IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO.1,

JANUARY 2070 429

Selection Bias Tracking and Detailed Subset Comparison for
High-Dimensional Data

David Borland, Wenyuan Wang, Jonathan Zhang, Joshua Shrestha, and David Gotz
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Fig. 1. Exploratory cohort selection in high-dimensional datasets can lead to selection bias—unintended side-affects in variable
distributions—that may go unnoticed by the user. Our selection bias tracking system and detailed cohort comparison visualizations,
deployed in a medical temporal event sequence visual analylics lool, include (a) a cohort provenance tree 1o keep track of created
cohorts and indicate when selection bias may have occurred, (b-d) a suite of high-dimensional cohort comparisen visualizations that
employ hisrarchical aggregation to display the differences betwean two cohorts in detail, and (e) data-type dependant comparisons of
individual variable distributions.

Abstract— The collection of large, complex datasets has become common across a wide varlety of domains. Visual analytics tools
increasingly play a key role in exploring and answering complex questions about these large datasets. However, many visualizations
are not designed to concumently visualize the large number of dimensions present in complex datasets (e.g. tens of thousands of
distinct codes in an electronic health record system). This fact, combined with the ability of many visual analytics systems to enable
rapid, ad-hoc specification of groups, or cohorts, of individuals based on a small subset of visualized dimensions, leads to the possibility
of introducing selection bias-when the user creatas a cohort based on a specified set of dimensions, differences across many other
unseen dimansions may also be introduced, These uninlended side eflects may result in the cohart no lenger being represeniative of
the larger population intended to be studied, which can negatively affect the validity of subsequent analyses. We present technigues for
selection bias tracking and visualization that can be incorporated inte high-dimensional exploratory visual analylics systems, with a
focus on medical data with existing data hierarchies. These technigues include: (1) tree-based cohort provenance and visualization,
including a usar-specified basaline cohort that all ather cohorts are compared against, and visual encoding of cohart “drift™, which
indicates where selection blas may have eccurred, and (2) a set of visualizations, including a novel icicle-plot based visualization,
to compare in detail the per-dimansion differences between the baseline and a usar-specified focus cohort. Thase techniques are
integrated into a medical temporal event sequence visual analytics tool. We present example use cases and report findings from

domain expert user interviews.

Index Terms—High-dimensional visualization, visual analytics, cohort selection, madical informatics, selection bias

1 INTRODUCTION

The collection of large, complex datasets has become common across a

wide variety of domains, such as advertising, security, and healthcare,

In addition to analytical approaches such as statistics, data mining,
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and machine learning, visual analytics increasingly plays a key role in
exploring and answering complex questions about such large datasets
to support precision, evidence-based decision making [25,49].

Two distinet challenges encountered with large datasels are data
volume and data complexiry, Volume typically refers o the number
of records in a gmiven dataset, e.z. the number of patients in an elec-
tromic health record (EHR ) system. Complexity, meanwhile, reflects
the number of dimensions, e.g. the varicus demographic, diagnosis,
procedure, lab, and medication data stored for each patient in an EHE.
For many analytical tasks increased volume can be managed with im-
proved processing power. Moreover, many visualizations scale well
with increasing volume because they depict aggregate values—a bar
chart of a binary variable works equally well with ten records as with 1
billion records. Data complexity, however, presents a more fundamen-
tal challenge. For example, many EHRs use coding systems that can
contain hundreds of thousands of unigue codes to represent different
diagnoses, procedures, medications, etc. (e.g. [1,45]). Although many
high-dimensional visualization iechmiques exist (e.g. [11, 28] provide
reviews), they can typically only show a relatively small subsel of the
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dimensions represented in such complex datasetls at any given time, via
techniques such as dimension selection or projection.

Al the same lime, a wide variety of visual analytics applications have
successfully employed Shneiderman’s mantra of “overview first, zoom
and filter, then details-on-demand” [42] to help manage the complexity
of high-dimensional datasets. Indeed, filtering is a common step in
many analytic workflows.

However, the ability of sophisticated visual analytics systems to
enable rapid, ad-hoc filtering of complex datasets while simultaneously
focusing the user’s atlention on a narrow subspace of the overall dataset
al any given point in [me can creale a situation fape for issues such as
selection bias. Selection bias occurs when the users selects a sample
for analysis in such a way that the sample is not representative of the
larger group that is intended to be analyzed [22]. For example, in the
medical domain, certain medications cannot be used together due to
drug-drug interactions. As a result, fillering patient data on one drug
during a medical analysis will result in a patient population with a much
lower-than-typical rate of the second drug. This shift in the distribution
of the second drug may be an unintended side-effect of the filtering
operation, and may go unnoticed by the user, especially if data for the
second drug are not currently shown in the visualization.

More generally, when a user applies filters to create data subsets
bazed on a small set of dimensions, there may be large shifis in the dis-
tributions of other “unseen” cormelated dimensions, IT such side-effects
go unnoticed, they could threaten the validity of subsequent analyses.
In the medical domain, such side-effects can be especially problematic
because there are many inter-related dimensions, and selection bias
could lead to incorrect evidence for medical decision making,

Contextual visualization methods [3] are one proposed approach for
addressing selection bias and related challenges. One such method,
deployed in a medical application to address selection bias, is adaptive
contextualization [16, 17]. In this approach, subsets of patients, or
cohorts, are interactively generated by the user of a visual analytics
interface depicting medical event sequences. The system keeps track
of each generated cohort, and computes a distance measure indicating
o what degree the variable distribution of each cohort has “drified”
from a baseling cohort, which may indicate uniniended selection hias.
The user can inspect a list of event types (o see the degree of drifi for
each individual variable, Although shown to be effective, the sysiem
exhibits two critical limitations: (1) it does not enable key types of
bias comparisons required by various fields, including medical cohort
analysis [31], because it only considers a linear sequence of selection
steps, and (2) it does not account for important variable interactions,
including hierarchical relationships, focusing instead on independent
univariate measunes.

This paper builds on this earlier work, introducing a new approach
that addressas these limitations. Selection bias is a known issue in vari-
ous medical domains (e.g. [22,33, 50, 51]), and we focus our work on
cohor selection from medical event sequence data, taking advantage of
existing medical data hierarchies. Given a visual analytics inferface that
enables the user (o create multiple cohors of patients via various filter
paths from a rool dataset, the primary goals of the work in this paper
are as follows: (1) Enable visualization of the creared cofors and the
steps taken o creare them. (2) Enable the user to identify the degree
te which the variable distribution for each cohort has drified from
a user-specified baseline—an indicator of potential selection bias. (3)
Enable the user to identify which filter aperations contribute the most
to the potential selection bias for any cohort. (4) For a user-selected
focus data cohort, enable the user to investigate in-depth the drifi for
each dimension compared to the current baseling, prioritizing dimen-
sions which have drifted most drastically. (5) Leverage hierarchical
relationships between dimensions to betler communicate areas of drift
within high-dimensional data. Accomplishing these goals will alert the
user o any selection bias introduced in their current analysis, enabling
them to correct for such bias in subsequent analyses.

The key research contributions presented in furtherance of these
goals include:

* A free-based cohort provenance visualization, showing the full
non-linear selection process from an imtial query resull 1o one or
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meore final cohorts, along with the amount of selection bias intro-
duced at each step. The user can interactively select a baseline
cohort against which all cohorts are compared, and a focus cohort
for detailed comparison with the baseline.

= A set of visualizations for communicating selection bias between
pairs of cohorts from a high-dimensicnal dataset, including a
novel visualization technique adapted from icicle plots. A user-
specified aggregation level is incorporated into each visualization
to scale effectively for high-dimensional datasets, while prioritiz-
ing salient dimensions with respect to selection bias.

* Integration of these, and other relevant cohort comparison vi-
sualizations, within Cadence, a temporal event sequence visual
analytics and cohort selection tool.

Thiz paper describes in detail the contributions listed above, presents
example use cases, and reports findings from medical domain expert
interviews,

2 RELATED WORK

The section provides a brief overview of related work that is most
relevant to the contributions of this paper: hierarchical visualization,
visual comparison, bias, and medical cohort management.

2.1 Hierarchical Visualization

Both the cohort provenance (Section 6.1) and two of the detailed co-
hort comparison visualizations (Sections 6.3 and 6.4) presented in this
paper involve the visualization of hierarchies. A hierarchy consisis of
a sel of nodes N and direcled edges E. A single roor node has only
oulgoing edges; all other nodes must have one incoming edge, from is
parent, and zero or more oulgoing edges, toits children. Hierarchies
are used across a wide range of domains to organize data, and hierar-
chical aggregation is often used to manage visual complexity in data
visualization [10, 57]. The various visualization approaches developed
to communicate hierarchical structures are often classified as node-link
representations or implicit'space-filling techniques [38].

MNode-link diagrams represent each node in the hierarchy as a glyph,
and each hierarchical relationship as a mark (e.g. line, curve, etc.)
connecting each child node glyph to its parent. Layout strategies for
node-link diagrams include phylogenetic trees (e.g., [47]) and dendro-
grams, which draw all leafl nodes at the same depth and are ofien used
for displaying hierarchical clustering output (e.g., [37]). In contrast,
layouts such as tidy trees [35] draw each level in the tree at the same
depth, potentially resulting in a “ragged” appearance for leaf nodes.
Chr cohort provenance tree uses a node-link diagram to enable the
encoding of information along each link in the tree, with a tdy-tree
layout to emphasize the sequences of steps taken to form each cohort.

Implicit techniques include treemaps [24,41] and icicle plots [27].
These techniques do not draw parent-child relationships directly, instead
encoding them using enclosure or adjacency. As a result, they offer
compact representations and are often suitable for the visualization of
large hierarchies, However, the ability to encode information for each
link s hindered. For our detailed cohort comparison visualizations we
explore the use of implicit (Section 6.3) and node-link (Section 6.4)
representations, incorporating a user-specified agoregation level while
pricritizing salient features in the hierarchy.

2.2 Visual Comparison
Comparison is a fundamental process for many visualization tasks,
and a variety of visual comparison systems and approaches have been
developed to meet specific needs. In light of such diversity, Gleicher
et al. developed a taxonomy of comparative visualization techniques:
(1) juxtaposition, by showing objects separately, (2) superposition, by
overlaying ohjects in the same space, and (3) explicit encoding, by
directly representing the relationships between objects [13].

The cohort provenance visualization described in this paper adopts
a tree struciure that is inspired in part by CONSORT diagrams (Sec-
fon 2.4). 'We therefore employ an explicit encoding of comparison
between nodes in the tree (representing cohort drift) that is overlaid
onto the tree structure.
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Fig. 2. CONSORT flow diagram for a two-group randomized trial [31].

Various approaches have been developed for the visual comparison
of hierarchical data, including static topology over time (2.2 [2, 6, 56]),
interactive tree comparison (e.g. [4,23]), stable treemap layouts for
improved juxtaposition comparisons (e.g. [19,21,44, 46,48 52]), and dy-
namic topology (e.g. [26,29]). Cui et al. employ dynamic simplification
of hierarchies evolving over time, with the ability to inferactively zoom
o lower levels of detail [7]. Our detailed cohort comparison visualiza-
tions adopt a similar strategy, employing user-controlled hierarchical
aggregation and interactive level-of-detail exploration. However, our fo-
cus is on conveying where in the hierarchical data structure two cohorts
are most different. Both the split icicle plot (Section 6.3) and dot plot
(Section 6.4) visualization designs explicitly encode the differences
between each cohort, conveyed via a shared hierarchical structure.

2.3 Bias

Bias is the (unfair) disproportionate weighting in favor of or against one
thing compared o another, Various forms of bias have been recognized,
including cognitive and statistical biases, Although domain expertise
represents a form of bias that can help an analyst complete a task, e.g.
via heuristic short cuts for filtering out unnecessary information [12],
bias can also negatively affect the integrity of an analytical process
and the validity of analytical results. For this reason, bias has increas-
ingly become a topic of study across a variety of disciplines, including
machine learmning and visual analytics (e.g. [&,9,55]). Much of the
focus in the visualization community has focused on characterizing
and addressing cognitive hiases [5,53,54]. Expanding on prior work
in adaptive contextualization [16, 17], the work presented in the paper
focuses on the issue of selection bias—when individuals are selected for
analysis in such a way that the sample is not representative of the popu-
lation intended to be analyzed—an issue exacerbated by the interactive
analysis of large, complex datasets, and of particular concern within
the medical domain.

2.4 Medical Patient Cohort Management

The randomized control trial (RCT) is a widely used experimental de-
sign in fields such as epidemiology. The Consolidated Standards of
Reporting Trials (CONSORT) statement [31, 39] has been introduced
for figorous reporting of RCTs to avoid biased resulis (e.g. [40]). The
CONSORT flow diagram presents how RCTs progress through vari-
ous phases (Figure 2). The tree-structure of the diagram shows the
construction of cohorts with different inclusion and exclusion crite-
rid. Interactive cohort selection tools for medical research, such as
i2h2 [20,32], enable researchers to query EHR databases and define co-
horts based on various criteria. However, they do not typically include
visual comparisons of constructed cohorts. Given the familiarity of
CONSORT diagrams to the medical target audience for the technigques
presented in this paper, they motivale in part the visual design adopted
in the cohort provenance visualization (Section 6.1). This influence
is reflecied in the tree-based structure, the notions of inclusion and
exclusion criteria, and the concepis of included and excluded cohors,

Termnporal Event
Sequence Visualization

Selection Blas
Tracking

1l

Fig. 3. Overview of the Cadence visual analytics tool, with selection
bias tracking (the focus of this paper) on the left, and tamporal event
sequancs visualizalion on the right, Closeup images of the salection bias
tracking components show the {a} cohort provenance tree, (b) cohort
overlap, (c) detailed cohort distance, and (d) selected variable distribution
visualizations.

Within the visualization community, a number of approaches have
been developed (o support patient cohort analysis (Rind et al, pro-
vide a review [36]), including various approaches for temporal event
sequences (2.g. [15,30]), and cross-sectional phenotype studies [14].
However, these systems are not designed to explicitly track and visual-
ize selection bias,

3 SvysTEM OVERVIEW

The selection bias tracking and detailed cohort comparison methods
described in this paper are integrated into Cadence, a medical tlemporal
event sequence visual analytics tool (Figure 3). Cadence enables the
selection of multiple cohorts of patients from an initial query result by
filtering based on demographic attributes (Race, Gender, and Age) and
sequences of temporal events (Diggnoses and Procedures). The precise
nature of the methods implemented for visualizing temporal events and
specifying cohorts is beyond the scope of this paper, and described
elsewhere [18]. Insiead, reating the cohort selection mechanisms as
a hlack box, the hias tracking sysiem that is the focus of this paper
takes as iis input (1) a set of cohoris C = {c;}, where each cohort ¢; is
defined by a set of patients (each with their own respective attributes
and events), and (2) a set of operators O = {o;}, where each operator
o comesponds 1o a filter (based on an attribute value or the presence or
absence of an event) that defines the ransformation of a parent cohort
¢ to a child cohort ¢

3.1 Data Description

In Cadence, medical data is represented using standardized coding
systems including ICD-10-CM for diagnoses [1] and SNOMED-CT for
procedures [45]. Both coding sysiems are hierarchical in struciure, with
ICD-10-CM containing over 70,000 distinct codes and SNOMED-CT
over 300,000 distinct codes (of which a subset cormresponds to medical
procedures). Typically, data from EHR systems can contain codes from
various levels of the coding hierarchy. For example, one patient may
be diagnosed with the ICD-10-CM code 7150: Heari Failure, whereas
another may be diagnosed with a more specific code, such as 7150.32:
Chremic diasiolic {congestive) heart failure. For each patient, medical
event types can be viewed as binary variables: present (recorded in the
patient’s data) or absens (not recorded in the patient’s data). Momeover,
il a given code is present for a patient, all ancestors of that code in
the code hierarchy are also considered present. For example, a patient
with 730,32 would also be considered (o have the more generic 150
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Distinet Event Types
Patients | SNOMED.CT | ICD-T0.CM Todal
Minimmm 1,732 3,594 8159 | 11,753
Averape 4,936 4,305 692 | 13907
Pl i 8,360 4,750 10626 | 15376

Table 1. Statistics summarizing event data returned by 12 querias using
Cadence, each of which would form the initial cohort for an analysis.

diagnosis code. Finally, the data are relatively sparse, with some codes
used frequently, others rarely, and many not at all within a given cohort.

To provide a sense for the complexity of the data in this domain,
Table 1 summarizes statistics for a dozen queries mn against real-world
medical data in Cadence. The smallest query result returned 3,504
distinct codes from the SNOMED-CT hierarchy and 8,159 from the
ICD-10-CM hierarchy, whereas the largest contained 4,750 unigue
SNOMED-CT codes and over 10,000 unique 1CD-10-CM codes, The
large numbers of unique codes in a typical query result motivaled the
development of the herarchical aggregation methods used for the split
icicle plot {Section 6.3) and hierarchical dot plot visualizations (Section
6.4) described later in this paper.

4 REQUIREMENTS FOR SELECTION BiAs TRACKING AND DE-
TAILED COHORT COMPARISON

Onr system aims to alert the user to potential selection bias that can oc-
cur during rapid, ad-hoc cohort selection in high-dimensional datasets,
leading to the following design requiremenis:

R1 Provide an intuitive interface for keeping track of created cohorts
and the steps taken (o creaie them.

Enable identification of which cohorts may be suhject to selaction
bias.

Enable identification of which filter operations contribute the
most to potential selection bias for a given cohort.

Enable in-depth investigation of the distribution drift for each
dimension between any two cohorts.

Leverage hierarchical relationships between dimensions o belier
commumicate areas of drift in high-dimensional data.

R2
R3
R4

RS

5 MEASURING SELECTION Blas

A fundamental need for addressing the proposed requirements is the
ability 1o measure potential selection bias. In the following sections we
describe such a metric, and discuss specific considerations for analyzing
and visualizing selection bias in the context of hierarchical data.

5.1 Selection Bias Metric

In order (o detect selection bias, we musi be able to quaniify shifis in
variable (attribute and event) distributions between cohorts. In a manner
similar to adaptive contextualization [16, 17], we use the Hellinger
distance [34,43]. However, we compute the distance at each level in
the hierarchy for aggregate values, as discussed in Section 3.1, rather
than only considering each variable independently. The Hellinger
distance is an established statistical metric that quantifies the similarity
between two probahility distributions. Its discrete form computes a
distance between two discrete probability distributions P = (py, ..., Pa)
and @ = (1, -...qn), where 1 is the number of possible values for the
variable (e.g. n = 2 for a binary vanable), as follows:

HPQ) =[5 Y (VB —va m
i=1

Regardless of the value of n, H = ( when P and () are identical,
and H = 1 when P and () are maximally different. This characteristic
makes the distance comparable when applied to heterogeneous variable
types, and the discrete form of H can be applied o categorical, ordinal,
and ratio (with binning (o discretize the distribution) variables.

When comparing two cohorts ¢; and ¢, H is computed for all m
dimensions & in the datasel. These individual distances are used in the
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Fig. 4. Examples of changing drift in & section of a hierarchy. Each
dimension is a circle, with x-position the depth in the higrarchy and y-
position the amount of drift. Links indicate parent-child relationships.
(&) The green node does not have the highest drift, but does differ the
rmost from its parent, indicating an area of the hierarchy where drift has
increased. (b) Similarly, the circled red and blue nodes indicate an area
whare drift haz decreased.

detailed cohort comparizson viswalizations (Sections 6.3-6.5), However,
since there can be thousands of individual distances, it is difficult to
map data at this granularity cnto the cohort provenance tree (Section
6.1) for detecting potential selection bias. We therefore compute the
average Hellinger distance between two cohorts c; and cj as:

1 L
Hm-g[C‘i:Cj}=; Y Hidg.dyp) 2)
k=1
This univariate metric is used in the cohorl provenance tree as an
indication of potential selection bias. The distances for each individual
variable can then be investigated in more depth via the detailed cohort
comparison techniques.

5.2 Selection Bias in Hierarchical Data

When comparing the distributions drifts between two cohorts for every
dimension, it is important to convey which dimensions have drifted the
most (measured by Equation 1), as has been considered in previous
waork [16,17]. However, looking at each of these individual univariate
distances in isolation does not provide information on where in the
hierarchy areas of drift have been introduced, nor on drift thar emerges
ar higher levels of aggregarion, where varations in coding—e.g., many
small drifis in different kinds of heart failure that could add up 0 a
large drift in heart failure at a higher level of representation—could
normally cause drift to be overlooked (R5). In addition to areas where
drift increases (Figure 4a), areas where drift decreases (Figure 4b) may
also help define areas where drift has aggregated, by indicating smaller
drifts that may have accumulated.

In general, patterns of drift through a hierarchy can be varied, but
areas where the amount of drift changes substantially can be sugges-
tive of informative portions of the hizrarchy with respect to detecting
the presence of selection bias. In order o identify such areas, when
comparing wo cohorts we explicitly compuie the difference in drift
value—ithe drifi gradieni—between each child dimension and parent
dimension in the hierarchy. Based on the selection bias distance metric
(Equation 1), we define the drift gradient between a child dimension d-
and its parent dj, for two cohorts c; and ¢ as

AH(d.,dp) = H(dic,djc) —Hldip.djp) (3)

To capture (1) areas of the hierarchy with large increases in drift
and (2) areas of the hierarchy with large decreases in drift, we define
a gradient-based saliency criterion for a dimension ;, given a single
parent dimension d, and a set of child dimensions 0. = {d;} (empty
for leaf nodes):

S(di) = IﬁlH[dp.-dij itV adt.'j e, —ﬁHEdhdr_f} < —tp, (4

where r; 1% a user-specified threshold, This equation detects whether a
given node has increased (Figure da, preen) or any of its children have
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decreased (Figure 4b, red), by an amount > #;. The user can adjust
ty to determine the degree of aggregation used for the hierarchical
visualization methods described in Sections 6.3 and 6.4.

5.3 Constraints

Typically, the dimensions included in the filter constraints usad to define
cohorts will exhibit the greatest amount of drift. For example, if a user
derives one cohort from another by constraining by Gender = Female,
the Gender dimension would, by design, be expected 1o exhibil a very
large drift in distribution. However, when tracking selection bias, the
goal is to convey the magnitude of unintended side effects.

Previous work has dealt with this issue by simply excluding all con-
strained dimensions from consideration when tracking or visualizing
selection bias [16, 17]. However, when filiering using hierarchically
related dimensions, this naive approach is not sufficient. In particu-
lar, large drifis in distribution can ofien occur for the descendants of
a constrained dimension. Moreover, it can be assumed that the drift
in descendant dimensions is expected by the user. If not, the user
could have filtered using dimensions at a lower and more specific level
in the hierarchy. We therefore exclude from the calculation of Ha,
bath: (1) dimensions explicitly referenced by a constraint, and (2) any
descendants of the explicitly referenced dimensions.

In contrast, when visualizing these metrics in detail, excluding con-
strained dimensions is not desirable because the drift in distributions in
their descendant dimensions may be informative to users. Rather than
removing constrained dimensions from our hierarchical visualizations,
we instead implement two design choices: (1) indicating visually which
dimensions are constrained, and (2) normalizing scales to reduce the ex-
tent w which constrained variables and their descendants dominate the
visualization, For (1}, in all detailed cohorl comparison vispalizations
(Sections 6,3-6.5), constrainis are indicated with a diamond symbol 4.
For (2), all color scales are normalized 1o the maximum distance for
non-constrained and non-constrained-descendant dimensions. In this
manner, the constraints remain part of the visualization—enabling the
user to see variations in drift between constrained descendants—while
still enabling the user to effectively find non-constrained dimensions
that may be subject to selection bias.

5.4 Baseline and Focus

Selection bias occurs when a cohort is selected in such a way that
proper randomization {of the non-constraining dimensions in the data)
is not conducied, making the cohort no-longer representative of the
larger population intended to be analyred. This larger population can be
thowght of as a baseline against which cohorts can be compared to check
for potential selection bias, During a given analysis, it may be useful
to explore different baselines for comparison. It is therefore nece ssary
to support a flexible approach for choosing the current baseline. In the
cohort provenance tree (Section 6.1}, the initial queried dataset serves as
the baseline by default, however the user can select any created cohort
to serve as the baseline against which all other cohorts are compared.

In addition, to enable more in-depth comparison of any given cohort
against the baseline, we adopt the concept of a focuy cohort. By default
the focus cohort is the most recently created, however the user can
select any cohort to serve as the focns. The visualizations supporting
in-depth comparison of the potential selection bias between the focus
and baszline cohorts are described in Sections 6.3-6.6.

6 VisuaLizaTioN DESIGN AND IMPLEMENTATION

The visual interfaces for the selection bias tracking and cohort com-
parison features in Cadence are motivated by the design requirements
from Section 4 and build upon the selection bias measures presentad in
Section 5. The Cohort Tree panel (Figure 3a) contains the cohort prove-
nance and selection bias tracking visualizations, which address R1, R2,
and R3. The Cohort Comparison panel (Figure 3, b-d) enables in-depth
comparison of the current baselineg and focus cohorts, addressing R4
and R3. It consists of a cohort overlap visualization {Section 6.2), three
iabbed views for in-depth exploration of the degree of drifi across all
dimensions in the dataset (Sections 6.3-6.3), and a detailed univariate
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Fig. 5. Cohort provenance visualization and iconography. (a) Each cohort
and filter operation is shown as a node-link tree diagram. (b) Cohort
glyph inner circle area is proportional to cohort size. Drift is encoded
by a grey-red color map. The cument basaline and focus cohorts are

indicated by rectangular and triangular icons. Excluded cohorts that have
been madea visible ars indicatad by a diagonal slash. (c) Link color and
thickness, and filter glyph color, indicate the amaunt of drift introduced at
that filtter step. Glyph appearance changes to indicate excluded cohort
visibility.

comparison view thal provides data-type-dependent visualizations (o
compare the distributions for a single dimension {Section 6.6).

6.1 Cohort Provenance Tree

To address R1 {Section 4), we show the provenance of each cohort
created by the user via the Cadence interface in a node-link tree diagram
{Figure 5). Thisdesign is influenced by CONSORT diagrams (Figure 2),
which are familiar to many medical experts in the targel user population
for Cadence. A tidy-tree [35] provides a compact layout while showing
each siep in the cohort-creation process at a distinet level. Each node in
the tree represents a cohort, with links representing dependencies (e.g..
new cohort B was derived from previous cohort A).

Modes are represented by circular glyphs of unit size. The glyphs
include an inner circle with area proportional o the number of patienis
in the cohort (Figure 3h). The inner circles are color-coded based on
Havg (Equation 2}, as computed by comparing the glyph’s cohort to the
current baseline. This design supports R2.

The links between cohorts include glyphs representing the filter
operations used (o derive each link’s comesponding new cohort, The
filler glyphs and the links themselves are both color-mapped by A g,
the difference in Hy,, between the two cohorts that the link connects,
In this way, the edges visualize the amount of drift introduced directly
by the link's corresponding filter operation. The encoding is shown
in Figure 5c. Mousing over the filter glyph displays a tooltip with
information about the constraints applied at that step in the cohort
creation process, as well as the amount of drift intreduced in response.
This design supports R3.

Critically, each filter operation creates both a set of included patients
{those matching the filter criteria), and a set of excluded patients (those
not matching the criteria). By default only the included cohort is shown.
However, the user can show any excluded cohort via a context menu
available for each filter glyph. This feature can help users understand
the effect of a filter (as evidenced by the specification of excluded
groups within the CONSORT flow diagram). Excluded cohorts are
depicted with a diagonal slash across the cohort glyph. Moreover, a
filter glyph's appearance changes to indicate that the excluded cohort is
being shown (Figure Sc).

The cohort tree also indicates the currently selected baseline and
focus cohorts. The bassline is indicated with a rectangular icon to
the laft of the baseline cohort glyph, and the focus with a triangular
icon (Figure 5b). By default, the first cohort used at the start of a
visual analysis session is marked as the baseling. Meanwhile, the focus
is updated (by default) to reference each new cohort as it is created.
However, users are able (o interactively select any cohort in the tree al
any time o serve as the baseline or focus through a popup context menu
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Fig. 7. The cohort overlap visualization compares the focus and baseline
cohorts, showing the relative sizes of the cohorls and proportion of
individuals that belong to both. This includes cases where (a) the focus
iz a subsat of the baseline, (b} the two cohorts partially overlap, and (c)
the cohorts are disjoint,

available for each cohort glyph. This functionality provides control
over which cohorts are the basaline and focus used for the detailed
cohort comparison visualizations described in the remainder of this
section.

6.2 Cohort Overlap

The first element of the Cohort Comparison panel, which enables
users to compare the haseline and focus cohorts, is the cohort overlap
visualization. This view depicts the proportion of patients that are
members of the baseline and focus cohorts, Unlike previous work
with a linear provenance model, in which the focus was restricted by
definition to be a subset of the baseling (e.g. [16, 17]), our tree-hased
approach enables a more fexible set of compansons. As a resull, there
are three possible overlap relationships to be visualized. Figure 7 shows
examples of these three conditions: (a) one cohort (typically the focus)
is a subset of the other (typically the baseline), (b) there is partial
overlap, and {c) the two cohorts are disjoint. This visualization conveys
the type of overlap the two cohorts have, the relative size of the cohorts,
and the proportion of each cohort that falls within the overlapping
subsat.

6.3 Split Icicle Plot

A key element of the visual design for comparing cohorts is to help
users identify where in the dimension hierarchy the largest drifts in
distribution have occurred. Given the large hierarchies in our data (Ta-
ble 1), our initial attempts to visualize this information employed tres
maps [41] and icicle plots [27], which are both space-filling technigues
with compact representations. However, despite their compact repre-
sentations, the number of dimensions in the hierarchies made them oo
big to fit on screen without over-plodling issues,

Adtempting to remedy this problem, we first implemenied a scrol-
lable icicle plot, which revealed another problem: the inability of icicle
plots (and other space-filling higrarchical representations) to enforce
a strict ordering of dimensions by value, Icicle plots partition space

into a rectangular node for each dimension, with each node placed
adjacent to its parent along one axis and sized along the other axis with
a length proportional to the number of descendant leaf nodes. Recursive
strategies for ordering sibling nodes are possible (e.g., Figure 6, a and
b). However, nodes can become “buried” by the hierarchical structure
of the visualization, leading to gaps and inversions. Figure 6a shows
how a leal-to-rool sorting strategy can produce a large gap between the
largest (10) and 2 largest (8) nodes by value. Similarly, Figure 6b
shows how a root-to-leall sorting strategy can produce hoth an inversion
and a gap between nodes that are neighbors in sort order

This issue is problematic for visualizing drift in large hierarchies for
two reasons: (1) ordering is an important cue for understanding which
dimensions have shifted the most, and it is useful for users to be able
to scan from top-to bottom to identify areas of potential selection bias,
and (2) when using a scrollable interface to avoid over-plotting, users
will need to scroll to find dimensions with large amounts of drift if they
are not ordered with largest drift first.

6.3.1 Algorithm and Example

To address these issues, we developed the split icicle plot (Figure 6, ¢
and d). The split icicle plot algorithm proceeds in three stages: splir,
sort, and merge. The hierarchical data are first splir into paths from
each leaf to the root. The paths are then sorted by the maximum value
along each path. Adjacent nodes are then merged back together. The
result is a layout in which, for a given node in the visualization, all
paths to the root above it will contain a value greater than or equal to
its value, avoiding issues of gaps or inversions. As a tradeoff however,
some nodes may be “split™ to achieve this guarantee (Figure 6d).

Figure 8 shows an actual example of the split icicle plot visualizing
differences in ICD-10-CM diagnoses between two cohorts, In addition
o sorting the leaf-to-rool paths in descending order by maximuem drift
(placing largest drift values at the top), the drifi for each individual
variable in the hierarchy is encoded using a grey-red color map, scaled
to the non-constrained variable with the most drift. The one constrained
variable in this example is indicated with a 4 symbol, as explained in
Section 5.3. Split nodes are indicated by dashed lines that join the split
sections on mouseover. In this example, a parent node of the constraint
has bean split, enabling a variable that would otherwise have been
buried below this node to be exiricated and revealed as the most distant
variabla that is not an ancestor of the constraint. Split nodes “hreak” the
strict hierarchical layout traditionally imposed by icicle plois, which
could potentially hinder interpretation. However in practice the node
splits tend to form subgroups of children with similar drift values which
aids the user’s comprehension of the visualization.
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Fig. 9. Hierarchical aggregation using gradient-based saliency. Nodes
that do not mest the saliency criterion (Equation 4) are marged into
groups, MNodes that do meet the criterion are oullined in black. The
blue ammows indicate a group of nodes that is merged from (a) to (b),
maintained from {b) to (¢}, and then merged with anather group from ()
to {d). The crange arrows indicate the same extricated node from Figure
8, which iz maintained from (a-d), as is the split node from the same
figure, indicated in purple.

6.3.2 Hierarchical Aggregation

The split icicle plot solves issues related to over-plotting and ordering,
and provides an effective visualization of drift in hierarchical data.
However, two issues remain when this approach is applied to the large
hierarchies found in our application: (1) drawing individual nodes for
each dimension in a large hierarchy can hinder performance during
interaction, and (2) the large size of the visualization and the use of
scrolling (to help overcome over-plotting) can make it difficult for users
1o obtain a broad overview of the data. To address these issues we have
developed a higrarchical aggregation techmgue with a user-controlled
level of aggregation to simplify the visual representation (Figure 9).
The aggregation algorithm relies on gradient-based saliency as de-
fined in Equation 4. Beginning with a split, sorted, and unmergad
icicle plot (Figure 6c), we have developed two aggregation methods:
breadih-first, and depih-firse. Figure 10 demonstrates both methods.
Breadth-first aggregation merges adjacent nodes at the same level in the
hierarchy if they either (1) share a common salient descendant, or (2)
have no salient descendants, These merged groups are propagated down
the tree until a salient node or leal node is encouniered, at which point
new groups are created. In constrast, depth-first aggregation merges
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Fig. 10. Two hierarchical aggregation metheds for split icicle plots. Given
(a) a split, zortad, and unmergad icicle plot with salient nodaes outlined
in black, (b) breadth-first aggregation priorilizes the merging of adjacent
non-salient nodes within the same level of the hierarchy. This praserves
much of the hierarchical struclure. (c) Depth-first aggregation, which
can be more efficient for deep hierarchies, pricritizes the merging of
non-salient nodes along each path from the root 1o a leal.

nowdes along each path from the root until either (1) a salient node is
encouniered, at which point new paths are created for any children, or
(k) a leafl node is encountered. Any groups that share the same starting
or ending point are then merged together. In practice, breadth-first
tends to preserve more of the hierarchical structure, as adjacent nodes
for the same dimension are merged. In contrast, depth-first is more
likely to split nodes for the same dimension, but can be more efficient
in aggregating hierarchies with large depths. The examples usad in this
paper all use breadth-first aggregation.

Figure 11 shows an example of the split icicle plot with hierarchical
aggregation. Salient nodes are drawn with black ouflines (Figure 11a),
whereas merged groups are drawn with reduced heights to further
emphasize the salient nodes {Figure 11b). Each node or group is
colored by drift with a grey-red color map scaled to the maximum drift
for a non-constrained dimension, For groups, the color is determined by
the maximum drift in the growp (o indicate areas where large drift may
have occurred that did not meet the current saliency definition, such as
a chain of relatively small increases in drift that combing o produce
a large total drift. The user can inspect the contents of each group
with the cursor, which will display a standard icicle plot of the nodes
contained within the group (Figure 11c). The user can select a node
from within the expanded group to manually define the corresponding
dimension as salient. In response, the overall layout will be updated
accordingly.

6.4 Hierarchical Dot Plot

One drawback of the split icicle plot visualization is that it depends
on color to encode drift, which can make it difficult to distingnish
smaller value differences. We therefore developed a hierarchical dot
plot visuahzation as an aliernative that uses position (o encode drifi
{Figure 1d).

As with the split icicle plot, hierarchical aggregation is used to
reduce over-plotting and increase rendering performance using the
same gradient-hased saliency method, The visual design is similar (o
that of Figure 4. Salient nodes are rendered as dots, with x-position
representing the depth of the node in the hierarchy, and y-position the
amount of drift. The size of the node is proportional to |AH(p.e]|,
and AH (p.e) is mapped to a blue-grey-red color map, with blue for
negative values and red for positive values. The wser can highlight
any visible node via mouseover to show links to all of its ancestors
and descendants. Nodes below the saliency threshold are aggregated
and displayed as a background heat-map. Any heat-map cell can
be expanded to reveal the nodes inside, and those interior nodes can
themselves he selected. By iteratively selecting ancestor/descendant
nodes, the user can interactively explore the hierarchy (addressing R4
and R5) This dot plot design provides betier visual fdelity for drifi
values when compared to the split icicle plot, but the overall hierarchical
structure is less apparent,
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Fig. 11. Split icicle plots with hierarchical aggregation. (a) Salient nodes
are drawn with black outlines. (b) Marged groups are drawn with reducaed
heights, A gray-red color map indicates drift, For groups, the maximum
drift in the group is used. Placing the cursor over a group will cause it
to expand (c), showing a standard icicle plot of the nodes in thal group,
The user can select a nodes in the expanded group, and the layout will
be updated with that node manually defined as a salient node (d).

6.5 List View

In addition to the hierarchical visualization techniques described above,
we also provide a list view that shows a basic table of dimensions in
descending order by drift. The table includes a bar chart representation
of the drift values as shown in Figure 1c. This view ignores the hier-
archical relationships in the data, but has been provided as a simple,
easy-to-use format that is familiar to users.

6.6 Variable Distribution

The in-depth cohort comparison visualizations lisied above enable the
user o see which dimensions in the hierarchy have drified, and the
magnitudes of those drifis. However, they do not convey how the
dimensions differ between the two cohorls, For example, fillering for
patients with a SNOMED-CT code for Procedure on hip reveals a large
drift in distribution for the ICD-10-CM code for Pain in hip. In this
case, it can be assumed that the cohort with a hip procedure also has
a higher incidence of hip pain, but such relationships may not always
be so obvious. We therefore enable the user to select any attribute or
event to see a detailed visualization of the distributions of the selected
dimension for each cohort.

Each of the detailed cohort comparison visualizations {split icicle
plot, hierarchical dot plot, list) enable users to select any dimension
from within the visualization by direct selection, or via explicil search
with a search box. The dimension selection is linked across all views,
enabling users (o pivol between the different visualizations.

Moreover, once a dimension has been selected, a data-type-
dependent visualization of the distributions for that dimension in both
the baseline and focus cohorts is displayed at the bottom of the cohort
comparison panel. As shown in Figure le, this distribution comparison
view supports bar charts for categorical data, a histogram for numeric
data, and horizontal binary bar charts for binary variables. In all cases,
the proportion of each value is shown to enable comparison between
cohorts of different sizes. Interactive highlighting shows contextual
information on individual data values, such as the specific number of pa-
tients. These visualizations further R4 by enabling detailed distribution
comparisons for individual variables,

T ExampPLE Use Case AND Domain EXPERT INTERVIEWS

To demonstrate the benefits of the appreaches outlined in this paper, we
present an example use case for the selection bias tracking capabilities
within Cadence. We also report a thematic analysis of qualitative
feedback gathered through interviews with medical domain experts.

7.1 Example Use Case

Figure 12 shows a series of screenshots from Cadence during an analy-
sis of a cohort of 1,732 patients who were discharged from a hospital
after having been diagnosed with some form of pain. The queried data
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includes one year's worth of medical event data (SNOMED-CT and
ICD-10-CM codes) prior to the pain diagnosis, as well as data from the
period between the pain diagnosis and the hospitalization.

Using the temporal event analysis portion of Cadence (faded in
Figure 12), the user has created a number of cohorts based on filters
that reference various attributes and events surfaced by the interface.

s Examining the cohort tree, the user notices that the current focus cohort

of 227 patients, filtered by Obesity and other hyperalimentation, seems
to have drifted considerably farther than other cohorts from the baseline
(in this case the initial query result), The high drift is indicated by
the red color of the path o the cohort and the cohort glyph itself in
Figure 12a. The user decides (o investigate the differences between
the focus and baseling cohorts. Afler adjusting the aggregation level
for the split icicle plot (Figure 12b), the user identifies areas of the
dimension hierarchy that are contributing the most to the high drift.
As expected, the constrained Obesiry.. variable, indicated by a #
symbol, has drifted the most. Moving on, the user highlights the
ICD-10-CM event with the highest drift in a different branch of the
hierarchy and finds it to be Sleep apnea. Suspecting that patients in
the (besity.. cohort probably have a higher prevalence of Sleep apnea,
the user checks this assumption with the selected variable distribution
visualization (Figure 12¢). This reveals that the focus (iesity.. cohort
contains a 39% incidence rate (133 of 227 patients) of Sleep apnea,
whereas the baseline cohort contains just 299% (496 of 1,732 patients).
Without s¢lection bias tracking and detailed cohort comparison, the user
would likely not notice that Sleep apnea is more prevalent in the focus
dataset than in the baseline. Having access to this information, however,
enables the user to incorporate this information into any subsequent
analyses of the data. For example, they could contrel for sleep disorders
when smdying the effectiveness of a particular medication for obese
patients to ensure analytical validity for the target population.

Looking back at the split icicle plot, the user notices that some de-
scendant nodes of the constrained variable also have large drift values
(red), whereas others have a very low drift value (grey). The user selects
the constrained variable and switches to the hierarchical dot plot view
(Figure 12d) to inspect further. The user notices that four descendanis
maintains relatively high drift, whereas the drifi for five other descen-
dants drop precipitously, This pattern may indicaie different subgroups
of obesity warranting additional study.

7.2 Domain Expert Interviews

To betier understand the strengths and weaknesses of the selection
hias tracking capabilities outlined in this paper, we conducted a set of
semi-siructured interviews with three medical experis.

All three participants were health-focused researchers with data
analysis experience. One was a medical doctor with both clinical and
research responsibilities, whereas both of the others were PhD-level
researchers. All three participants were full-time university employees
with experience using the i2b2 system [32], an NIH-funded cohort
selection platform that has been deployed to support data-driven health
research at a large number of research universities.

Each participant met individually with two study moderators for
a one hour session. Participants were first introduced to Cadence
and provided a demonstration of cohort selection tasks using the sys-
tem. After the demonstration, participants were asked questions in a
semi-structured interview format. The interviews triggered additional
interactions with the visualization systam.

7.2.1 Thematic Analysis of Interview Findings

The three domain experts provided feedback about many aspects of
the Cadence visual analytics system. We summarize their comments
with a thematic analysis of the interview findings, focusing on the
feedback that is most relevant to the selection bias tracking and cohort
comparison capabilities.

General feedback. General comments about the approach were
ivpically very positive, and participanis agreed that the sysiem provided
many clear benefits, One participant commented that it emables yvou (o
“imstantly generate insights" and i a powerful “hypothesis generating
application.” Other feedback included, =T really like your design,” this
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Fig. 12. The example uss case described in Section 7.1. The temporal event sequence visualization, which iz not the focus of this paper, is faded.

is a “really powerful analytical tool” and “this is very useful...for
cohort studies.” Althowgh feedback was positive, the participanis did
acknowledge the complexity of the sysiem, and the need for training,.
One participant noted that it seemed complicated at first glance, but
that “it made sense™ afier seeing it demonstrated. Another participant
noted that some degree of complexity and training should be expected:
“i2b2 was complicated at first.” but that such tools “are for skilled users”
and require training. To sum up, one participant stated that this is “very
cool, but there is a learning curve.”

Benefits of cohort tree and selection bias tracking, Participants
agreed that selection bias, and other issues related to the validity of
analytical findings, such as “fishing expeditions,” are important, and
germane (o their work, e.g. “that’s something I'm really concerned
aboul.” However they did raise the issue of how o indicate “how
much [selection bias] is oo much?” Participants also agreed that the
cohort tree 15 a useful method for keeping track of the provenance
of created cohorts. One participant stated that “it helps you not get
lost. It's breadcrumbs.” Another stated that “if T get lost here, I can
go back [to the cohort tree] to orient myself.” Some suggestions for
improvements included providing the ability to toggle baseline and
focus cohort tooltips—instead of showing them only on mouseover—
to serve as a reminder when interacting with the other parts of the
visualization. This feature has since been implementad.

Benefits of detailed cohort comparison. Participants saw benefits
and drawbacks of all three detailed cohort comparison methods, Re-
garding the hierarchical visualizations, one participant remarked, “this
is good, but takes extra effort (o see what it means,” due (o the need o
mouseover to obtain detailed information on the event type. Another
participant stated that “All those views are very useful.” Regarding a
particular selected variable distribution visualization, one participant
highlighted a discovery during the interview session: when we “saw the
spike in the age distribution, [I asked] why? The system lets you look
into it right away.” One participant wished to “make the comparison
view larger,” suggesting that it would be useful to be able to switch
between cohort selection and cohort analysis modes.

Alternative visualization designs. More specific feedback on the
allernative visuahization designs for the detailed cohort comparison
visualizations included one participant’s view that the icicle plot “was

good for comparison”™ and that they intuitively understood the use of
color. However, for the dot plot, the same participant suggested that

“when it 15 crowded, hard (o see.” In general, participants found that the

hierarchical visualizations were “good for exploring,” whereas the hist
was “pood for finding specifics.”

8 CoNcLUsION

This paper presents a new selection bias tracking and high-dimensional
comparison sysiem for exploratory cohor selection, It overcomes limi-
taticns in prior work by (1) using a tree-based cohort provenance system
and (2) leveraging hierarchical relationships between data dimensions
to both better communicate areas of drift in variable distributions be-
tween cohorts, and enable user-controlled aggregation for improved
visualization.

The approach is demonstrated by integration with a medical temporal
event sequence visual analytics tool, and implemented via: (1) a cohort
provenance tree visualization that enables the user to keep track of
created cohorts and indicates when selection bias may have occurred,
(2) a novel sphit icicle plot that improves the ability o order nodes
by value in a hierarchical visualization, highlights areas of polential
selection bias, and provides user-controlled aggregation, and (3) a sel
of complementary visuahzations, including a hierarchical dod plot, list
view, and detailed variable distribution visualizations, to examine the
differences between two cohorts in detail.

Feedback from domain expert interviews indicated that selection
bias tracking in visual analytics tools is an important capability, and
that further work in this vein is warranted. Specific areas for future
work include: (1) providing a reference for potentially “dangerous™
amounts of selection bias that is comparable across particular analyses,
{2) exploring techniques to correct for selection bias implamented
within the system, and (3) investigating the selection bias tracking
and cohort comparison techniques for applications bevond the medical
domain, In addition, more in-depth evaluations of the Cadence system,
and its individual componenis, are planned.
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