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Abstract.
Objective. This study’s goal was to demonstrate person-specific predictions
of the force production capabilities of a paralyzed arm when actuated with a
functional electrical stimulation (FES) neuroprosthesis. These predictions allow
us to determine, for each hand position in a person’s workspace, if FES activated
muscles can produce enough force to hold the arm against gravity and other
passive forces, the amount of force the arm can potentially exert on external
objects, and in which directions FES can move the arm.
Approach. We computed force production predictions for a person with high
tetraplegia and an FES neuroprosthesis used to activate muscles in her shoulder
and arm. We developed Gaussian process regression models of the force produced
at the end of the forearm when stimulating individual muscles at different wrist
positions in the person’s workspace. For any given wrist position, we predicted all
possible forces a person can produce by any combination of individual muscles.
Based on the force predictions, we determined if FES could produce force sufficient
to overcome passive forces to hold a wrist position, the maximum force FES could
produce in all directions, and the set of directions in which FES could move
the arm. To estimate the error in our predictions, we then compared our force
predictions based on single-muscle models to the actual forces produced when
stimulating combinations of the person’s muscles.
Main results. Our models classified the person’s ability to hold static arm
positions correctly for 83% (Session #1) and 69% (Session #2) for 39 wrist
positions over two sessions. We predicted this person’s ability to produce force at
the end of her arm with an RMS error of 5.5 N and the percent of directions for
which FES could achieve motion with RMS error of 10%. The accuracy of these
predictions is similar to that found in the literature for FES systems with fewer
degrees of freedom and fewer muscles.
Significance. These person and device-specific predictions of functional
capabilities of the arm allow neuroprosthesis developers to set achievable
functional objectives for the systems they develop. These predictions can
potentially serve as a screening tool for clinicians to use in planning
neuroprosthetic interventions, greatly reducing the risk and uncertainty in such
interventions.

1. Introduction

Tetraplegia, which affects roughly 169,000 people in the United States (NSCISC 2018),
is a particularly debilitating condition. People with tetraplegia have limited mobility
and lack ability to use their arms and hands to complete activities of daily living.
Therefore, people with tetraplegia need regular assistance from a caregiver with some
people requiring 24-hour assistance.

The main rehabilitation priority for people with tetraplegia is the restoration
of arm and hand function (Anderson 2004). Arm and hand function are critical to
activities of daily living that allow a person to live independently. These activities
include getting dressed, cooking, eating, bathing, and grooming.

Neuroprostheses using functional electrical stimulation (FES) are a promising
avenue to restore arm and hand functions. The Freehand System has restored
grasping to many people with C5 and C6 spinal cord injuries who have volitional
control of their shoulders and elbows (Peckham, Keith, Kilgore, Grill, Wuolle, Thrope,
Gorman, Hobby, Mulcahey, Carroll, Hentz & Wiegner 2001). A recent advance
uses an implanted brain-computer interface to control hand movements with FES
(Bouton, Shaikhouni, Annetta, Bockbrader, Friedenberg, Nielson, Sharma, Sederberg,
Glenn, Mysiw et al. 2016). For people with C4 or above injuries, who do not have
volitional control of their shoulders or elbows, success of neuroprostheses has been
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limited. The Cleveland FES Center has demonstrated preprogrammed shoulder and
arm movements with an implanted neuroposthesis (Memberg, Polasek, Hart, Bryden,
Kilgore, Nemunaitis, Hoyen, Keith & Kirsch 2014) and more flexible movements
commanded by a brain-computer interface with the shoulder actuated by a powered
orthosis and the elbow and hand actuated by FES (Ajiboye, Willett, Young, Memberg,
Murphy, Miller, Walter, Sweet, Hoyen, Keith et al. 2017). The MUNDUS project
demonstrated sequential single joint movements with surface FES and a lockable
exoskeleton (Pedrocchi, Ferrante, Ambrosini, Gandolla, Casellato, Schauer, Klauer,
Pascual, Vidaurre, Gföhler et al. 2013). The Tools for Brain-Computer Interaction
FES+orthosis system demonstrated limited functional movements of the elbow, wrist,
and hand (Rohm, Schneiders, Müller, Kreilinger, Kaiser, Müller-Putz & Rupp 2013).
These systems are limited in their versatility and robustness and have not restored
arm and hand function to people with high tetraplegia for everyday use.

The degree to which function can be restored by a neuroprosthesis for a specific
person is uncertain for people with high tetraplegia. This is because the responsiveness
of muscles to electrical stimulation is heterogeneous. Lower motor neuron damage
causes some muscles to have weak or no response to electrical stimulation (Peckham,
Mortimer & Marsolais 1976, Mulcahey, Smith & Betz 1999), making some functional
activities impossible without additional support from an orthosis. Further, people
with high tetraplegia have varying degrees of muscle atrophy which might further limit
function. Finally, because reaching motions involve complex coordination of multiple
muscles, it is difficult to predict the combined effects of denervated and atrophied
muscles.

This uncertainty along with the risks of a surgical intervention to install
a neuroprosthesis greatly limits the progress that can be made in developing
neuroprostheses for people with high tetraplegia. Without a reasonable confidence
level that recovery of some function will occur, a prospective participant is unlikely
to take the risk of having a neuroprosthesis implanted. Even after implantation,
uncertainty in outcomes makes the job of designing FES control strategies more
difficult. One might question the value of attempting to restore a specific function
if it is unclear if that function is even physically achievable given the person’s muscles
and the neuroprosthesis. In fact, in our early attempts to control arm movements
with a 24-channel implanted FES system, we found that many movements of the arm
were not possible and that planning arm movements that are possible is not trivial
(Schearer, Liao, Perreault, Tresch, Memberg, Kirsch & Lynch 2015). Knowing what
functional capabilities a neuroprosthesis is able to restore would greatly reduce the
barriers preventing the development of neuroprostheses for high tetraplegia.

Computer simulation is one avenue to predict the effects of individual muscle
groups on the ability to complete functional tasks that require coordination of multiple
muscles. Researchers have used computer models to identify important muscle groups
for standing posture (Kuo & Zajac 1993). More recently our colleagues used a
computer simulation to select a group of muscles that, when activated with FES,
could produce a wide range of functional reaching movements (Blana, Hincapie,
Chadwick & Kirsch 2013). They used this knowledge to plan surgeries for implanting a
neuroprosthesis in a person with high tetraplegia. However, computer simulations are
not specific enough to predict the effects of denervation and atrophy in specific people
with high tetraplegia, which is a heterogeneous population (Mulcahey et al. 1999).

Recent efforts to screen patients with tetraplegia for lower motor neuron damage
(Bryden, Hoyen, Keith, Mejia, Kilgore & Nemunaitis 2016) are a step forward but fall
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short of making specific predictions of the potential capabilities of neuroprostheses.
These screenings identify which muscles are responsive to FES and which muscles
are not. The screenings do not predict the workspace that can be achieved with
FES, the forces that the arm can apply with FES, or specific functions that might be
restored. They also cannot suggest what might be possible with muscle strengthening,
a powered orthosis, or some other intervention to supplement FES. In practice, very
few people – those with a plurality of muscles responsive to FES – are deemed suitable
neuroprosthesis users. If state-specific shortcomings of FES could be identified for
individual persons, many more people could be suitable users of neuroprostheses
combining FES and some other intervention.

To lower the barriers in development of FES neuroprostheses for high tetraplegia,
our goal is to make person-specific predictions of functional capabilities when using
a specific neuroprosthesis. These predictions could aid in person-specific selection
of muscles a potential neuroprosthesis might activate in order to plan a surgery
to implant electrodes. With these predictions we could also design additional
assistive devices such as wearable exosuits (Kadivar, Beck, Rovekamp, O’Malley
& Joyce 2017) to augment FES. We could efficiently plan tests demonstrating
capabilities that are feasible given a specific person and neuroprosthesis, rather
than wasting time and resources attempting to demonstrate capabilities that are not
physically possible. There have been exciting advances in fitting parameters of EMG-
driven musculoskeletal models to person-specific data (Sartori, Reggiani, Farina &
Lloyd 2012, Meyer, Patten & Fregly 2017). However, these methods are not useful for
people with complete spinal cord injuries as they cannot volitionally activate muscles
to produce EMG.

To move toward the goal of person and device-specific predictions of functional
capabilities of the arm, this paper presents a proof of concept study. Specifically,
we present a method for predicting and graphically displaying the force production
capabilities of a paralyzed arm that is actuated by electrical stimulation of multiple
muscles. We present the technical details needed to create these graphical displays,
which we call capability maps. We demonstrate the capability map concept by
making capability maps for a person with high tetraplegia who has an implanted
neuroprosthesis that can electrically stimulate multiple muscles to actuate her shoulder
and arm. We quantify the accuracy of our predictions of this person’s ability to
produce forces at the end of her forearm by comparing the predictions to the actual
forces produced via stimulation of multiple muscles. We reported a preliminary version
of this work in (Schearer & Wolf 2019).

2. Methods

Capability maps display a person’s ability to hold static arm configurations, to produce
force, and to move when muscles of the shoulder and arm can be activated with
electrical stimulation. Capability maps are derived from person-specific models of
the arm’s response to electrical stimulation of the muscles. Our models are based
on measurements of the force at the end of the forearm in response to electrical
stimulation of individual muscles. Using these models we can predict the forces that
can be produced by stimulating any combination of muscles and, subsequently, we can
predict the directions the wrist can move in and if electrical stimulation can produce
forces sufficient to hold a static arm configuration against gravity and other passive
forces. These capabilities are displayed for different positions of a person’s wrist. This
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Figure 1. Example of capability maps. The holdability map (a) shows if the
person’s muscles can produce sufficient force to hold each position given passive
forces to overcome. The strength map (b) displays the maximum force magnitude
that the person’s muscles can produce in all directions with FES. Negative
strength indicates that the person cannot produce force in all directions. The
moveability map (c) shows the fraction of directions in which the person can
produce force at each wrist position. This figure is adapted from (Schearer &
Wolf 2019) and is used here with permission.

section describes each of the three types of capability maps, how we gather data to
learn the person-specific force production models from which the maps are derived,
and how we tested the accuracy of the capability maps in predicting the capabilities of
a person with high cervical spinal cord injury and an implanted functional electrical
stimulation system.

2.1. Description of capability maps

The most basic capability map is the holdability map (Figure 1(a)). For each wrist
position in a person’s workspace, the holdability map displays whether or not FES-
activated muscles can produce force sufficient to overcome gravity or any other passive
forces such as passive muscle stiffness or the stiffness of an orthosis. Note that we use
wrist position to refer to the position of the wrist determined by the configuration
of the shoulder and elbow joints; we do not mean to describe wrist flexion/extension
or abduction/adduction. Holdability for each wrist position is derived from model
predictions of the force required to support the arm against passive forces and the
forces the muscles can produce to potentially provide this support. A wrist position
is holdable if the required passive support force is within the set of forces the muscles
can produce when activated with FES. A neuroprosthesis developer or clinician can
very quickly look at the holdability map to determine if a neuroprosthesis is likely
to provide the ability to hold the wrist at various parts of the workspace. The other
two capability maps – the strength map and the moveability map – augment the
holdability map with additional information.

The strength map (Figure 1(b)) displays the largest force that the person can
apply with FES in all directions for a given wrist position. Strength is displayed for
each wrist position with a color scale. The ability to apply a force in a given direction
implies that a passive force has already been overcome to then apply this force. For
example, if a person cannot lift her/his arm against gravity, she/he cannot produce
an upward force when pushing against a fixed object, even though activation of the
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deltoids may generally produce an upward force independent of gravity. Strength
can be thought of as a graded version of the binary idea of holdability. For a given
wrist position, if a person can apply a force in all directions, the wrist position is
holdable, and the strength is a positive number. This surplus strength can then be
used to push or pull an object in the person’s environment. If a person cannot apply
a force in all directions, the position is not holdable, and the strength is negative. The
magnitude of the negative strength represents the amount of additional force that
needs to be provided by an additional assistive device or strengthening of muscles to
make a wrist position holdable. A clinician or neuroprosthesis designer can look at
the strength map for a spatial representation of the size forces a person can apply or
of a person’s deficit in force production capability. The strength map does not tell the
absolute largest force or the direction in which it can be applied, nor does it tell the
direction of negative strength. To answer these questions, the strength map can refer
the neuroprosthesis developer to the force polyhedron (detailed in Section 2.2) which
displays all the forces that can be applied at a given wrist position.

The moveability map (Figure 1(c)) is a plot of the fraction of directions for which
the muscles can produce force for a given wrist position. We call this the moveability
map because we assume that applying a static force in a given direction is analogous to
producing a movement in that direction. Moveability is shown via a color scale (blue
for zero moveability to red for full moveability). Like strength, moveability is a more
descriptive version of the binary concept of holdability. 100% moveability means that
force can be applied in all all directions and that the wrist position is holdable. For
non-holdable positions, moveability helps the clinician or neuroprosthesis developer
quickly see for which wrist positions the person’s ability to produce force or move
in multiple directions is especially limited. Having identified these wrist positions
with limited moveability, the clinician and neuroprosthesis developer can look at the
force polyhedron (detailed in Section 2.2) to determine exactly which directions of
movement are affected and devise a plan to augment the existing FES capability.

2.2. Derivation of capability maps

Capability maps are derived from person-specific models of the arm’s response to
electrical stimulation. The models predict the force that the arm applies at the end
of the forearm in response to electrical stimulation of individual muscles. The overall
force production capability, which we display as a polyhedron of achievable forces, is
the linear sum of all combinations of the forces produced by the individual muscles.
From this “force polyhedron” we derive the holdability, strength, and moveability at
each point in the person’s workspace.

We mapped the capabilities of a single human participant with high tetraplegia
who has an implanted neuroprosthesis that can electrically stimulate her paralyzed
muscles to move her right arm. This participant is most appropriate for this proof
of concept study for two reasons: 1) she is a current user of assistive technologies to
restore reaching movements and is a member of the relevant population that could
benefit from capability mapping; 2) her implanted system, which delivers consistent
and targeted muscle stimulation, allows for easier implementation of the proof of
concept study than does using surface electrodes. Keep in mind, if capability maps
were to be used for planning a surgery to implant FES electrodes, stimulation to
predict post-surgery functional capabilities would be provided with surface electrodes.

The participant was a 62-year-old woman who sustained a hemisection of the
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Table 1. Stimulation electrodes used

Electrode Muscles Approximate Type Current Max Pulse
Placement Targeted Function Amplitude (mA) Width (µs)

radial nerve triceps elbow extension nerve cuff 2.1 250

axillary nerve deltoids arm abduction nerve cuff 2.1 55

thoracodorsal latissimus dorsi arm adduction nerve cuff 0.8 41
nerve

long thoracic serratus scapular nerve cuff 1.4 20
nerve anterior abduction

musculocutaneous biceps elbow flexion nerve cuff 0.8 71
nerve brachialis

suprascapular nerve supraspinatus, shoulder stability, nerve cuff 1.4 62
infraspinatus humeral rotation

rhomboids rhomboids scapular intramuscular 18.0 155
adduction

lower pectoralis lower pectoralis shoulder intramuscular 18.0 98
horizontal flexion

upper pectoralis upper pectoralis shoulder intramuscular 20.0 50
horizontal flexion

spinal cord at the C1-C2 level from a gunshot wound in 1994. She is unable to move
her right arm but does have sensation. She experiences hypertonia in some of the arm
muscles. Additionally, the participant’s wheelchair is equipped with a passive arm
support to assist against the force of gravity. More details can be found in (Polasek,
Hoyen, Keith, Kirsch & Tyler 2009) (participant 1). While we can derive capability
maps for people with or without the arm support, the current reality for people with
high tetraplegia is that holdability, as defined in this paper, is always zero without the
arm support. Hence we derive capability maps for the arm including the arm support.
The arm support produces a more functional workspace by reducing the passive force
the muscles must overcome to hold the arm in a static position.

The participant was implanted with a stimulator-telemeter (Smith, Peckham,
Keith & Roscoe 1987, Smith, Tang, Johnson, Pourmehdi, Gazdik, Buckett &
Peckham 1998, Hart, Bhadra, Montague, Kilgore & Peckham 2011) in her abdomen in
2005. This device has leads which carry current to intramuscular electrodes (Memberg,
Peckham & Keith 1994) and nerve cuff electrodes (Naples & Mortimer 1988) to
activate muscles in her right arm and shoulder complex. We refer to each muscle
or group of muscles stimulated by a single electrode as a muscle group. In this
experiment, we controlled the nine muscle groups shown in Table 1. Power and
control signals are sent to the implanted device via an inductive radio-frequency link.
Stimulation uses bi-phasic, charge balanced pulses delivered at 13 Hz. The amplitude
of the pulses for each muscle group was chosen to produce as large a force response as
possible while not causing the participant to feel pain. The force generated by each
muscle group is controlled by varying the pulse-width (referred to as the stimulation
input) from 0-250 µs. We send stimulation commands to the implant using real-
time control code on a computer. Appropriate stimulation and amplitude limits were
determined and periodically adjusted for participant safety. A representative set of
these limits is shown in Table 1. The controller commands cannot exceed these limits.
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(a) (b) (c)

Figure 2. Instrumentation for experiments. Pictured is the participant’s right
arm. Shown in (a) and (b) are the placement of the rigid bodies with reflective
markers for optical tracking, a passive arm support with rubber bands providing
supporting force, and the robot that drives the participant’s wrist to 27 positions
in the participant’s workspace. The participant’s wrist and distal forearm (c)
are in a soft cast that is attached via a magnet to a ball-and-socket joint at the
end effector of the HapticMaster robot. This figure was previously published in
(Schearer & Wolf 2019) and is used here with permission.

Informed consent was obtained from the research participant and all protocols used
for this research were approved by the institutional review boards at Cleveland State
University (IRB NO. 30213-SCH-HS) and MetroHealth Medical Center (IRB NO. 04-
00014).

Data from which to learn models of the response of the participant’s arm
to electrical stimulation of individual muscles were collected by gathering force and
position data as the person’s wrist was moved to and held in various static positions by
a HapticMaster (Moog FCS) robot while individual muscles were stimulated (Figure
2). The models and identification procedure are described fully in (Schearer, Liao,
Perreault, Tresch, Memberg, Kirsch & Lynch 2016, Wolf & Schearer 2018). The robot
has three degrees of movement freedom and records the 3D forces and position of
its end effector. The force sensor reports the force required to hold the wrist at a
given position, and an Optotrak Certus Motion Capture System (Northern Digital,
Inc.) determines the position of the participant’s wrist relative to her thorax. The
input to the models is the wrist position in Cartesian space measured relative to the
participant’s thorax. The models’ output is the 3D force applied by the robot to hold
the wrist position.

At the start of each of two experimental sessions we collected force and position
data at 27 different positions of the participant’s wrist. The 27 positions were selected
by manually moving the participant’s wrist in three roughly circular shapes on three
horizontal planes. One circle was approximately mouth height, one approximately
at the top of the sternum, and one approximately at the bottom of the sternum.
Each circle included a center point and eight points distributed approximately evenly
around the circumference. We chose this manual strategy for selecting positions
because it allowed the participant to define the limits of comfortable arm positions. We
would attempt to move her wrist in a given direction until she became uncomfortable,
generally due to stiffness. We would then move the wrist back a bit to ensure each
position was comfortable for her. At each of the 27 wrist positions we stimulated each
of the nine muscle groups shown in Table 1 individually, recording the steady-state
force exerted by the robot to hold the position along with the wrist position relative to
the thorax. We also recorded the force and wrist position when no muscle groups were
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(a) (b)

Figure 3. 2D representations of example force polyhedra for a holdable wrist
position (a) and a non-holdable position (b). For the holdable position in (a)
the origin (gold circle) is inside the force polyhedron (red area) so a force can
be applied in any direction, and hence the moveability cone is the entire blue
circle. The strength vector (cyan arrow) runs from the origin to the nearest point
on the edge of the force polyhedron. The magnitude of the strength vector is
the strength – the maximum force that can be applied in any direction. For the
non-holdable position in (b) the origin is not inside the force polyhedron. The
participant can only apply forces in some directions, namely those in the direction
of the force polyhedron. The moveability cone (blue) represents these directions.
The moveability cone is the intersection of the modified force polyhedron (red,
green, and blue) and a sphere around the origin. The cyan strength vector, which
runs from the closest point to the origin on the force polyhedron to the origin,
represents the additional force that would need to be produced to make the wrist
position holdable.

stimulated. We randomized the order of muscle groups stimulated and wrist positions
visited.

With the force and wrist position data we used Gaussian process regression
(Rasmussen & Williams 2006) to predict forces at the wrist as a function of wrist
position for each muscle group. Gaussian process regression predicts both the force
at the wrist required to hold a position when no muscles are stimulated and the
forces required to hold a position when a specific muscle group is stimulated. The
difference between these two predictions is the amount of force a given muscle group
can contribute at each wrist position.

These Gaussian process regression model predictions allow us to construct a 3D
polyhedron of forces – the force polyhedron – that the arm can exert with combinations
of muscles at any specific wrist position measured relative to the thorax. This
is a person-specific implementation of the theoretical force polyhedron introduced
in (Valero-Cuevas 2009). To construct the force polyhedron we first compute the
Minkowski sum of the vectors of muscle force contributions and then subtract the
force required to hold the wrist position against gravity or other position dependent
passive forces. For the given wrist position, the resulting force polyhedron represents
the convex set of forces that the arm can apply to the robot or any other fixed object.
We call this computation of the force polyhedron based on our Gaussian process
regression models the “predicted force polyhedron”.

We use the predicted force polyhedron to derive the holdability, strength, and
moveability at each wrist position. Examples of force polyhedra are shown in Figure
3. A wrist position is holdable (holdability = 1) if the force polyhedron includes the
origin as in Figure 3(a). This means that stimulating the muscles can produce the
force required to hold the wrist position. If the force polyhedron does not include
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the origin, as in Figure 3(b), the wrist position is not holdable (holdability = 0).
We define strength as the distance from the origin to the nearest point on the force
polyhedron (cyan arrows in Figure 3). When the wrist position is holdable, strength
is the maximum force that can be applied in every direction. If a wrist position is not
holdable, strength is assigned a negative value and is the minimum additional force
required to make the position holdable.

Moveability represents the freedom with which the person’s wrist can move for a
given wrist position. If stimulating the muscles can produce a force in any direction,
moveability equals one as in Figure 3(a). For the most part a holdable wrist position
has a moveability of one. The exception is when the force polyhedron has the
origin as a boundary, in which case the position is holdable, but moveability is less
than one. When moveability is less than one we determine moveability by solving
a computational geometry problem using the Multi-Parametric Toolbox 3 (Herceg,
Kvasnica, Jones & Morari 2013) for MATLAB; we determine the ratio of the volume
of a convex cone – the moveability cone – representing all the directions in 3D that the
hand can move, to the volume of a sphere which represents all possible directions. The
moveability cone (see Figure 3(b)) is the intersection of a modified force polyhedron –
the force polyhedron with the origin as an additional vertex – and a sphere centered at
the origin with radius equal to the distance from the origin to the closest neighboring
vertex on the modified force polyhedron.

Capability maps display holdability, strength, and moveability at discrete points
in the workspace of the participant’s wrist. We created a 3-dimensional grid inside the
convex hull of all wrist positions visited when gathering data to construct models. At
each wrist position we derive the predicted force polyhedron by taking the Minkowski
sum of force vectors that our Gaussian process regression models predict for individual
muscles. The entire process of setting up experimental equipment, gathering data, and
computing and displaying the capability maps takes 45-60 minutes.

2.3. Accuracy of capability maps

To quantify the accuracy of the predicted force polyhedra, we stimulated multiple
muscles together to experimentally create the force polyhedra at wrist positions in a
3D grid in the participant’s workspace. We define an “experimental force polyhedron”
as the convex hull of all the forces achieved when stimulating combinations of mus-
cles that produce the forces at the edges of the predicted force polyhedron – that is,
the maximum forces in each direction. Comparing the experimental force polyhedron
to the predicted force polyhedron serves to quantify the error in 1) using Gaussian
process regression to predict muscle forces at different wrist positions and 2) the as-
sumption that the forces produced when stimulating multiple muscles is the sum of
the forces produced when stimulating muscles individually.

From these experimental force polyhedra we computed the holdability, strength,
and moveability and compared these values to the holdability, strength, and moveabil-
ity derived from the predicted force polyhedra. We ran trials simultaneously stimulat-
ing multiple muscles to create the experimental force polyhedra during experimental
sessions on two separate days in order to compare to predicted force polyhedra derived
from single-muscle data collected at the start of each session. In random order we vis-
ited evenly spaced wrist positions inside the convex hull of the participant’s passive
range of motion. 23 wrist positions were visited during the first session and 16 during
the second. The number of positions visited each day varied based on the size of the
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person’s passive range of motion on each day and on the time available to visit wrist
positions.

To create the experimental force polyhedron at each wrist position, we stimulated
the muscles to apply force to the robot to achieve force targets in multiple directions.
For each wrist position we chose the desired force targets from a subset of the vertices
of the predicted force polyhedron. Choosing only a subset of vertices for each wrist
position allowed us to test more wrist positions than if testing all vertices in each
predicted force polyhedron. We refer to the polyhedron bounded by the subset of ver-
tices as the “target force polyhedron”. Before the experiment, we increased the size
of this subset until the holdability, strength, and moveability of the polyhedron – the
target polyhedron – made up of the subset of vertices of the predicted force polyhe-
dron closely matched the holdability, strength, and moveability of the predicted force
polyhedron. We required that the holdability be matched exactly, that the strength
of the target polyhedron be within 0.5 N of the strength predicted by the predicted
force polyhedron, and that the moveability of the target polyhedron be within 0.05 (5
percentage points) of the moveability predicted by the predicted force polyhedron. For
a given number of n force targets, we used k-means clustering to create n clusters of
vertices of the predicted force polyhedron. For each cluster of vertices, we included the
vertex with the largest magnitude as a target force for our experiments. We increased
the number n of desired targets until the holdability, strength, and moveability of
the target and predicted force polyhedra matched as described above. Depending on
this random selection of vertices, the target force polyhedra contained from 5 to 18
vertices.

For each trial we applied open-loop muscle stimulation inputs to attempt to pro-
duce the force at each vertex of the target force polyhedron. By definition of the force
polyhedron, these stimulation inputs were combinations of either zero or full activation
for each muscle group. For each vertex, the stimulation pattern was applied for two
seconds followed by two seconds of rest before the stimulation for the next vertex was
applied. The average force over the last one half second of stimulation was recorded
as the experimental force.

Based on our experiments when stimulating multiple muscles we computed the
accuracy of the three capability measures at each wrist position tested. Holdability
accuracy is the percent of wrist positions for which the predicted force polyhedron
correctly classified the experimentally determined holdability when stimulating mul-
tiple muscles. We used a chi-squared test to test the null hypothesis that holdability
accuracy is independent across sessions. We used McNemar’s test with continuity
correction to test the null hypothesis that the matched pairs of holdability values –
predicted and experimentally observed – are dependent on each other. If they are de-
pendent, this shows that our predictions match the experimental results. The accuracy
of the strength prediction is the difference between the strength of the predicted force
polyhedron at each wrist position and the experimentally measured strength. We used
a one-way ANOVA to test the null hypothesis that the mean strength prediction error
is the same across the two sessions and a one-sample t-test to test the null hypothesis
that the mean strength prediction error is zero. Similar calculations were made for
moveability. In examining the accuracy of moveability predictions we only included
trials for correctly identified non-holdable positions. This is because moveability typ-
ically makes an abrupt jump from approximately 40% to 100% as holdability changes
from 0 to 1. Including this jump fundamentally changes the moveability from a con-
tinuous variable to a hybrid continuous/discrete variable. Further, correct predictions
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(a) holdability map (b) strength map (c) moveability map

Figure 4. Predicted capability maps computed by Gaussian process regression
based on single muscle stimulation data. Pictured are 2D horizontal cross-sections
approximately 10 cm below the top of the participant’s sternum. Note that other
horizontal cross sections can have significantly different holdability, strength, and
moveability values.

of 100% moveability for holdable positions are trivial, so including them artificially
raises the accuracy of moveability predictions. Statistical analyses were performed
using MATLAB (Mathworks, Inc., Natick, MA).

3. RESULTS

3.1. Display of Capability Maps

In this section we give examples of the three types of capability maps: the holdability
map, the strength map, and the moveability map (Figure 4). We quantify the
accuracy of our models by comparing the models’ predictions of holdability, strength,
and moveability to the same values determined by stimulating multiple muscles to
produce experimental force polyhedra at points of a person’s workspace during two
experimental sessions. These analyses were carried out for a person with a high cervical
spinal cord injury who uses a functional electrical stimulation neuroprosthesis to move
her paralyzed arm.

Figure 4 shows the predicted capability maps as calculated by our Gaussian
process regression models based on single muscle data. We should note that the
participant in this study has a rather limited passive range of motion as represented
by the colored areas in Figure 4. The capability maps display this person’s force
production capabilities within the passive range of motion. Her limited passive range
of motion is due mainly to increased tone in her shoulder and pectorals making larger
movements across her body or out to the right side of her body painful for her. The
limited range of motion does not, however, affect her ability to produce force within
the passive range of motion, which we capture with capability maps.

The predicted holdability map (Figure 4(a)) displays green if the participant’s
muscles can produce enough force to hold the wrist position against the passive
stiffness of her arm and the arm support. Otherwise it displays red. The holdable
wrist positions (green) for this person are on the left side of the participant’s passive
range of motion. The non-holdable positions are on the right side where holding a
position requires more shoulder horizontal abduction.



Predicting Functional Force Production Capabilities of Neuroprostheses 13

Table 2. Accuracy of Capability Maps.

holdability strength error (N) moveability error
(% correct) mean mean 6= 0 RMS mean mean6= 0 RMS

Session #1 83 3.0 6.0 0.0006 0.10
Session #2 69 0.5 4.6 -0.02 0.10
Overall 77 2.0 yes, p = 0.02 5.5 -0.09 no, p = 0.65 0.10

Session effect? yes no no

The predicted strength map (Figure 4(b)) displays the largest force that the
person can apply in all directions. Positive strength means that the person can apply
force in all directions at the given wrist position (red area of Figure 4(b)). There are
also wrist positions at which the person cannot produce force in all directions (orange,
yellow, and green areas of Figure 4(b)). For these wrist positions the strength is a
negative number representing the magnitude of additional force the muscles would
need to produce to make that wrist position holdable. The highest strength for this
person was 1.3 N at a wrist position near the person’s sagittal plane. This is roughly
enough strength to hold and move a fork or push a button but not enough to move
heavier objects. The lowest strength was -16.8 N at a position high and to the right,
which is not pictured in the 2D cross section in Figure 4(a). At high wrist positions,
the person could not exert upward forces.

The predicted moveability map (Figure 4(c)) displays the percentage of 3D
directions for which the participant’s muscles can produce force and hence motion. The
participant can produce force in all directions (dark red in Figure 4(c)) for holdable
wrist positions (green in Figure 4(b)). At non-holdable positions moveability is less
than 100% – around 40% near the boundary of the holdable region (light blue in
Figure 4(c)) and decreasing for wrist positions further to the right of the holdable
region (dark blue in Figure 4(c)). At these non-holdable positions, the participant can
produce forces toward the holdable positions but not in other directions.

Note that the individual capability maps are interrelated. Wrist positions that
are holdable have positive strength and 100% moveability. Wrist positions that are
not holdable have negative strength and moveability less than 100%. The strength
map continuously quantifies force production capability at holdable positions and
force production deficits at non-holdable positions. The moveability map continuously
quantifies capabilities at non-holdable positions.

3.2. Accuracy of Capability Maps

To quantify the accuracy of the capability maps, we produced experimental force
polyhedra at various wrist locations in the person’s workspace during each of two ex-
periment sessions. At each wrist location we computed the holdability, strength, and
moveability of the force polyhedron and compared them to the same measures for the
target force polyhedron. Recall that the target force polyhedron, made of a subset of
vertices of the predicted force polyhedron, closely matches the holdability, strength,
and moveability of the predicted force polyhedron. A summary of these results is
included in Table 2.

Our models correctly predicted holdability for 19 of 23 (83%) wrist positions vis-
ited during Session #1 and 11 of 16 (69%) positions during Session #2. We fail to
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Figure 5. Predicted and experimental force polyhedra for a wrist position that
is 2 cm to the right of the participant’s sternum, 3 cm below the top of the
sternum, and 35 cm in front of the sternum. Data to build a model to predict
force production capability and data collected to experimentally validate the force
polyhedron was collected during Session #2. The picture of the person on the
lower right part of the figure is to orient the reader to the directions of forces
displayed in the force polyhedra. The polyhedra are 2D representations of 3D
force polyhedra.

reject the null hypothesis that the holdability accuracy of the two sessions are in-
dependent (p = 0.31). This dependence on session is reasonable as making correct
holdability predictions depends on the frequency of positions being near the borderline
of holdability, which depends on the placement of the person’s arm in her arm support
and her day-to-day level of muscle tone and strength. There was no significant dif-
ference between the target and experimental holdability for either of the two sessions
(p = 0.62 for Session #1 and p = 1 for Session #2).

Over two sessions the average error in predicting strength was 2.0 N, and the mean
error was significantly different than zero (p = 0.02). This indicates that the strength
measured in experiments when stimulating multiple muscles was typically larger than
the strength calculated based on our muscle models. The root mean squared error in
strength predictions was 5.5 N. For comparison, the smallest strength value over both
sessions for this participant was -20.6 N, and the largest strength value was 1.2 N.
There was no significant effect of session on the error in strength (p = 0.13).

For non-trivial cases – those with moveability less than one – our model’s average
error in predicting moveability was -0.009, or less than one percentage point in abso-
lute value, reported as a fraction of directions in which the muscles can produce force.
The mean error was not significantly different than zero (p = 0.65) which means that
there was no bias toward either overestimating or underestimating moveability. The
root mean squared error was 0.10. For non-trivial cases, the moveability range was
0.02 to 0.39. The session had no significant effect on moveability error (p = 0.57).

To illustrate the numerical results we report above, Figure 5 shows the experimen-
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tal and target force polyhedra for a trial with holdability, strength, and moveability
close to the root mean squared error for each value. In this “average” case, the exper-
imental force polyhedron correctly classifies the wrist/arm position as not holdable,
has an error in predicting strength of -4.7 N (0.2 N less in magnitude than the RMS
strength error), and an error in predicting moveability of -0.2 (0.1 more in magnitude
than the RMS moveability error). The error in prediction of strength for the force
polyhedra in Figure 5 is larger than the errors for 16 other wrist positions and smaller
than 22 other positions. For non-trivial cases the moveability prediction error for
the force polyhedra in Figure 5 is larger than the errors for 25 other wrist positions
and smaller than 1 other positions. The experimental force polyhedron has similar
magnitude, shape, and orientation as the predicted force polyhedron. Both polyhedra
indicate that the person can produce larger forward/backward forces than right/left
forces largely due to the triceps, which produces primarily a forward force in this wrist
position, and biceps, which produces primarily a backward force, being the muscles
that produce the largest forces for this person. The experimental force polyhedron is
slightly rotated clockwise relative to the predicted force polyhedron. The experimen-
tal polyhedron also shows less force production capability in the backward direction
than the predicted polyhedron.

4. Discussion

This paper presents the concept of the capability map which has the potential to
lower barriers to development and use of neuroprosthetic devices to restore movement
to people with paralyzed arms. This proof of concept study describes the derivation
of capability maps, demonstrates their use for a person with high tetraplegia with
an implanted FES neuroprosthesis, and quantifies their accuracy. By predicting the
forces required to hold static wrist positions and the forces that a person’s muscles
can produce, we can predict a person’s capability to hold static wrist positions
(holdability), produce forces at the end of the forearm (strength), and move in certain
directions (moveability). This process allows us to predict person and device-specific
force production capabilities.

The strength predictions of our capability maps showed similar accuracy to
various FES force and torque controllers reported in the literature. We use the
force/torque control comparison because capability maps are based on predictions
of muscle force evoked by FES. The 5.5 N RMS error in our strength predictions
is 12% of the maximum force of 44.9 N that the participant could produce during
experiments. Open loop force control with the same participant yielded 11% errors
(Schearer, Liao, Perreault, Tresch, Memberg, Kirsch & Lynch 2014b) and torque
predictions in dynamic movements had errors under 20% (Schearer et al. 2016). In
testing similar models of FES force production, one group reported RMS isometric
force errors of 2.3 N to 5.7 N for 5 N magnitude force targets across three healthy
subjects (Razavian, Ghannadi, Mehrabi, Charlet & McPhee 2018). A closed-loop FES
controller achieved ankle torque accuracy ranging from 4% to 11% of torque capacity
for able-bodied participants (Zhang, Hayashibe & Azevedo-Coste 2013). Isometric
knee torques were controlled with closed-loop electrical stimulation of the quadriceps
with 1.45 Nm RMS error across eight healthy participants (Merad, Downey, Obuz &
Dixon 2015); this is error is approximately 6% of the approximately 23 Nm maximum
torque reported. Our predictions should be considered the equivalent of an open-loop
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controller without the benefit of feedback. Also consider that we used nine muscles
that actuate the shoulder and elbow to control forces. The smaller errors reported in
(Zhang et al. 2013) and (Merad et al. 2015) use feedback to control one joint with one
muscle for participants without neurological impairments.

The most immediate use of capability maps is in developing FES controllers of
reaching movements. We developed capability maps in response to discovering in
early motion control trials that many movements at various speeds were impossible
according to our local models of FES force production (Schearer et al. 2015). With
capability maps we can more intelligently plan movements that can be achieved
by avoiding non-holdable wrist positions and avoiding planning movements in non-
moveable directions. Capability maps also allow us to increase the number of holdable
positions by making adjustments to the stiffness of the mobile arm support or position
of the participant’s arm in the arm support.

With further refinement we envision capability maps as a means of predicting
functional outcome measures and as a tool for recommending interventions to improve
functional outcomes. Capability maps offer a level of detail at the joint and muscle
level that can enhance understanding of a person’s limitations and potential solutions
to increase capability rather than merely evaluating capability broadly. Consider for
instance a clinical measure such as the Capabilities of Upper Extremity Instrument
Push/Pull Test (Marino, Shea & Stineman 1998). In this test a person attempts to
push and pull a pot from one place on a table to another with increasing weights in
the pot. The test does not give insight into what must be done to increase the score.
Capability maps could pinpoint weakness in a specific muscle or inability to apply
force in a specific direction. These shortcomings might be addressed with muscle
strengthening, tendon transfers, or the design of a powered orthosis depending on
the specific case. We note that this proof of concept study used implanted electrodes,
while eventual use of capability maps will use surface electrodes to inform intervention
strategies. Predictions with surface electrodes may have more uncertainty than the
results reported in this paper.

Capability maps will require more user-friendly and faster data collection to make
them useful as a clinical tool. The current system to construct capability maps lasts
45-60 minutes and requires expensive equipment and expert support. We gathered
data to construct capability maps using a laboratory motion capture system and a
robot, which require significant setup time and technical support. Many researchers
have used low-cost commercial video game motion tracking systems successfully for
similar purposes (Han, Shao, Xu & Shotton 2013). The robot used in gathering data
to create the capability maps acts as a mobile force sensor. It could be replaced by a
sensor worn on the participant’s wrist while a therapist moves the participant’s wrist
by applying force at the sensor (Hetrick, Guillen & Schearer 2017).

Further, capability maps will need more automated interpretation for clinical
use. The maps we show in this paper are useful simplifications of a person’s force
production capabilities, but they do not tell the whole story. They very quickly allow
a clinician to see for which parts of a person’s workspace capabilities are limited. To
make a meaningful change to an intervention strategy, a clinician would have to refer
to a more detailed representation of capability, such as the force polyhedra presented
in this paper. We envision a semi-automated multi-level system where a clinical team
views the capability maps and touches a screen in an area of interest on the map
to open up a picture of the force polyhedron for that area. Clinicians could then
have the option of experimenting with enhancements of muscle strength or addition
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of capabilities via an orthosis that would change the force polyhedra and capability
maps. This would allow them to assess how these enhancements might affect function.
The clinical team could interact with these layers of detail to plan interventions. We
see improved automation as a technical challenge that will be overcome in time rather
than as a fundamental impediment to clinical use of capability maps.

A limitation of capability maps as they are presented here is that they are only
for static wrist positions. We can very easily extend the idea to dynamic movements
where our capability maps become functions of both position and velocity. This
extension will allow us to predict the arm’s ability to perform a specific task at a
desired speed and identify muscles that need to be strengthened or degrees of freedom
for which torque requirements are high. We have already created such dynamic models
(Schearer et al. 2016) and used them to determine if given wrist trajectories are
possible (Schearer et al. 2015).

Although we demonstrated the concept of capability maps for a person with high
tetraplegia, the idea can be extended to other upper extremity impairments. High
tetraplegia was an obvious place to start as this person has essentially no capability
for volitional movements. We did not have to distinguish between the effects of FES
or any other assistive technology and the effects of volitional movements. For people
with various arm impairments and capabilities resulting from stroke, multiple-sclerosis,
traumatic brain injury, muscular dystrophy and other neuromuscular conditions the
problem of creating our force-based models becomes more challenging. We see this
challenge as an issue of experiment design to learn models of the arm for people with
volitional control rather than a fundamental roadblock to mapping the capabilities of
people with arm impairments besides high tetraplegia. We have designed experiments
to create holdability maps for healthy participants (Schearer, Liao, Perreault, Tresch,
Memberg, Kirsch & Lynch 2014a) and all three capability maps for a person with
high tetraplegia. Now the challenge becomes mapping capabilities along the entire
spectrum of volitional control of the arm. For people with conditions other than
complete paralysis, we can still stimulate muscles with FES and measure the output of
individual muscles at different wrist positions – we just need to design the experiment
to separate the effects of stimulation of a single muscle from effects caused by a
participant inadvertently activating other muscles at the same time.

We should be careful to state that the knowledge of muscle strength displayed
by capability maps does not link directly to function for people with conditions
other than complete paralysis. The link between strength and function has been
documented for multiple sclerosis (Dalgas, Stenager & Ingemann-Hansen 2008, Dalgas,
Stenager, Jakobsen, Petersen, Hansen, Knudsen, Overgaard & Ingemann-Hansen
2009), muscular dystrophy (McDonald, Abresch, Carter, Fowler Jr, Johnson, Kilmer
& Sigford 1995), stroke (Bohannon 2007), traumatic brain injury (Duong, Englander,
Wright, Cifu, Greenwald & Brown 2004), and incomplete spinal cord injury (Kim,
Eng & Whittaker 2004). However, we see the ability to map muscle strength in a
person’s workspace as a vital tool to increasing understanding of how muscle strength
and function are related.

This initial proof of concept of capability maps shows their potential to be an
important tool for upper extremity rehabilitation research and practice. The idea of
examining the effects of specific muscle groups on capability is not new, as researchers
have used computer models to identify important muscle groups for standing posture
(Kuo & Zajac 1993) and more recently for arm movements (Blana et al. 2013). The
innovation in the work presented in this paper is that we can map the capabilities of
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specific people rather than of computer models. By creating person-specific models of
the arm’s capabilities we can give researchers and clinicians straight-forward insights
into why a specific person using a specific device lacks an upper extremity capability
and how that capability might be improved with an appropriate intervention.
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