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Abstract A well-known question of Perelman concerns the classification of
noncompact ancient solutions to the Ricci flow in dimension 3 which have
positive sectional curvature and are x-noncollapsed. In this paper, we solve
the analogous problem for mean curvature flow in R3, and prove that the
rotationally symmetric bowl soliton is the only noncompact ancient solution
of mean curvature flow in R3 which is strictly convex and noncollapsed.

1 Introduction

This paper is concerned with the classification of ancient solutions to mean
curvature flow. By definition, an ancient solution is a solution which is defined
for t € (—oo, T] for some 7. Ancient solutions play an important role in
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understanding singularity formation in geometric flows. For example, Perel-
man’s famous Canonical Neighborhood Theorem [22] states that, for a solution
to the Ricci flow in dimension 3, the high curvature regions are modeled on
ancient solutions, which have nonnegative curvature and are k-noncollapsed.
Moreover, Perelman [22] proved that every noncompact ancient x -solution in
dimension 3 has the structure of a tube with a positively curved cap attached
on one side.

Results of a similar nature hold for mean curvature flow, assuming that
the initial hypersurfacer is mean convex and embedded (see [6,12,13,16,17,
25,26]). In particular, Huisken—Sinestrari [16,17] proved that, for any mean
convex solution to mean curvature flow, the high curvature regions are almost
convex. Under the stronger assumption of two-convexity, one can show that
the mean curvature flow will only form neck-pinch singularities. Moreover,
the flow can be continued beyond singularities by a surgery procedure similar
in spirit to the one devised by Hamilton and Perelman for the Ricci flow (see
[6,13,18]).

Our goal in this paper is to classify all convex ancient solutions to mean
curvature flow in R® which are a-noncollapsed in the sense of Sheng and
Wang [23]. Recall that a mean convex surface is called e-noncollapsed if, for
each point x on the surface, there exists a ball of radius 7 in ambient space,
which lies inside the surface and which touches the surface at the given point
x. Examples of noncollapsed ancient solutions include the shrinking cylinders
and the rotationally symmetric bowl soliton (cf. [1]). In this paper, we show
that these are the only ancient solutions which are noncompact, convex, and
noncollapsed:

Theorem 1.1 Let M;, t € (—00, 0], be a noncompact ancient solution of
mean curvature flow in R> which is strictly convex and noncollapsed. Then
M, agrees with the bowl soliton, up to scaling and ambient isometries.

By combining Theorem 1.1 with known results in the literature (see [12],
Theorem 1.10, or [25,26]), we can draw the following conclusion:

Corollary 1.2 Consider an arbitrary closed, embedded, mean convex surface
in R3, and evolve it by mean curvature flow. At the first singular time, the
only possible blow-up limits are shrinking round spheres; shrinking round
cylinders; and the translating bowl soliton.

Let us indicate how Corollary 1.2 follows from Theorem 1.1. Suppose we
evolve a closed, embedded, mean convex surface in R® by mean curvature
flow. At the first singular time, every blow-up limit is an ancient solution
which is weakly convex and noncollapsed (cf. [25,26], or [12]). Indeed, every
blow-up limits must be 1-noncollapsed by [4]. If a blow-up limit is compact
and strictly convex, then the original flow eventually becomes convex, and
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therefore converges to a family of shrinking round spheres (cf. [14]). If a
blow-up limit is noncompact and strictly convex, then that blow-up limit is the
bowl soliton by Theorem 1.1. Finally, if a blow-up limit is not strictly convex,
then it splits off a line, and is a family of shrinking round cylinders.

We next discuss the background of Theorem 1.1. Note that an ancient solu-
tion which is mean convex and two-sided noncollapsed is necessarily convex
(cf. [12]), but it is not uniformly convex unless it is a family of shrinking
spheres (see [19]). Theorem 1.1 can be viewed as a parabolic analogue of the
classical Bernstein theorem, which classifies entire solutions to the minimal
surface equation. Theorem 1.1 can be generalized to higher dimensions, if we
assume that the solution is uniformly two-convex (see [5]).

Daskalopoulos, Hamilton, and Se$um obtained a complete classification
of all compact ancient solutions to the Ricci flow in dimension 2 (cf. [9]).
Moreover, they were able to classify all compact, convex ancient solutions
to curve shortening flow in the plane (cf. [8]). Remarkably, these results do
not require any noncollapsing assumptions. In a very important recent paper
[2], Angenent, Daskalopoulos, and Sesum studied compact, convex ancient
solutions to the mean curvature flow. Under suitable symmetry assumptions,
they obtained precise asymptotic estimates for the solution as t — —oo.

A special case of ancient solutions are solitons; these are solutions that
move in a self-similar fashion under the evolution. In a recent paper [3], the
first author proved that every noncollapsed steady Ricci soliton in dimension
3 is rotationally symmetric, and hence is isometric to the Bryant soliton up
to scaling. Using similar techniques, Haslhofer [11] subsequently proved that
every noncollapsed, convex translating soliton for the mean curvature flow in
IR3 is rotationally symmetric, and hence coincides with the bowl soliton up to
scaling and ambient isometries. A related uniqueness result for the bowl soliton
was proved in an important paper by Wang [24]; this relies on a completely
different approach.

In Sect. 2, we study the asymptotic behavior of the flow as t — —o0. To that
end, we write M; = (—t)% M_ log(—1)- As T — —00, the rescaled surfaces M,
converge in C} to acylinder of radius /2 with axis passing through the origin.
More precisely, wefshow that M, can be approximated by a cylinder up to error
terms of order O (e2). Asin[7],amajor difficulty is the presence of anon-trivial
eigenfunction for the linearized problem with eigenvalue 0. This eigenfunction
corresponds to the second Hermite polynomial. Using the convexity of M,
and the Brunn-Minkowski inequality, we show that this eigenfunction cannot
become dominant as T — —o0.

In Sect. 3, we show that liminf; , o Hmax(t) > 0. To do that, we consider
the complement Mt\Bg(_t) 1 (0). This set has two connected components, one

of which is compact and one of which is noncompact. By combining the

@ Springer



38 S. Brendle, K. Choi

asymptotic analysis in Sect. 2 with a barrier argument, we prove that the
bounded connected component of M,\B8( ) 1 (0) has diameter atleast ~ (—1).
—t

This implies that Hpy,y () is uniformly bounded from below as t — —o0.

In Sect. 4, we establish the Neck Improvement Theorem, which asserts
that a neck becomes more symmetric under the evolution. This result does
not require that the solution is ancient; it can be applied whenever we have a
solution of mean curvature flow which is close to a cylinder on a sufficiently
large parabolic neighborhood.

In Sect. 5, we iterate the Neck Improvement Theorem to conclude that M,
is rotationally symmetric.

Finally, in Sect. 6, we analyze ancient solutions with rotational symmetry,
and complete the proof of Theorem 1.1.

2 Asymptotic analysis as t > —o0

Let M;,t € (—o0, 0], be anoncompact ancient solution of mean curvature flow
in R3 which is strictly convex and noncollapsed. We first recall some known
results concerning the blowdown limit as 1 — —o0. Given any sequence t; —
—o0, we can find a subsequence with the property that the rescaled surfaces
(—t j)_% M;; converge in C\ to a smooth limit, which is either a plane, or a
round sphere, or a cylinder of radius +/2 with axis passing through the origin
(see [12], Theorem 1.11). Since the original flow M, is noncompact, the limit
cannot be a sphere. Moreover, it follows from Huisken’s monotonicity formula
[15] that the limit cannot be a plane. Therefore, the limit must lge a cylinder.
In the following, we consider the rescaled flow M; = e2 M_,—. The
surfaces M, move with velocity —(H — % (x, v))v. Given any sequence
Tj — —00, there exists a subsequence with the property that the surfaces

M-, converges in Ci to a cylinder of radius /2 with axis passing through
the origin. To fix notation, we denote by ¥ = {xl2 + x% = 2} the cylinder of
radius ﬁ whose axis coincides with the x3-axis.

Proposition 2.1 For each t, we have

P P
e 4+ < e 4.
M b

Proof Every convex surface is star-shaped, hence outward-minimizing by a
standard calibration argument. This implies area(M; N B, (p)) < Cr? for all
p € R¥and all ¥ > 0. We next consider an arbitrary sequence 7; — —o0.
After passing to a subsequence, the surfaces M,j converge in C\°. to a cylinder

of radius /2 with axis passing through the origin. This gives
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P _?
e - e 4
M, =

as j — 00. On the other hand, Huisken’s monotonicity formula [15] implies
that the function

TH [ e
M

is monotone decreasing in t. From this, the assertion follows. O

In view of the discussion above, there exists a smooth function S(7) taking
values in SO (3) such that the rotated surfaces M, = S(1)M, converge to
the cylinder ¥ in C}.. Hence, we can find a function p(7) with the following
properties:

o lim o p(7) =

e —p(1) <p'(r) <0.

e We may write the surface M, as a graph of some function u(-, T) over
N B2p(r) (0), so that

{x +ulx,)vs(x) : x € TN Byy)(0)} C MT,

where vy denotes the unit normal to ¥ and |u(., T)”C“(Emsz(I)(O)) <
p(r)~*.

In the next step, we fine-tune the choice of S(t). To that end, we fix a smooth
cutoff function ¢ > 0 satisfying o = 1 on [—%, %] and ¢ = 0 outside [—%, %].
By the implicit function theorem, we can choose S(t) € SO(3) such that
u(x, t) satisfies the orthogonality relations

_IXI2 X3
e T (Ax,vx)u(x, )| — | =
SNB(r)(0) p(7)

for every matrix A € so(3). Finally, we can arrange that the matrix A(t) :=
S'(1)S(r)~! € so(3) satisfies A(t)12 = 0. (Otherwise, we replace S(t) by
R(7)S(7), where R(7) is a rotation in the x;xp-plane. This does not affect the
orthogonality relations above.)

Our next two results are straightforward adaptations of powerful estimates in
[2]. These estimates will play a key role in the subsequent arguments. Recall the
foliation by self-shrinkers X, and f)b given in [2] (see also [20]). As explained
in [2], the union of all the leaves in this foliation contains a truncated cone of
the form {x € R3 : |x3]| > zo, x12 + x% < b§x32} for some large constant zq
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and some small constant by > 0. Let vg, denote the unit normal vector to this
foliation.

In the following, we denote by A the region in between the cylinder X
and the surface M. If L is sufficiently large, then the set A; N {|x3| > L} is
contained in the truncated cone where the shrinker foliation is defined.

Proposition 2.2 (cf. [2], Lemma 4.10) There exists a constant Lo such that
forall L € [Lo, p(7)]

_lx? 2 a2
) e — e > — e+ [w, viol) |,
MN{|x3|>L} ZN{|x3|=L} ArN{|x3|=L}

where w = (0,0, 1) denotes the vertical unit vector in R>.

Proof Since each leaf of the foliation is a self-similar shrinker, the normal

. . k2 .
vector vy satisfies div(e™ 4 vg) = 0. Note that vgy) = vy at each point on

the cylinder X. Using the divergence theorem, we obtain

x| x|

/~ e 4 (v, vor) —/ e+
M N {L<|x3|<z} EN{L<|x3]<z}

_a2 _a2
> —/ e d |<w,Vf01>|—/ e & (@, vrol)]-
Ac{las|=L) Acnlxz|=z)

We know (v, vgo1) < 1 on A;II. The convexity of MT implies that the area of
Az N {|x3] = z} is at most Cz2. Hence, passing to the limit as z — oo gives

P 2 a2
) e 4 — e > — e % [{w,vra)l,
M. N{lx3|>L} =N{lx3|>L} AcN{jx3|=L}

as desired. m]
Proposition 2.3 (cf. [2], Lemma 4.7) There exists a constant Lo such that

x[?

Lx |2
/ e~ 4 |V3ulx, 1)> < C/ e+ u(x, 7)?
=N{lx3|<L} 2n{lxzl<5)

and

2 _ 2
/ e 4 u(x,t)2 <CL 2f e 4 u(x, r)2
=n{5 <|x3|<L} =n{lazl<5}

forall L € [Lg, p(7)].
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Proof Lemma 4.11 in [2] implies that |(w, vfo))| < CL™! |x12 + x% — 2| for
each point x € A; N {|x3| = L}. This gives

x2 x2
/ e 7 [{w, vol)] < CL™! / e” T |x7 +x3 -2
ArN{|x3|=L} A:N{|x3]=L}

Ix|2
<cL™! / e” 4
=N{lxs|=L}

Using Proposition 2.2, we obtain

x| x|

xI2
/~ ef% —/ e 4 > —CLI/ e” 4 u’
M:N{|x3|>L} ZN{lx3/>L} ZN{lx3|=L}

[compare [2], equation (4.33)]. On the other hand,

/ _k2 / _lx?
5 e 4 — e 4
M:N{lx3|<L} ZN{lx3|<L}

L 2. . 1 2 ?
_ / /- k14 e*% { («[ﬂ) J (\/*+u)2 ( <al> )_{_(81'{) _ei% 2:| do dz.
—LJO o ”

Since L < p(t), we have |u| + |8”| + | | < o(1) for |x3| < L. This gives

_ﬁ P
e — e 4
Nf{lx3|<L} =N{lx3|<L}

2
/ / [e G ruwy—e A |V2u|:|d9dz

2 2
z/ f e~ T [ Cu®> + = |V2u| ] de dz
—L JO

where C > 0 is a large numerical constant. Putting these facts together, we
obtain

_k? _ kP 2 5
e — [ e 4> e —Cu® + — |V |
7, s =N{lxsl<L)

|2
—cL! / e_% u?.
03 |=L}

#\“N

25

IN
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By Proposition 2.1, the expression on the left hand side is nonpositive. Thus,
we conclude that

_x?
/ e 4 |[VZu?
=N{lxsl<L)

1|2 lx|2
< C/ e_4u2+CL_l/ e  ul
ZN{lx3|<L} ZN{|x3|=L}
The divergence theorem gives
[
L e 4t u
ZN{lx3|=L}
Lx|? .
:/ divy (e”# u? x@)
ZN{lx3|<L}
12 1
= / e 4 (u2 — —x32u2+2u (xtan,VEu))
£0{|x3|<L) -
lx|? 1
5/ e (uz——x§u2+4|v2u|2),
=N{lx3l<L) 4
hence
) _ip _xp
L e ftu"+L e 4 u
EN{lx3|<L} ZN{lx3|=L}
x| x|
SC/ e_4|VZu|2+CL2/. e v Ul
=N{lxs|<L) =N(lxl<5)
Putting these facts together, we conclude that
e s oo
e 4 |VZu|
ZN{lx3|<L}
|X|2 2

Lx |2
< CL_Z/ e 4 |V2u|2 + C/ e+ u”.
EN{lx3|<L} =N{lxzl<)

If L is sufficiently large, the first term on the right hand side can be absorbed
into the left hand side. This gives

_l? S 2 _? 2
e v |Voulr<C e+ u”.
=N{jx3|<L} =n{lxzl<5}
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Uniqueness of convex ancient solutions 43

This proves the first statement. Using the inequality

2 1
05/ e_% (uz——x§u2+4|vzu|2),
TN{lxs|<L} 4

the second statement follows. O

Let us denote by H the space of all functions f on X such that

2 UL
[fll3g= [ e+ f <oo.
b

We define an operator £ on the cylinder ¥ by

1
Lf=Asf =5 " VEf) 4],
In coordinates, £ takes the form

Ef_82f+182f 1 af+f
927 T29e2) T2%%; '

The eigenfunctions of L are of the form H, (%) cos(m6) and H), (%) sin(m#@),
where m and n are nonnegative integers and H,, denotes the Hermite polyno-

mial of degree n. The corresponding eigenvalues are given by 1 — # Thus,
there are four eigenfunctions that correspond to positive eigenvalues of £, and
these are given by 1, z, cos 6, sin 6 up to scaling. The span of these eigenfunc-
tions will be denoted by H .. Moreover, there are three eigenfunctions of £
with eigenvalue 0, and these are given by z> — 2, z cos 6, z sin 6 up to scaling.
The span of these eigenfunctions will be denoted by Hp. The span of all other
eigenfunctions will be denoted by H_. Clearly,

1
%ﬁﬂHZEWM{ forf € My,
(Lf fin=0 for f € Ho,
1
mﬁﬂﬂs—ymm for f € H_.

Lemma 2.4 The function u(x, t) satisfies

)
o= Lu+ E + (A(1)x, vs),

where E satisfies the pointwise estimate |E| < O(p(‘l,')_l) (lul + |VZul| +
|A(T)]).
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44 S. Brendle, K. Choi

Proof Recall that the rescaled surfaces M, move with velocity —(H —
% (x, v))v. Hence, the rotated surfaces M, = S(t)M; move with velocity
—(H—% (x,v)—(A(7)x, v))v, where x € M. Therefore, the function u(x, 7)
satisfies the equation

0 1
= H
az" (ve, v(x + uvy)) (x +uvs)

1
+
2{vy, v(x + uvy))

(A(D)(x +uvs), v(x +uvy)))

(x +uvy, v(ix + uvy))

(vs, v(x +uvy))

for x € X. By assumption, ||u||c4(2ﬂ32p(t)(0)) <O0(p (7)~2). This gives

[v(x + uvs) —vs + VZu| < 0(p(1)™%) (lul + |VZul)

and

1
H(x 4+ uvy) + Asu + e O(p(T)™) (lul + |VZul).

Putting these facts together, we obtain

0
U= Lu+ E 4 (A(D)x, vs),

where E satisfies the pointwise estimate |E| < O(p (™)™ Y (Jul + |VZu| +
lA(T)D. O

x3
p(T)

Lemma 2.5 The function ii(x, t) = u(x, 1) ¢(=235) satisfies

9 . RS *3
_M:[,u-i-E-i-(A(‘E)X,VZ)(P VN ?
97 p(T)

where E satisfies | E|l3 < 0(o(x)™") (|l + |A()]).
Proof We compute

d . .. o= *3
2 :£u+E+(A(r)x,VE)<0< )
97 p(7)

@ Springer



Uniqueness of convex ancient solutions 45

where
A X3 2 8M / X3 1 Vi X3
E=E - == -
‘”(p(r)) p(x) 327 (p(r)) pm2 " (p(r))

LT u(p,( x3 )_xa,o/(f)u(p,( X3 )
2p(1) p(t) p(1)? p(t))

Using Lemma 2.4, we deduce that

1E] < 0(p(0) ™Y (lul + |VZul + |A(T)))

for |x3| < p(zt). Moreover, since |p'(t)| < p(t), we obtain

|E] < 0() Jul + O(p()™") (IVZul + |A(1)])

for @ < |x3] < p(7). Using Proposition 2.3, we conclude that
_2 o -2 _s2
e 4 |E|I"<0(p(r)™) et u
x =N{lxs] <22}
X2
+ o) et 2
2P <[x3]<p (1))
Lx[2
+0(p(v)) e+ [VEuf?
=N{x31<p ()
+ 0(p(t) ) |A(D)
Lx[2
< O0(p(r)™?) e+ u?
N{lx3] <22}
+ 0(p(r) ) A
x2
< 0(p<r>2)/ o 2
>
+ 0(p(r) ) |A(D) .
Thus, | Ell3 < O(p(1)™") il + O(p(r)~") |A(7)], as claimed. O

Lemma 2.6 We have |A(t)| < O(p(t)™") |lully and

—i—Li| < 0@ ix.

0
ot

H

Proof The orthogonality relations imply that u is orthogonal to (Ax, vy) for
every A € so(3). Since this is true for each 7, it follows that %ﬁ is orthogonal
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46 S. Brendle, K. Choi

to (Ax, vy) for every A € so(3). Moreover, since the function (Ax, vy) is
an eigenfunction of £ with eigenvalue 0, we deduce that Li is orthogonal
to (Ax, vy) for every A € so(3). Consequently, %12 — L is orthogonal

to (Ax,vy) for every A € so(3). Therefore, E + (A(7)x, vg)(p(pﬁ)) is
orthogonal to (Ax, vy) for every A € so(3). In particular,

/ - <E+(A(t)x V) @ (x—3>) (A(7)x, vg) = 0.
> p(7)

Using the fact that A(7)12 = 0, we obtain

AP < 0(1>/ A, vz>2so( = )
p(T)

< 0<1)/Ee—4 E| (A, v3)]
<0 IEllx 1A
< 0@ N (lilly + 1A@D 1A@)],

where in the last step we have used Lemma 2.5. Consequently, |A(7)| <
O(p(t)™") |lit]|3. Using Lemma 2.5, we obtain

< IElx + O [A@)] < 0(p(1)™") lilln,

0
| i - ci
ot H

as claimed. O
We now define
Uy (1) = | Pri(-, D)ll3

Uo(t) := || Poit (-, T)II3,,
U_(t) = | P-a(-, D)3,

where Py, Py, P_ denote the orthogonal projections to H ., Ho, H—, respec-
tively. Using Lemma 2.6, we obtain

d
U+ (@ Z U (0) — O(p()™") (U4(2) + Uo (1) + U_(1)),

d
‘EUO(T) < 0(p(0)™") (U4 (1) + Up(r) + U_(1)),

d
V- =-U-(0)+ 0(p(r)™ 1) (Us (1) + Up(r) + U_(1)).
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Clearly, Us(t) + Up(r) + U—_(7) = ||12||%{ — 0 as T — —o0o. Moreover,
Uy(t) +Up(r) +U_(7) = ||ﬁ||${ > ( since ]\7I, is strictly convex.

Lemma 2.7 We have Uy(t) + U—_(t) < o(1)U(7).

Proof Applying an ODE lemma of Merle and Zaag (cf. Lemma 5.4 in [2] or
Lemma A.1 in [21]), we conclude that either Ug(t) + U—_(7) < o(1)U4+(7) or
Ui () + U—(7) < o(H)Up(7).

The second case can be ruled out as follows: Suppose Uy (t) + U_(1) <
o(1)Up(t). Then Tl ( )” converges with respect to || - || to the subspace
Ho = span{z? — 2, zcos 8, z sin #}. On the other hand, the orthogonality rela-
tions used to define S(r) imply that the function (-, ) is orthogonal to the
function (Ax, vy) for each A € so(3). In other words, the function u(-, ) is

orthogonal to the functions z cos @ and z sin 6. Consequently, 4(7)

2 CON-
llaC,o)lln

verges with respect to || - |7 to a non-zero multiple of z> — 2.

Let €, denote the region enclosed by M;. Moreover, we denote by A(z, )
the area of the intersection 2; N{x3 = z}. By the Brunn-Minkowski inequality,
the function z — 4/ A(z, 7) is concave. Since MT is noncompact, it follows
that the function z — +/A(z, T) is monotone.

For |z] < p(t), we have the exact identity A(z, 1) = % 02” W2 +

u(, z, 7))* d6. Thus, the function z > [*" (2v/2u(, z, ) +u(6, z, 7)%) dO
is monotone. In particular, we either have

—1 2
f QV2u@®,z,7t) +u®, z,t)*) do dz
-3 0

1 2
</ QV2u®,z,7t) +u®, z,7)*) d dz
—-1J0

3 27
5/ / V2ud,z,7) +u®, z,7)>) do dz
1 0

or

-1 2

/ / 2vV2u,z,7) +u®, z,7)*) do dz

-3 Jo
1 2

Z// 2vV2u,z,7) +u®, z,7)*) do dz
-1Jo

3 2
z/ / V2 ud,z,7t) +u®, z, 7)) db dz.
1 0
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48 S. Brendle, K. Choi

However, neither of these possibilities is consistent with the fact that the limit

of ”I/Ati(i'(.';f;ﬁ'}—( is a non-zero multiple of z> — 2. This is a contradiction. This
completes the proof of Lemma 2.7. O

Lemma28 For each ¢ > 0, we have ||Lt(-,‘L’)||C4([0’2n]><[_100’100]) <
o(e" %) and |A(1)| < o(e" ).

Proof Recall that Ug(t) + U_(t) < o(1)U, () by Lemma 2.7. This directly
implies

d
T U+ (@ 2 U (1) —o(H) Uy (7).
T

Consequently, for every ¢ > 0, we have U,(t) < o(e!'=97). This gives
Uo(t) + U_(1) < o(HU4(7) < 0(e''=87), hence

lal, = UL (2) + Up(x) + U-(7) < o(e!! 7).

Using Lemma 2.6, we obtain |A(t)] < o(1) ||li]ln < o(e a5 ). Finally, the

(-o)c
inequality [[u(-, T)llc4(0,221x[=100,1007) =< o(e 2 ) follows from standard
interpolation inequalities. This completes the proof of Lemma 2.8. O

Recall that A(7) = §'(v)S(r)~". Since |A(7)| < o(e )by Lemma 2.8,

the limit lim;_, _ S(7) exists. Without loss of generahty, we may assume
1-e)t
that lim;_, _o S(7) = id. Clearly, |S(7) — id| < o(e" ).

Lemma 2.9 We have
sup Ix? + x5 —2| < eT0

M N{lxs|<e” 10)
if —t is sufficiently large.

Proof Using Lemma 2.8 and the estimate |S(t) —id| < o(e = r) we obtain

(1—-8)T
sup  |xP+x5—2[<o(e 2 ).
X€M.NB1(0)

The convexity of M, implies
sup (x1 +x2) <2 4el0
MeN{lx3]<e”T0)
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if —7 is sufficiently large. Let
_ .2 2 _ 2
X = {(x1, x2, x3) 1 X7 + X7 = ug(—x3)°, —a < x3 <0}
denote the self-similar shrinker constructed in [2]. By Lemma 4.4 in [2],

ug(2) < V2 —a2. Since M, converges to ¥ in C, the surface M, N{x3 <
—2} encloses the surface £, N{x3 < —2}if —7 is sufficiently large (depending

on a). On the other hand, since infxeM,mBlo(O) (xl2 + x%) >2— o(e(l_zg)r ), the
boundary M, N {x3 = —2} encloses the boundary ¥, N {x3 = —2} provided
that —t is sufficiently large and a < P By the maximum principle,
the surface M; N {x3 < —2} encloses X, N {x3 < —2} whenever —7 is

sufficiently large and a < P Using Theorem 8.2 in [2], we obtain
ug(y) > /2(1 —a=2y2) for all y € [0, a], provided that a is sufficiently
large. Putting these facts together, we obtain

inf (x] +x3) >2—¢10
— T
M:N{—e T0<x3<-2}

if —7 is sufficiently large. An analogous argument gives

inf (x +x3) > 2—eT

— T
MN{2<x3<e” 10}

if —7 is sufficiently large. Putting these facts together, we obtain

inf ()c1 +x2) >0 _eT0
M Nf|x3]<e” T}

if —r is sufficiently large. This completes the proof of Lemma 2.9. O

Lemma 2.10 Ler &g > 0 be given. If T zs sufficiently large (depending on
€o), then every point in M, N {|x3] < 2 e 10} lies at the center of an eo-neck.

Proof Suppose that there exists a sequence of times T; — —o0 and a sequence

of points g; € I\;Irj N A{lx3] < %e_%} such that g; does not lie on an &¢-
neck. Using Lemma 2.9 and the noncollapsing property, we conclude that the
mean curvature at ¢; is bounded from below by a posmve constant. We now
consider the triangle in R3 with vertices qj> (0,0,e” 10) and (0,0, —e™ 10)
Using Lemma 2.9 and the convexity of M;, we conclude that this triangle
lies inside M7;. Moreover, the angle at g; converges to 7 as j — —oo. We
now dilate the surface M, to make the mean curvature at g; equal to %ﬁ
Passing to the limit as j — oo, we obtain a noncollapsed ancient solution of
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mean curvature flow which is weakly, but not strictly convex. By the strong
maximum principle, the limit splits off a line. By Lemma 3.6 in [12], the limit
is around cylinder. Therefore, the point g ; lies on an gp-neck if j is sufficiently
large. This is a contradiction. O

After these preparations, we now state the main result of this section:

Proposition 2.11 We have

sup  |x7 +x3 —2| < O(e?).
xeM:NB1o(0)

Proof In view of Lemmas 2.9, 2.10, and standard interpolation inequalities,
we may write M, as a graph over the cylinder ¥ N B 1 (0), and the C 4_norm

of the height function is bounded by Of(e 100). We now repeat the argument
above this time with p(t) = ¢~ 000, As above, we consider the rotated surfaces

M; = S(t)Mf, where S(7) is a function taking values in SO (3). We write
each surface M, as a graph over the cylinder, so that

x+ux,tHvg(x):x e XN Bze—moo

T

where lu(, Dlcazne . ©) = O(eﬁ). We choose the matrices S(t) in
2.~ 1000

such a way that the orthogonality relations

)(2
/ e (Ax, vg) u(x, T) @(eT00 x3) = 0
SNB _ : (0)

are sa‘[isﬁedr for all A € s0(3). As above, the function iu(x,t) =
u(x, v) @(e10m x3) satisfies

8 A~ ~ = A~
< O(e™00) [|u]|3.

H

—u—Lu
ot

Hence, if we define

Ui (t) i= | PraC, D)3,
Uo(t) := || Poii (-, T)|I3,,
U_(t) = [|[P_a(-, D)3,
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then
d c
d—TU+(T) > Uy(r) — O(etw) (Uy(t) + Up(r) + U_(7)),

‘j_TUO(T) < 0(e™0) (U4 (1) + Up(t) + U—(1)),

d v

EU—(T) < —=U_(7r) + O(e™) (U4 (t) + Up(7) + U_(7)).

As above, the ODE lemma of Merle and Zaag implies that either Up(t) +
U_(t) < o()U4(tr) or Us(t) + U_(t) < o(1)Up(7), and the latter case
can be ruled out as above using the orthogonality relations and the Brunn—
Minkowski inequality. Thus, Ug(t) + U_(t) < o(1)U4 (7). This gives

%Um) > Uy (1) — O(e™®) Uy (1),

hence Up(t) < O(e"). This implies Up(t) + U_(t) < o(1)Uyi(r) <
O(e"). From this, we deduce that |i]y < O(e%). Using Lemma 2.6,
we obtain |A(T)| < O(eé) Since lim;— _o S(7) = id, it follows that
|S(T) — 1d| < 0(62) Finally, we observe that u satisfies an equation of
the form —u = Lu+ (A(t)x, vy), where L is an elliptic operator of second
order Whose coefficients depend on u, Vu, V2u, and A(t). Ast — —o0,
the coefficients of £ converge smoothly to the corresponding coefficients
of L. Using standard interior estlmates for parabolic equations,T we obtain
(s Dl ea0.2721x[—100,100) = 0(62) Since |S(t) —id| < O(e?), we con-
clude that

sup  |x7 +x3 —2| < O(e?).
xeM:NB1o(0)

This completes the proof of Proposition 2.11. O

3 Lower bound for Hy,,x(f) ast - —o0

Let M;, t € (—o0, 0], be a noncompact ancient solution of mean curvature
flow in R3 which is strictly convex and noncollapsed. For each ¢, we denote
by Hmax () the supremum of the mean curvature of M;.

Proposition 3.1 For each t, Huyax (1) < o0.

Proof Let us fix a time ¢ and a small number ¢. By Proposition 3.1 in [13],
we can find a compact subset of M; with the property that every point in the
complement of that set lies at the center of an e-neck. Hence, if Hpax () = 00,
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then the surface M, contains a sequence of e-necks with radii converging to
0, but this is impossible in a convex surface. O

Corollary 3.2 The function Hpax(t) is continuous and monotone increasing
int.

Proof The pointwise curvature derivative estimate of Haslhofer and Kleiner
[12,13] gives |%H | < CH? for some uniform constant C. Consequently,
Hpax () is continuous in ¢. In particular, Hpyax (¢) is uniformly bounded from
above on every compact time interval. Hence, we can apply Hamilton’s
Harnack inequality [10] to conclude that Hpax(f) is monotone increasing
mnt. O

Proposition 3.3 We have lim inf;_, _ oo Hpax () > 0.

Proof Proposition 2.11 gives

1
sup i 05 = 2] < 0((=N"7).
xe(-0"I(MNB 1 (0))
10(=1)2

By assumption, M, is noncompact and strictly convex. Hence, M; has exactly
one end. Without loss of generality, we may assume that M; N {x3 < 0} is
compact and M; N {x3 > 0} is noncompact. We can find a large constant K
such that the curve
_1 1
(=) 2 (M; N {x3 = =2(-1)2})
lies outside the circle

(a2 = (V2 — K(—1)"7)2, x3 = —2)

if —1 is sufficiently large. Let us consider the self-similar solutions constructed
in [2]. For a > 0 large, there exists a surface

Yo = {(x1, X2, %3) 1 X] + x5 = ua(—x3)>, —a < x3 < 0}
which satisfies the shrinker equation H = % (x, v). Hence, the surfaces
Sa = (—1)2 4 + 0,0, Ka?)

= (61, %2, 23) 2 4+ 33 = (=0 e (=3 + KaP) (=) "D)?,

2 i 2
Ka“—a(—1)2 <x3 < Ka“}
evolve by mean curvature flow.
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We will use the surfaces X, ;N{x3 < —2(—t)% } as barriers for the flow M; N

{x3 < —2(—t)%}. Ast — —o0, the rescaled surfaces (—t)_% M; converge
in C{° to the cylinder {xl2 + x% = 2}. Moreover, as t — —o0, the rescaled

surfaces (—t)_% (ZgN{x3 < —2(—t)%}) converge to 2, N{x3 < —2}, which
is a compact subset of {x% + x% < 2}. Therefore, , ; N {x3 < —2(—t)%} lies
inside M; N {x3 < —2(—t)%} if —1 is sufficiently large (depending on a).

We next examine the boundary curves M; N {x3 = —2(—t)%} and X, N
{x3 = —2(—t)%}. By our choice of K, the curve

(=172 (M, N {x3 = =2(-1)2})

lies outside the circle
242 = (V2 — K(=1)7)%, x3 = —2J.

Moreover, the curve

(=1)72 (Sas N a3 = —2(=1)2))
is a circle

02+ 22 = g2+ Ka*(—1)"2)%, x3 = 2},

Using Lemma 4.4 in [2], we obtain u,(2) < +/2 and u,(2) — uy(1) < —a™>

if a is sufficiently large. Moreover, by Lemma 4.2 in [2], the function u, :
[0, a] — R is concave. Hence, we obtain

a2+ Ka2(—1)72) < uq(2) + Ka*(—1)"2 (ua(2) — ua(1))

<V2-K(-1)"2
for —t > 4K?2a?. Therefore, the curve g Nix3z = —2(—t)%} lies inside
the curve M; N {x3 = —2(—t)%} whenever —t > 4K2a? and a is sufficiently

large. Using the maximum principle, we conclude that the surface £, ;N {x3 <
—2(—t)%} lies inside the surface M,;N{x3 < —2(—t)%} whenever —t > 4K 242
and a is sufficiently large. For —t = 4K?2a?, the tip of ¥, has distance
a(—t)% —Ka®> =Ka*> = —& from the origin. Consequently, the intersection
of M; with the halfline {x; = x» = 0, x3 < 7%} is non-empty if —¢ is
sufficiently large. From this, we deduce that lim sup,_, _ . Hmax(¢) > 0. Since
Hpax () is monotone increasing in ¢, we conclude that lim inf;_, _ o Hmax ()
> 0. O
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4 The neck improvement theorem

Definition 4.1 Let K be a vector field in R3. We say that K is a normalized
rotation vector field if there exists a matrix § € O(3) and a point g € R? such
that K (x) = SJS~!(x — ¢), where

Note that we do not require that the origin lies on the axis of rotation.

Lemma 4.2 There exists a large constant C and small constant e > 0 with
the following property. Suppose that M is a surface in R3 and let X be a point
on M. We assume that, after rescaling, the surface M is eo-close (in the C*-
norm) to a cylinder S' x [=5, 5] of radius 1. Suppose that KV and K® are
normalized rotation vector fields with the following properties:

o |[KD|H <10and |[K®| H < 10 at the point x.
o (KD W H<eand |(KP,v)| H < ¢ in a geodesic ball around x in M
of radius Hx)™ L

Then

min sup |K(1) — K(Z)l, sup IK(U + K(2)| H(x) < Ce.

B B

1008 &)—1 %) 1007 (5)—1 %)

Proof By scaling, we may assume that H (x) = 1. We argue by contradiction.
If the assertion is false, then there exist a sequence of surfaces M /), a sequence
of points x; € M () satisfying H (¥ j) = 1, sequences of normalized rotation
vector fields K (1'/) and K>/, and a sequences of real number & j — 0 with
the following properties:

e The surfaces M) are %—close (in the C*-norm) to a cylinder M = § I x
[—5, 5] of radius 1. Moreover, we may assume that the axis of the cylinder
is the x3-axis.

o |[K1:D| < 10and |K@ 7| < 10 at the point X;.

o (KD V)| H <egjand [(K®/), v)| H < ¢ in a geodesic ball around ;
in M of radius 1.

® SUPB (%)) KD — KGD| > Jéj-

® SUPBg(E)) KD+ K@D = Jjej

Note that the distance of x; from the axis of rotation of K (.7 is at most
10. Hence, after passing to a subsequence if necessary, the vector fields
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K1) converge to a normalized vector field K @, Similarly, the vector fields
K27 converge to a vector field K. Clearly, K" and K® are tangential
to the cylinder st x [-5,5]. Consequently, we have K (1)(x) = +Jx and
K®(x) = +Jx, where J is defined as above. Without loss of generality,
we assume that KD (x) = K@ (x) = Jx. For each J, we define §; :=
SUP B9 (i) KD — K@D > Jjé€j. Clearly, 6; — 0. We next consider the

Killing vector field V) := 5! (K(l’f)—K(z’j)).Then SUP ey [V =1
and (VU v)|H < 26 8 < 2] in a geodesic ball around x; in M of

radius 1. Hence, after passmg to a subsequence, the vector fields V) con-
verge to a non-trivial Killing vector field V on R3 which is tangential to the
cylinder S L' [=5, 5]. Since K1) and K%/ are normalized rotation vector
fields, the limit vector field V must be of the form V (x) = [A, J]x — Jb for
some matrix A € so(3) and some vector b € R3. However, such a vector field
cannot be tangential to the cylinder S' x [—5, 5] unless V vanishes identically.
This is a contradiction. |

Asin[18, pp. 189-190], we denote by P(x, 7, r, T) the set of all points (x, )
in space-time such that x € By (¥, r) and ¢ € [t — t, t]. Moreover, we put
P(x,7,L,0) =P, 7, LHE, 1), 0 H(x, )~%). We say that (&, 7) lies on
an e-neck if the parabolic neighborhood 75()5, f, 100, 100) is, after rescaling,
e-close (in the C'%-norm), to a family of shrinking cylinders.

Definition 4.3 Let M; be a solution of mean curvature flow with positive
mean curvature. We say that a point (X, f) is e-symmetric if there exists a
normalized rotation vector field K on R> such that |[K| H < 10 at the point
(x,7) and |(K, v)| H < ¢ in the parabolic neighborhood P(x, 7, 10, 100).

Note that the condition that |K| H < 10 at the point (X, f) is equivalent to
the condition that the distance of the point x from the axis of rotation of K is
at most 10 H(x, 7).

Theorem 4.4 (Neck Improvement Theorem) There exists a large constant L
and a small constant €| with the following property. Let M; be a solution
of mean curvature flow, and let (x,t) be a point in space-time. Suppose that
every point in the parabolic neighborhood P(x t, L, L?) lies on an &1-neck.
Moreover, suppose that every point in 73(x t,L, L2) is e-symmetric, where
e <ey. Then (X,1)is £ 5 -Symmetric.

Proof Without loss of generality, we assume f = —1 and H(x, —1) = \/lé
Throughout the proof, we assume that L is sufficiently large, and ¢ is suffi-
ciently small depending on L. In the parabolic neighborhood P(x, 7, L, L?),

we can approximate M; by a cylinder S' ((—2t)%) x R, up to errors which are
bounded by C(L)¢eq in the C 100_porm.
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Step 1 By assumption, for every point (xo, fp) € P(x, —1, L, L?), thereexists a
normalized vector field K ¥0-70) such that | K *0:0)| H < 10 at the point (xo, fo),
and |[(K ®00) )| H < ¢ on the parabolic neighborhood 75(x0, to, 10, 100). A
repeated application of Lemma 4.2 gives

min{ sup |K®7D — gGo0)| gup | KD 4 g0 b < c(L)e
BioL(0) BioL(0)

for all (xq, 19) € 75(13, -1, L, Lz). Without loss of generality, we may assume
that

sup |K&™D — g@00)| < C(L)e
BioL(0)

for all (xq, tp) € 75(92, —1, L, L*). Moreover, we may assume without loss of
generality that K = K ~D is an infinitesimal rotation around the x3-axis,
so that K (y) = Jy, where J is defined as in Definition 4.1. Finally, we may
assume that the point x lies in the plane {x3 = 0}.

Let us write M, as a graph over the x3-axis, so that

L L
{(r(G, z,t)cosO,r(@,z,t)sinf, z) : 0 € [0,2x], z € [—Z, Zi“ C M;.

By assumption, the difference (9, z,t) — (—ZI)% is bounded by C(L)e; in
the C'%-norm. The unit normal vector to M; is given by

1
V= >
_ ar\2 or

\/l-i-r 2(%) +(5)

) _y 0r ) or
- | (cos@,sinf,0) — r @ (—sin@, cosd,0) — 8_ 0,0,1) .
Z
We define

(R.v) 1 ar
u = s = _
5 2 90

\/1+r—2 (5) +<g_;>

Step 2 For each point (xg, 79) € 75(12, -1, L, Lz), we know that

(K000 )| < Ce (—19)2
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on the parabolic neighborhood P (x0, t9, 10, 100). Moreover, we can find a
matrix § € O(3) and a vector g € R3 (depending on (xp, fp)) such that
K(y) = K200 (y) = Jy = SJS™'(y — ¢) and |S —id| + |g| < C(L)e.
Consequently, there exist real numbers ag, a1, by, b1 (depending on (xg, #p))
such that

lao| + lai| + [bol + |b1] < C(L)e
and
(K — K@) vY — (g + ajz) cos — (bg + biz) sinf| < C(L)ee

on the parabolic neighborhood 75(x0, to, 10, 100). Note that the numbers
ao, ay, by, by account for the fact that the rotation vector fields K 0-0) and
K may have different axes of rotation.

Putting these facts together, we obtain

(K, v) — (ag +a1z) cosf — (bo + b12) sin 6] < Ce(—19)? + C(L)e1e

on the parabolic neighborhood 75(x0, to, 10, 100). To summarize, given any

. 2 .
point (2o, ty) € [—%, %] X [—LT, —1], there exist real numbers ag, ai, bg, b

(depending on (zg, fp)) such that
laol + lai| + |bol + 1b1] = C(L)e
and
(@, z,1) — (ao + a1z) cos 6 — (bo + b1z) sinf] < Ce(—10)2 + C(L)ere
for z € [20 — (—10)2, 20 + (—t9)2] and 1 € [210, 10].
Step 3 The function u = (K, v) satisfies the evolution equation

ad
—u=Apyu+|APu.

o7 mu+ A

Since |u| < C(L)e, it follows from standard interior estimates for parabolic
equations that |Vu| + |V2u| < C(L)e for z € [—%, %] and t € [—f—é, —1].
Hence, we obtain

9 92 1 92
—U— —SU— ———— —5U —
ot 972 (=21) 962 (—21)

u| < C(L)ere

forz e [—%, %] andt € [—%, —1].
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Let & be the solution of the linear equation

o 0% 1 92 1

ot T a2t T Ty et T T ™

_L

in the parabolic cylinder {z € %], t e [—%, —1]} such that # = u on

[ 4 ’
the parabolic boundary {|z| = %} U{r = — %}. Using the maximum principle,
we obtain

lu—u| < C(L)ee

in the parabolic cylinder {z € [—%, %], t e [—%, —1]}.

Step 4 We now analyze the function i using separation of variables. Form > 1,
we put

1 2
Un(z, 1) = —/ i@, z,t) cos(md)do
T Jo
and
1 2
wp(z,t) = —/ u(,z, 1) sin(mob) do.
T Jo

The functions v, and w,, satisfy the evolution equations

9 02 N 1 —m? 9 9?2 N 1 — m?
—Uy; = —=V Uy, —Wy =—=W —_— Wy,
ar " 92" (=200 " e T 92" (=2 "

. ~ 1—m? ~ 1-m2
Consequently, the functions v,, = (—t) 7 vy, and wy, = (—1)" 2w, sat-

isfy the linear heat equation
82
T 022

9 92

Oy = —= O
ar " 92 ™ ot

ad

A A A

Wm W,

form > 1.

Step 5 We first consider the modes with m > 2. For m > 2, we have
vm| + [wm| < (Ce + C(L)ere) (—1)?
in the parabolic cylinder [, £1 x [—£%, —1]. This implies
o] + || < (Ce + C(L)ere) (=)=
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in the parabolic cylinder [—%, %] X [—%, —1]. Using the solution formula
for the one-dimensional heat equation with Dirichlet boundary condition on
the rectangle [—%, %] X [—%, —1], we may express Uy, (z, t) and Wy, (z, t) as
integrals of initial and boundary data. This gives

[Om (2, D]+ [Wm (z, 1)

L 2—m2
< (Ce+ C(L)ee) (Z)
t _ 12 ; 2
+ (Ce + C(L)ele)L/ L T (-7t (—s)' =T ds

16
2

L 2—m
< (Ce+ C(L)e1e) (Z)

t —m2
+(C8+C(L)818)L_1/L2 (—s) 3" ds

16
2

L 2—m
< (Ce+ C(L)ere) (Z)

3—m?

+(Ce 4+ C(L)e1e) L™ ' m™ 2 (=) 2

for z € [—20, 20] and ¢ € [—400, —1]. Therefore, we obtain

2-m?

L2 2
o201+ G 01 = (€ CLe1e) (1)

+ (Ce + C(L)slz?)L_lm_2

for z € [—20, 20] and ¢ € [—400, —1]. Summation over m > 2 yields

D oGO+ D wanz, 1)
m=2

m=2
for z € [—20, 20] and r € [—400, —1].

+ <CL 'e+C(L)gie

Step 6 We next consider the modes with m = 1. We have

9 92 0 92
—V] = —5V, —W]=_—5W].
P R TR TR

. . 2 .
Moreover, given any point (zg, fo) € [—%, %] X [_%’ —1], there exist con-
stants ag, ai, b, b1 (depending on z¢ and fy) such that
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laol, lail, 1bol, |b1] < C(L)e
and
1
[vi(z,1) —ap —arz| + |wi(z, 1) — by — b1z| < Ce(—19)2 + C(L)ere

1 1 . . .
for z € [z0 — (—19)2, z0 + (—1tp)2] and ¢ € [219, #p]. Using standard interior
estimates for the linear heat equation, we obtain
82w1

az?

821)1
972

< (Ce+C(L)erg) (=) 2

. . . 2
in the parabolic cylinder [— %, %] X [— %, —1]. As above, we can use the solu-
tion formula for the one-dimensional heat equation with Dirichlet boundary

" L L L2 2
condition on the rectangle [_Z’ Z] X [—ﬁ, — 52 as

integrals of initial and boundary data. This gives

972

9%

Sz @ )‘ 1<z, 0

I\
< (Ce+C(L)ere) (Z)

t 2
+ (Ce + C(L)818)L/ e ~ T (t—s)" > (—s)~ > ds

16

I\!
< (Ce+C(L)er1#) (Z)

t
+ (Ce + C(L)818)L_2/ . (—s)_% ds
~T16

< (Ce+C(L)ere) L7}

forz € [—20, 20]and ¢ € [—400, —1]. Consequently, we can find real numbers
Ao, A1, By, B such that

lvi(z,t) — Ag — A1z| + |wi(z, t) — Bgp — B1z] < CL 'e + C(L)ere

for z € [-20, 20] and t € [—400, —1].
Step 7 Finally, we consider the mode with m = 0. Using the identity

2 2 2
9 9 9
/ 1+r2 —r + & d@:/ o =0
9z o 00
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together with the estimates |u| < C(L)e, Ig—gl + Ig—ZI < C(L)ey, we obtain

21
/ u,z, t)de‘ < C(L)eye,
0

hence

21
/ u, z, t)d@‘ < C(L)&¢
0

for z € [—20, 20] and ¢t € [—400, —1].

Step 8 To summarize, we have shown that there exist Ag, A1, Bo, By such that
|t — (Ag 4+ A1z) cosO — (Bg + Bi1z)sinf| < CL 'e + C(L)eie

for z € [—20, 20] and ¢ € [—400, —1]. This directly implies
lu — (Ag+ A1z)cosO — (Bg + Biz)sinf| < CL 'e + C(L)eie

forz € [-20,20]and € [—400, —1]. Inparticular, [Ao|+[A1|+|Bol+|Bi| <
C(L)e. Hence, there exists a normalized rotation vector field K such that

(K, v)| < CL "¢ + C(L)e1e

in the parabolic neighborhood 75(12, —1, 10, 100). Therefore, (x, —1) is
(CL7'e + C (L)e1e)-symmetric. In particular, if we choose L sufficiently
large and ¢ sufficiently small (depending on L), then (X, —1) is 5-symmetric.

O

5 Proof of rotational symmetry

Let M;, t € (—o0, 0], be a noncompact ancient solution of mean curvature
flow in R3 which is strictly convex and noncollapsed.

Lemma 5.1 [f—t is sufficiently large, then there exists a unique point p; € M;,
where the mean curvature attains its maximum. Moreover, the Hessian of the
mean curvature at p; is negative definite. In particular, p; varies smoothly in
t.
. . . 1
Proof Weknow that M, ﬂBg( : ! (0)isaneck withradius (—2¢)2. The comple-
—1
ment M; \BS( | 1 (0) has two connected components, one of which is compact
—t

and one of which is noncompact. On the noncompact connected component,
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the mean curvature is bounded from above by C (—t)_%. On the other hand,
we have shown in Proposition 3.3 that Hy,x (¢) is bounded away from 0. Con-
sequently, if —¢ is sufficiently large, then the maximum of the mean curvature
is attained at some point p; € M;.

We next consider an arbitrary sequence #; — —o0, and define M,(" ) =
M,+,j = Dij where Pt is the point on Mtj where the mean curvature attains

its maximum. After passing to a subsequence if necessary, the sequence Mt(] )
converges in Cy) to a smooth eternal solution. Moreover, there exists a point on
the limit solution where the mean curvature attains its space-time maximum.
By work of Hamilton [10], the limit solution must be a translating soliton. By
[11], the limit is the bowl soliton. Hence, if —¢ is sufficiently large, then p; is
the only point on M; where the maximum of the mean curvature is attained,
and the Hessian of the mean curvature at p; is negative definite. This completes
the proof of Lemma 5.1. O

Let €1 and L be the constants in the Neck Improvement Theorem. Since
Hax () is uniformly bounded from below, Proposition 3.1 in [13] implies that
there exists a large constant A with the property that every point x € M, with
|x 6— p:| = A lies at the center of an &1-neck and satisfies H(x, 1) |[x — p;| >
10° L.

Lemma 5.2 There exists a time T < 0 with the following property: suppose
thatt < T, and X is a point on M; satisfying |x — p;| > A. Then |X — p;| >
|Xx — psl| forallt <.

Proof 1f —t is sufficiently large, then M; looks like the bowl soliton near
the point p;. Hence, if —¢ is sufficiently large, then the vector % p: is almost
parallel to —v(p;, t). Consequently, we can find atime 7' < 0 with the property
that (x — py, %p;) > (0 whenever t < T and |x — p;| > A. This implies
%lx — pi]l = —( i:pil, %pt) < O whenevert < T and |x — p;| > A.

We will show that T has the desired property. To prove this, we consider
atime 7 < T and a point X € M; such that |[x — p;| > A. We claim that
|x — p;| > |x — pj| for all t < ¢. Indeed, if this is false, then we define 7 :=
sup{t <1 :|x — p;| < |x — ps|}. Clearly, f < f,and |Xx — p;| > |Xx — p;| > A
for all t € [f, f]. In view of our choice of T, we obtain %p} — pt| < 0O for all
t € [t, 1]. Consequently, |x — p;| > |x — pj|, which contradicts the definition
of 7. This completes the proof of Lemma 5.2. O

Prqposition 53Ift < T,x € My and |x — p;| > 2400 A, then (x,t) is
27/ e -symmetric.

Proof We argue by induction on j. For j = 0, the assertion is true. Suppose
now that j > 1 and the assertion holds for j — 1. We claim that the assertion
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holds for j. Suppose this is false. Then there exists a time 7 < 7' and a point
X € Mj; such that [x — p;| > 2% A and (x, ) is not 27/ g;-symmetric. By
the Neck Improvement Theorem, there exists a point (x, 7) € P(x, 1, L, Lz)

such that either (x, ¢) is not 27/ +181—symmetric or (x, t) does not lie at the
center of an g1-neck. In view of the induction hypothesis, we conclude that

1 7 > N
|x — py] < 250 A. Since <t <T,Lemma5.2 gives |x — p;| < |x — p¢|.
Putting these facts together, we obtain

X = pil < X = pil

< Ix = pel+|x — x|
g ]
<2 A+ 10LH@G, D)~}

1 1
<27 |X—Pt'|+m|x—l’f|

< |x — pzl.
This is a contradiction. O
Theorem 5.4 The surface M; is rotationally symmetric for eacht < T.

Proof Let us fix atime 7 < T. For j sufficiently large, we denote by Q(j ) the
set of all points (x, 7) in space-time such that 7 < fand |x — p;| < 2400 A.If
j is sufficiently large, then H (x, ) > 2 - 270 for each point (x,7) € Q.
By Proposition 5.3, every point (x, 1) € Q) is 27/ g -symmetric. In other
words, for each point (x, 1) € dQ\/), there exists a normalized rotation vec-
tor field K ™" such that [(K®D v)| H < 27/¢ on P(x, t, 10, 100). Using
Lemma 4.2, we can control how the axis of rotation of K *-*) varies as we vary
the point (x, ¢). More precisely, if (x, 1) and (x3, t2) are two points on QW)
satisfying (xz, f2) € P(x1, t1, 1, 1), then

min sup |K(x1,t1) — K W2.12) l, sup |K(X1Jl)+K(X2,l2)|

B B

10H (xp,1p) =1 (x2) 10H (x9,17)~ ! (x2)

<C27 H(x,n)™ "
Hence, there exists a single normalized rotation vector field K (./' ) with the
following property: if (x, r) is a point in 3Q() satisfying 7 — 20 <t <1,
then

min{|[K®D — KD| K& + kD)) < c2%
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at the point (x, 7). This implies [(K), v)| < €277 for all points (x,1) €
89@ satisfying 7 — 2100 < t < t. Moreover, we clearly have (KW vy <
C 2 for all points (x, 1) € QU) withr =7 — 2100,

We now define a function f¢) : Q) — R by

. i KW,
O = exp(—2" M (7 — 1)) %
H — 2730
Using the estimate for (K (), v), we obtain
23 »
1fP ) < <C27%

2.0-a — 2~
for all points (x, t) € Q) satisfying 7 — Zﬁ <t <t and

; jo CZ%O j
£ (x, )] < exp(=27 20 T0) - <C27%

2.0 3 — 2~

for all points (x, ) € QU) withr =71 — 2100, Using the identities

B
5H = AH + |A*H

and

9 ) . .
AR vy = AKD, v) +ARKD, v),

we compute

a . 2 .
Ef(j) — Af(])+—j (VH, Vf(]))

H — 2730
. 2 .
ol (AT i) 0,
H -2
On the set ), we have
|A|? i 1 H? g1 i

_— 270 > — ———————— 2730 > — H — 2730 >0
H -2 % 2 H -2 aw 2
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Using the maximum principle, we conclude that

sup 19 (x, )]

(x,1)eQ), f—2T00 <t <f

< max sup 1D, 1), sup 19 (x, )]

J J

(x,1)edQ(), {2100 <t <f (x,0)eQ), t=f—2T100
i

<C2714.

This gives [(K), v)| < C 277 for all points (x,7) € QU) with r = 7. From
this, we deduce that the distance of the point p; from the axis of rotation of
K ) is bounded from above by a uniform constant which is independent of
j. Hence, if we send j — oo, the vector fields K /) converge to a normalized
rotation vector field in R3 which is tangential along M:. This completes the
proof of Theorem 5.4 O

Once we know that M, is rotationally symmetric for —¢ sufficiently large,
it follows from standard arguments that M; is rotationally symmetric for all #:

Proposition 5.5 Suppose that M; is rotationally symmetric. Then, for each
t € [t, 0], M, is rotationally symmetric with the same axis.

Proof By Proposition 3.1 and Corollary 3.2, the flow M;, t € (—o0,0],
has bounded curvature. Without loss of generality, we may assume that
supy, |A|> < 2 for each t € (—o0, 0]. If K is a rotation vector field in R3,
then

0

(K. v) = AK.v) AP (K. v).

Moreover, since |A|? < 2, the function p(x, 1) := €5 (|x|* + 1) satisfies

N >
ot P p

for 1 € (—o00,0]. By the maximum principle, the quantity sup,,, HKTUH is

monotone decreasing for ¢ € (—o0, 0]. In particular, if (K, v) = 0 at each
point on M7, then (K, v) = 0 on M; forall t € [z, 0]. O

6 Uniqueness of ancient solutions with rotational symmetry
Let M, be an ancient solution satisfying the assumptions of Theorem 1.1. By

the results in Sect. 5, M; is rotationally symmetric. Without loss of general-
ity, we may assume that M; is symmetric with respect to the x3-axis. Thus,
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there exists a function f(r, t) such that the solution M; consists of the points
(rcos@,rsinf, f(r,t)) € R3. Moreover, the function f(r, t) satisfies the
following evolution equation:

fro 1

f’=1+f,2 r

fr.

Note that f(r, ¢) may not be defined for all r.
Next, we can consider the radius r as a function of (z, ¢). Namely, the radius
function r(z, t) is defined by

fr(z,0),t) =z

Then r(z, t) satisfies the following equation (see also [2]):

7z 1
r ——
T+ 2o
Note that the convexity of M; yields
r >0, r, >0, ry <0, r;; < 0.

Without loss of generality, we assume that the tip of My is at the origin. In
other words, f(0,0) = 0 and (0, 0) = 0.

Letg; = (0,0, f(0, 1)) denote the tip of M,, and let Hjp(7) denote the mean
curvature of M, at the tip ¢;. Using the Harnack inequality, we conclude that
Hijp (1) is monotone increasing. In particular, the limit H := lim;, oo Hyjp(7)
exists. Using Proposition 3.3, we obtain H > 0.

We first prove that f;(r, ¢) is monotone increasing in ¢.

Proposition 6.1 We have f;;(r,t) > 0 everywhere.

Proof We recall the Harnack inequality [10] for strictly convex ancient solu-
tions to the mean curvature flow:

9 . o
gH +2V'V;H —i—h,'leVJ >0

for every vector field V.
Let o = (0,0, —1) denote the vertical vector field in R3, and let V =
—H (w, v)~! @™, For this choice of V, the Harnack inequality takes the form

(% Ly v,-) (H (. v)") > 0.
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A straightforward calculation gives

filr,t) = H (w,v)!

and
8 i -1
Ju(rt) = Fri ViV ) (H (w,v)).
Putting these facts together, the assertion follows. O

We next show that f;(r, t) is bounded from below.

Proposition 6.2 We have f;(r,t) > H at each point in space-time. Moreover,
for each rg > 0,

lim sup fi(r,t) =H.
——00 r<ro
Proof We consider an arbitrary sequence t; — —o0, and define Mt(j ) =
M;1+; —q1;- We apply the compactness theorem for ancient solutions (cf. [12],

Theorem 1.10) to the sequence M,(j ), Hence, after passing to a subsequence if

necessary, the sequence MI(J ) converges in C°. to a smooth eternal solution,
which is rotationally symmetry. Moreover, on the limit solution, the mean
curvature at the tip equals H at all times. Hence, equality holds in the Harnack
inequality. By work of Hamilton [10], the limit solution must be a soliton
which is translating with speed H. This directly implies

lim sup |fi(r,t;) — H| =0

J 77X r<ry

for every ro > 0. Since f;;(r, 1) > 0 by Proposition 6.1, we conclude that
fi(r,t) > H forall r and ¢. O

We next prove that f;(r, t) is monotone increasing in r.
Proposition 6.3 We have f;(r,t) > 0 everywhere.
Proof Letus fix a time g and a radius rq such that f (v, tp) is defined. For each

T < ty, we consider the parabolic region Q7 = {xl2 + x% < rg,t e [T, nl}.
Using the equations

0 2
o H=AH+|APH
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and

a 2
§<a), V> = A(a), U) + |A| (Cl), U>7

we conclude that the maximum sup,  H (w, v)~! must be attained on the
parabolic boundary of Q7. This gives

sup H {(w, v)_1

x12+x% Srg,t=to

< max sup H (w, v)_l, sup H (w, v)_1
x%-{—x%:roz,TgtSto x%-{—x%frg,t:T

Since f;(r, 1) = H (w, v)~!, it follows that

SWﬁ@@SmM{WPﬁWﬁAWﬁ@D}

r=ro T<t<t r=ro

= max {f,(ro, to), sup fi(r, T)} ,

r=ro

where in the last step we have used Proposition 6.1. We now send 7" — —o0.
Since lim;_, _; sup, <o fi(r,t) = 'H, we conclude that

sup f;(r, to) < max{f;(ro, to), H} = f;(ro, to).

r=ro
This completes the proof of Proposition 6.3. O

We recall that M; is strictly convex and noncollapsed and Hy;p () is bounded
from below by H. By Proposition 3.1 in [13], there exists a small constant
gy € (0, 21—0) and a decreasing function A : (0, &g] — R such that given any
e € (0, e0],if |x —q:| = A(e), then (x, 1) is a center of e-neck. (Alternatively,
this can be deduced from Theorem 7.14 and Lemma 7.4 in [18].)

Lemma 6.4 On every eo-neck, rr, = % < (142e0)HL

Proof On an gp-neck, we have we have fl = r; < g9. Moreover, the principal
r
curvature in radial direction is bounded by 2. This gives

Srr €0
(1+ £2)3
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Using Proposition 6.2, we obtain

Srr Jr &0 2.1
= =< —(1 2
1+fr2+r_r(+f’)+

Jr Jr

H=<fr 75(14‘280)7,

as claimed. O

Lemma 6.5 There exists a constant Co > 1 such that r™ |38%r| < Cy holds
form = 1,2, 3 at center of eg-necks withr > 1.

Proof For m = 1, the assertion follows from Lemma 6.4. Let u = (w, v),
where w = (0, 0, —1). Then

9 Au + |A)?
—Uu = u u.
ot

Moreover, u < H~' H by Proposition 6.2. Standard interior estimates imply
that

|vmu|2 S CH2m+2

for m = 1, 2 at the center of an gg-necks.

In the parametrization (z, ) +— (r(z) cos 8, r(z) sin 6, z), the induced met-
ricis given by g, = 1+ rzz, g6 =0, gog = r?>. Moreover, u = r, (1 + rzz)_%
and u, = r;(1 + rzz)_%. Hence, |Vul? = g“u% = rZZZ(l + rZZ)_4. In
addition, r, < g9 and Hr < 1 4 go hold in every go-neck. Therefore,
the inequality |Vu|> < CH* < Cr~* implies ;’41”3Z < C. Similarly,

|VZul> < C H® < Cr=° gives r®r2,, < C. u!

Proposition 6.6 Let C; = 2 + 2A(g9) + OH 2 If r > Cy, then 0 <
5
—rzz(z,1) = Cor(z, )72,

Proof Clearly, —r,, > 0 since M; is convex. To prove the upper bound for
—r,z, let us fix a point (7, r) satisfying ¥ > C; > 2, and letZ = f(r, 7). Then
we have %f > %C 1 > A(eo) by definition of C;. Hence, every point (x, t)
with r = (xf + x%)% > %f lies at the center of an gg-neck.

Using Lemma 6.4 and gy < %), we obtain

_ fft'—/Ff(f)d>/F H d>17{2
Z 2, —%rr, r_%1+280rr_3r.

Since 7 > C; > 9H 2, it follows that f(%, 1 <z-— 72. In other words,

- ; _ -3 _ _3 . . . . .
r(z,t) > % forz e [z —r2,z+7r2]. Since r(z, t) is decreasing in ¢, it follows
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7 _ _3 _ _3 - _ -
that r(z, t) > % for(z,t) e Q=[z—r2,z2+72] x [t — 73, ]. Hence, every
point (x, ¢t) with (x3, ¢) € Q lies at the center of an gg-neck.
We next consider the evolution equation of rr,. We compute

(1)) = (Fry) pn — 2+ 3rDrr +1r2ry, - 2rrr
z z)zz 1+ r22 1+ rzz)z

Using Lemma 6.4 and Lemma 6.5, we obtain

sup |rr,| < C

and

sup [(rr2); — (rr)zz| < CF 2.

Standard interior estimates for the linear heat equation give

|(rr2)z] < CF~ 2 sup rrz] + CF2 sup (), — (rro)zc| < CF 3
Q 0

at (z,1). Thus, |r ;| < Ci3 at (z, 7). This completes the proof of Proposi-
tion 6.6. O

For each z < 0, we define a real number 7 (z) by

r(z,t) >0 for 1t <7 (2), t 11711} )r(z, 1) =0.
-7 (z

The following result allows us to estimate r(z, t) in terms of 7 (z) — ¢.

Corollary 6.7 We have

AT @) — 1] < r(z. 0 < 2T () — 1]+ 8Co[T(2) — 115 + C?

if z < 0andr(z,t) is sufficiently large.

Proof We again fix a point (Z, 7). Since (r2 +21), = fj:rg < 0, we have
rE 0% = 2[TE) —il.
2rr;;

Moreover, Proposition 6.6 implies that (% 4 2¢); = > —2C2r_% when-

everr > Cy.Let? < 7(Z) denote the time when r(Z, ) = Cy. Since r(Z, t) is
a decreasing function of ¢, r(Z, 1) < Cj fort < t. Therefore,
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f
r@ 0> =CI+2(f—1) — / (r(z,1)* 4+ 2t), dt
t

t
< C%+2(f—f)+2sz rz 02 de
t

r
<Ci+2(G-1) +2C2[ [TG) — 1177 di
t
< C? 412G 1) —8CoIT(3) — T1F +8Ca[T (Z) — 7]
< C242[T(R) -1 +8CIT(E) — 13,

as claimed. O

Lemma 6.4 gives a sharp upper bound for the limit of rr,. More precisely,
limsup,_, o, r(z, )r;(z,1) < H~! for each 7. We next establish a lower bound
for liminf,_ o r(z, )r;(z, t). To derive this estimate, we need a lower bound
for r (0, 1)r; (0, t).

Lemma 6.8 Let § > 0 be arbitrary. Then
r0,0)r (0,1) > H ' =6

whenever —t is sufficiently large.

Proof In the following, we assume that —¢ is sufficiently large so that R =
r(0,t) > C;. Consequently, every point (x, #) with x3 = 0 lies at the center
of an go-neck. This implies |r(z,1) — R| < goR for |z| < 2R. Recall that
rr; < (1 + 2e0)H ! by Lemma 6.4, and |(rr;);| = |rry;; + rzzl < C3R_%
for some constant C3 by Proposition 6.6. Hence, if we choose —¢ sufficiently
large so that R% > 4C38~!, then we obtain

|r(z, )ry(z,t) —r(0, t)r (0, 1) < 2C3R_% <

| >

for all z € [-2R, 2R].
It follows from Corollary 6.7 that

r(—R,1)* > 2[T(—R) — 1],
r(=2R,1)> > 2[T (—2R) — 1],
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and
F(=2R, 1)* < 2[T(~2R) — 1] + 8C3[T(=2R) — 115 + C?
< 2[T(—2R) — 1] + 8Cor(—2R, 1)? + C?
< 2[T(=2R) — 1] + 8C,R? + C2.
This implies
F(—R, 0% — r(—=2R, 1)* > 2[T(=R) — T(—2R)] — 8C,R? — C2.

Moreover, if R is sufficiently large, then

T(—R) — T(—2R) > (H‘l — %) R.

This gives

r(—R,1)> —r(=2R,1)*> > 2 (H—‘ — %) R

if —¢ is sufficiently large. Hence, if —1 is sufficiently large, then

)
sup  r(z,)ry(z,t) > H - =
2€[~2R,R] 2

Putting these facts together, we conclude that
r0,0)r,(0,1) > H 1 =8

whenever —t is sufficiently large. |

We next recall a solution ¥ (z, t) to the heat equation satisfying Dirichlet
boundary condition on the half line.

Proposition 6.9 We define a smooth function ¥ : (0, co) x (0, 0c0) — R by

lﬁ( t) 1 /OO( _ (zzy)2 _ (z-Zy)2 )d
z,t) = e T —e g .
Vamt Jo Y

Then v is a solution to the heat equation r; = Yr,,. Moreover, for each z > 0
andt > 0 we have ¥;;(z,t) < 0 and

lim ¥ (z,1)=0, lim ¥(z,t)=1, limy(z,t)=1, lim ¥(z 1) =0.
z—0 z—00 t—0 t— 00
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Proof We only need to show ¥,, < 0. Direct computations yield

1 /1 (2= _e»?
1 A C o Lt

® /1 (4P _e?
) (Z‘T o
— |- - Tae [ a-ee

Tt L =

Nen V2t

1 Nz g 2

== f_jj(l—g Ye™ T dE.

Clearly, .. < 0 for 0 < z < +/2t. Moreover, .., > 0 for z > /21, and

. 1
V=T

Therefore, ., < 0 also holds for z > +/2¢. This completes the proof of
Proposition 6.9. O

/Oo a1- 52)e—§ds =0.

Proposition 6.10 Given § > 0, there exists a time t € (—o0, 0] (depending
on §) such that

r(z, Or.(z, 1) > H™' — 28,
holds forall z > 0 andt < 1.

Proof By Proposition 6.6, we have 1 +rr,, > 0forr > Cy+ C;. This implies

(rrz)zz 2rprz; (1 +r12+rrzz) - (rrz)zz

reh=1 T (I +r2)2 =142

for r > C; + C,. By Lemma 6.8, we can choose ¢ large enough so that
r(0,1)r(0,1) = H~' — 8 for t < . Moreover, by a suitable choice of 7 we
can arrange that r(z,1) > C; + Cp forallz > Oand ¢ < t. Foreachs < 7, we
define a barrier function %% (z, 1) by

WSy =H" =28 —H 'y Q.1 —5)
for r € (s, t]. We claim that rr, > 1/15’5 forallz >0andallt € (s, £].

By our choice of 7, 7(0, £)r,(0,1) = H™' — 8§ > lim sup,_,o W8 (z, 1) for
each t € (s, 7]. Moreover, liminf,_, o 7 (z, t)r;(z, 1) > 0 > lim sup, . oo w‘s’s
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(z, 1) for each r € (s, t]. Finally, Proposition 6.9 gives r(z, s)r;(z,s) > 0 >
limsup,_, , ¥%*(z, t) for each z > 0.

Thus, if the inequality rr, > ¥ fails, there exists some point (zq, fg) €
(0, 00) x (s, 1] such that r (zo, t0)r, (20, to) = wa’s(zO, to) andr(z, t)r;(z,t) >
ws’s(z, t) forall z > 0 and all ¢t € (s, f9]. Then, at the point (zg, tp) we have

(W(S’S)zz < (rry)zz
14+ rz2 1+ rz2

38, 1 38,
< (rr)e < (Y%7 =Z(lﬁ ez

This contradicts the fact that r, < g and (¥%*).. > 0.
Thus, we conclude that rr, > wa,s forall z > 0 and all 7 € (s, t]. Sending
s — —o00, we obtain rr, > H' —28forallz>Oandallz <7. O

Corollary 6.11 We can find a time T € (—o0, 0] such that r(z,1)*> > H™ ' z
forall z > 0andt < T. In particular, if t < T, then the function f(r,t) is
defined for all r € [0, 00).

Proof By Proposition 6.10, we can find a time T € (—oo, 0] such that
r(z, Dry(z,t) > %H‘l for all z > 0 and all + < T. From this, the asser-
tion follows easily. o

After these preparations, we now compute the limit lim,_, », 7 (z, £)r;(z, ).
Proposition 6.12 For eacht < T, we have lim,_, oo r(z, t)r;(z,1) = HL

Proof Lemma 6.4 gives limsup, , 7 (z, 1)r;(z, 1) < H~!. So, it is enough
to show that liminf,_, o r(z, t)r;(z,t) > H~! for each + < T. Given any
8 > 0, Proposition 6.10 implies that we can find a number # < T such that
liminf,_ o0 (2, ). (z, 1) = H~' —28. Moreover, Lemma 6.5 guarantees that

Izlzz I'Tzzz 2rr2r?z < 4C8
1+72  1+r2 (A+rH2| 7 12

|(rro)e| = |riry +rry| =

for r > Cj. Using Corollary 6.11, we obtain

liminf r(z, H)r,(z, t) = liminf r(z, Dry(z,7) > H~' — 26
Z— 00 —00

for eacht < T. Since § > 0 is arbitrary, we conclude that lim inf,_, o 7 (z, t)
r.(z,t) = H~! foreach t < T. This completes the proof of Proposition 6.12.
O

Theorem 6.13 Foreacht < T, M, is a translating soliton.
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Proof Since rr, = -, Proposition 6.12 implies
ot
lim Jr(r, 1) — N
r—00 r

for each t < T'. Using the evolution equation for f(r, t), we obtain

fr(rs 1) .
. =

lim f;(r,t) = lim H
r—0o0 r—0o0

for each ¢+ < T. Using Proposition 6.3, we conclude that f;(r, t) < H for all

r > 0 and all + < T. Therefore, Proposition 6.2 gives f;(r,t) = H for all

r > 0andall < T. Consequently, M, is a translating solition foreacht < T.

O

Once we know that M; is a translating soliton for —¢ sufficiently large, it
follows from standard arguments that M; is a translating soliton for all ¢:

Proposition 6.14 Suppose that M; is a translating soliton. Then M, is a trans-
lating soliton for all t > t.

Proof By Proposition 3.1 and Corollary 3.2, the flow M, t € (—o0,0],
has bounded curvature. Without loss of generality, we may assume that
supyy, |A|2 < 2foreacht € (—o0, 0]. If w is a fixed vector in R3, then

0
5, (H — (0 v) = AH — (0, V) + |AI*(H — (o, v)).

Moreover, since |A|* < 2, the function p(x, ) := €% (|x|*> + 1) satisfies

—p > Ap+|A
at,O P 1%

for r € (=00, 0]. By the maximum principle, the quantity sup,,, (o)) 4
monotone decreasing for t € (—oo, 0]. In particular, if H = (w, v) at each
point on M7, then H = (w, v) on M, for all ¢ € [z, 0]. O
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