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1. Introduction

Sparse linear discriminant analysis has been proven to be a successful tool for classification in high-dimensional
settings [6, 8, 23, 38]. While multiple formulations have been proposed, exploiting the connection between
the linear discriminant analysis and optimal scoring problem [15, 16] leads to a particularly attractive regu-
larization due to the least squares loss function.

Let (z;,2;), 7 = 1,...,n, be independent pairs, where z; € R? is a vector of features, and z; € {0,1}%
is a vector indicating class membership, z;; = 1 if ith sample belongs to class k € {1,..., K} and z; = 0
otherwise. Let X € R"*P be a column-centered data matrix, Z € R"*¥ be the corresponding class indicator
matrix and ng be the number of samples in class k. Let 1 € {1}* be a vector of ones. The unpenalized
optimal scoring problem [16] is formulated as

minimize | Z© — X B||%
©.B
subject to n '@'Z'ZO =I,_1, O®'Z"Z1=0,

where B = (3, ...Bx_;] € RP*(E=1 ig the matrix of feature coefficients, and ® € R¥*(K=1) is the matrix
of scores. It is shown in [16] that linear discriminant analysis can be carried out by solving unpenalized
optimal scoring problem. R

In the special case of two classes, K = 2, the solution for the vector of scores is 8 = (\/ng/nl, —\/nl /n2) T

up to a sign. Defining Y = Z@, the optimal scoring problem reduces to the linear regression problem. Given
the success of lasso [34] in high-dimensional linear regression, [23] consider the penalized optimal scoring
problem

fazarggnn{(zn)—lnY—XﬁH%MIlBHl}. (1)

Further generalizations to the copula models [14], tensor data [30] as well as the multi-class case [8, 10, 26, 39]
have been considered.

While the prediction and estimation consistency of lasso estimator in linear regression has been well-
studied, see for example [1, 5, 9, 13, 32, 41] and references therein, the theoretical analysis of (1) and related
extensions have been primarily focused on variable selection consistency [10, 11, 14, 19, 23, 30]. The latter
requires the use of irrepresentable condition [42], which significantly limits the amount of correlations allowed
in X, and is more restrictive than conditions needed for the prediction consistency [35].
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There are several reasons for the gap between theoretical understanding of sparse optimal scoring and
lasso. First, the theory for lasso relies on the linear model assumption

yi=x; B+e;, e ~N(0,0%, & independent from x;, (2)

that is for each sample 7, the continuous response y, is generated conditionally on the covariates ;. Model (2)
does not hold for optimal scoring. In particular, the covariates x; are generated conditionally on the class
membership encoded by discrete y;. Secondly, since the covariates are random, it is of interest to investigate
the expected out-of-sample prediction risk rather than in-sample prediction risk typically considered in
linear regression literature [1, 9, 17]. Specifically, let & € RP be a new vector of covariates with the same
distribution as x;, and for K = 2 let 8" be the population matrix of coefficients, then the expected out-of-
sample prediction risk is defined as

R(B) =Eo{llz" (B - B3} = (B - B") " E(xa")(B - B8").

whereas the in-sample prediction risk is defined as || X (,CA'3 — B)||3. Finally, defining the residual terms as
€ :=Y — X 3", the residuals in € and the covariates in X are not independent, again in contrast to linear
model (2). These challenges prevent direct application of lasso results to (1).

In this work we address these challenges and bridge the existing gap in theoretical understanding of sparse
optimal scoring. Specifically, our work makes the following contributions:

- Compared to existing research specific to K = 2 case [21], we consider a multi-class framework, and show
that the matrix of optimal scores © can be expressed in a closed form up to an orthogonal transformation
(Lemma 2). This allows us to formulate a coordinate-sparse multi-class optimal scoring problem as the
penalized multiple response linear regression problem, thus enabling the subsequent theoretical analysis. We
believe this result is of independent interest.

- We derive the concentration bound for the maximal row ¢, norm of n~'X " E (Theorem 3), where
E :=Y — X B" is the matrix of residuals. The key difficulties in deriving this bound is the non-gaussianity
of X and F, and the lack of independence between X and E. The corresponding proof is the key theoretical
contribution of this work.

- We derive out-of-sample prediction and estimation bounds for sparse multi-class optimal scoring problem
which allow both the number of features p and the number of classes K to grow with the sample size n. The
corresponding results for the estimator in (1) follow as a special case when K = 2. We derive bounds of two
types, that are typically called slow-rate bounds and fast-rate bounds in the literature, we refer to [2, 9] for
the discussion. Slow-rate bounds make no assumptions on the correlation structure of X or the sparsity of
the population matrix of coefficients B*, whereas fast-rate bounds lead to faster convergence rates, but rely
on exact sparsity of B* and restricted eigenvalue condition [1].

- We prove that out-of-sample prediction consistency implies classification consistency, and derive finite-
sample bounds on misclassification error rate of multi-class penalized optimal scoring problem in terms of
corresponding error rate of population Fisher’s linear discriminant analysis rule.

1.1. Relations to Existing Literature

The variable selection consistency of estimator in (1) has been established in [19, 23], whereas the variable
selection consistency for the estimator in the multi-class case has been established in [10, 11]. While the
estimation consistency can be established under the same conditions, the proofs rely on irrepresentability
condition. To our knowledge the results on prediction and estimation consistency of (1) without irrepre-
sentability condition are lacking, with the exception of a recent work by Li and Jia [21].

In [21], Li and Jia establish ¢» estimation consistency of penalized optimal scoring when K = 2. Our
results and analysis differ in several ways. Most importantly, we consider the multi-class case, and allow
the number of classes K to grow with the sample size. This generalization is far from trivial, and requires
establishing score invariance (Lemma 1), derivation of the explicit form of the scores (Lemma 2) as well as a
new proof of the concentration bound for n~' X " E term (Theorem 3). Theorem 3 applies to the two-class
case as well, but our proof allows to explicitly characterize the dependence of constants on model parameters
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and is significantly reduced compared to the proof in [21]. Secondly, in addition to ¢5 consistency, we establish
the bounds on expected out-of-sample prediction error, where expectation is taken with respect to a new
vector of features x € RP. Similar distinction is made in [7], where the difference between mean squared
prediction error and estimated mean squared prediction error is discussed. The out-of-sample prediction
bounds are not present in [21], largely due to the latter focus on fast-rate bounds. In contrast, we derive
both fast-rate and slow-rate bounds. The main advantage of the slow-rate bounds is that they do not require
either sparsity assumption or the restricted eigenvalue condition, we refer to [2, 9] for the discussion of the
two types of bounds. As part of the slow-rate bound derivation, we demonstrate that the norm of B can
always be bounded by a constant times the norm of B*. While the proof is rather simple, we found that
this fact was not explicitly stated in the literature, and therefore could be of independent interest. Finally,
the {5 estimation consistency in [21] is established explicitly under the restricted eigenvalue condition on X.
While the authors state that “a few class of matrices have been proved to satisfy the restricted eigenvalue
condition with high probability” and refer to [31] for corresponding results for gaussian designs, these resullrs
are neither incorporated into the analysis nor is X gaussian in optimal scoring. We show that the entries
of X are marginally sub-gaussian with explicit characterization of sub-gaussian constant (Lemma 3), and
correspondingly rely on results of [33, 43] to establish restricted eigenvalue condition with high probability.
We also incorporate these bounds within the analysis.

1.2. Notation

For two scalars a,b € R, we let aVb = max(a, b). For a vector v € R?, we define £;-norm as ||v||; = > 1_, |vi],
la-norm as ||v|s = (3°F_; v3)1/? and o norm as ||v||« = max; |v;|. We use 1 € RP to denote a vector of ones,

0 € RP? to denote a vector of zeros, and e; € R? to denote a unit-norm vector with jth coordinate equal to one.
For scalar a € R, we write {a}; to denote a row-vector of length [ with each element equal to a. For a matrix
A € RV, we let [|[Alloz = maxi(3)_; af)'/?, [|Alle = S0, (CF_1 a3)'?, [Alh = 3202, 08 il
[Allz = supgz),—1 | Azll2, [Allr = (7, 5_, a7)'/? and [|[A]l = max;; |a;;|. We use I to denote
the identity matrix. For vectors a,b € RP, we use (a,b) = a'b to define vector inner product, and for
matrices A, B € R™? we use (A, B) = Tr(A" B) to define matrix inner product. For a sequence of
scalars by,...,bn,..., we use b, = o(ay) if lim, o (b,/a,) = 0 and b, = O(ay,) if lim, o (bn/a,) = C
for some finite constant C'. For a sequence of random variables x1,...,%y, ..., we use z, = Op(a,) if for
any € > 0 P(|zp|/an <€) = 0 as n — o0, and z,, = Op(ay) if for any ¢ > 0 there exists M, such that
P(|zp|/an > M) < ¢ for all n. For random variable t, we use |||, = sup,~, p~'/2(E|[t[")!/? for sub-gaussian

norm of ¢, and ||t||y, = sup,s, p~(E[t[?)/? for sub-exponential norm of ¢.

1.3. Paper organization

The rest of the manuscript is organized as follows. In Section 2 we consider penalized optimal scoring for
the multi-class case, and demonstrate that coordinate-sparse multi-class optimal scoring problem can be
formulated as a multiple response penalized linear regression problem. In Section 3 we derive deterministic
bounds for expected out-of sample prediction error and ¢ estimation error of sparse optimal scoring. In
Section 4 we derive concentration bound for the maximal row ¢, norm of n~! X " E, which subsequently allows
us to derive probabilistic slow-rate and fast-rate bounds. In Section 5, we prove classification consistency by
deriving finite-sample bounds on misclassification error rate. In Section 6 we conclude with discussion. All
the proofs are deferred to Appendix.

2. Multi-class penalized optimal scoring

We consider multi-class penalized optimal scoring problem

miréi%ize{(Zn)AHZ@ — X B|% + APen(B)}

subject to ©'Z'ZO@ =nlx_,, ©'Z7Z1=0,
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where Pen(B) : RP*(K=1) 4 [0, 00) is a penalty function. For example, [16] uses Pen(B) = Tr(B' AB) for
some positive definite matrix A, [8] use Pen(B) = ||B||1, and for K = 2 [23] use Pen(3) = ||8]|1. We first
show that if the penalty function is invariant with respect to orthogonal transformation, then any matrix of
scores within the constraint set will lead to global solution of (3).

Lemma 1. Let Pen(B) = Pen(BR) hold for any B € RP*E=Y and any orthogonal matriz R €
~ ~T ~ ~T
RE-DXE=-D [et @ € REXE=D) pe such that @ Z'ZO@ =nlg_1,©® Z'Z1=0, and let

Bg :argmin{(Qn)AHZé—XBH%+)\Pen(B)}. (4)
B
Then the pair (©, Bg) attains global minimum of (3).

Since any matrix © that satisfies the constraints leads to the pair ((:), Bg) that minimizes the objective
function, we next show that such a matrix can be constructed explicitly based on the sample sizes ny.

Lemma 2. Let © € REXE-D have columns ég eRE, 1=1,...,K — 1, defined as

(_)l _ L } _
Z 1”12 1“@

ST oT oo ST T
Then ® Z ZO =nlg_; and ® Z' Z1=0.

Lemmas 1 and 2 show that to solve a penalized optimal scoring problem with orthogonally invariant
penalty function, it is sufficient to fix the scores according to Lemma 2, and only consider problem (4),
which has the same form as a penalized multiple response linear regression problem. The condition on the
penalty function is satisfied by many commonly-used penalties, for example by Pen(B) = Tr(B " AB) for any
K and by Pen(8) = ||8||1 for K = 2. When K > 2, the element-wise sparsity penalty Pen(B) = ||B||; does
not satisfy the condition, however the coordinate-wise sparsity penalty Pen(B) = ||B||1,2 does. While the
difference between element-wise and coordinate-wise sparsity may seem minor, we argue that coordinate-
wise sparsity is preferable in the discriminant analysis context. Similar argument is made in [3] for the
principal component analysis. When Pen(B) = || B||1, each column of Bg is sparse, however the rows are
not necessarily sparse which means both that the individual features are not completely eliminated from
the classification rule, and that the sparsity is not preserved under orthogonal transformation. In contrast,
when Pen(B) = ||B||1,2, all columns of Bg share the same sparsity pattern leading to sparse rows, and
consequently feature elimination. Therefore, we let Y = Z © and define the solution to sparse multi-class
penalized optimal scoring as

B = argmin{(2n)"!|Y — XB||% (5)
B

When K = 2, (5) reduces to (1). When K > 2, (5) can be rewritten in a form equivalent to sparse linear

discriminant analysis proposal of [10], although the latter does not draw connections to optimal scoring. In

the rest of the paper, we derive bounds on expected out-of-sample prediction risk and estimation error of

estimator in (5).

3. Deterministic bounds

In this section we derive out-of-sample prediction and ¢z estimation bounds for (5) that hold deterministi-
cally under certain conditions on X and A. We first review the explicit form of the matrix of population
discriminant vectors B*.



Let «; € Ci denote that sample i belongs to class k € {1,..., K}, and let m = pr(x; € Cg), py, =
E(x;|z; € Cr), Zw = Cov(x;|x; € Cx). Let 3 be the marginal covariance matrix such that Cov(x;) = Xr.
[10] show that the population matrix of canonical vectors can be expressed as E;lAR, where A € REX(K-1)
is the matrix of orthogonal mean contrasts between K classes with rth column defined as

A _ VT D he1 Tr (g — My 41)
T bl
\/22:1 T D Tk

(6)

and R is the (K — 1) x (K — 1) orthogonal matrix of eigenvectors of ATX-'A. Moreover, since the clas-
sification rule is invariant to orthogonal transformations, any orthogonal matrix R will lead to equivalent
classification rule. The orthogonal invariance of B* mimics the orthogonal invariance explored in Lemma 1,
which is not by chance. Our choice of © in Lemma 2 is such that E(n"'X " Z©) = A + o(1) (see Lemma 4
in the Appendix), and we fix B* = E;lA throughout the manuscript. A different choice of © leads to
equivalent conclusions by applying corresponding orthogonal transformation to B*. In a special case of two
classes, 8* = 7' Ay = /M2 2y (1 — po), which coincides with discriminant analysis direction considered
in the literature [6, 23].

Let € R? be a new vector of covariates with the same distribution as x;. Given B* = E;lA, we aim
to derive bounds on expected out-of-sample prediction error defined as

R(B) :=Ey|z" (B* - B)||} = Tv{(B* — B) ' £1(B" - B)},

and the estimation error || B— B* |%. Throughout, we define residual terms as E = [ ...ex_1] := Y — X B",
which allows direct comparison with lasso bounds. Since (5) is of the same form as penalized multiple-response
linear regression problem with group-lasso penalty, the proofs of deterministic bounds for (5) follow the proofs
of deterministic bounds for lasso with extra triangle inequality to handle out-of-sample rather than in-sample
prediction error. Because these bounds are deterministic, we follow the terminology in [20] by differentiating
penalty and sparsity deterministic bounds. In Section 4, we use these bound to derive probabilistic slow-rate
and fast-rate bounds correspondingly.

3.1. Penalty bounds

We start by providing a deterministic bound for in-sample prediction error || X (B — B*)||2. This bound
makes no assumption on X or on the sparsity of B*.

Theorem 1. If\> 1| XTE|», then
1 s *\ (12 1 T *
IX(B - B)lr < (A+ ~IX Ellsc2) | B*l1.2-
If, in addition, A > 2| X " E| w2, then | Bl12 < 3||B*|1,2.

The first part of Theorem 1 is a well-known deterministic bound for lasso and group-lasso, see for example
[20, 32]. The second part of Theorem 1 shows that the mixed ¢; /¢2 norm of B can be bounded by the ¢ /(5
norm of B* up to a constant. The latter, in particular, allows to bound expected out-of-sample prediction
error following the proof similar to [7] for the constrained lasso case. In the constrained formulation, the
bound on the norm of B is immediate by choosing a constraint parameter that is as large as || B*||1,2. We
show that by choosing the tuning parameter A large enough, similar bound holds for penalized formulation.
Combining the norm bound with the in-sample prediction error bound leads to the deterministic bound
on expected out-of-sample prediction error. The bound on estimation error follows by assuming positive
definiteness of population marginal covariance matrix 3.



Corollary 1. Let A > %HXTE”OO’Q. Then
B *\ T B * 3 * * (12 1 T
Tr{(B - B") ¥r(B - B")} < §>\HB |12 + 16| B ||1,2||5X X — 37|

If, in addition, Amin(X7) > 0, then
3 16

B-BY2<-—"_ _)\|B* ——||B*
|| HF = 2/\min(ET) || ||172 + )\min(ZT) ||

LT
2l XTX — Sl

The bounds of Corollary 1 are deterministic, and therefore depend on X via [n !X "X — B7/s. In
Section 4.2, Theorem 4, we provide the corresponding probabilistic bounds which rely on concentration
inequality for n='|| X " E||o 2 (Theorem 3) and concentration inequality for [|n~' X " X — 37||o (Lemma 7).

3.2. Sparsity bounds

To derive the sparsity bound, we make additional assumption on B*.

Assumption 1 (Sparsity). B™ is row-sparse with the support S = {j : ||ejTB*||2 # 0} with s = card(S).
As in lasso, we also use restricted eigenvalue condition on the design matrix [1].

Definition 1 (Restricted eigenvalue condition). A g x p matriz Q satisfies restricted eigenvalue condition
RE(s, ¢) with parameter vqg = Y(s,¢, Q) if for all sets S C {1,...,p} with card(S) < s, and for all a €
C(S,c) ={a eRP: |las:||1 < c|lagl|l1} it holds that

2
HQaH% > ||aS||2 )
TQ

In the group-lasso case, this condition is generalized to allow for the mixed ¢; /¢5 norms, see for example
[22]. In penalized optimal scoring, the generalization is needed when the number of classes K > 2.

Definition 2 (Group restricted eigenvalue condition). A g x p matriz Q satisfies restricted eigenvalue
condition RE(s, ¢, K) with parameter vg = (s, ¢, K, Q) if for all sets S C {1,...,p} with card(S) < s, and
forall A€ C(S,c,K) = {A € RPXE=D || Age||12 < c||Agll12} it holds that

|As|7
QA% > —F.

When K = 2, Definitions 1 and 2 coincide. We next state deterministic sparsity bounds that hold whenever
X satisfies restricted eigenvalue condition.

Theorem 2. Under Assumption 1, if X > %HXTEHOOQ and n~Y2X satisfies RE(s,3, K) with parameter
Tx = ’}/(8,37K, nil/zX); then

1 . - 9 ~ 15 ~
~lIX(B - B[l < ZVXSV; IB=B"|r < 5yxVsA and ||B—B"[1z < 6yxsA.

The bounds of Theorem 2 are well-known for lasso and group-lasso, see for example [1, 17, 27]. Compared to
these results, our interest is in expected out-of-sample prediction error, and we provide corresponding bound
in Corollary 2. This bound can be obtained in two ways. On the one hand, we can use triangle inequality as
in Corollary 1. On the other hand, since restricted eigenvalue condition allows to directly bound estimation
error, we can use that bound through the maximal eigenvalue of 3. If the maximal eigenvalue of 37 can
be treated as constant, the second approach leads to tighter probabilistic bounds.

Corollary 2. Under Assumption 1, if A > %HXTEHOQ,Q and n~1/2X satisfies RE(s,3, K) with parameter
vx =7(s,3, K,n"'/2X), then
- = 9 1
Tr{(B — B*)"2¢(B — B*)} < min {WXSAQ + 3673(52/\2||5XTX — 37 |oos AmaX(ET)577§(s/\2}.
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4. Probabilistic bounds

Both Corollary 1 and 2 rely on the deterministic condition for A, that is A > %HXTEHOOQ. Therefore, to

derive corresponding probabilistic bounds, we need to derive a concentration bound for || X T E||oo.2- This
bound is provided in Section 4.1 and is the central result of the paper. The corresponding probabilistic

slow-rate and fast-rate bounds are stated in Sections 4.2 and 4.3.

4.1. Concentration bound for n™!|| X " E||co 2

There are several difficulties in deriving the concentration bound for n~'[| X " E||» 2 in the context of pe-
nalized optimal scoring. First, both Y and X are random, and the linear model (2) for Y doesn’t hold.
Secondly, X and E are not independent. These challenges prevent application of lasso results, and therefre
require new derivations. For this, we make the following assumptions.

Assumption 2 (Class probabilities). pr(x; € Cx) = m fork=1,..., K with 0 < Tpin < T < Tmax < 1.
Assumption 3 (Normality). x;|z; € Cx ~ N (g, Bw) forallk=1,..., K with p = Zszl Ty, = 0.
Assumption 4 (Sample size). logp = o(n)

Assumption 2 requires prior group probabilities to be of the same order so that ny grows with n for
each k. Assumption 3 is typical in linear discriminant analysis, however it can be relaxed to sub-gaussianity
without affecting the rates. The normality allows to express the constants in the rates through the variance
terms rather than sub-gaussian parameters, which we find easier to interpret. Without loss of generality, we
assume that the overall mean p is zero. In practice, we always column-center data matrix X. Assumption 4
is a typical scaling for n and p in high-dimensional statistics.

Throughout, we use O'JQ- to denote the diagonal elements of within-class covariance matrix 3y, and define

T = max /O'JQ- + max,uzj.
j=1,....p k

Theorem 3. Let\g =CT % for somen € (0,1) and constant C > 0. Under Assumptions 2—4
1
pr (X Blloca < Xo) 211,

Theorem 3 provides a scaling of tuning parameter with respect to the number of classes K, the sample
size n and the number of variables p. While X is random, and X and FE are not independent, the scaling is
the same up to constants as in lasso with fixed design, see for example [4, 17] and references therein.

We provide the sketch of the proof here to emphasize the new ideas. Since the linear model (2) for Y does
not hold, we explicitly take E=Y — XB* =Y — XE;IA and use triangle inequality:

1 1 1 1 1
X Elocz = -XTY — ~XTXS0 Aoz < |- XTY — Al + [A — ~X X33 Al 2.
n n n n n

For the first term, we take advantage of the exact form of the optimal scores derived in Lemma 2 as well
as tail inequality for quadratic forms of gaussian random vectors [18]. For the second term, we prove that
under Assumption 2-3, the elements of X are marginally sub-gaussian with parameter at most 7 (Lemma 3)
and derive element-wise concentration bound for the covariance matrix of random vector with sub-gaussian
elements (Lemma 7). A particular feature of the bound in Theorem 3 is that the constant C' > 0 is not
dependent on the model parameters Xy, p;, or m,. The bound depends on the model parameters only
through 7, the dimension p and the number of classes K. This is in contrast with the results of [21] for
K = 2 case, where the constant implicitly depends on the model parameters and A\pax (X ) in particular. To
derive the explicit dependence through 7, we exploite the matrix decomposition of total covariance matrix
Y from [10], the Woodbury matrix identity, and the bound on ||21T/ ?||so through ||E7||o based on concavity
arguments. The full proof of Theorem 3 is in the Appendix.
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4.2. Slow rate bound

In this section, we derive the slow rate bounds for out-of-sample prediction and ¢, estimation consistency
of (5) by combining the penalty bounds of Section 3.1 with concentration bound of Theorem 3.

Theorem 4. If\>Crt @Lw for some constant C > 0, then under Assumptions 2—4

T{(B - B) Sr(B - B)} = 0, | {1V 7B |12} 7| B 1z

n

(K — 1>1ogp] |

If, in addition, Apmin(E7) > 0, then

1B — B*[|% = O,

e, V7B 2 /(K —1)logp
{1vrIB e+ = - .

When K = 2, these results mimic Theorem 1 in [7] for the constrained lasso. Here we analyze the penalized
formulation, and rely heavily on Theorem 3, which required separate derivations for optimal scoring problem.
The bound allows both the number of features p and the number of classes K to grow with n. If | B*||; 2 is a
constant, the prediction consistency is achieved as long as n > (K — 1) logp. Otherwise, ||B*||1 2 is allowed
to grow at a rate no faster than {n/(K — 1)log p}l/ 4. This scaling is suboptimal compared to what would
be expected in lasso with fixed design, {n/(K — 1)logp}'/?, and this discrepancy is a result of considering
out-of-sample rather than in-sample prediction error. We refer to [7] for further discussion.

4.3. Fast rate bound

In this section, we derive the fast rate bounds for out-of-sample prediction and ¢s estimation consistency
of (5) by combining the sparsity bounds of Section 3.2 with concentration bound of Theorem 3 and restricted
eigenvalue condition on the marginal covariance matrix 3. The latter allows us to establish that restricted
eigenvalue condition holds for random n~'/2X with high probability. For clarity, we assume that A\yax(Z7)
is a constant so that the minimum in Corollary 2 is achieved with the second bound.

We present the results for the case K = 2 and K > 2 separately. When K = 2, we use [33, 43| to show
that RE(s, ¢) holds with high probability for sub-gaussian matrices.

Theorem 5. Under Assumptions 1—4, if K = 2, A = C11/ %82 for some constant C > 0, slogp = o(n),

n

ElT/Q satisfies RE(s,9) and v = (s, 3, ElT/Q) according to Definition 1, then
3 3 slogp
(B 87218 - 5) = 0p n(Br)r? B2
2 a2 2 oslogp
1B= 813 = 0, (2 =2F).

When K > 2, we need to consider a more general condition RE(s, ¢, K). We conjecture that the results
of [33, 43] can be generalized to this condition, however the explicit proof is outside of the scope of this paper.
For technical clarity, we instead bound (s, ¢, K,n~/2X) through the element-wise maximum [[n~' X " X —
3 |ls as in [35]. This approach, however, leads to sub-optimal scaling of s (s?logp = o(n)) compared to the
K = 2 case (slogp = o(n)). This scaling is not present directly in the bounds, but rather is needed to ensure
that vx can be bounded by 7.



Theorem 6. Under Assumptions 14, if A = Ct (K-1)logp for some constant C > 0, s®logp = o(n),

n

2%,1/2 satisfies RE(s,3,K) and v = 7(s,3, K, 2;/2) according to Definition 2, then

(e~ ologp)

I

Te{(B - B*)'S¢(B - B")} =0, {Amax(zT)T%?

5_ B (K ~1)slogp
1B - B[} = 0, (r2*=—"20),

Comparing Theorem 4 with Theorem 5 reveals that the key differences are in the use ||B*||1,2 instead
of cardinality s, and slower rate /logp/n compared to logp/n thus justifying commonly used slow-rate
and fast-rate bounds terminology. The main advantage of Theorem 4 is the lack of sparsity assumption and
restricted eigevalue condition. For more discussion on the advantages and disadvantages of these two bounds
we refer to [2, 9]. Our main goal here is to show that penalized multi-class optimal scoring achieves the same
consistency guarantees as lasso despite the lack of linear model (2) for Y and dependency between X and
residuals F, and this is demonstrated via statements of Theorems 4 and 6. As with Theorem 4, Theorem 6
allows the number of classes K to grow with n.

5. Classification consistency

In this section we prove classification consistency of multi-class penalized optimal scoring. In Fisher’s linear
discriminant analysis, the population classification rule assigns a new observation & € R? according to

h(w) = argmin {@=w) B (B SwB) B (x— ) — 2logm } . (7)

Given the estimated B from (5), the multi-class penalized optimal scoring assigns & € RP according to

o~ ~

h(x) = argmin {(m - :i'k)TB(BTf)Wﬁ)*lET(:L’ —Zy) — 210gnk/n} ) (8)
k
where @) is the sample mean for class k, and f]w is the pooled sample covariance matrix. We further
establish the consistency of h(x) with respect to h(x).
We first provide a projection-based interpretation of the population rule h(x). Let & € RP follow Assump-
tion 3, and let z = B* 'z € RE~1. Then 2 has normal distribution conditionally on the class membership,
the rule h(x) depends on x only through z

() = axgmin { (= — ] B)(B" 8w B) (= — B ) ~ 2logm | 1= g(2).

and g(z) is the Bayes rule for z. When K = 2, the population rule (7) is Bayes for & under normality
Assumption 3 since  — B 'z preserves all the discriminatory information between the classes. That is,
the Bayes rule based on distribution of « and the Bayes rule based on distribution of z coincide. When K > 2,
the Fisher’s population rule (7) is Bayes when the population means are colinear [24, p. 330], but is not
Bayes in general. That is, when K > 2, the Bayes rule based on distribution of & and the Bayes rule based on
distribution of z do not generally coincide. Fisher’s LDA is designed to seek projections of high-dimensional
data onto the most discriminative low-dimensional subspace rather than projections that minimize the error
rates. The former goal can be viewed as an approximation to the latter, with direct equivalence when K = 2.
We refer the reader to [25, Chapter 3.9] for further discussion on the difference between likelihood-based
discriminant analysis and Fisher’s discriminant analysis for the case K > 2. Since in this work we consider
an optimal scoring problem which corresponds to Fisher’s formulation of linear discriminant analysis, we
focus on establishing consistency of h(x) with respect to Fisher’s population rule (7).

Consider the estimated rule ﬁ(a:)7 which is the sample plug-in Bayes rule after the transformation x —

~T

B« is applied. The out-of-sample prediction error R(B) = E ||z " B*—xT B |% thus coincides with the aver-
age distance between intended transformation " B* and estimated transformation 2 " B across x. Section 4
9



establishes that 27 B* and 27 B coincide with high probability, which intuitively is a stronger statement
than the agreement of corresponding classification rules. Further, we formally show that the convergence of
R(B) to zero in probability is indeed sufficient for convergence of the corresponding misclassification error
rates.

Consider the misclassification error probability associated with the rule (7)

K
en = pr(h(x) #Cw):z r(h(z) # klx € Cx) pr(z € Cy) Zﬂkpr x) # klx €Cy) : Zﬂ-k‘ehka
k=1

where e, is conditional misclassification error rate for class k. Similarly, for rule (8)
/e\h: ( Zwkpr #k|weck Zwkehk

We further show that R(B) —p 0 implies €;, — ej,. For clarity, we additionally assume
Assumption 5 (Class separation). ¢ < )\min(ATEWA) < /\max(ATEWA) < C for some ¢,C > 0.

We now provide intuition for Assumption 5. Let dx; = p;, — p; be the difference in means between
classes k£ and [. Due to the form of A and equality of eigenvalues between A'SwA and RTATSw AR
for any orthogonal matrix R, Assumption 5 implies that (i) matrix B” sy B* is full rank; (i) 8, Zw o
are constants for all class pairs k, [, which leads to fixed misclassification error probability ej. Our proof
can be adapted to the case of growing ey, however the dependence of constants on eigenvalues of AT A
is non-trivial. Assumption 5 thus allows us to present a simplified bound, however in the proofs we do not
invoke the assumption until the end.

Theorem 7. Under conditions of Theorem 4 and Assumption 5, if K = o(p), then

~ 1/2 eq1/2y ( (K = 1) logpy1/4
o < en+ O 2B IF (LY 72 B (—2E)

Theorem 8. Under conditions of Theorem 6 and Assumption 5, if K = o(p), then
- K —1)slo 1/2
en < en+ o{mnzif\\g(#) 3

The achieved classification consistency rates are square root of the prediction rates of Theorems 4 and 6,
which is consistent with existing literature for binary case [21]. The assumption K = o(p) is very mild,
especially for high-dimensional settings, but it allows to explicitly state O{log(pK)} = O{log(p)} in the
proofs. The extra log(K) term that appears in the proofs is likely an artifact of using the different proof
technique compared to Theorems 4 and 6. The appearance of ||2%2H2 in Theorem 8 is also due to the

different proof. Since HE%QHQ < /Amax(Z7), the bound of Theorem 8 is sharper.

6. Discussion

There has been significant progress in understanding the consistency of lasso and group-lasso estimators in
linear regression [1, 5, 9, 13, 22, 32, 40, 41]. These results can not be applied to penalized optimal scoring
problem despite the similarity between corresponding optimization problems. The key difficulty is that linear
model (2) for Y does not hold, and the dependency between the random covariates in X and the residual
terms in E. In this work we overcome these challenges by using sub-exponential concentration bounds, and
exploiting the decomposition of marginal covariance matrix 3,. While for clarity we focus on the linear
optimal scoring and penalties of group-lasso type, the underlying technique can be used as a building block

10



for investigating consistency of other problems, for example tensor discriminant analysis [30] or optimal
scoring with weighted group-lasso penalty [26]. In our treatment of the fast rate bound for the multi-class
case, we rely on group restricted eigenvalue condition for the random design matrix with sub-gaussian entries.
When K = 2, the existing results of [33, 43] show the condition holds with high probability without affecting
the rates. When K > 2, the results of [33, 43] do not strictly apply due to the different form of the cone
constraint in Definition 2, but we conjecture that the same conclusions hold. It would be of interest to have
a formal justification for this conjecture.

Appendix
A.1. Technical proofs

In this section, we prove the results stated in the main text. We use C, Cy, Co, C3, - -+ > 0 to denote absolute
constants that do not depend on model parameters. Their values may change from line to line.

Proof of Lemma 1. Let f = f(©, B) denote the objective function in (3) and let (@*, B*) be the global
solution to (3), that is

1
f* = f(®*,B*) = 27\|Z®* — XB*||% + APen(B*) < f(©, B)
n

for all B and all © that satisfy the constraints. Since both e) and O satisfy the constraints, there exist
orthogonal matrix R € RE—D>(K=1) gych that ®* R = ©. Let B = B* R, then using orthogonal invariance
of the penalty function

f(©,B) = % Tr{(Z®* — XB*)RR' (Z©"* — XB*)"} 4+ APen(B*R)

1
5. T{(Z6" - XB")(20" - XB*)"} + APen(B*) = f*,

n
that is the pair (©, B) also attains global minimum. Then f* = f(©, B) < f(©, B) for all B, that is

1 ~
B = B = argmin {2n|ze ~ XB| + )\Pen(B)} ,
B

and the pair (O, Bg) attains global minimum of (3). O

Proof of Lemma 2. For any [, j with j > [

0o ... 0
1
7®?ZTZ®l _ lm—+1l—i-1 , - No 0
n D i T D ity Wi
l 0 157¢

- \/ n nl+1 \/
- l+1 ’
Zz 1 nl =1 g Z
L
Z =1 Z 1 g

N1
= il 41 Z”l
Ez ln‘Zz lnlz 1




and
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7@lTZTZ®j = S S — , - Z _1l+1 s {O}Kflfl 2
n Z =1 n; Z 1 n; Nni+1 Zi—l n;
1 0 0 ng
T

Nt
j+1 Z =1

Tj+1 _
21:1 g Zerll i ) ,
o nlnlJrl nl Ny
- — | I+ — | —Il+1
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Myt Y
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J

j+1 Zf;l Ny
I !
_ Z NN 1N 41 B N1 D i Ml
- l l
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0 0
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nlnl_H
Z DY 1 "z Z

X ({1}1’ 1)T

|
1M~
Q
]

l
- =11 =0

O

Proof of Theorem 1. The first part of the proof follows the proof of the “slow-rate” bound for lasso, see
for example [20]. We reproduce the proof for completeness. Consider the KKT conditions for (1):

1 ~ ~
——X'"(Y - XB)+\¥ =0,
n

where W is the subgradient of |B||1,2 evaluated at B. Tt follows that
~ 1 ~ -
Tr[(B-B*) {—=X"(Y — XB) + \¥}] =0,
n
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andusingY = XB*+Y - XB*"=XB*+FE

Since W is the subgradient of the convex function | Bl|1,2 evaluated at B, it follows that

|IBlli2 < | B*|l1,2 + (¥, B — B*).

Combining the above two displays leads to

1 * . 1 . n* . *

—|1X(B" = B)|F - <;XTE7B —B )+ A([Bl12 = [B"[l1.2) <0.
Rearranging the terms gives

1 . A 1 o o . -
CIX(B - B)} < (X B, B~ B) + \|B"15~ A B2

Using Holder’s inequality and triangle inequality gives

IN

12 + A|B*|l1 = A|Bll1.2

1 PN 1 P
~|X(B" = B)|} < ~| X " E|2|B-B |

IN

1 i 1 ~
(GIX T Ellaos + NIB N2+ (X Elaoz = VB2,

Using A > 1|| X " E||o 2 completes the proof of the first part.
For the second part of the proof, using \ > %HXTEHOOQ and the above display gives

1 * D * D
~IX(B" = B)[7 < A2+ NIIB"[l12 + (A/2 = )| Bl}1,2.
Since the left-hand side is non-negative, rearranging the terms gives
Ao A
—||B < 3=||B*||1.2.
5 IBlliz < 3511812
Since A > 0, the result follows.
Proof of Corollary 1. By triangle and Hoélder’s inequalities
[, #\ T D * 1 D *\ (12 D ® (2 1 T
Tr{(B - B") 3¢(B - B")} < ~[|X(B — BY)[p +|1B - B™[li2ll > X X — Er|le.
Applying Theorem 1 leads to stated bound.
Proof of Theorem 2. From the proof of Theorem 1
1 PN 1 ~ . —~
~IX(B™ -~ B)|% < <5XTE,B =B )+ AB[[1.2 = AllBl12-
Using A > %||XTE||00,27 Holder’s inequality and Assumption 1,
1 * D12 )\ B * * >
EHX(B - B)|p < §HB = B|l12 + Al B*[[1,2 = AllBll1,2

A~ . A~ . ~ -
< §HBS — Bglli2+ §||BSc||1,2 +AIB*[l12 = A|Bs|l1,2 = M| Bsell1,2

)\ e * )\ -~ * * ~ % ~
< §HBS — Bglli2 — §||BS0||1,2 +A[B*[l12 = A[[B*|l12 + A|Bs — Bs

3\, = . A~
< 5 1Bs = Bsli2 = 51Bscl12,

13

1,2



where in the third step we use triangle inequality || Bs||1,2 > || B*|l1,2— | Bs—B]1,2. Since | X (B*~B)||3 >
0, it follows that /\||BS<:||1,2 < 3)\|Bs — B%||1,2- Since A > 0 and Bg. = 0 by Assumption 1, it follows that
A:=B-B* belongs to the cone C(S, 3, K) from Definition 2.

Since |Bg — Bg|12 < V5| Bs — 5llF, and %XTX satisfies RE(s, 3, K), from the above display

1 PS5 R . 3\ 1 . =
it — <z — <z — — .
IIX(B* ~ B)[[i < V5l Bs - Byllr < \/§.WX\/EHX(B B)||r

If | X (E — B")||r = 0, the statement of the Theorem holds trivially. Otherwise dividing both sides by
ﬁHX(B* — B)||r gives
1 ~ 3
— || X(B*—B)|lr <= A
TIX(B = B)lr < 5 AR VaA
which leads to 1 9
HIX(B" - B} < frxs

Since %XTX satisfies RE(s, 3, K) and A = B-B* belongs to the cone C(S, 3, K),

1B = B"[l12 = [All12 = [Asll12 + | Asell1.2 < 4] As1,2 < 4V5]| Asllr < 4v/5/7x /I X Al3/n < 6shyx.

Finally, to prove the bound on || B—B*| =, we follow derivations in Appendix A.2 of [43]. Let Ty correspond
to the location of s largest in euclidean norm rows of A, T to the location of s largest in euclidean norm

rows of Apc, and so on for T3, T, ... Then card(T}) = s, and
[Azgll2 = [Alle — Az ll2 < [|All2 = [[Asll2 = [|Aselli2 < 3| Aslli2 < 3 Anylli2 < 3Vs|| Az || r.
Therefore
IAllF < |A e+ > Az lIr < 1Az lle + D V5l Az lloo 2
Jj=1 Jj=1
< lAnllr + VAL AL 12 < Al + =4l
j=>0
Using that =X T X satisfies RE(s, 3, K) and derived bounds leads to
1B =B = |Allr < Vix I XA -+ J=6shx € Gaxvad+ 61 Vad = Fax Vil
O
Proof of Corollary 2. Using triangle and Holder’s inequalities
T{(B-B")"Sr(B - B")}
— Te{(B - B*)T%XTX(B B} + (B - B*)T(%XTX _%)(B - BY)}
< IX(B - B} + B~ B0 XX ~ Sy
Applying Theorem 2 for A > %”XTE”OO’Q gives
T{(B ~ B") Sr(B ~ B')} < Syxsx? + 3675 5°X - XTX — Brl
On the other hand, using Theorem 2 gives
Te{(B — B*) '21(B — B)} < Auax(E1)|B — B*[|% < Anax (S7)577% 502,
O
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Proof of Theorem 3. Consider

1 1 1 1 1
X Bl = -X"Y = X "XB o2 < |- XY — Allca +[|A - ~ X XE7! Allc,2-
n n n n n

1111 Z:IQ

Consider I;. From Lemma 4, with probability at least 1 — 7 for some constant C' > 0

1 K —1)1 —1
L=[-XTY — Al < Cmaxaj\/( ):g(pn ).
J

Consider I5. Using |ABC||co,2 < ||A]lcol| Bllool|Clloo,2 [29, Lemma 8] gives
1 1 - _ _
L= A~ - XTXE Al = 721 - ~57" X TX 2080 A e 2

) (A1)
1/2 —-1/2 —1/2 —-1/2
<IZ el = — 222X T XS el Al

Consider ||E;1/2A||oo’2. Since 7 = Ty +AA " [10, Proposition 2], by Woodbury matrix identity A TSP A =
ATS AT+ ATERA)L Therefore,

=72 Al oo,z = max|le] £5" /2 Ao = max \/6;2;1/2AAT2;1/%].
J : J
<|=22AATE P = |ATEH AL = [ATSH AT+ ATSRA) Y < L

Consider ||21T/2Hoo. Let ©7 = UAU" be the eigendecomposition of L7, then 21T/2 = UAV?UT is
positive definite and ||§J;«/2||Oo = max; | Y27, VAuZ|. Since f(z) = v/ is concave and YF_, u?; =1 for all
7, it follows that

p
151 loe = max | 37 VA < max
=1

P
Z)\m?Z <VIZEr|leo < max [0 —&—mkaxuij =7,
i=1

where the last inequality holds since X = Xy + Z,If:l Wkuku; for p = 0.

Finally, from Lemma 3, all elements of X 2;1/ ? are sub-gaussian with parameter C' that does not depend
on Xy or py. Therefore, from Lemma 7 with probability at least 1 —n

—1
I — l23;1/2A)(T)(§3;1/2||00 <0 log(pin)'
n

n

Combining the above displays with (A.1) gives

1 —1
I < Cyr og(pn ).
n

Combining results for I; and I gives

(K —1)log(pn~1)

n

X XB) s < O
with probability at least 1 — n for some constant C3 > 0. O
Proof of Theorem 4. From Corollary 1, if A > %HXTE”OO’Q,
TH{(B ~ BY)TSr(B ~ BY)} < IAIB*[l1 + 16 B[ o] - XX — Dl

Applying Theorem 3 for 1| X " E| w2 and Lemmas 3 and 7 for |1 XX — 27|/« leads to the desired
statement. O
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Proof of Theorem 5. By Lemma 5, for n > Cslog(p/s), n~'/2X satisfies RE(s,3) with probability at
least 1 — O(e™™) with

yx = (s, 3,01 2X) < 29(5,3,54/%) = 2.
The first bound follows by combining this with Corollary 2 and Theorem 3. The second bound follows by
combining this with the results of Theorem 2 and Theorem 3. O
Proof of Theorem 6. By Lemmas 3 and 7, with probability at least 1 —n

—1
||TL71XTX o ET”oo S 07_2 IOg(pn )
n

By Lemma 6, if s < (32927 — n7'X " X|o0)” !, then yx < 2v. Therefore, using s = o(y/n/logp),
Corollary 2 and Theorem 3 gives that for A > C74/ W

B D K —1)sl
Tr{(B-B")'Sr(B-B")} = Op{)\max(ET)TZyQ%}'
The second bound follows by combining the results of Theorem 2 and Theorem 3. O

Proof of Theorem 7. Consider

K

en —ep = Z T (€nk — €nk) < m]?X(ghk — enk)-
k=1

We further derive bound on maxy(€nr — enr). Let
hi(x) == (x — )" B*(B* ' SwB*)'B" ' (x — ) — 2log m,
SwB) 'B (xz — &) — 2log ng/n.
Then
ent = pr(h(z) # kle € Cr) =1 —pr(h(z) = klz € C;) = 1 — pr(hi(x) < hy(x) for all | # k|z € Cy)
=1—pr(hg(x) — h(x) <0 for all I # k|lx € Cy).

Similarly, ep, = 1 — pr(hg(z) — hy(xz) < 0 for all I # klo € Ci). Consider ag(x) = hy(x) — hy(x), and
ap(x) = hi(x) — hy(x). Then for any € > 0

e = (oute) > 0 < 0) = (G R > e )
ai(x) |ai(x) — ag ()]
s pr (mlax{sd{akl(a:)} T sd{an (@) }> O‘w ca)
axi () axi ()
gpr(mlaxsd{fl;w>0\33€Cl)+pr(—5<mlaxsd{?llwSO\wECl) (A.2)
oo (g By 200
< epk + pr (maxM <eglxeC ) + pr (max (@) = an(x)] >elxeC )
= Chk T PEUEE S o ()} VP s an(@)y T !
Therefore,
m]?,X(/@\hk —enk) < max pr (mlax m <elre Ck) + max pr (mlax |ak;(da&;(2€)l§m)| >elx € Ck)
= .[1 + IQ.
(A.3)
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We further provide bounds on I; and Is.
Let 0y = py, — 1y, then

aw(z) = —26,,B*(B* ' SwB*)"'B* z + u] B*(B*' Sy B*)"'B*
— i B (B" ' SwB")"'B" ", — 2log(my /m)
=—26,,B*(B*"SwB*)"'B* "¢ — §,B*(B* ' %y B*)"'B* ' 4,
+26},B*(B* ' SywB*)"'B* ", — 2log(my,/m)
= ug (x) — 2log(mg/m).

By Assumption 3, for fixed k, ag;(x)/sd{ap;(x)}|x € Ck, I # k, are jointly normally distributed with mean
o and the covariance matrix X,;. Then

|axi ()| |axi ()|
pr (mlaxsd{fl;w <elxe Cl) =pr (lg {sd{zlkw < s}\:c € Cl)
= /j . j (27r)K11|2k| exp[—(2 — por) ' B1a (2 — pop)]dzr - dzx 1

1
S (2e)5-1,
(2m) =B

By Assumption 5, |X,| is constant for each k, therefore for small € > 0 there exists C' > 0 such that
I < Cceik—t,
Consider next I. Let dy; = @y — @;, then
au(z) = —2dB(B SwB)"'B z-d,B(B' SwB)'B du
+2d,B(B' SwB)"'B &), — 2log(n/n)
= Upi(z) — 2log(ni/m).
Therefore, ay(x) — ag(x) = ug(x) — g (x) — 2log(my/m) + 2log(nk/n;). By Lemma 11, |log(my/m) —

log(nk/ni)| = O, (log(Kf l)n*1/2), therefore we further focus on ug;(x) — g (x). Conditionally on x € Cy,

ukl(w) - ak}l(w) Ml + Ukl

= z
sd{ax;(x)} sd{ap; ()}  sd{aw(x)}
where z|x € C;, ~ N(0,1). Applying Lemma 8 and Slutsky, it follows that under conditions of Theorem 4

[k () — gy ()|
W sd{an(a)}

}/22)<(K — l)logp)l/‘l}.

*11/2 *
=0, {r 2B I 1V 2B _

1/4
Setting ¢ = MnTl/QHB*Hi/;(l v 71/2||B*||}{22)(%) in (A.2) and invoking the bound for I; com-

pletes the proof.
O

Proof of Theorem 8. The proof follows the proof of Theorem 7 by substituting the appropriate bounds
from Lemma 8. O

A.2. Additional lemmas

Lemma 3. Under Assumptions 2-3, all elements of X are sub-gaussian, that is

Ee)‘xijge)‘zTQ/Q forall AeR; i=1,...,n; j=1,....p;
17



where T = maxXj—1,... p /0']2- + maxy, ,uzj with sz being the diagonal elements of Xy . Similarly, all elements

of XE;U2 are subgaussian with parameter C' > 0 that does not depend on Xy or py,.

Proof. Since x;|x; € Ci ~ N(py,, 2w ),

K
z =Y w1{z; € Gi} + S G =t + tas,
k=1

where ¢; ~ N (0,I) and ty;, to; are independent random vectors.

Since p = 0, t1;; is mean zero random variable with |t1;;] < maxy |ur;], hence t1;; is sub-gaussian
with parameter at most maxy |ukj|. On the other hand, t5; is mean zero gaussian random vector with
Cov(te;) = Xw. Hence, Var(tg;;) = UJZ for all j, and tg;; is sub-gaussian with parameter ;. Since t1;; and
t2;; are independent,

E(eMir) = B{eMtisttzi)} — F(e i )R (eMeis) < eNHogtmaxk i }/2,

Therefore, x;; is sub-gaussian with parameter 7; = /0% + maxy, 47 ;. Letting 7 = max; 7;, all elements of X

are sub-gaussian with parameter at most 7.
Similarly,

K
2;1/2:31' = 2;1/2 Z Hi. ]1{581 S gk} + E;I/QE%QCl = U1; + wa;.
k=1
Let M = [p, ...p;) € RPXF then

K
lurilloe = 1372wy 1{zi € Gi}lloo < 127 Mlloc2 < [MTS7 M.
k=1

Let IT = diag(my, ..., 7Kk), then Xp = By + MTIM ", and by Woodbury matrix identity
IMER M|y = |M TSy MO I + M TSy M)~ < C,

where the last inequality uses Assumption 2. It follows that all elements of wy; are bounded by at most
C, hence are sub-gaussian with parameter at most C. On the other hand, using 37 = Xy + AAT [10,
Proposition 2],

Cov(ug) = 2728y =? = 5722 - AAT)S 2 =T - 2,2 AATS 2
therefore by Assumption 3 all elements of us; are sub-gaussian with parameter at most one. Since E;l/ Zwi =

w1 + ug;, it follows that all elements of 2;1/ 2zci are subgaussian with parameter at most C; independent
of Xy and py,. O

Lemma 4. Let D = %XTY = %XTZ(:), where © s from Lemma 2, and let A be as in (6). Undear
Assumptions 2-3, with probability at least 1 —n

- -1
D~ Alls < Oy | E =D l8Er),
J n

Proof. Using the definition of © and Z , it follows that the Ith column of D has the form

1V Zéﬂ ni (T — Ty41)
n ! I+1 '
vn D1 T D il Mi

18
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Using Assumptions 2-3 and Lemma 8 in [11], D has matrix-normal distribution with E(D) = A + o(1) and
Cov(D) = n='Zw + o(1). Applying the tail inequality for quadratic form of the gaussian random vector
[18, Proposition 1.1] gives for all ¢ > 0

pr(lle; D —e] Al3/07 > (K — 1)+ 2y/(K — 1)t +2t) < e ".

Applying union bound over all j € {1,...,p} and taking large ¢ gives that with probability at least 1 — 5

- -1
ID—A||m,2<cmaxgj\/<K ) log(pn )
J n

O

Lemma 5. Under Assumptions 1-4, if E;/Q satisfies RE(s,9), then for n > Cslog(p/s) with probability
at least 1 — O(e™™) n~ Y2 X satisfies RE(s,3) with parameter

0< 7(3,3,71*1/2)() < 29(s, 3,24,

Proof. Under Assumptions 2-3, all elements of X are sub-gaussian with marginal covariance matrix 3.
The result follows using the assumption on ElT/ % and applying Theorem 6 in [33] with § = 1/2. O

Lemma 6. Let 21T/2 satisfy RE(s,3, K) with v = (s, 3, K, ElT/Q). If s < (329|127 —n"' X " X ||oo) "1, then
n~Y2X satisfies RE(s,3, K) with

0 < 5(s,3, K,n"/2X) < 29(5,3, K, 2/%).

Proof of Lemma 6. Since ElT/Q satisfies RE(s, 3, K), for all A € C(S,3, K)
1 1
- Tr(AT X' XA)=Tr(A'2r4)+ Tr{AT (Zr —n 1 X" X)A} > ;HASHQF — A3 B = X T X

Since A € C(S,3,K), ||All12 = [|Asl|l12 + || Asell1,2 < 4||As|l1,2- Therefore

1 1 _
S THATXTXA) > | Ash - 16 As o Er 07 XX
1 _
> ;HAsH% — 165/ As|7 B —n ' X T X oo
1 1 1
> Z||Agl|% — —||As]|% = —||As]?
> 7” slle 27” sl 27|| sl
where we used the condition on s in the last inequality. O

Lemma 7. Let x1,...,x, € R? be independent zero-mean random vectors with maxj=1, . p ||Zijlly, < T,
Cov(z;) =X, and let X = [x1...x,|". Under Assumption 4, for some constant C > 0 and a fized n € (0,1)

log(pn—1)

[n ! XTX — % < Cr?
n

with probability at least 1 —n.
Proof. The statement is equivalent to Lemma F.2 in [28]. For completeness, we provide the full proof.

Let tix; = xixij. Since maxj=1, p |Zi;lly, < 7, applying Cauchy-Shwartz inequality together with [36,
Lemma 5.14] leads to

ksl <\ el llad e, < 20zl 202503, = 2lzinlvallzisle, <272
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That is, t;;; is sub-exponential with parameter 272. Moreover, |[tix; — Okjllys = lting — Eting)ly. <
2||tkijlly, < 472 is also sub-exponential with parameter 472. Applying Bernstein’s bound [36, Corollary 5.17]
together with the union bound leads to

pr([n !XT X — 3o > ¢) < 2p? exp[—C min(e?/167%, £ /472)n].

for some constant C' > 0. Letting ¢ = C1724/ % for fixed n € (0,1) and using Assumption 4 gives
[n71X "X — 3||o < e with probability at least 1 — 7. O

Lemma 8. Let 8 = py — py, A= B*TEWB* and qi; = Ail/zB*Tékl. Let my; and vy be conditional
mean and variance of ug(x) — Uk (x) defined in the proof of Theorem 7, let Assumption 5 hold and let
K = o(p).

1. Under conditions of Theorem 4

mae "8 0, {7 B 2 (L lomRy Y

k,l sd{akl( )}
NG 121 *((1/2 1721 g 1/2y ( (K — 1) log py 1/4
ma s = O T IB S v B ()

2. Under conditions of Theorem 6

m —1)slo 1/2
e bd{a,;é T OP&”(W) }
1/2 —1)slo 1/2
e sd{;/,;( T O,,{muzvé ”2((K 1n) : gp) }

Proof. By definition

~T
u(@) — aw(z) = —2{6],B*(B* SwB*)"'B*| —d},B(B EWB) 'B Jx
~T
— 6, B" (B SwB) 'B" 64+ d},B(B' SwB)"'B  dy
~T
4260, B (B* ' SwB*)"'B* Ty, — 2d,B(B SwB)"'B .

Under Assumption 3, conditionally on the training data (x;, z;), i =1,...,n, and @ € Cy, ug(x) — U (x)
is normal with mean
mg; = E{ukl(w) — akl(m)|m S Ck, (:137;, Z,)}
A aTa A T N nTn o~ T
= 3B (B SwB)'B*" 6, +d,B(B SwB)"'B dy +2d,B(B SwB)"'B (u, — 1)
and variance
vg = Var{ug () — tp(x)|x € Ck, (x4, 24) }
~ ~T ~ ~ ~ ~ ~T ~ ~ ~T
—46,,B*(B*'SywB*)"'B* 6,y + 4d},B(B £wB) ' (BSwB)(B SwB) 'B dy
o o~ T
_ 861, B*(B"'SwB*)"'B* Sy BB SwB)'B dy.

1 * A 5T B —1/2 p* T ~ <12 5T . .
Let A:=B*" YyB",A:=B YyB,q,;,=A B" 0 and g, = A B dj;. Then we can simplify
the expressions for my; and vy, as

T ~ T —1/2T _
M = — Qg + Qudp + 2duA B (1 — &),
~—1/2

- —1/2
O = 4G5 Gy + 44 A

~ ~ ~—1/2 _ N =\ ~
(BEwB)A Gy, —8qL,A”VA(B TSy B)A g,
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Consider the mean term

AT ~ ~T /\71/2AT _
Imua] < @0 ar — Al +21GuA B (py, — 1)

~ « ~—1/2 A ~T _
< 2lq (@ — qr)| + @ — a3 + 211 A l2ll@rll2ll B (1 — Z1)|l2
R R ~—1/2 ~T B N
< 2llqu 219k — arill2 + ll@r — ka”g +2[|A 2l B (py — 21)ll2([|@pill2 + 1@k — qrill2)

~ ~=1/2 T _ ~
< 2(I@w — aullz + 1A I21B (i — 20 2) (lawallo + 11— giall2)

Since sd{agi(x)|x € Cx} = 2\/6 B*(B* 'Sy B*)~1B* 8§, = 2, [a,@ = 2]gll2, it follows that

Ml

~o1/2, AT B R
sd{ap(z)} ~ (qul Qllz 1A 2lB - (e — wk)”?) (1 + [lg5 — ka||2/|\ka||2)~

~ ~T
We first focus on bounding ||qy, — Gy ll2. Let By := A — A and ey := B dy — B*' 8y Recall that

2~T
w=A"12B*T5,, and G, = A 2B 4, - (A+ E1)"Y2(B* "6}, + ey). Therefore
G — guillz <A+ E)"V2B* 81 — A7V2B* 6| + (A + E1)~?eql|s
<@+ ATVPEATYA) T T |ATPB S ya + (T + ATV EL AT T2 AT ey .
If ||A71/2E1A71/2H2 < 1, then for some constants C1,Cy > 0
1@ — quillz < CLIIATYPELATY2 sl qyll2 + |A7 2enll2(1 + Col|A™2E ATV |5),

and

A71/2
9 — qwill2 < Ch||A- 1/2E A 1/2” I ekl”2(1+C’2HA71/2E1A71/2||2).

gl gl

Therefore, from Lemmas 9 and 10, under conditions of Theorem 4

T * 1)logpy1/4
max Gy — qpall2 = Op{(l v max||gy ) (7] B 1, )1/2(7) }
7 ) -
and I i P »
D — Diillz _ { -1 * -1 1/2( - ng) }
max ————=—~ = 04 (1 Vmax ||q I B ) s —1l)logp .
k,l lgell2 P ( il lgwllz )l ll2) -

Similarly, consider
/\—1/2 ~T _ _ _ _ s —
max |4 [2|B - (uy, — )2 < 1A V2o(1 4 Ci|ATVEELATY2 )| Bl max || — Eplloc-

From Theorem 1, HEHLQ < 3||B*|]1,2 when A > 2n_1||XTEHOO72. Also, since Ty ~ N(uhn,;lzw), apply-
ing Gaussian concentration inequality with union bound and Assumption 2 leads to maxy ||py, — Tkl =

O, (7’ log(Kp)/ n) Combining this with the above display and Lemma 9 , under conditions of Theorem 4

~-1/2 ST _ _ . log(Kp)
max Aol B (g — @) l2 = Op{ A2 o Bl 2m | 22 .

Combining the above displays, under conditions of Theorem 4, and using K = o(p)

M

_ X _ (K —1)logp\1/4
ma _pe by = Op{ (mas laalla v s lalla DB 2l A7 1) 2 (5250

n
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If in addition Assumption 5 holds, then ||A~?||y and |/q,,||2 are constants, therefore
My _ N 1/2 (K —1)logp\1/4
Hon@y ~ OB 2 (5=E0) T
mlax sd{akl(ac)} P (T” ”172) n

Similarly, using Lemma 4 in [12],

)

W T _ B (K—1)logK
max | B (g = @)l = Oy (1 =2 )

therefore under conditions of Theorem 6 and using K = o(p)
=T - D * _ w1 -
max | B (py, — k)2 < max||(B — B) " (1 — @x)ll2 + max||B™ (s — 31)] 2

(F =1k

< max | B = B 12l — @l + Oy ( -

< B - B0, (m BEE)) 1 o, (/D08

=0, (’YT -

From Lemmas 9 and 10, it follows that under conditions of Theorem 6

Mg 71”2((K—1Tzslogp)1/2}.

—1 4
k?zx sd{akl(:c)} OP{(HkIE}lXHQkIHQ VIIk1%X|‘qkl||2 )7_'7”

If in addition Assumption 5 holds, then ||A™2||, and ||q,,||> are constants, therefore

max 7sd{;z;€éa:)} = OP{T,V((K - 173slogp)1/2}.

Next, consider the standard deviation term

. . ~~—1/2
VUK = 2\\2%23 A 1/2%1 - 2%2314 Qrill2

4 %« 4 —1/2~ % a—1/2~ ~~=1/2
< QHZ%QB A I/qul *2%23 A 1/2%1”2 + ||2%2B A 1/2% *E%QBA Q12
1/2 1% 4 — ~ 1/2 ;% 4 — 1/255-1/2, [~
<|[Z°B AT allgy — Gulle + 15 B A7 = SPBA ™ |a]@ll»

1/2|

~ 1/2 * — 1/295 53— ~
< lg = @llz + 123" B A2 = SIPBA 7 a(lgillz + g — @wll2),

and correspondingly

VO < BY2BrA 2 - E%2E271/2H2 n M(l =P BrATY? - 2%21%2171/2”2).
sd(ag (x)) Grall2

Since

1/2 % 4 — 17255~ 1/2
ISy?B*A™Y? — 5i/°BA

Il = Sy’ B*A™2 — £\*(B — B* + B*)(A+ E)'/?||,
<|[=*B ATV -5’ BY (A + E\) V2|p + |=3(B — BY)|
< C|ATYPE ATy + |2 (B - BY)|s,

under conditions of Theorem 4 and using Lemma 9
~~—1/2 ~
I B AT P BA |y < AT 2B AT+ 2B - B,

= 0,{(r1B" A oy2 (K= Lompy

w1/2 wnl/2 (K—l)logp 1/4
+0,{ (v 2B I B ()
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Combining this with the above bounds on ||g,; — g, |2, under conditions of Theorem 4, using K = o(p) and
Assumption 5

VAL 1/2( x| —1/2 1721 e 1/2y ( (K — 1) log py 1/4
ma s = Ou{ T B oy B (R ) T

Similarly, under conditions of Theorem 6 and using Lemma 9
oA ~ o~ —1/2 B 3 . .
|SW B AT = SyPBA s < Ci|ATYPEL AT+ |12 B - BT

_ K —1)slogp
< 0y (ryl A2 D208 stz

K —1)slogp
I ),

1205 (74
Combining with the bounds on ||g;;—@},||2, under conditions of Theorem 6, K = o(p) and using Assumption 5

v
max — YR Op{’T’y”E‘l/‘{?”Q

(K — l)slogp}
k,l sd(akl(ac)) n '

~ AT~ ~ —~
Lemma 9. Let A := B*TEWB*, A:=B XYwB and E1 = A— A. Then under Assumption 3

|A™2E AT,

IX"(B-B"%, IX"(B=B")lF, (1 [K -1 K-1
< A 2 A 1 _— .
- n—K I >+ vn—K I ”2{ +Op< n—K>}+Op( n—K)

Moreover,

1. Under conditions of Theorem 4,

) ) ) B K —1)logpy1/4
14728, A7), = 0, { () Bl Aoy 2 (U D eny U

2. Under conditions of Theorem 6,
—1/2 —1/2) _ —1/2 (K —1)slogp\1/2
| A7 2 BIAT 2y = O, {ry A7y (FF—RE) T

Proof. By definition
E,=A-A=(B-B)'Sy(B-B")+2B"'S(B-B*)+B"'SyB* - B %B"
therefore
|A2E ATy = [ATV3(B - BY) ' Sw(B - BY) AT,
+2||A_1/2B*TZA]W(B —BYA V2, 4 ||A_1/2B*T§WB*A_1/2 1l
— I, + 2L + I5.
n—K

Since 3y is the pooled sample covariance matrix, n=' X TX = -
sample covariance matrix which is positive semi-definite. Therefore

EAJW + EAJB, where X g is between-class

L=|A"*(B-B)'Sw(B-B)A ;< |A7Y|(B-B") (n- K)"' X "X(B - B")||2
< [lAT 2 (n — K) M X (B — BY)I%

Similarly,

— * T @ D * - - *TQL/2 — IS * -
L=|ATY2B" 'Sy (B - B) A2, < |[ATV2B* TS b (n — K)7Y2| X T(B — BY)||p| A2
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By Assumption 3, (n — K)Sy has Wishart distribution, (n — K)Sy ~ W,(n — K, 3w ), hence one can
write Sy = (n — K)" 1375 2,27, where z; ~ N(0,y) iid. Then A™V2B* 'Sy B*A™Y2 = (n —

7

K)' SR 22 where 2, = AY2B* Tz, ~ N(0,Ik_1) iid. By Lemma 9 in [37],

~ K—1
_a-l/2p*T * A—L/2 _ =
I;=]A B YwB'A I OP( an)
and
_ Tal/2 — * T Q3 * A K-1
1428 TS s =\ A 2B S B A P <140,y 2 ).

The first result follows by combining the bounds for Iy, I> and I3.

Using Theorem 1 and conditions of Theorem 4, n’1||XT(§* - B)||%Z = Op{T||B*||172 (%)1/2}.
Substituting this into bound for ||A~Y/2E; A~Y/2||, leads to desired statement.

Similarly, using Theorem 2 and conditions of Theorem 6, n_1||XT(§* - B)|% = OP{TQVQM%}.

Substituting this into bound for ||A™Y/2E; A~Y2||, leads to desired statement. O

Lemma 10. Let 6g = pyp — py, dpg = T, — Ty, A == B*'SwB*, for some k,l € {1,...,K}. Under
Assumptions 2 and 3,

_ . =T
max(|A~*(B" 6 — B di)»

- HA_l/znzn_l”XT(fB_B*)HF{HOP( log(f;— 1))} +op(\/(K_ 1)12g(K— 1))_

Moreover, if K = o(p), then

1. under conditions of Theorem 4,

- . B' . - K —1)logp\1/4
max | A28 81— B dulls = 0, { (7B 1zl 4~ o)/ (1082 ) T,

2. under conditions of Theorem 6,

2B B' - K — 1)slogp\1/2
mas | A7 2B - B du)la = 0, {r a2 (E0208) T,

~T
Proof. Let ey = B*Tékl — B dj;. Then by definition
A" 2e)l2 < |ATV2|o(B — B*) dullz + [A™2B* T (dy — )| 2-

By Assumption 3, conditionally on the training data class assignments,

172 ok ng/n+n/n
A /BT(dkl_dkl)NN{07mn I}.

Using Hoeffding’s inequality pr(|ng/n — 7| > €) < C;exp(—Cayne?), Assumption 2 and Lemma 4 in [12]
together with union bound leads to

12T B _ (K —1)log(K —1)
%XHA B* (dy — 6k1)|2 = Op(\/ - )

On the other hand, since %X TX = ”;K iw +3 B, Where > B is sample between-class covariance matrix,
and for any k, [ the decomposition

Xp =4/ %dkld;{l + 3B
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holds for some positive semi-definite 35 (Proposition 2 in [10]), it follows that for any k,

I(B — B") dull> < \/Tr{(B ~ B")Tdud],(B ~ B")} < /| X" (B~ B")|3/y/mm.

Using Lemma 2 leads to

~ ~ log(K — 1
mac (B — B)Tdigl < Y| X7 (B - BY) {1+ 0,1/ EE=))
Combining the above displays leads to

_ _ _ - log(K — 1) \/(K —1)log(K — 1)
1/2 1/2 11w T o g
max |47 eqls < Ao~ | X T(B = BY) {140, (1 ZE=—) } + 0, ( > ).

The final statement follow by using corresponding bounds on n~!|| X T(E — B")||r following the proof of
Lemma 9. O

Lemma 11. Under Assumption 2,

log(K —1)
- = 0, { =)
_ log(K — 1)
nﬁxHog(m/nk) — log(m/my)| = Op{ T}

Proof. By Hoeffding’s inequality, pr(|ni/n — 7| > €) < 2exp(—2ne?). Using 7x = 1 — ZkK:_ll Tk, and
applying the union bound gives the first result. Using the Taylor expansion for f(ny/n) = log(n/n) around
7, and Assumption 2 implies

pr(|log(ng/n) —log(my)| > €) < Cy exp(—Cane?).

Using mg =1 — ZkK:_ll 7k, and applying the union bound gives

pr (U{| log(ng/n) —log(mk)| > 5}) < Cy(K — 1) exp(—Cane?).
k

The final claim follows since log(n;/ny) — log(m; /7)) = log(n;/n) — log(m;) — log(ng/n) + log(my). O
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