

Children's descriptions of playing and learning as related processes

Susan M. Letourneau

New York Hall of Science

David M. Sobel

Brown University

Children's descriptions of playing and learning as related processes

Published in PLOS-One on April 15, 2020

DOI: <https://doi.org/10.1371/journal.pone.0230588>

Abstract

Many studies have examined children's understanding of playing and learning as separate concepts, but the ways that children relate playing and learning to one another remain relatively unexplored. The current study asked 5- to 8-year-olds (N = 92) to define playing and learning, and examined whether children defined them as abstract processes or merely as labels for particular types of activities. We also asked children to state whether playing and learning can occur simultaneously, and examined whether they could give examples of playing and learning with attributes either congruent or incongruent with those activities. Older children were more likely to define both playing and learning in terms of abstract processes, rather than by describing particular topics or activities. Children who defined both playing and learning in this way were able to generate more examples of situations where they were simultaneously playing and learning, and were better able to generate examples of learning with characteristics of play, and examples of playing with characteristics of learning. These data suggest that children develop an understanding that learning and playing can coincide. These results are critical to researchers and educators who seek to integrate play and learning, as children's beliefs about these concepts can influence how they reflect on playful learning opportunities.

1 Children's developing understanding of the relation between playing and learning

2

3 Early childhood education has increasingly focused on play as a foundation for learning,

4 drawing on decades of research linking children's play with their social and cognitive

5 development [1-6]. This work has shown that play provides opportunities for children to practice

6 social and emotional skills, to use increasingly complex cognitive processes, and to strengthen

7 bonds with their caregivers and peers [7-9]. Play can also support more formal learning

8 outcomes, particularly with adult guidance [10-13]. In sum, play is an avenue for many kinds of

9 learning in early childhood.

10 Despite this evidence, studies have also found that children often describe playing and

11 learning as mutually exclusive. From a young age, children describe play as a freely-chosen and

12 social activity that involves positive affect, while learning is mandatory, serious, and overseen by

13 adults [14-20]. The methods used in many of these studies, however, might encourage children

14 to contrast playing and learning without also providing opportunities for them to describe their

15 similarities. For example, children are often asked to describe how playing and learning differ or

16 to label an activity as either playing or learning in a forced-choice task [15, 21]. By presenting

17 playing and learning as opposites, these methods potentially underestimate the extent to which

18 children recognize that playing can lead to learning or that learning can occur while playing.

19 In this study, we examined how children reflect on the intersections between playing and

20 learning. In particular, we asked whether children who recognize that learning is an active

21 process also recognize that play offers opportunities to learn, and whether this understanding

22 develops over time. Just as adults' awareness of the learning opportunities in play are vital in

23 fostering playful forms of early learning [10, 22-23], children's own metacognitive awareness of

24 how they think and learn can have powerful implications for their engagement in learning as well
25 as their identities as active learners [24-29]. For educators who provide playful learning
26 environments for young children, understanding how children describe their own play and
27 learning can suggest opportunities to scaffold their reflection about what it means to learn, as
28 well as the ways that learning can happen through everyday experiences like play [24, 30].

29 Numerous studies that have shown that young children develop the capacity to reflect on
30 their own learning [31-38]. For example, in one study, researchers asked children to define
31 “learning” and to give examples of how they had learned in the past [38]. Four- and 5-year-olds
32 often defined learning as tied to particular types of content or topics (e.g., learning is math). By
33 age 8, almost all the children in their sample described learning as an active process that resulted
34 in a change in knowledge or skills, reflecting a metacognitive understanding of learning as
35 involving their own mental states. Independent of age and language abilities, children’s
36 definitions of learning related to their ability to describe sources and strategies that allowed
37 changes in their knowledge to take place. Such development is consistent with other
38 investigations of children’s understanding of learning, such as their ability to track how or from
39 whom they learned new information [39, 40] or that learning involves integrating various mental
40 states together, and is not dependent on a single action or mental state [41].

41 Other studies suggest that articulating an abstract, process-based definition of a concept
42 may be domain-specific. For example, similar shifts from concrete to abstract definitions have
43 been found in children’s developing concepts of pretending [42], of teaching [43], and of
44 creativity. Children’s descriptions of learning as a process of knowledge change, however,
45 developed earlier than their descriptions of teaching as a process that causes knowledge change
46 in others. The question remains whether children also come to define playing as an abstract,

47 metacognitive process. If children do so, when and how do they begin to reflect on the relations
48 between playing and learning, and is a process-based understanding of learning or playing
49 necessary to integrate these concepts?

50 We asked children between the ages of 5 and 8 to define both playing and learning. We
51 focused on this age group because the studies described above found that children's definitions
52 of learning changed during this time period, shifting from describing particular topics that could
53 be learned to describing a process through which they learned. By asking children about both
54 playing and learning in the current study, we examined whether children had abstract, process-
55 based understandings of both concepts. Moreover, asking about both concepts allowed us to
56 directly compare the developmental trajectories of children's responses.

57 We next asked children to think of examples of activities in which they were both playing
58 and learning at the same time. Our hypothesis was that children who defined both playing and
59 learning as more abstract processes would be more likely to generate examples of activities that
60 they considered to be both playing and learning, and to articulate why those activities could be
61 categorized in both ways. This pattern of findings would suggest that children with more abstract
62 definitions of these concepts have a metacognitive awareness of when the processes of playing
63 and learning can overlap.

64 Finally, using a between-subjects design, half of the children in the study were asked for
65 examples of playing that involved features congruent with play (instances when playing was fun,
66 freely chosen, or not directed by adults), and examples of learning that involved features
67 congruent with learning (instances when learning was serious, not freely chosen, or directed by
68 adults). The other half of children were asked for examples of playing and learning with qualities
69 of the opposite activity (i.e., examples of playing incongruent with play and examples of learning

70 incongruent with learning, such as learning that was fun, or play that was serious). These
71 examples came from the previous studies that asked children to describe playing and learning
72 using forced-choice methods [15, 21]. If children use these features to differentiate playing and
73 learning, then they should have more difficulty coming up with examples when given
74 incongruous rather than congruous qualities. Moreover, their ability to come up with examples
75 with incongruent features might relate to the ways in which they defined these concepts. An open
76 question is whether children's definitions of playing or learning relate to the inferences they
77 make about whether playing or learning is occurring.

78

79 **Methods**

80 **Participants**

81 Participants included 92 children (57 girls, 35 boys) between the ages of 5 and 8 (Range:
82 60.20 – 107.90 months, $M = 84.96$ months). Children were tested at a local children's museum
83 during regular museum visits with a family member or guardian present. No formal measures of
84 race, ethnicity or SES were administered, but the majority of children were white and middle to
85 upper-middle class (as reflected by museum visitor surveys).

86 **Procedure**

87 This research was approved by the Brown University IRB under the protocol, *Emergence*
88 *of Diagnostic Reasoning and Scientific Thinking* (#1201000538). Interviews took place in a quiet
89 room within the museum and lasted approximately 10 minutes. All parents/guardians were
90 stepped through informed consent and children had to agree to participate before the experiment
91 started.

92 The first part of the procedure involved asking children to define learning and playing.
93 Children were asked to define learning using prompts from a 2015 study by Sobel & Letourneau
94 [38]. The interviewer asked “What does learning mean?” If children did not respond, the
95 question was restated, “What does it mean to learn?” The interviewer also asked, “What do you
96 think ‘playing’ means?” If children did not understand the question or did not respond, the
97 question was restated, “What does it mean ‘to play’?” If children were not sure or did not
98 answer, the interviewer moved on to the next questions. Whether children were asked to define
99 learning or playing first was counterbalanced.

100 Children were then asked whether they could think of a time that they were playing and
101 learning at the same time (with the order of the words ‘playing’ and ‘learning’ in the question
102 counterbalanced across children) and to describe what they were doing. They were then asked
103 “Why was that both playing and learning?” Children were allowed to generate up to three
104 examples.

105 Next, children were asked to provide examples of their own playing and learning under
106 different conditions. Approximately half of the children in this sample ($n = 45$) were assigned to
107 the *congruent* condition, in which they were asked to generate examples of playing under
108 characteristic attributes related to playing (being enjoyable, freely chosen, and without adults)
109 and examples of learning with attributes related to learning (being serious, mandatory, and with
110 adult supervision or direction). Thus, in the congruent condition, children were asked whether
111 they could think of time they were playing and having fun or being happy, doing something that
112 they wanted to do, and when there were no adults supervising. For each, they were given
113 prompts like “what were you doing?” and “tell me more about that,” if necessary. For each
114 example, they were asked whether they were learning too and to justify their answer. Similarly,

115 children in the congruent condition were asked whether they could think of a time they were
116 learning and were being serious or concentrating, doing what someone else told them to do, and
117 were with an adult like a teacher. The same prompts were used, and children were asked whether
118 they were also playing in these examples and to justify their answer.

119 The other children in the sample ($n = 47$) were assigned to the *incongruent* condition in
120 which they were asked to generate examples of playing with characteristic conditions related to
121 learning, and examples of learning with characteristic conditions related to playing. These
122 children were asked if they could think of a time when they were playing and were serious or
123 concentrating, doing what someone else told them to do, and playing with adult supervision.
124 Similarly, these children were asked if they could think of a time when they were learning and
125 having fun or being happy, doing what they wanted to do, and without adult supervision. The
126 same prompts and follow-up questions were used. The order in which they received the
127 questions about playing and learning were counterbalanced.

128 **Coding**

129 Children's definitions of learning were categorized in the same manner as Sobel and
130 Letourneau (2015) [38] in order to replicate their findings and analyze the shift from more
131 concrete example-based to more abstract, process-based definitions of learning. Responses were
132 divided into the following categories: (1) *No Response*, including "I don't know," or no answer;
133 (2) *Identity* responses, in which children used the word "learn" or "learning" to define learning
134 (e.g., "learning is when you learn."); (3) *Content* responses, in which children defined learning as
135 involving a subject or topic that was or could be learned (e.g., "Like reading and math."), and (4)
136 *Process* responses, in which children defined learning as involving either a source (e.g., "when

137 your teacher tells you something") or a strategy ("when you practice again and again until you
138 know it") that would result in gaining knowledge.

139 Definitions of playing were coded into the following categories, in order to distinguish
140 more concrete example-based definitions with more abstract process-based definitions: (1) *No*
141 *response*, or "I don't know". (2) *Identity*: the child used the word "play" or "playing" to define
142 playing, without elaborating further (e.g., "Playing is when you play."). (3) *Content*: the child's
143 answer contained information about *what* they play or play with (e.g., "Using your toys."). (4)
144 (4) *Process*: the child's answer contained information about either *who* they play with (e.g.,
145 "Hanging out with your friends"), *how* they play (e.g., "chasing each other", "building things",
146 "pretending"), or the *outcome or result* of playing (e.g., "having fun", "being happy"). We
147 combined these three aspects of children's definitions of playing because they align with the
148 types of sources and strategies that were included in children's process definitions of learning.
149 With the exception of the no response category, these categories were not mutually exclusive;
150 children could mention more than one aspect of play in their definitions.

151 We next looked at the examples in which children described themselves as playing and
152 learning at the same time. First, we coded how many examples children were able to generate
153 (ranging from 0 to 3). Next, we coded what children described playing or learning in each
154 example. Coders judged whether children's examples involved one of the following forms of
155 play: *physical play* (e.g., playing tag, sports), *a structured indoor game* (e.g., board games,
156 puzzles), *creative play* (e.g., drawing, painting), *pretend play* (e.g., playing house), or *functional*
157 *object play* (playing with toy cars), or were not examples of playing. Coders also judged whether
158 children's examples involved one of the following types of learning: *topics* (such as general
159 academic or protoacademic subjects, like math or colors), *skills* (such as physical skills like

160 learning how to swim or other instructions, like how to make a bracelet), *conventions* (such as
161 social and nonsocial rules like “wear a coat outside” or “it’s nice to share”), or *facts* (such as
162 non-generalizable knowledge like “ants have six legs”), or were not examples of learning. These
163 codes were similar to the ones used in our prior study on children’s definitions of learning [29],
164 and were meant to document the types of activities that children judged to be both playing and
165 learning. Finally, we coded whether children generated examples of playing and learning in
166 response to each individual attribute (e.g., having fun/being serious, directed/not directed by an
167 adult, doing what someone tells you to do/doing what you want to do), using a binary code.

168 Children’s definitions of learning and playing were all coded from transcripts of the
169 interviews by two undergraduate research assistants who were both blind to the purpose of the
170 study. Overall agreement was 95% (Kappa = .75). Disagreements were resolved by the first
171 author. The rest of the coding was performed by two different undergraduate research assistants,
172 who were also blind to the purpose of the study. Their agreement was 91% (Kappa = .79).
173 Disagreements were resolved by the second author.

174 **Statistical Analyses**

175 All statistical analyses were conducted using SPSS Statistics software for Windows,
176 Version 24 (IBM Corp., Released 2016). To protect the privacy and confidentiality of
177 participants in this study, only de-identified data will be made available to interested researchers.
178 These data are located at <https://doi.org/10.26300/gtrw-7q13> through the Brown University Data
179 Repository System. Data sharing is contingent on IRB approval from the requester’s home
180 institution.

181 We conducted our analyses as follows. First, to determine how children’s definitions of
182 playing and learning changed with age:

183 1) We determined whether children generated more abstract, metacognitive definitions of
184 playing and/or learning. This included *process-based* definitions of learning (in which
185 children mentioned with whom or how learning occurred) and of playing (in which
186 children mentioned how, with whom, and the results of playing).

187 2) We calculated correlations between children's metacognitive definitions of playing and
188 of learning with age, and examined the frequency with which children generated
189 metacognitive definitions of either concept. We also calculated partial correlations
190 between these variables controlling for the mean length of utterances in children's
191 definitions of playing and of learning (MLU).

192 Next, to understand how children believed that playing and learning related to one another:

193 3) We examined the number of examples of activities that children considered to be both
194 playing and learning at the same time, and calculated correlations among this variable,
195 children's age, and the presence of metacognitive definitions of playing and of learning.
196 We also qualitatively described the types of examples children gave.

197 4) We conducted a multinomial logistic regression to determine the unique contributions of
198 children's definitions of playing, of learning, and age on the number of examples they
199 gave of playing and learning at the same time.

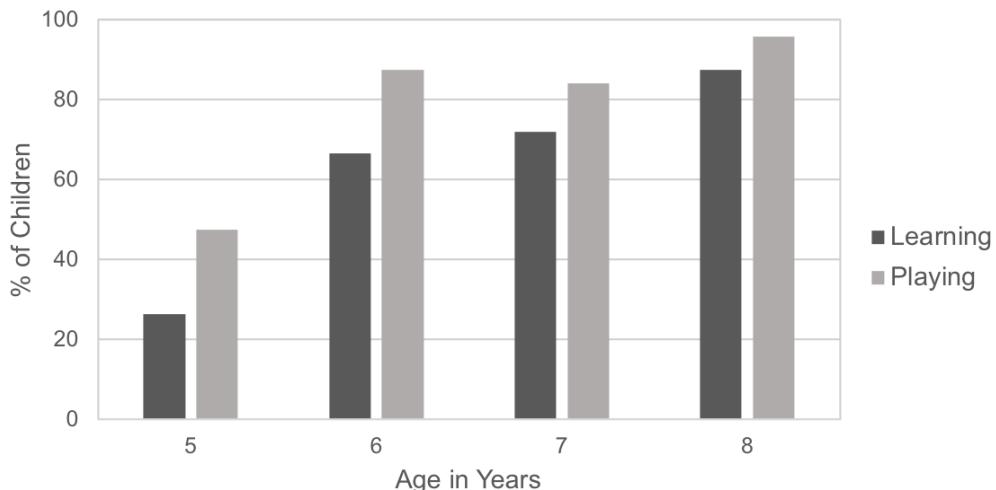
200 5) We examined children's ability to generate examples of playing and learning in the
201 congruent vs. incongruent condition. We calculated the total number of examples
202 children generated; children could generate up to three examples of playing and up to
203 three examples of learning, since children answered three questions about the
204 characteristics of each activity. We used a General Estimating Equation Analysis,
205 analyzing the total number of examples of each type that children generated in an ordinal

206 logistic model, with play vs. learning as a within-subject factor, condition and whether
207 children generated metacognitive definitions of learning and play as between-subject
208 factors, and age (in months) as a covariate. This analysis shows whether children had
209 difficulty generating examples of playing with characteristics of learning, and vice versa.

210 6) Finally, we examined each characteristic individually as they related to children's
211 judgments of playing and learning. We used Fisher's exact tests to determine whether
212 there were differences in children's likelihood of generating an example for playing vs.
213 learning for any individual characteristic (e.g., how often children generated an example
214 of having fun while playing vs. while learning), and Chi-Squared tests to determine
215 whether there were differences between each congruous and incongruous characteristic
216 (e.g., generating an example of playing while having fun vs. while being serious).

217 We also note that although we used a task that relied on children's linguistic responses,
218 we controlled for MLU in our analyses of children's definitions (see Results), and our other
219 analyses focused on whether children generated any valid response, and not the amount of detail
220 or length of their responses. For example, when asked if they could think of a time when they
221 were playing and learning at the same time, children's answers could be extremely brief ("Yes,
222 hopscotch") and still be considered valid because they show that children themselves thought
223 this activity involved some aspect of playing and some aspect of learning. We did ask children to
224 justify their answers in order to prompt them for as much detail as possible to aid in coding, but
225 our analyses were based on the presence of particular responses to our questions, rather than their
226 length. Therefore, we believe this linguistic task is an appropriate method for querying children's
227 conceptions about what it means to be playing or learning, as our primary concern was making
228 the task as open-ended as possible to avoid presenting playing and learning as opposites.

229


230

Results

231 **How did children's definitions of playing and learning change with age?**

232 Table 1 shows the distribution of children's definitions of playing and learning. Our first
233 analyses focus on whether children generated metacognitive (i.e., process) definitions of playing
234 and learning. There were no differences in these definitions between genders, $\chi^2(1, N = 92) =$
235 0.21 and 0.13 for playing and learning respectively, $p = .65$ and $.72$, so this variable will not be
236 considered further. We examined how age and MLU correlated with metacognitive process
237 definitions of learning and of playing. There were positive correlations between children's age
238 and MLU for their definitions of learning, $r_s(90) = .30, p = .003$, and their definitions of playing
239 $r_s(90) = .17, p = .11$. MLU values significantly correlated with the presence of metacognitive
240 process definitions of learning, $r_s(90) = .42, p < .001$, and of playing $r_s(90) = .20, p = .05$. We
241 observed a significant positive correlation between age and metacognitive process definitions of
242 learning, $r_s(90) = .40, p < .001$. Partial correlations showed that this effect was still significant
243 after controlling for the MLU in children's definitions, $r_s(87) = .32, p = .002$. These findings
244 paralleled the results of Sobel and Letourneau (2015) [38]. There was also a significant positive
245 correlation between age and metacognitive definitions of playing, $r_s(90) = .34, p = .001$, and
246 again, this correlation remained significant when controlling for the MLU of children's
247 definitions, $r_s(87) = .31, p = .003$. Unsurprisingly, there was also a significant correlation
248 between children's age and whether their definitions of both learning and playing were coded as
249 metacognitive, $r_s(90) = .39, p < .001$. Figure 1 shows the relation between children's age and
250 whether they generated a metacognitive definition of learning and playing.

251

252

253 Figure 1. Percentage of children providing metacognitive definitions of learning and of playing,
 254 by age.
 255

256 We compared the frequency with which children generated metacognitive definitions of
 257 learning versus playing. Overall, children were more likely to generate metacognitive definitions
 258 of playing than learning, McNemar $\chi^2(1, N = 92) = 6.26, p = .01$. Fifty-six children (60.87%)
 259 generated abstract metacognitive definitions of both concepts, and 18 children (19.57%)
 260 generated such a definition of play but not learning, while only 4 (4.35%) generated such a
 261 definition of learning but not play, and 14 (15.22%) generated no such definitions.

262

263 Table 1: Distribution of Children's Definitions of Playing and Learning

Response Type	Playing		Learning		
	Playing	N	%	N	%
No response	3	3.26		8	8.70
Identity	7	7.61		9	9.78
Content	30	32.61		26	28.26
Process	74	80.22		61	66.30

264 Note. With the exception of "No response," codes are not mutually exclusive, so percentages can
 265 add up to more than 100%.

266

267 **How did children believe that playing and learning related to one another?**

268 To answer this question, we first examined the number of examples children gave of
 269 playing and learning together. The frequency of such examples is shown in Table 2. The number
 270 of examples children generated correlated with age, $r_s(90) = .38, p < .001$, as well as with the
 271 presence of abstract metacognitive definitions of learning, $r_s(90) = .37, p < .001$, and playing,
 272 $r_s(90) = .33, p = .001$. The number of examples that children generated was also correlated with
 273 the presence of such definitions of *both* play and learning, $r_s(90) = .38, p < .001$, and this
 274 correlation held when controlling for age, $r_s(89) = .27, p = .01$.

275 To isolate the specific contribution of these predictors, we ran a multinomial logistic
 276 regression on the number of examples children generated. This showed an overall significant
 277 model, $\chi^2(9) = 28.08, p = .001$. There was no unique effect of age, -2 log likelihood = 208.55,
 278 $\chi^2(3) = 3.79, p = .29$, nor a unique effect of whether children generated a metacognitive aspect of
 279 playing in their definition, -2 log likelihood = 210.20, $\chi^2(3) = 5.44, p = .14$. There was a unique
 280 effect of whether children generated an abstract metacognitive definition of learning, -2 log
 281 likelihood = 212.66, $\chi^2(3) = 7.91, p = .05$.

282

283 Table 2: *Number of children generating at least one example of each type of activity coded as*
 284 *playing and learning (excluding invalid cases)*

Learning Code	Play code				
	Physical Play	Indoor Games	Creative Play	Pretend Play	Functional Object Play
Topic	4	25	9	2	0
Skill	14	5	4	1	0
Convention	1	0	0	1	1
Fact	1	5	4	0	0

285

286 Table 2 also shows the types of examples of playing and learning that children generated.
287 When children generated examples of playing and learning together, they fit into one of three
288 categories: Children talked about engaging in physical activities that allowed them to learn
289 particular skills relevant to that activity (e.g., playing on the monkey bars allowed them to learn
290 how to climb on the bars), engaging in structured indoor activities that involved particular topics
291 (such as playing math games), and engaging in creative activities that allowed them to learn
292 topics (such as drawing and learning about letters). Whether children generated at least one of
293 these examples correlated with whether they generated process-based definitions of *both* play
294 and learning, $r_s(90) = .33, p = .001$, and this correlation held when controlling for age, $r_s(89) =$
295 $.26, p = .01$.

296 We then examined the number of examples children generated in the congruent versus
297 incongruent condition. Recall that children were asked whether they could think of a time when
298 they learned with particular attributes related to learning (congruent condition) or playing
299 (incongruent) and playing with attributes related to playing (congruent condition) or learning
300 (incongruent condition). We found a unique effect of condition, with children generating more
301 examples in the congruent than the incongruent condition, Wald $\chi^2(1) = 7.33, p = .007$, as well
302 as a unique effect of generating a metacognitive definition of learning, Wald $\chi^2(1) = 6.48, p =$
303 $.01$. The unique effect of generating a metacognitive definition of playing was marginally
304 significant, Wald $\chi^2(1) = 2.93, p = .09$. Age did not uniquely predict variance in this model,
305 Wald $\chi^2(1) = 1.04, p = .31$.

306 Table 3 shows the frequency with which children generated a valid example for each
307 question. As confirmed by the analysis above, children always generated more examples of
308 playing and learning when presented with congruent rather than incongruent attributes. When

309 each attribute was analyzed individually, only one difference reached significance: children
 310 generated more examples of playing while having fun than learning while having fun, Fisher's
 311 Exact Test, $p = .001$. Responses to playing vs. learning with no adults, learning vs. and playing
 312 with adults, and learning vs. playing while being serious were all marginally significant, Fisher
 313 Exact Tests, $p = .10$, $.06$, and $.07$ respectively.

314

315 Table 3: *Proportion of children who generated a valid example of play or learning (in*
 316 *parentheses) based on condition*

	Doing what you want	No Adults	Having Fun	Someone told you	With adult	Being Serious
Congruent Condition	(Play) .69 (.47)	(Play) .55 (.50)	(Play) .96 (.21)	(Learning) .51 (.51)	(Learning) .84 (.37)	(Learning) .67 (.48)
Incongruent Condition	(Learning) .64 (.49)	(Learning) .40 (.49)	(Learning) .70 (.46)	(Play) .49 (.50)	(Play) .68 (.47)	(Play) .49 (.51)

318 *Note.* Top parentheses show which question was asked. In the congruent condition, children were
 319 asked to provide examples of times they were playing and doing what they wanted, with no
 320 adults, and having fun and examples of times they were learning when someone told them what
 321 to do, with an adult, and while being serious. In the incongruent condition, they were asked about
 322 play when someone told them what to do, with an adult, and while being serious and learning
 323 while doing what they wanted, with no adults, and while having fun. Bottom parentheses shows
 324 standard deviation.

325

326 When we compared congruous versus incongruous characteristics individually, children
 327 were also more likely to generate examples of playing while having fun than while being serious,
 328 $\chi^2(1, N = 92) = 24.64, p < .001$, Phi = $.52$, and when choosing what to do than being told, $\chi^2(1, N$
 329 $= 92) = 3.78, p = .05$, Phi = $.20$. When we conducted the same contrasts for learning, and
 330 children were more likely to generate example of learning with an adult than without, $\chi^2(1, N =$
 331 $92) = 18.90, p < .001$, Phi = $.45$.

332 Definitions of playing and learning had little relation to children's examples of playing
333 and learning in the congruent condition after controlling for age. Children with metacognitive
334 definitions of both play and learning were more likely to generate an example of learning when
335 someone told them what to do, $r_s(43) = .33, p = .03$, but this correlation was not significant when
336 age (in months) was controlled for, $r_s(42) = .21, p = .17$. No other attributes correlated with
337 children's definitions of playing or learning in the same condition. In contrast, in the incongruent
338 condition, children who generated metacognitive definitions of both concepts were more likely
339 to generate examples of play and learning with characteristics of the opposite activity —
340 including learning while having fun, $r_s(44) = .44, p = .002$, playing when someone told you what
341 to do, $r_s(44) = .41, p = .005$, and playing with an adult, $r_s(44) = .35, p = .02$. All of these effects
342 remained significant ($p \leq .05$) when controlling for age.

343

344

Discussion

345 The present study used structured interviews to examine children's explicit understanding
346 of the meaning of playing and learning, and the relation between the two concepts. We found
347 that children articulate an understanding of playing and learning as abstract processes that can
348 happen simultaneously and share characteristics. When asked to define learning and playing,
349 younger children in our sample were frequently unable to offer any definition, and when they did
350 so, they focused on content (what they played or what objects they played with). In contrast, the
351 older children in our sample were more likely to define playing based on how they played or the
352 result of their playing. The results on learning replicate our prior findings [38], and more
353 generally, they suggest a developmental shift toward describing both playing and learning as

354 processes with distinct outcomes rather than using these words as labels for certain types of
355 activities.

356 Articulating abstract definitions of playing developed earlier than similar articulations of
357 definitions of learning. We speculate that children might initially have separate concepts of
358 playing and learning. With a more sophisticated understanding of the processes involved in both
359 playing and learning, children may develop a more undifferentiated concept that learning and
360 playing can co-occur, depending on the qualities of a given activity. Further, children's
361 understanding of learning as a metacognitive process might function as a bottleneck in their
362 ability to see play and learning as related. Children who generated abstract definitions of both
363 concepts were more likely to generate examples of activities they considered to be both playing
364 and learning, but it was whether children defined learning as an abstract process that was
365 predictive. Importantly, many of the findings held when controlling for age, suggesting that other
366 developing factors like cognitive or language capacities were not solely responsible for the
367 development we observed.

368 Children who articulated abstract definitions of playing and learning were also better able
369 to describe examples of playing with qualities of learning, and vice versa. That said, children did
370 generate more examples of learning and playing when given congruent than incongruent
371 attributes, suggesting that they believe certain qualities are more characteristic of one activity or
372 the other. Children were also more likely to state that their examples of play were also examples
373 of learning (regardless of whether the attributes inherent in the activity related to learning) than
374 to state that their examples of learning were also play. This is also consistent with the hypothesis
375 that children's understanding of learning as a metacognitive process might be critical for
376 realizing that playing and learning can be related to one another. Knowing that learning is an

377 abstract process (as evidenced by their definition of learning) might allow children to recognize
378 that activities like playing offer the opportunity to learn. By asking children not only for open-
379 ended definitions of playing and learning, but also for specific examples, this study provides a
380 more detailed description of children's understanding of the overlap between playing and
381 learning; their open-ended definitions reveal a belief that playing and learning are potentially
382 related, and their examples show qualities that make playing and learning both compatible and
383 distinct. Given that adults do not always recognize the learning opportunities in play [22], these
384 findings show that children may be more flexible in their perceptions of the overlap between
385 play and learning.

386 These interviews show that children are not only capable of reflecting on their learning,
387 but also of reflecting on how learning can occur through play. In addition, the findings suggest
388 that this ability is not solely dependent on age, but is tied to children's conceptual understanding
389 of what it means to learn. An open question is how children's perceptions and attitudes are
390 shaped by their early experiences. What experiences support children's understanding of learning
391 as an active process, and their reflection about learning that might occur in their own play? Do
392 these types of experiences foster a metacognitive understanding of both concepts and allow
393 children to recognize the overlap between playing and learning at younger ages? Moreover,
394 caregivers' and teachers' views about play and learning, and the interactions and educational
395 practices that stem from these beliefs, may also impact children's exposure to and interpretation
396 of playful learning experiences in everyday life [22, 30].

397 Finally, recognizing how young children understand the intersections between playing
398 and learning has implications for formal and informal education. For example, many informal
399 learning environments use playful approaches to encourage and support learning, but the efficacy

400 of such approaches might be dependent on children's belief that learning can occur during play
401 [24], and the opportunities they receive to reflect on playing and learning together, rather than
402 separately. Children's definitions of learning were most predictive in this study, and previous
403 studies have shown that children are able to reflect on their own learning with prompting.
404 Although we did not gather information about the types of schools that children attended in this
405 study, future studies might examine the impact of different educational approaches and
406 pedagogical strategies on children's perspectives about play and learning. Educators may be able
407 to scaffold children in reflecting on specific instances when they have learned while playing,
408 supporting their metacognitive understanding of the many ways that learning can take place.
409 Developing a metacognitive understanding of learning, and recognizing that learning occurs
410 through everyday experiences like play, may also affect children's overall engagement in
411 learning and conceptions of themselves as learners [24-30]. A next step in this investigation is to
412 see whether children's beliefs about learning, including their self-efficacy and motivation to
413 learn, is related to the way they play, and in turn, whether valuing and engaging in play can
414 affect their identity as active learners.

415

416 **Acknowledgments**

417 We thank Chris Erb, Deanna Macris, and Tiffany Tassin for helpful discussion and
418 Charlotte Crider, Rose DeRienzo, Julia Donovan, Isobel Heck, Colton Lacy, and Zoe Finiasz for
419 assistance with data collection and analysis. We also thank the families at Providence Children's
420 Museum who participated in this research. Address correspondence concerning this article to: D.
421 Sobel, CLPS Department, Box 1821, Brown University, Providence, RI 02912. Phone: 401-863-
422 3038. Fax: 401-863-2255. Email: Dave_Sobel@Brown.edu

References

1. Lillard AS, Lerner MD, Hopkins EJ, Dore RA, Smith ED, Palmquist CM. The impact of pretend play on children's development: A review of the evidence. *Psychol Bull*. 2013; 139(1): 1-34. doi: 10.1037/a0029321
2. Pellegrini AD, Boyd B. The role of play in early childhood development and education: Issues in definition and function. In Spodek B, Saracho ON, editors. *Handbook of Research on the Education of Young Children*. New York: MacMillan; 1993. p. 105-121.
3. Piaget J. *Play, dreams, and imitation in childhood*. New York: Norton; 1962.
4. Rubin KH, Fein GG, Vandenberg B. Play. *Handbook of child psychology*. 1983, 4, 693-774.
5. Saracho ON. Educational play in early childhood education. *Early Child Dev Care*. 1991; 66: 45-64. doi: 10.1080/0300443910660105
6. Saracho ON, Spodek B. A historical overview of theories of play. In Saracho ON, Spodek B, editors. *Multiple Perspectives on Play in Early Childhood Education*. Albany: State University of New York Press; 1998. pp. 1–10.
7. Coplan RJ, Arbeau KA. Peer interactions and play in early childhood. In Rubin KH, Bukowski WM, Laursen B, editors. *Handbook of peer interactions, relationships, and groups*. New York: Guilford Press; 2009.
8. Ginsburg KR. The importance of play in promoting healthy child development and maintaining strong parent-child bonds. *Pediatrics*. 2007; 119(1): 182–191. doi: 10.1542/peds.2006-2697
9. Lester S, Russell W. *Children's Right to Play: An Examination of the Importance of Play in the Lives of Children Worldwide*. Working Papers in Early Childhood Development, No. 57. The Hague, Netherlands: Bernard van Leer Foundation; 2010.

10. Hirsh-Pasek K, Golinkoff RM, Berk LE, Singer DG. *A mandate for playful learning in preschool: Presenting the evidence*. New York: Oxford; 2009.
11. Riley JG, Jones RB. Acknowledging learning through play in the primary grades. *Child Educ*. 2010; 86(3): 146–149. doi: 10.1080/00094056.2010.10523135
12. Saracho ON, Spodek B. Children's play and early childhood education: Insights from history and theory. *J Educ*. 1995; 177(3): 129–148. <http://www.jstor.org/stable/42742374>
13. Whitebread D, Coltman P, Jameson H, Lander R. Play, cognition and self-regulation: What exactly are children learning when they learn through play? *Educational and Child Psychology*. 2009; 26(2): 40-52.
14. Beisser SR, Gillespie CW, Thacker VM. An investigation of play: From the voices of fifth- and sixth-grade talented and gifted students. *Gift Child*. 2012; 57(1): 25–38. doi: 10.1177/0016986212450070
15. Howard J, Jenvey V, Hill C. Children's categorisation of play and learning based on social context. *Early Child Dev Care*. 2006; 176(3-4): 379–393. doi: 10.1080/03004430500063804
16. Karrby G. Children's conceptions of their own play. *Early Child Dev Care*, 1990; 58(1): 81–85. doi: 10.1080/0300443900580110
17. Keating I, Fabian H, Jordan P, Mavers D, Roberts J. "Well, I've not done any work today. I don't know why I came to school": Perceptions of play in the reception class. *Educ Studies*. 2000; 26(4): 437-454. doi: 10.1080/03055690020003638
18. King P, Howard J. Children's perceptions of choice in relation to their play at home, in the school playground and at the out-of-school club. *Child Soc*, 2014; 28(2): 116–127. doi: 10.1111/j.1099-0860.2012.00455.x

19. Robson S. "Best of all I like choosing time": Talking with children about play and work. *Early Child Dev Care*, 1993; 92(1): 37–51. doi: 10.1080/0030443930920106
20. Rothlein L, Brett A. Children's, teachers' and parents' perceptions of play. *Early Child Res Q*. 1987; 2(1): 45–53. doi: 10.1016/0885-2006(87)90012-3
21. Howard J. Eliciting Young Children's Perceptions of Play, Work and Learning Using the Activity Apperception Story Procedure. *Early Child Dev Care*. 2002; 172(5): 489–502. doi:10.1080/03004430214548
22. Fisher KR, Hirsh-Pasek K, Golinkoff RM, Gryfe SG. Conceptual split? Parents' and experts' perceptions of play in the 21st century. *J Appl Dev Psychol*. 2008; 29(4): 305–316. doi:10.1016/j.appdev.2008.04.006
23. Li J. Parental expectations of Chinese immigrants: A folk theory about children's school achievement. *Race Ethn Educ*, 2004; 7(2): 167-183. doi: 10.1080/1361332042000234286
24. Howard J. Making the Most of Play in the Early Years: The Importance of Children's Perceptions. In Broadhead P, Howard J, Wood E, editors. *Play and learning in the early years: From research to practice*. Thousand Oaks, CA: Sage; 2010. pp. 145–160.
25. Dweck CS. *Self-theories*. Philadelphia, PA: Psychology Press; 1999.
26. Dweck CS, Leggett EL. A social-cognitive approach to motivation and personality. *Psychol Rev*. 1988; 95(2): 256-273. doi: 10.1037/0033-295X.95.2.256
27. Eccles J, Wigfield A, Schiefele U. Motivation to succeed. In Eisenberg N, Editor. *Handbook of child psychology: Vol. 3. Socialization, personality, and social development (5th ed.)*. New York: Wiley; 1998. pp. 1017-1095.
28. Skinner E. *Perceived control, motivation, and coping*. Thousand Oaks, CA: Sage; 1995.

29. Stipek D, Iver DM. Developmental change in children's assessment of intellectual competence. *Child Dev.* 1989; 60(3): 521-538.

30. McInnes K, Howard J, Miles G, Crowley K. Differences in practitioners' understanding of play and how this influences pedagogy and children's perceptions of play. *Early Years.* 2011; 31(2): 121–133. doi: 10.1080/09575146.2011.572870

31. Bartsch K, Horvath K, Estes D. Young children's talk about learning events. *Cogn Dev.* 2003; 18(2): 177-193. doi: 10.1016/S0885-2014(03)00019-4

32. Bartsch K, Wellman HM. Children talk about the mind. Oxford university press; 1995. doi: 10.5860/CHOICE.33-1825

33. Esbensen BM, Taylor M, Stoess C. Children's behavioral understanding of knowledge acquisition. *Cogn Dev.* 1997; 12(1): 53-84. doi: 10.1016/s0885-2014(97)90030-7

34. Flavell JH, Green FL, Flavell ER, Harris PL, Astington JW. Young children's knowledge about thinking. *Monographs of the Society for Research in Child Development.* 1995; 60(1).

35. Johnson CN, Wellman HM. Children's developing conceptions of the mind and brain. *Child Dev.* 1982; 53(1), 222-234. doi: 10.2307/1129656

36. Shatz M, Wellman HM, Silber S. The acquisition of mental verbs: A systematic investigation of the first reference to mental state. *Cognition.* 1983; 14(3): 301-321. doi: 10.1016/0010-0277(83)90008-2

37. Taylor M, Esbensen BM, Bennett RT. Children's understanding of knowledge acquisition: The tendency for children to report that they have always known what they have just learned. *Child Dev.* 1994; 65(6), 1581-1604. doi: 10.2307/1131282

38. Sobel DM, Letourneau SM. Children's developing understanding of what and how they learn. *J Exp Child Psychol.* 2015; 132: 221-229. doi: 10.1016/j.jecp.2015.01.004

39. Bemis RH, Leichtman MD, Pillemer DB. I remember when you taught me that!: Preschool children's memories of realistic learning episodes. *Infant Child Dev.* 2013; 22(6): 603-621. doi: 10.1002/icd.1807
40. Tang, C. M., & Bartsch, K. Young children's recognition of how and when knowledge was acquired. *J Cogn Dev.* 2012; 13(3): 372-394. doi: 10.1080/15248372.2011.577759
41. Sobel DM, Li J, Corriveau KH. "They danced around in my head and I learned them": Children's developing conceptions of learning. *J Cogn Dev.* 2007; 8(3): 345-369. doi: 10.1080/15248370701446806
42. Sobel DM, Letourneau SM. Children's developing descriptions and judgments about pretending. *Child Dev.* 2019; 90(5): 1817-1831. doi: [10.1111/cdev.13099](https://doi.org/10.1111/cdev.13099)
43. Sobel DM, Letourneau SM. Children's developing knowledge of and reflection about teaching. *J Exp Child Psych.* 2016; 143: 111–122. doi:10.1016/j.jecp.2015.10.009