( j)(x, t)|
⎫⎬
⎭

≤ C 2− j
4 .

This gives |〈K ( j), ν〉| ≤ C 2− j
4 for all points (x, t) ∈ �( j) with t = t̄ . From

this, we deduce that the distance of the point pt̄ from the axis of rotation of
K ( j) is bounded from above by a uniform constant which is independent of
j . Hence, if we send j → ∞, the vector fields K ( j) converge to a normalized
rotation vector field in R

3 which is tangential along Mt̄ . This completes the
proof of Theorem 5.4 �


Once we know that Mt is rotationally symmetric for −t sufficiently large,
it follows from standard arguments that Mt is rotationally symmetric for all t :

Proposition 5.5 Suppose that Mt̄ is rotationally symmetric. Then, for each
t ∈ [t̄, 0], Mt is rotationally symmetric with the same axis.

Proof By Proposition 3.1 and Corollary 3.2, the flow Mt , t ∈ (−∞, 0],
has bounded curvature. Without loss of generality, we may assume that
supMt

|A|2 ≤ 2 for each t ∈ (−∞, 0]. If K is a rotation vector field in R
3,

then

∂

∂t
〈K , ν〉 = 	〈K , ν〉 + |A|2〈K , ν〉.

Moreover, since |A|2 ≤ 2, the function ρ(x, t) := e8t (|x |2 + 1) satisfies

∂

∂t
ρ > 	ρ + |A|2ρ

for t ∈ (−∞, 0]. By the maximum principle, the quantity supMt

|〈K ,ν〉|
ρ

is
monotone decreasing for t ∈ (−∞, 0]. In particular, if 〈K , ν〉 = 0 at each
point on Mt̄ , then 〈K , ν〉 = 0 on Mt for all t ∈ [t̄, 0]. �


6 Uniqueness of ancient solutions with rotational symmetry

Let Mt be an ancient solution satisfying the assumptions of Theorem 1.1. By
the results in Sect. 5, Mt is rotationally symmetric. Without loss of general-
ity, we may assume that Mt is symmetric with respect to the x3-axis. Thus,
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there exists a function f (r, t) such that the solution Mt consists of the points
(r cos θ, r sin θ, f (r, t)) ∈ R

3. Moreover, the function f (r, t) satisfies the
following evolution equation:

ft = frr
1 + f 2r

+ 1

r
fr .

Note that f (r, t) may not be defined for all r .
Next, we can consider the radius r as a function of (z, t). Namely, the radius

function r(z, t) is defined by

f (r(z, t), t) = z.

Then r(z, t) satisfies the following equation (see also [2]):

rt = rzz
1 + r2z

− 1

r
.

Note that the convexity of Mt yields

r > 0, rz > 0, rt < 0, rzz < 0.

Without loss of generality, we assume that the tip of M0 is at the origin. In
other words, f (0, 0) = 0 and r(0, 0) = 0.

Let qt = (0, 0, f (0, t)) denote the tip ofMt , and let Htip(t) denote the mean
curvature of Mt at the tip qt . Using the Harnack inequality, we conclude that
Htip(t) is monotone increasing. In particular, the limitH := limt→−∞ Htip(t)
exists. Using Proposition 3.3, we obtainH > 0.

We first prove that ft (r, t) is monotone increasing in t .

Proposition 6.1 We have ftt (r, t) ≥ 0 everywhere.

Proof We recall the Harnack inequality [10] for strictly convex ancient solu-
tions to the mean curvature flow:

∂

∂t
H + 2V i∇i H + hi j V

i V j ≥ 0

for every vector field V .
Let ω = (0, 0, −1) denote the vertical vector field in R

3, and let V =
−H 〈ω, ν〉−1 ωtan. For this choice of V , the Harnack inequality takes the form

(
∂

∂t
+ V i ∇i

)
(H 〈ω, ν〉−1) ≥ 0.
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A straightforward calculation gives

ft (r, t) = H 〈ω, ν〉−1

and

ftt (r, t) =
(

∂

∂t
+ V i ∇i

)
(H 〈ω, ν〉−1).

Putting these facts together, the assertion follows. �

We next show that ft (r, t) is bounded from below.

Proposition 6.2 We have ft (r, t) ≥ H at each point in space-time. Moreover,
for each r0 > 0,

lim
t→−∞ sup

r≤r0
ft (r, t) = H.

Proof We consider an arbitrary sequence t j → −∞, and define M ( j)
t :=

Mt+t j −qt j . We apply the compactness theorem for ancient solutions (cf. [12],

Theorem 1.10) to the sequence M ( j)
t . Hence, after passing to a subsequence if

necessary, the sequence M ( j)
t converges in C∞

loc to a smooth eternal solution,
which is rotationally symmetry. Moreover, on the limit solution, the mean
curvature at the tip equalsH at all times. Hence, equality holds in the Harnack
inequality. By work of Hamilton [10], the limit solution must be a soliton
which is translating with speed H. This directly implies

lim
j→∞ sup

r≤r0
| ft (r, t j ) − H| = 0

for every r0 > 0. Since ftt (r, t) ≥ 0 by Proposition 6.1, we conclude that
ft (r, t) ≥ H for all r and t . �

We next prove that ft (r, t) is monotone increasing in r .

Proposition 6.3 We have ftr (r, t) ≥ 0 everywhere.

Proof Let us fix a time t0 and a radius r0 such that f (r0, t0) is defined. For each
T < t0, we consider the parabolic region QT = {x21 + x22 ≤ r20 , t ∈ [T, t0]}.
Using the equations

∂

∂t
H = 	H + |A|2H
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and

∂

∂t
〈ω, ν〉 = 	〈ω, ν〉 + |A|2〈ω, ν〉,

we conclude that the maximum supQT
H 〈ω, ν〉−1 must be attained on the

parabolic boundary of QT . This gives

sup
x21+x22≤r20 ,t=t0

H 〈ω, ν〉−1

≤ max

⎧⎨
⎩ sup

x21+x22=r20 ,T≤t≤t0

H 〈ω, ν〉−1, sup
x21+x22≤r20 ,t=T

H 〈ω, ν〉−1

⎫⎬
⎭ .

Since ft (r, t) = H 〈ω, ν〉−1, it follows that

sup
r≤r0

ft (r, t0) ≤ max

{
sup

T≤t≤t0
ft (r0, t), sup

r≤r0
ft (r, T )

}

= max

{
ft (r0, t0), sup

r≤r0
ft (r, T )

}
,

where in the last step we have used Proposition 6.1. We now send T → −∞.
Since limt→−∞ supr≤r0 ft (r, t) = H, we conclude that

sup
r≤r0

ft (r, t0) ≤ max{ ft (r0, t0),H} = ft (r0, t0).

This completes the proof of Proposition 6.3. �

We recall thatMt is strictly convex and noncollapsed and Htip(t) is bounded

from below by H. By Proposition 3.1 in [13], there exists a small constant
ε0 ∈ (0, 1

20 ) and a decreasing function � : (0, ε0] → R such that given any
ε ∈ (0, ε0], if |x̄ −qt | ≥ �(ε), then (x̄, t̄) is a center of ε-neck. (Alternatively,
this can be deduced from Theorem 7.14 and Lemma 7.4 in [18].)

Lemma 6.4 On every ε0-neck, rrz = r
fr

≤ (1 + 2ε0)H−1.

Proof On an ε0-neck, we have we have 1
fr

= rz ≤ ε0. Moreover, the principal
curvature in radial direction is bounded by ε0

r . This gives

frr

(1 + f 2r )
3
2

≤ ε0

r
.
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Using Proposition 6.2, we obtain

H ≤ ft = frr
1 + f 2r

+ fr
r

≤ ε0

r
(1 + f 2r )

1
2 + fr

r
≤ (1 + 2ε0)

fr
r

,

as claimed. �

Lemma 6.5 There exists a constant C0 ≥ 1 such that rm

∣∣ ∂m

∂zm r
∣∣ ≤ C0 holds

for m = 1, 2, 3 at center of ε0-necks with r ≥ 1.

Proof For m = 1, the assertion follows from Lemma 6.4. Let u = 〈ω, ν〉,
where ω = (0, 0, −1). Then

∂

∂t
u = 	u + |A|2u.

Moreover, u ≤ H−1 H by Proposition 6.2. Standard interior estimates imply
that

|∇mu|2 ≤ C H2m+2

for m = 1, 2 at the center of an ε0-necks.
In the parametrization (z, θ) �→ (r(z) cos θ, r(z) sin θ, z), the induced met-

ric is given by gzz = 1+ r2z , gzθ = 0, gθθ = r2. Moreover, u = rz (1+ r2z )
− 1

2

and uz = rzz(1 + r2z )
− 3

2 . Hence, |∇u|2 = gzzu2z = r2zz(1 + r2z )
−4. In

addition, rz ≤ ε0 and Hr ≤ 1 + ε0 hold in every ε0-neck. Therefore,
the inequality |∇u|2 ≤ C H4 ≤ C r−4 implies r4r2zz ≤ C . Similarly,
|∇2u|2 ≤ C H6 ≤ C r−6 gives r6r2zzz ≤ C . �

Proposition 6.6 Let C1 = 2 + 2�(ε0) + 9H−2. If r ≥ C1, then 0 ≤
−rzz(z, t) ≤ C2r(z, t)−

5
2 .

Proof Clearly, −rzz ≥ 0 since Mt is convex. To prove the upper bound for
−rzz , let us fix a point (r̄ , t̄) satisfying r̄ ≥ C1 ≥ 2, and let z̄ = f (r̄ , t̄). Then
we have 1

2 r̄ ≥ 1
2C1 ≥ �(ε0) by definition of C1. Hence, every point (x, t)

with r = (x21 + x22)
1
2 ≥ 1

2 r̄ lies at the center of an ε0-neck.
Using Lemma 6.4 and ε0 ≤ 1

20 , we obtain

z̄ − f

(
r̄

2
, t̄

)
=
∫ r̄

r̄
2

fr (r, t̄) dr ≥
∫ r̄

r̄
2

H
1 + 2ε0

r dr ≥ 1

3
Hr̄2.

Since r̄ ≥ C1 ≥ 9H−2, it follows that f ( r̄2 , t̄) ≤ z̄ − r̄
3
2 . In other words,

r(z, t̄) ≥ r̄
2 for z ∈ [z̄ − r̄

3
2 , z̄ + r̄

3
2 ]. Since r(z, t) is decreasing in t , it follows
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that r(z, t) ≥ r̄
2 for (z, t) ∈ Q = [z̄ − r̄

3
2 , z̄ + r̄

3
2 ] × [t̄ − r̄3, t̄]. Hence, every

point (x, t) with (x3, t) ∈ Q lies at the center of an ε0-neck.
We next consider the evolution equation of rrz . We compute

(rrz)t = (rrz)zz − (2 + 3r2z )rzrzz + rr2z rzzz
1 + r2z

− 2rrzr2zz
(1 + r2z )

2 .

Using Lemma 6.4 and Lemma 6.5, we obtain

sup
Q

|rrz| ≤ C

and

sup
Q

|(rrz)t − (rrz)zz| ≤ Cr̄−3.

Standard interior estimates for the linear heat equation give

|(rrz)z| ≤ Cr̄− 3
2 sup

Q
|rrz| + Cr̄

3
2 sup

Q
|(rrz)t − (rrz)zz| ≤ Cr̄− 3

2

at (z̄, t̄). Thus, |rzz| ≤ Cr̄− 5
2 at (z̄, t̄). This completes the proof of Proposi-

tion 6.6. �

For each z < 0, we define a real number T (z) by

r(z, t) > 0 for t < T (z), lim
t→T (z)

r(z, t) = 0.

The following result allows us to estimate r(z, t) in terms of T (z) − t .

Corollary 6.7 We have

2[T (z) − t] ≤ r(z, t)2 ≤ 2[T (z) − t] + 8C2[T (z) − t] 14 + C2
1

if z < 0 and r(z, t) is sufficiently large.

Proof We again fix a point (z̄, t̄). Since (r2 + 2t)t = 2rrzz
1+r2z

< 0, we have

r(z̄, t̄)2 ≥ 2[T (z̄) − t̄].

Moreover, Proposition 6.6 implies that (r2 + 2t)t = 2rrzz
1+r2z

≥ −2C2r− 3
2 when-

ever r ≥ C1. Let t̃ ≤ T (z̄) denote the time when r(z̄, t̃) = C1. Since r(z̄, t) is
a decreasing function of t , r(z̄, t) ≤ C1 for t ≤ t̃ . Therefore,
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r(z̄, t̄)2 = C2
1 + 2(t̃ − t̄) −

∫ t̃

t̄
(r(z̄, t)2 + 2t)t dt

≤ C2
1 + 2(t̃ − t̄) + 2C2

∫ t̃

t̄
r(z̄, t)−

3
2 dt

≤ C2
1 + 2(t̃ − t̄) + 2C2

∫ t̃

t̄
[T (z̄) − t]− 3

4 dt

≤ C2
1 + 2(t̃ − t̄) − 8C2[T (z̄) − t̃] 14 + 8C2[T (z̄) − t̄] 14

≤ C2
1 + 2 [T (z̄) − t̄] + 8C2[T (z̄) − t̄] 14 ,

as claimed. �

Lemma 6.4 gives a sharp upper bound for the limit of rrz . More precisely,

lim supz→∞ r(z, t)rz(z, t) ≤ H−1 for each t . We next establish a lower bound
for lim inf z→∞ r(z, t)rz(z, t). To derive this estimate, we need a lower bound
for r(0, t)rz(0, t).

Lemma 6.8 Let δ > 0 be arbitrary. Then

r(0, t)rz(0, t) ≥ H−1 − δ

whenever −t is sufficiently large.

Proof In the following, we assume that −t is sufficiently large so that R =
r(0, t) ≥ C1. Consequently, every point (x, t) with x3 = 0 lies at the center
of an ε0-neck. This implies |r(z, t) − R| ≤ ε0R for |z| ≤ 2R. Recall that

rrz ≤ (1 + 2ε0)H−1 by Lemma 6.4, and |(rrz)z| = |rrzz + r2z | ≤ C3R− 3
2

for some constant C3 by Proposition 6.6. Hence, if we choose −t sufficiently

large so that R
1
2 ≥ 4C3δ

−1, then we obtain

|r(z, t)rz(z, t) − r(0, t)rz(0, t̄)| ≤ 2C3R
− 1

2 ≤ δ

2

for all z ∈ [−2R, 2R].
It follows from Corollary 6.7 that

r(−R, t)2 ≥ 2[T (−R) − t],
r(−2R, t)2 ≥ 2[T (−2R) − t],
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and

r(−2R, t)2 ≤ 2[T (−2R) − t] + 8C2[T (−2R) − t] 14 + C2
1

≤ 2[T (−2R) − t] + 8C2r(−2R, t)
1
2 + C2

1

≤ 2[T (−2R) − t] + 8C2R
1
2 + C2

1 .

This implies

r(−R, t)2 − r(−2R, t)2 ≥ 2[T (−R) − T (−2R)] − 8C2R
1
2 − C2

1 .

Moreover, if R is sufficiently large, then

T (−R) − T (−2R) ≥
(
H−1 − δ

2

)
R.

This gives

r(−R, t)2 − r(−2R, t)2 ≥ 2

(
H−1 − δ

2

)
R

if −t is sufficiently large. Hence, if −t is sufficiently large, then

sup
z∈[−2R,R]

r(z, t)rz(z, t) ≥ H−1 − δ

2
.

Putting these facts together, we conclude that

r(0, t)rz(0, t) ≥ H−1 − δ

whenever −t is sufficiently large. �

We next recall a solution ψ(z, t) to the heat equation satisfying Dirichlet

boundary condition on the half line.

Proposition 6.9 We define a smooth function ψ : (0, ∞) × (0, ∞) → R by

ψ(z, t) = 1√
4π t

∫ ∞

0
(e− (z−y)2

4t − e− (z+y)2

4t )dy.

Then ψ is a solution to the heat equation ψt = ψzz . Moreover, for each z > 0
and t > 0 we have ψzz(z, t) < 0 and

lim
z→0

ψ(z, t)=0, lim
z→∞ ψ(z, t) = 1, lim

t→0
ψ(z, t)=1, lim

t→∞ ψ(z, t) = 0.

123



Uniqueness of convex ancient solutions 73

Proof We only need to show ψzz < 0. Direct computations yield

ψzz = 1√
4π t

[
−
∫ ∞

0

(
1

2t
− (z − y)2

4t2

)
e− (z−y)2

4t dy

+
∫ ∞

0

(
1

2t
− (z + y)2

4t2

)
e− (z+y)2

4t dy

]

= 1√
8π t2

[
−
∫ ∞

− z√
2t

(1 − ξ2)e− ξ2

2 dξ +
∫ ∞

z√
2t

(1 − ξ2)e− ξ2

2 dξ

]

= − 1√
8π t2

∫ z√
2t

− z√
2t

(1 − ξ2)e− ξ2

2 dξ.

Clearly, ψzz < 0 for 0 < z ≤ √
2t . Moreover, ψzzz > 0 for z ≥ √

2t , and

lim
z→∞ ψzz(z, t) = − 1√

8π t2

∫ ∞

−∞
(1 − ξ2)e− ξ2

2 dξ = 0.

Therefore, ψzz < 0 also holds for z ≥ √
2t . This completes the proof of

Proposition 6.9. �

Proposition 6.10 Given δ > 0, there exists a time t̄ ∈ (−∞, 0] (depending
on δ) such that

r(z, t)rz(z, t) ≥ H−1 − 2δ,

holds for all z ≥ 0 and t ≤ t̄ .

Proof By Proposition 6.6, we have 1+rrzz ≥ 0 for r ≥ C1+C2. This implies

(rrz)t = (rrz)zz
1 + r2z

− 2rzrzz(1 + r2z + rrzz)

(1 + r2z )
2 ≥ (rrz)zz

1 + r2z

for r ≥ C1 + C2. By Lemma 6.8, we can choose t̄ large enough so that
r(0, t)rz(0, t) ≥ H−1 − δ for t ≤ t̄ . Moreover, by a suitable choice of t̄ we
can arrange that r(z, t) ≥ C1 +C2 for all z ≥ 0 and t ≤ t̄ . For each s < t̄ , we
define a barrier function ψδ,s(z, t) by

ψδ,s(z, t) = H−1 − 2δ − H−1 ψ(2z, t − s)

for t ∈ (s, t̄]. We claim that rrz > ψδ,s for all z ≥ 0 and all t ∈ (s, t̄].
By our choice of t̄ , r(0, t)rz(0, t) ≥ H−1 − δ > lim supz→0 ψδ,s(z, t) for

each t ∈ (s, t̄]. Moreover, lim inf z→∞ r(z, t)rz(z, t) ≥ 0 > lim supz→∞ ψδ,s
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(z, t) for each t ∈ (s, t̄]. Finally, Proposition 6.9 gives r(z, s)rz(z, s) ≥ 0 >

lim supt→s ψδ,s(z, t) for each z > 0.
Thus, if the inequality rrz > ψδ,s fails, there exists some point (z0, t0) ∈

(0, ∞)×(s, t̄] such that r(z0, t0)rz(z0, t0) = ψδ,s(z0, t0) and r(z, t)rz(z, t) ≥
ψδ,s(z, t) for all z ≥ 0 and all t ∈ (s, t0]. Then, at the point (z0, t0) we have

(ψδ,s)zz

1 + r2z
≤ (rrz)zz

1 + r2z
≤ (rrz)t ≤ (ψδ,s)t = 1

4
(ψδ,s)zz.

This contradicts the fact that rz ≤ ε0 and (ψδ,s)zz > 0.
Thus, we conclude that rrz > ψδ,s for all z ≥ 0 and all t ∈ (s, t̄]. Sending

s → −∞, we obtain rrz ≥ H−1 − 2δ for all z ≥ 0 and all t ≤ t̄ . �

Corollary 6.11 We can find a time T ∈ (−∞, 0] such that r(z, t)2 ≥ H−1 z
for all z ≥ 0 and t ≤ T . In particular, if t ≤ T , then the function f (r, t) is
defined for all r ∈ [0, ∞).

Proof By Proposition 6.10, we can find a time T ∈ (−∞, 0] such that
r(z, t)rz(z, t) ≥ 1

2 H−1 for all z ≥ 0 and all t ≤ T . From this, the asser-
tion follows easily. �


After these preparations, we now compute the limit limz→∞ r(z, t)rz(z, t).

Proposition 6.12 For each t ≤ T , we have limz→∞ r(z, t)rz(z, t) = H−1.

Proof Lemma 6.4 gives lim supz→∞ r(z, t)rz(z, t) ≤ H−1. So, it is enough
to show that lim inf z→∞ r(z, t)rz(z, t) ≥ H−1 for each t ≤ T . Given any
δ > 0, Proposition 6.10 implies that we can find a number t̄ ≤ T such that
lim inf z→∞ r(z, t̄)rz(z, t̄) ≥ H−1−2δ.Moreover, Lemma 6.5 guarantees that

|(rrz)t | = |rtrz + rrzt | =
∣∣∣∣∣
rzrzz
1 + r2z

+ rrzzz
1 + r2z

− 2rrzr2zz
(1 + r2z )

2

∣∣∣∣∣ ≤
4C3

0

r2

for r ≥ C1. Using Corollary 6.11, we obtain

lim inf
z→∞ r(z, t)rz(z, t) = lim inf

z→∞ r(z, t̄)rz(z, t̄) ≥ H−1 − 2δ

for each t ≤ T . Since δ > 0 is arbitrary, we conclude that lim inf z→∞ r(z, t)
rz(z, t) ≥ H−1 for each t ≤ T . This completes the proof of Proposition 6.12.

�

Theorem 6.13 For each t ≤ T , Mt is a translating soliton.
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Proof Since rrz = r
fr
, Proposition 6.12 implies

lim
r→∞

fr (r, t)

r
= H

for each t ≤ T . Using the evolution equation for f (r, t), we obtain

lim
r→∞ ft (r, t) = lim

r→∞
fr (r, t)

r
= H

for each t ≤ T . Using Proposition 6.3, we conclude that ft (r, t) ≤ H for all
r ≥ 0 and all t ≤ T . Therefore, Proposition 6.2 gives ft (r, t) = H for all
r ≥ 0 and all t ≤ T . Consequently, Mt is a translating solition for each t ≤ T .

�

Once we know that Mt is a translating soliton for −t sufficiently large, it

follows from standard arguments that Mt is a translating soliton for all t :

Proposition 6.14 Suppose that Mt̄ is a translating soliton. Then Mt is a trans-
lating soliton for all t ≥ t̄ .

Proof By Proposition 3.1 and Corollary 3.2, the flow Mt , t ∈ (−∞, 0],
has bounded curvature. Without loss of generality, we may assume that
supMt

|A|2 ≤ 2 for each t ∈ (−∞, 0]. If ω is a fixed vector in R3, then

∂

∂t
(H − 〈ω, ν〉) = 	(H − 〈ω, ν〉) + |A|2(H − 〈ω, ν〉).

Moreover, since |A|2 ≤ 2, the function ρ(x, t) := e8t (|x |2 + 1) satisfies

∂

∂t
ρ > 	ρ + |A|2ρ

for t ∈ (−∞, 0]. By the maximum principle, the quantity supMt

|H−〈ω,ν〉|
ρ

is
monotone decreasing for t ∈ (−∞, 0]. In particular, if H = 〈ω, ν〉 at each
point on Mt̄ , then H = 〈ω, ν〉 on Mt for all t ∈ [t̄, 0]. �


References

1. Altschuler, S., Wu, L.F.: Translating surfaces of the non-parametric mean curvature flow
with prescribed contact angle. Calc. Var. 2, 101–111 (1994)

2. Angenent, S., Daskalopoulos, P., Šešum, N.: Unique asymptotics of ancient convex mean
curvature flow solutions. arXiv:1503.01178v3

3. Brendle, S.: Rotational symmetry of self-similar solutions to the Ricci flow. Invent. Math.
194, 731–764 (2013)

123

http://arxiv.org/abs/1503.01178v3


76 S. Brendle, K. Choi

4. Brendle, S.: A sharp bound for the inscribed radius under mean curvature flow. Invent.
Math. 202, 217–237 (2015)

5. Brendle, S., Choi, K.: Uniqueness of convex ancient solutions to mean curvature flow in
higher dimensions. arXiv:1804.00018

6. Brendle, S., Huisken, G.: Mean curvature flow with surgery of mean convex surfaces in
R
3. Invent. Math. 203, 615–654 (2016)

7. Colding, T.H., Minicozzi, W.P.: Uniqueness of blowups and Lojasiewicz inequalities. Ann.
Math. 182, 221–285 (2015)

8. Daskalopoulos, P., Hamilton, R., Šešum, N.: Classification of compact ancient solutions to
the curve shortening flow. J. Differ. Geom. 84, 455–464 (2010)

9. Daskalopoulos, P., Hamilton, R., Šešum, N.: Classification of ancient compact solutions to
the Ricci flow on surfaces. J. Differ. Geom. 91, 171–214 (2012)

10. Hamilton, R.: Harnack estimate for the mean curvature flow. J. Differ. Geom. 41, 215–226
(1995)

11. Haslhofer, R.: Uniqueness of the bowl soliton. Geom. Topol. 19, 2393–2406 (2015)
12. Haslhofer, R., Kleiner, B.: Mean curvature flow of mean convex hypersurfaces. Commun.

Pure Appl. Math. 70, 511–546 (2017)
13. Haslhofer, R.,Kleiner, B.:Mean curvature flowwith surgery.DukeMath. J.166, 1591–1626

(2017)
14. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20,

237–266 (1984)
15. Huisken, G.: Asymptotic behavior for singularities of mean curvature flow. J. Differ. Geom.

31, 285–299 (1990)
16. Huisken, G., Sinestrari, C.: Mean curvature flow singularities for mean convex surfaces.

Calc. Var. 8, 1–14 (1999)
17. Huisken, G., Sinestrari, C.: Convexity estimates for mean curvature flow and singularities

of mean convex surfaces. Acta Math. 183, 45–70 (1999)
18. Huisken, G., Sinestrari, C.: Mean curvature flow with surgeries of two-convex hypersur-

faces. Invent. Math. 175, 137–221 (2009)
19. Huisken, G., Sinestrari, C.: Convex ancient solutions of the mean curvature flow. J. Differ.

Geom. 101, 267–287 (2015)
20. Kleene, S., Møller, N.M.: Self-shrinkers with a rotational symmetry. Trans. Am.Math. Soc.

366, 3943–3963 (2014)
21. Merle, F., Zaag, H.: Optimal estimates for blowup rate and behavior for nonlinear heat

equations. Commun. Pure Appl. Math. 51, 139–196 (1998)
22. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.

arXiv:math/0211159
23. Sheng,W.,Wang, X.J.: Singularity profile in the mean curvature flow.Methods Appl. Anal.

16, 139–155 (2009)
24. Wang, X.J.: Convex solutions to the mean curvature flow. Ann. Math. 173, 1185–1239

(2011)
25. White, B.: The size of the singular set in mean curvature flow of mean convex sets. J. Am.

Math. Soc. 13, 665–695 (2000)
26. White, B.: The nature of singularities in mean curvature flow of mean convex sets. J. Am.

Math. Soc. 16, 123–138 (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

123

http://arxiv.org/abs/1804.00018
http://arxiv.org/abs/math/0211159

	Uniqueness of convex ancient solutions to mean curvature flow in mathbbR3
	Abstract
	1 Introduction
	2 Asymptotic analysis as t to-infty
	3 Lower bound for Hmax(t) as t to-infty
	4 The neck improvement theorem
	5 Proof of rotational symmetry
	6 Uniqueness of ancient solutions with rotational symmetry
	References




