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Abstract—Individuals with paralyzed limbs due to spinal
cord injuries lack the ability to perform the reaching motions
necessary to every day life. Functional electrical stimulation
(FES) is a promising technology for restoring reaching move-
ments to these individuals by reanimating their paralyzed
muscles. We have proposed using a quasi-static model-based
control strategy to achieve reaching controlled by FES. This
method uses a series of static positions to connect the starting
wrist position to the goal. As a first step to implementing this
controller, we have completed a simulation study using a MAT-
LAB based dynamic model of the arm in order to determine the
suitable parameters for the quasi-static controller. The selected
distance between static positions in the path was 6 cm, and the
amount of time between switching target positions was 1.3 s.
The final controller can complete reaches of over 30 cm with
a median accuracy of 6.8 cm.

I. INTRODUCTION

Functional electrical stimulation (FES) is a promising
technology that restores movement to paralyzed muscles
by delivering electrical current to the nerves and muscles
directly. Using FES to control reaching motions could allow
individuals with paralysis from spinal cord injuries to regain
their independence.

Achieving reaching motions with FES has proven dif-
ficult due to the complexity of human arm motions. For
repetitive tasks such as standing [1] and hand function [2],
the complexities of the nonlinear, redundant musculoskeletal
system have been overcome with predetermined fixed stimu-
lation patterns. The goal-directed nature of reaching motions,
however, requires different and potentially new stimulation
patterns for every reach.

Many different control strategies have been proposed to
achieve FES reaching. The state-of-the-art strategy, demon-
strated in the BrainGate2 clinical trial, simultaneously con-
trolled each joint independently [3]. For each joint, the
controller selected (based on user intent recorded by an
intracortical brain computer interface) a position along a
predefined stimulation pattern. While the user’s intent was
accurately perceived, it was difficult to control multi-joint
movements because the independent joint control could not
account for the interactions of the joints. To accurately
control reaching motions, it is necessary to treat the arm
as a complete system.

This work was supported by NIH NINDS grant NO1-NS-5-2365, Veter-
ans’ Affairs grant B2359-C, NSF grant 1751821, and the Cleveland State
Graduate Student Research Award.

ID. N. Wolf and E. M. Schearer are with the Depart-
ment of Mechanical Engineering, Cleveland State University
and the Cleveland Functional Electrical Stimulation Center,
Cleveland, OH USA d.n.wolf@vikes.csuohio.edu,

e.schearer@csuohio.edu.

In simulations, optimized proportional-derivative control
[4], combined feedforward-feedback control [5], reinforce-
ment learning [6], and threshold control [7] have all proven
successful in controlling reaching motions. Practical imple-
mentation of these methods has proven difficult due to the
real-world arm dynamics differing from the simulation.

To control the arm as a complete system and determine
the real-world arm dynamics necessary for accurate con-
trol, model-based methods have been proposed in previous
works. Physics-based models have shown some success in
controlling two muscles for rehabilitation after stroke [8].
However, identifying the physical parameters of the whole
arm requires significant amounts of data. Black-box model-
based control methods have been developed to help solve this
issue. One such method achieved feedback control of planar
arm tasks using an artificial neural network to produce a map
of the task space configuration to the forces the muscles
can produce [9]. We have used similar nonparametric and
semiparametric concepts to produce a model-based controller
capable of holding three-dimensional static arm configura-
tions [10][11]. However, extending these methods to full-arm
model-based three-dimensional reaching control has not yet
been achieved.

Previous work has demonstrated that a semiparametric
Gaussian Process Regression (GPR) model could form the
basis of a controller for achieving three-dimensional dynamic
trajectories [12]. However, including velocity in the con-
troller made it difficult to select trajectories that could be
physically achieved with FES. Instead, we have developed a
combined feedforward-feedback controller for holding static
wrist positions [11]. To achieve reaching movements, we
propose using a version of this controller to move the arm
through a quasi-static reaching motion. We define a quasi-
static path as a series of intermediate static positions which
connect the starting arm configuration to the target arm
configuration. The controller will shift the desired static
target wrist position to the next position in the path until
the final target is reached.

Before implementing the quasi-static controller with a
human subject, we conducted the current simulation study.
The simulation study was designed to replicate the experi-
mental conditions which we work with during our research
with human subjects [11]. This includes the use of an
elastic arm support which people with high tetraplegia use to
assist against gravity to produce a more effective reachable
workspace.

Our previous work has demonstrated that the elasticity of
the arm support can combine with the time delays inherent



to an FES system (the relatively slow frequency of switching
the stimulation signal and muscular activation dynamics) to
produce oscillations (which can be uncomfortable for the
subject) that basic derivative control is unable to eliminate
[13]. Advanced control techniques have been developed to
account for these delays in single joint movements [14] as
well as in a model-based controller of a simulated arm [15].
Applying these techniques to an FES-controlled human arm,
where the parameters of the model are not easily determined,
has yet to be implemented. As a simple solution to practically
solving the oscillation issue, we propose the addition of
damping to the arm support.

The goals of this study are to demonstrate the feasibility
of a quasi-static controller for controlling reaching and to de-
termine the conditions for successful reaching. A secondary
goal is to study the effects of adding physical damping to
the arm support.

The result of this simulation study is a starting set of
parameters (to be further tuned in practice) for a quasi-static
controller capable of being practically implemented to drive
a paralyzed human arm through three-dimensional reaching
motions.

II. METHODS

The goal of the experiment was to simulate the experi-
mental setup presented in [11] where we used an implanted
neuroprosthesis to actuate the arm of an individual with high
tetraplegia (We will refer to this experiment as the laboratory
study). We used a MATLAB based dynamic simulation of
the arm to recreate the conditions of the laboratory study.
As in human experiments, we assume that our controller
does not have access to the true dynamics of the arm, and
we identified a non-parametric model of the response of the
simulated human arm to muscle activation inputs. We used
this model as the basis of a feedforward-feedback controller.
We tuned the controller and added damping to the arm-
support to achieve good performance at static positions. The
controller was then used to move the arm to points of varying
distances to determine the best distance and time between
intermediate wrist positions in a quasi-static path. The best
parameters were used to control the arm through complete
reaching motions and compared to a controller without a path
of intermediate static positions.

A. Simulation Experiment Setup

The goal of the simulation study was to recreate the
conditions of the laboratory study. The computer simulation
thus consisted of a musculoskeletal model of the arm, an
elastic arm support, and a robot.

To simulate the subject’s arm, we used the Dynamic Arm
Simulator, a MATLAB based dynamic model of the arm
[16]. The model has seven links, eleven degrees of freedom,
and 138 muscle elements. The model includes the multibody
dynamics of the links as well as muscle activation dynamics.
In all parts of the present study, the time step used in the
simulation was 3 ms.

The Dynamic Arm Simulator model is actuated by in-
putting the neural excitations, u, which correspond to the
desired muscle activations. The neuroprosthesis used in
the laboratory study applies stimulation at a frequency of
13 Hz to induce the desired muscle activations. Though
the desired control input can be calculated at every time
step, switching the input can only occur at the stimulation
frequency. In the Dynamic Arm Simulator simulation, we
modeled this by restricting u to only change at 13 Hz. We
controlled only the muscle elements which are able to be
controlled by the neuroprosthesis in the laboratory study.
In the Dynamic Arm Simulator, we controlled the muscle
elements related to the triceps, deltoids, latissimus dorsi, ser-
ratus anterior, biceps/brachialis, supraspinatus/infraspinatus,
rhomboids, lower pectoralis, and upper pectoralis. When a
neural excitation is applied to a muscle group, all elements
in the group receive the same excitation.

We simulated a passive arm support that is typically used
by individuals with spinal cord injuries to assist against the
force of gravity and create a more functional workspace. The
support used in the laboratory study uses elastic bands to cre-
ate a resting equilibrium position of the wrist approximately
at the top of the thorax slightly forward from the body, and
we aimed to simulate the behavior of this arm support. The
stiffness of the support were 0 N/m in the X direction and 30
N/m in both the Y and Z directions (due to the orientation of
the elastic bands in the laboratory study’s arm support, the
majority of force is applied in the Y and Z directions). The
equilibrium point for the support was placed at [0 m, 0.3 m,
-0.15 m] (see the coordinate frame in Fig. 2). Choosing the
damping of the support is one of the goals of the study.

In the laboratory study, a robot is used during model
identification and at the start of control to hold the wrist
in the desired position. In the computer simulation, a PID
controller was used to apply force at the wrist to mimic this
robot.

We used the included Dynamic Arm Simulator OpenSim
model to visualize all trials and experiments [17][18].

B. Model Identification

The model identification procedures are developed in
detail in [11] and [12]. We present a summary here.

We developed a two-part model consisting of the inverse
statics (the mapping from arm configuration to joint torque
required to hold the configuration) and the muscle torque
production (the mapping from configuration and muscle
activation to the joint torques produced). In the same way
as the laboratory study, to gather data for the model, the
robot held the wrist of the simulated arm in a series of
27 positions throughout the workspace. At each position,
each muscle group was individually activated at 100% neural
excitation for 0.5 seconds, and for one period of 0.5 seconds,
no muscles were activated, © = 0. The force required for the
robot controller to hold the wrist at a static position and the
configuration of the arm were recorded. The configuration of
the arm, q, is defined by the angles between the thorax and
the humerus (shoulder elevation plane, shoulder elevation,
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Fig. 1. The block diagram for our controller. The controller uses model-
based blocks and a feedback controller to automatically calculates the neural
excitations to apply to the dynamic arm simulator (DAS) to to achieve the
desired wrist position that corresponds to the desired arm configuration.

and shoulder rotation) as defined in [19]) as well as the elbow
flexion and pronation angles. The force required to hold the
wrist position and joint configurations were averaged over
the last 10% of each trial. The kinematic Jacobian was used
to transform the recorded robot controller force to the joint
torques, 7;, about the shoulder and elbow which produce
the equivalent force (j represents the muscle group being
activated with O representing no muscles being active).

The torques needed to hold the wrist in a static position,
p(q) € R**L, (The torque about elbow pronation is not
included as it does not affect the position of the wrist.) with
no muscles activated represent the arm statics, and therefore,

7o = p(q). (D

The difference between the torques recorded with no muscles
active and the torques recorded with muscle group j active
represents the amount of torque produced by muscle group j.
The amount of torque produced by a muscle being activated
is represented by R(q)a where o € R%*! is the vector of
muscle group activations and R(q) € R**? is the mapping
from muscle group activation to joint torque. The j™ column
of R(q), R;(q), represents torques about the shoulder
elevation plane, shoulder elevation, shoulder rotation, and
elbow flexion produced by muscle group j. Therefore,

Rj(q)ZTo—Tj. (2)

The data from the set of 27 training positions was used
to train semiparametric GPR models [20] which are used
to predict 7; for j = 0,1...9 for a given configuration.
The models can therefore be used to determine the static
arm torques p(q) and the muscle force mapping R(q) for a
desired arm configuration.

C. Controller

Our controller (see Fig. 1) automatically determines the
muscle activations required to hold a static wrist position.
The input to the controller is the desired arm configuration,
q., defined by the three angles between the humerus and
the thorax (shoulder elevation plane, shoulder elevation, and
shoulder rotation) and elbow flexion and pronation. This
controller maps the desired arm configuration to the predicted
torques needed to maintain the configuration. These torques
are modified by the feedback controller to produce the
desired torques necessary to be achieved by the muscles. The

output of the controller is the set of neural excitations which
correspond to the muscle activations that produce the desired
torques, and these excitations are applied to the Dynamic
Arm Simulator arm.

The inverse arm statics block uses the model developed in
section II-B to calculate the open-loop joint torques, p(q.),
about the shoulder and elbow to hold wrist at the desired
position. A PID controller calculates corrective forces in each
cardinal direction (X, Y, and Z directions) required to hold
the wrist at the desired position. The kinematic Jacobian is
used to transform these forces to the equivalent torques about
the shoulder and elbow. These feedback torques, Trp, are
added to the open-loop torques to produce the total desired
torque, Tiotal = p(q*) + TFB-

The controller next maps the total torque to the muscle
group activations which produce the desired torques. The
controller uses the GPR models of muscle torque production
to determine the muscle-torque mapping, R(q.), for the
desired configuration. (Note: The inverse arm statics and
inverse muscle torques are found for the desired configu-
ration and not the current configuration.) Since the system is
redundant, we determine the muscle activations, o € R9*1,
which produce the desired total torques by solving an op-
timization problem which minimizes the muscle activations
such that the desired torques are produced and a € [0, 1].
The neural excitations input to the Dynamic Arm Simulator
model are equivalent to the desired muscle activations, u; =
aj for the j™ muscle group. The actual activation achieved
is determined by the muscle activation dynamics of the
Dynamic Arm Simulator.

The model was used to determine a set of feasible wrist
positions throughout the workspace. A grid of wrist positions
within the positions used during model identification with
1 cm spacing was produced. The feasibility of each wrist
position was determined by the ability of the model to find
a set of muscle activations which can produce the required
open-loop torques for the configuration that corresponds to
the desired wrist position. The map of feasible points is
shown in Fig. 2.

To tune the controller, 15 wrist positions were randomly
selected from the map of feasible points. The open-loop
portion of the controller was used with the goal of holding
the static wrist position for three seconds. The final distance
from the desired position was recorded for all trials. The
feedback controller was tuned at the position with the median
error. The controller was tuned with the goal of improving
the accuracy of holding a static position for three seconds
while minimizing oscillations. The gains of the PID con-
troller were tuned to increase the accuracy of the holding the
static position while also limiting oscillations. As previously
discussed, the existence of time delays in the system caused
by the 13 Hz frequency of changing neural excitations as
well as the muscle activation dynamics meant that simple
derivative gain in the FES controller was unable to eliminate
oscillations (see Fig. 4). Instead, damping was added to the
arm support. The final FES controller was a PI controller
with tuned parameters of 250 N/m for the proportional gain



Fig. 2. A 2-D projection of the 3-D map of the feasible wrist positions in
the modeled workspace. Feasible points (green) are where the controller is
able to determine predict a set of muscle activations capable of achieving
the model predicted static arm torques. The map was produced with a 1 cm
spaced grid of wrist positions. The image also shows an example reaching
motion completed by the final quasi-static controller. The intermediate points
are shown by blue circles and the triangles represent the start (blue) and
end target positions (red). The reach shown was a 32 cm reach with an
accuracy of 9.5 cm. As seen, the reach has fairly good accuracy until the
arm moves to the edge of the feasible workspace.

and 80 N/m-s for the integral gain. 120 N-s/m was chosen
for the damping of the arm support. The gains were the same
for the X, Y, and Z directions.

D. Quasi-static Path Following

The controller was used to control the wrist to follow
a quasi-static path. A series of static wrist positions was
selected from the feasibility map (Fig. 2) which connected
the starting position to the target position. As the arm moved
along the path, the desired configuration shifted to the next
static point in the path and was input to the controller.

To determine a suitable distance and amount of time
between points in a quasi-static path, point to point reaches of
different distances were completed. A starting wrist position
and target wrist position a set distance, d, away from the
start position were randomly selected from the feasibility
map. The corresponding target arm configuration was input
to the controller and the controller drove the arm for three
seconds. The final distance from the target wrist position and
the 80% rise time were recorded for each point. This process
was repeated at 100 start wrist positions for distances, d =
2,4,6...16 cm for a total of 800 reaches. The mean accuracy
and mean rise time of all targets of a single d were recorded.

From the single point to point studies, the best pa-
rameters (the distance between positions, d, and the time
between switching positions, ts,itcn) Were selected to test on
complete quasi-static reaching paths. The required distance
between positions, d, was selected based upon the accuracy
of the point to point reaches. The required time between

switching positions, tsy;tcn, Was determined by the average
rise time of the trials. The reasoning for using the 80% rise
time was to switch to the next target after being close enough
to the current target to still have accurate control. If switching
occurred fast enough, the motion could become smoother
(less stops and starts).

Using the selected parameters, complete quasi-static reach-
ing paths were completed. Start and end positions at least
30 cm apart were randomly selected from the feasibility map.
A path of wrist positions, each a maximum distance of d, cm
from the previous point, was selected which connected the
two points. As the arm moved along the path, the desired
wrist position shifted to the next point in the path every
tswitcn- The final position is held for 2ts,,4.n to allow for
the controller to settle at the position. The quasi-static paths
were compared to the same controller but with no path of
intermediate positions (the goal position is the final target
from the initial time step) for the same average speed of
reach as the final controller.

The final accuracy (the distance from the average hand
position over the final 0.3 seconds of a trial to the final
target position) was recorded for each trial. For a grouping
of trials, the overall accuracy was determined by the mean of
the accuracy for all trials in the group. A t-test was used to
compare the quasi-static controller to a simple PI controller
with no intermediate positions (referred to as the simple
controller).

III. RESULTS

We have developed a quasi-static controller that is capable
of moving the wrist of a simulated arm along a path between
a starting position and target position. Using a controller with
a distance between positions of 6 cm and a time between
switching points of 1.3 seconds, we were able to achieve
a median accuracy of 6.8 cm (mean: 10.5 cm, standard
deviation: 9.4 cm) over a series of 200 reaches longer than
30 cm. This is significantly better than the simple controller
that does not use intermediate points (mean: 20 cm, p <
0.01). Fig. 2 shows an example trial of the final controller
achieving a 31 cm reach with an accuracy of 0.6 cm.

Fig.3 shows the time histories in the X direction of
both the quasi-static controller and the simple controller
for achieving a 32 cm reach with accuracy of 1.1 cm and
27.4 cm respectively. The quasi-static controller achieved
better accuracy, but required a significantly longer period of
time to reach its final position (nearly 10 s vs 3 s). Also,
the quasi-static controller results in a motion that stops and
starts at each position.

To achieve the final controller, we first had to tune the
parameters of the controller. Tuning was performed at a
static position with the goal of improving accuracy while
limiting oscillations. As seen in Fig. 4, while tuning the
controller, oscillations arose due to the proportional gain.
Adding derivative gain to the controller was unable to
eliminate the oscillations because of the 13 Hz frequency for
changing neural excitations as well as the muscle activation
dynamics. Instead, 120 N-s/m of damping was added to the
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Fig. 4. This figure compares the effect of using a PID controller (red)
vs a PI controller with mechanical damping (green). Both controllers use
a damping constant of 120 N-s/m. The controller used had a proportional
gain of 250 N/m and an integral gain of 80 N/m-s and the goal position
was the starting position (black). Adding derivative control is unable to
eliminate oscillations compared to the undamped system (blue) because
of the time delays in switching neural excitation inputs and the muscle
activation dynamics. The addition of physical damping to the arm support
eliminates the oscillations.

arm support in each direction. This was effective in limiting
oscillations during tuning.

We used the tuned controller to move the wrist over single
point reaches of different distances. The average accuracy
and rise times of each distance are shown in Table I. Since
the rise times were similar for all reach distances, we used the
overall average value of 1.3 s as the position switching time,
tswitcn for our quasi-static controller. To select a distance
between points, the goal was to select the largest distance
possible while maintaining accuracy. With that goal in mind,
we selected 6 cm spacing for our paths. (12 cm spacing also
produced low error with the point to point moves, however

TABLE I
AVERAGE RESULTS FOR POINT TO POINT REACHES

Reach distance  Accuracy  80% rise time
(cm) (cm) (s)
2 22 1.2
4 35 1.0
6 35 1.2
8 4.1 14
10 6.6 1.3
12 33 1.3
14 5.5 1.5
16 10.3 1.5

a few test trials of paths with 12 cm spacing demonstrated
that this accuracy was not maintained over several steps.)

The final parameters selected for the controller were a
distance between positions in the path of d, = 6 cm, the
switching time of %gyitcn = 1.3 s, and the mechanical
damping of 120 N-s/m in all directions.

IV. DISCUSSION

We have presented a quasi-static control architecture
which is capable of accurately controlling the position of the
wrist of a simulated human arm during reaching movements.
Using a model-based, quasi-static method proved more accu-
rate than a simple model-based PI controller. The accuracy
of the final controller is worse than the accuracy found in
[11] for holding static positions but similar. While this is
a simulation and so does not have the issues of a practical
experiment, maintaining a similar accuracy over the course
of an entire reach is encouraging.

This paper determined the key parameters necessary which
can be used as a starting point to achieve reaching mo-
tions with a practically implemented quasi-static controller.
Further tuning of the parameters will be necessary when
used with a human subject. A relatively simple improvement
prescribed by the results was the addition of a damper to the
passive arm support. Oscillation within a reaching motion
can be discomforting to an individual with a paralyzed limb
controlled with FES. The inability to eliminate oscillations
using derivative control due to the delays in the system lim-
ited the ability to improve the performance of the controller.
More complex methods have been developed to compensate
for the delays inherent in an electrically stimulated neuro-
muscular system, but these are generally developed only
for single joints or often require some knowledge (with
some uncertainty allowed) of the parameters of the system
[14][15]. Our modeling method avoids parametric modeling
due to the difficulty in defining the parameters and therefore
does not fit these compensation methods well. The physical
addition of the damper to the system is a simple way to
improve the system performance and achieve similar results.

The average speed of the reaching motions prescribed
by this controller (4.6 cm/s) is very slow compared to
other controllers. A planar arm controlled by FES has been
driven with maximum velocities of 25 m/s [9]. Even the
simple controller without intermediate points much more



quickly achieved its final position. Also, the simple controller
produced smoother motions without stopping and starting.
However, for many every day motions, slow arm movements
are acceptable as accuracy is more important (for example,
when eating off a plate). However, it is still necessary to
improve the speed and smoothness of the movements to
make the reaching similar to pre-injury abilities. Since the
rise times for all single point-to-point trials were similar,
the best way to improve the speed of the controller is to
increase the distance between positions in the quasi-static
path. However, this change must be done carefully because
the increase in distance between points in this paper generally
led to a decrease in accuracy.

There were many trials with larger distances that still had
very good accuracy (and some small distance trials with bad
accuracy). These good accuracy trials often occurred when
the path was well within the feasible region. For many of the
trials with bad accuracy, points along the path were near the
border of the feasible region. This can be seen in Fig. 2 where
the controller is accurate until the portion of the path near
the boundary of the feasible space where errors in the model
are not well compensated for. Model errors on the border of
the feasible space could mean the point is actually infeasible
or could cause the arm to move to infeasible configuration
which cannot be recovered from. Additionally, the ability
of the controller to compensate for errors is lower in this
region as the muscles are able to achieve less compensatory
forces. Also, because the feasible space is not convex, large
distances between points can lead to straight line paths
which cross through infeasible regions. This is most likely
one reason that the smaller distances between points have
better accuracy. The current method of selecting a path is
a simple nearest neighbor search. A more intelligent path
selection method which selected feasible points away from
the boundary could allow for larger distances between points
and, in turn, higher speed of movement.

Overall, this work presents a quasi-static control architec-
ture capable of achieving FES-driven reaching motions.
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