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Summary
Canonical correlation analysis investigates linear relationships between two sets of variables,

but often works poorly on modern data sets due to high-dimensionality and mixed data types
such as continuous, binary and zero-inflated. To overcome these challenges, we propose a semi-
parametric approach for sparse canonical correlation analysis based on Gaussian copula. Our 10

main contribution is a truncated latent Gaussian copula model for data with excess zeros, which
allows us to derive a rank-based estimator of the latent correlation matrix for mixed variable
types without the estimation of marginal transformation functions. The resulting canonical cor-
relation analysis method works well in high-dimensional settings as demonstrated via numerical
studies, as well as in application to the analysis of association between gene expression and micro 15

RNA data of breast cancer patients.

Some key words: BIC; Gaussian copula model; Kendall’s τ ; Latent correlation matrix; Truncated contin-
uous variable; Zero-inflated data.

1. Introduction
Canonical correlation analysis investigates linear associations between two sets of variables, and 20

is widely used in various fields including biomedical sciences, imaging and genomics (Hardoon
et al., 2004; Chi et al., 2013; Safo et al., 2018). However, sample canonical correlation analysis
often performs poorly due to two main challenges: high-dimensionality and non-normality of the
data.

In high-dimensional settings, sample canonical correlation analysis is known to overfit the data 25

due to the singularity of sample covariance matrices (Hardoon et al., 2004; Guo et al., 2016).
Additional regularization is often used to address this challenge. González et al. (2008) focus
on ridge regularization of sample covariance matrices to avoid singularity, while more recent
methods focus on sparsity regularization of canonical vectors (Parkhomenko et al., 2009; Witten
et al., 2009; Chen & Liu, 2011; Chi et al., 2013; Cruz-Cano & Lee, 2014; Wilms & Croux, 2015; 30

Gao et al., 2015; Safo et al., 2018). At the same time, with the advancement in technology, it is
common to collect data of different types. For example, the Cancer Genome Atlas Project contains
matched data of mixed types such as gene expression (continuous), mutation (binary) and micro
RNA (count) data. While regularized canonical correlation methods work well for Gaussian data,
they still are based on the sample covariance matrix, and therefore are not appropriate for the 35

analysis in the presence of binary data or data with excess zero values.
Several approaches have been proposed to address the non-normality of the data. There are

completely nonparametric approaches such as kernel canonical correlation analysis (Hardoon
et al., 2004). Alternatively, there are parametric approaches building upon a probabilistic inter-
pretation of Bach & Jordan (2005). For example, Zoh et al. (2016) develop probabilistic canonical 40

correlation analysis for count data based on Poisson distribution. More recently, Agniel & Cai
(2017) utilize a normal semiparametric transformation model for the analysis of mixed types
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of variables; however, the method requires estimation of marginal transformation functions via
nonparametric maximum likelihood.

In summary, significant progress has been made in developing regularized variants of sam-45

ple canonical correlation analysis that work well in high-dimensional settings. However, these
approaches are not suited for mixed data types. At the same time, several methods have been
proposed to account for non-normality of the data, however they are not designed for high-
dimensional settings. More importantly, to our knowledge none of the existing methods explicitly
address the case of zero-inflated measurements, which, for example, is common for micro RNA50

and microbiome abundance data.
To bridge this major gap, we propose a semiparametric approach for sparse canonical corre-

lation analysis, which allows us to handle high-dimensional data of mixed types via a common
latent Gaussian copula framework. Our work has three main contributions.

First, we model the zeros in the data as observed due to truncation of an underlying latent55

continuous variable, and define a corresponding truncated Gaussian copula model. We derive
explicit formulas for the bridge functions that connect the Kendall’s τ of the observed data to
the latent correlation matrix for different combinations of continuous, binary and truncated data
types, and use these formulas to construct a rank-based estimator of the latent correlation matrix
for the mixed data. Fan et al. (2017) use a similar bridge function approach in the context of60

graphical models, however the authors do not consider the truncated variable type. The latter
requires derivation of new bridge functions, and those derivations are considerably more involved
than the corresponding derivations for the continuous/binary case. The significant advantage of
the bridge function technique is that it allows us to estimate the latent correlation structure of a
Gaussian copula without estimating marginal transformation functions, in contrast to Agniel &65

Cai (2017).
Secondly, we use the derived rank-based estimator instead of the sample correlation matrix

within the sparse canonical correlation analysis framework that is motivated by Chi et al. (2013)
and Wilms & Croux (2015). This allows us to take into account the dataset-specific correlation
structure in addition to the cross-correlation structure. In contrast, Parkhomenko et al. (2009)70

and Witten et al. (2009) model the variables within each data set as uncorrelated. We develop
an efficient optimization algorithm to solve the corresponding problem.

Finally, we propose two types of Bayesian Information Criteria (BIC) for tuning parameter
selection, which leads to significant computational savings compared to commonly used cross-
validation and permutation techniques (Witten & Tibshirani, 2009). Wilms & Croux (2015) also75

use BIC in the canonical correlation analysis context, however only one criterion is proposed. Our
two criteria correspond to the cases of the error variance being either known or unknown. We
found that both are competitive in our numerical studies, however one criterion works best for
variable selection, whereas the other works best for prediction.

2. Background80

2·1. Canonical correlation analysis
In this section we review both the classical canonical correlation analysis, and its sparse al-

ternatives. Given two random vectors X1 ∈ Rp1 and X2 ∈ Rp2 , let Σ1 = cov(X1), Σ2 = cov(X2)
and Σ12 = cov(X1,X2). Population canonical correlation analysis (Hotelling, 1936) seeks linear
combinations w⊤

1 X1 and w⊤
2 X2 with maximal correlation, that is85

maximize
w1,w2

{
w⊤

1 Σ12w2

}
subject to w⊤

1 Σ1w1 = 1, w⊤
2 Σ2w2 = 1. (1)

Problem (1) has a closed form solution via the singular value decomposition of Σ−1/2
1 Σ12Σ

−1/2
2 .

Given the first pair of singular vectors (u, v), the solutions to (1) can be expressed as w1 = Σ
−1/2
1 u

and w2 = Σ
−1/2
2 v.
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Sample canonical correlation analysis replaces Σ1, Σ2 and Σ12 in (1) by corresponding sam-

ple covariance matrices S1, S2 and S12. In high-dimensional settings when sample size is small 90

compared to the number of variables, S1 and S2 are singular, thus leading to non-uniqueness
of solution and poor performance due to overfitting. A common approach to circumvent this
challenge is to consider sparse regularization of w1 and w2 via the addition of a ℓ1 penalty in the
objective function of (1) (Witten et al., 2009; Parkhomenko et al., 2009; Chi et al., 2013; Wilms
& Croux, 2015). Sparse canonical correlation analysis is then formulated as 95

maximize
w1,w2

{
w⊤

1 S12w2 − λ1∥w1∥1 − λ2∥w2∥1
}

subject to w⊤
1 S1w1 ≤ 1, w⊤

2 S2w2 ≤ 1. (2)

In addition to ℓ1 penalties, the equality constraints in (1) are replaced with inequality constraints
which define convex sets. This generalization is possible since nonzero solutions to (2) satisfy the
constraints with equality, see Proposition 1 below.

While problem (2) works well in high-dimensional settings, it still relies on sample covariance
matrices, and therefore is not well-suited for skewed or non-continuous data, such as binary or 100

zero-inflated. We next review the Gaussian copula models that we propose to use to address these
challenges.

2·2. Latent Gaussian copula model for mixed data
In this section we review the Gaussian copula model in Liu et al. (2009), and its extension to

mixed continuous and binary data in Fan et al. (2017). 105

Definition 1 (Gaussian copula model). A random vector X = (X1, . . . , Xp)
⊤ satisfies a

Gaussian copula model if there exists a set of monotonically increasing transformations f =
(fj)

p
j=1 satisfying f(X) = {f1(X1), . . . , fp(Xp)}⊤ ∼ Np(0,Σ) with Σjj = 1 for all j. We denote

X ∼ NPN(0,Σ, f).

Definition 2 (Latent Gaussian copula model for mixed data). Let X1 ∈ Rp1 be con- 110

tinuous and X2 ∈ Rp2 be binary random vectors with X = (X1,X2). Then X satisfies the latent
Gaussian copula model if there exists a p2-dimensional random vector U2 = (Up1+1, . . . , Up1+p2)

⊤

such that U := (X1,U2) ∼ NPN(0,Σ, f) and Xj = I(Uj > Cj) for all j = p1 + 1, . . . , p1 + p2,
where I(·) is the indicator function and C = (C1, . . . , Cp2

) is a vector of constants. We denote
this as X ∼ LNPN(0,Σ, f,C), where Σ is the latent correlation matrix. 115

Fan et al. (2017) consider the problem of estimating Σ for the latent Gaussian copula model
based on the Kendall’s τ . Given the observed data (X1j , X1k), . . . , (Xnj , Xnk) for variables Xj

and Xk, Kendall’s τ is defined as

τ̂jk =
2

n(n− 1)

∑
1≤i<i′≤n

sign(Xij −Xi′j)sign(Xik −Xi′k).

Since τ̂jk is invariant under monotone transformation of the data, it is well-suited to capture asso-
ciations in copula models. Let τjk = E(τ̂jk) be the population Kendall’s τ . The latent correlation 120

matrix Σ is connected to Kendall’s τ via the so-called bridge function F such that Σjk = F−1(τjk)
for all variables j and k. Fan et al. (2017) derive an explicit form of the bridge function for con-
tinuous, binary and mixed variable pairs, which allows to estimate the latent correlation matrix
via the method of moments. We summarize these results below.

Theorem 1 (Fan et al. (2017)). Let X = (X1,X2) ∼ LNPN(0,Σ, f,C) with p1-
dimensional continuous X1 and p2-dimensional binary X2. The rank-based estimator of Σ
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is the symmetric matrix R̂ with R̂jj = 1 and R̂jk = R̂kj = F−1
jk (τ̂jk), where for r ∈ (0, 1),

Fjk(r) =


2 sin−1(r)/π if 1 ≤ j < k ≤ p1;

2 {Φ2(∆j ,∆k; r)− Φ(∆j)Φ(∆k)} if p1 + 1 ≤ j < k ≤ p1 + p2;

4Φ2(∆k, 0; r/
√
2)− 2Φ(∆k) if 1 ≤ j ≤ p1, p1 + 1 ≤ k ≤ p1 + p2.

Here ∆j = fj(Cj), Φ(·) is the cdf of the standard normal distribution, and Φ2(·, ·; r) is the cdf of125

the standard bivariate normal distribution with correlation r.

Remark 1. Since ∆j = fj(Cj) is unknown in practice, Fan et al. (2017) propose to use a plug-in
estimator from the moment equation E(Xij) = 1− Φ(∆j), leading to ∆̂j = Φ−1(1− X̄j), where
X̄j =

∑n
i=1 Xij/n.

Fan et al. (2017) use these results in the context of Gaussian graphical models, and replace130

the sample covariance matrix with a rank-based estimator R̂, which allows one to use Gaussian
models with skewed continuous and binary data. However, Fan et al. (2017) do not consider the
case of zero-inflated data, which requires formulation of a new model, and derivation of new
bridge functions.

3. Methodology135

3·1. Truncated latent Gaussian copula model
Our goal is to model the zero-inflated data through latent Gaussian copula models. Two moti-

vating examples are micro RNA and microbiome data, where it is common to encounter a large
number of zero counts. In both examples it is reasonable to assume that zeros are observed due
to truncation of underlying latent continuous variables. More generally, one can think of zeros as140

representing the measurement error due to truncation of values below a certain positive threshold.
This intuition leads us to consider the following model.

Definition 3 (Truncated latent Gaussian copula model). A random vector X =
(X1, . . . , Xp)

⊤ satisfies the truncated Gaussian copula model if there exists a p-dimensional ran-
dom vector U = (U1, . . . , Up)

⊤ ∼ NPN(0,Σ, f) such that

Xj = I(Uj > Cj)Uj (j = 1, . . . , p),

where I(·) is the indicator function and C = (C1, . . . , Cp) is a vector of positive constants. We
denote X ∼ TLNPN(0,Σ, f,C), where Σ is the latent correlation matrix.

The methodology in Fan et al. (2017) allows them to estimate the latent correlation matrix145

in the presence of mixed continuous and binary data. Our Definition 3 adds a third type, which
we denote as truncated for short. To construct a rank-based estimator for Σ as in Theorem 1 in
the presence of truncated variables, below we derive an explicit form of the bridge function for
all possible combinations of the data types. Throughout, we use Φ(·) for the cdf of a standard
normal distribution and Φd(· · · ; Σd) for the cdf of a standard d-variate normal distribution with150

correlation matrix Σd. All the proofs are deferred to the Supplementary Material.

Theorem 2. Let Xj be truncated and Xk be binary. Then E(τ̂jk) = FTB(Σjk;∆j ,∆k), where

FTB(Σjk;∆j ,∆k) = 2{1− Φ(∆j)}Φ(∆k)− 2Φ3 (−∆j ,∆k, 0;Σ3a)− 2Φ3 (−∆j ,∆k, 0;Σ3b) ,

∆j = fj(Cj), ∆k = fk(Ck),

Σ3a =

 1 −Σjk 1/
√
2

−Σjk 1 −Σjk/
√
2

1/
√
2 −Σjk/

√
2 1

 , Σ3b =

 1 0 −1/
√
2

0 1 −Σjk/
√
2

−1/
√
2 −Σjk/

√
2 1

 .
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Theorem 3. Let Xj be truncated and Xk be continuous. Then E(τ̂jk) = FTC(Σjk;∆j), where

FTC(Σjk;∆j) = −2Φ2(−∆j , 0; 1/
√
2) + 4Φ3 (−∆j , 0, 0;Σ3) ,

∆j = fj(Cj) and 155

Σ3 =

 1 1/
√
2 Σjk/

√
2

1/
√
2 1 Σjk

Σjk/
√
2 Σjk 1

 .

Theorem 4. Let both Xj and Xk be truncated. Then E(τ̂jk) = FTT(Σjk;∆j ,∆k), where

FTT(Σjk;∆j ,∆k) = − 2Φ4(−∆j ,−∆k, 0, 0;Σ4a) + 2Φ4(−∆j ,−∆k, 0, 0;Σ4b),

∆j = fj(Cj), ∆k = fk(Ck) and

Σ4a =


1 0 1/

√
2 −Σjk/

√
2

0 1 −Σjk/
√
2 1/

√
2

1/
√
2 −Σjk/

√
2 1 −Σjk

−Σjk/
√
2 1/

√
2 −Σjk 1


and

Σ4b =


1 Σjk 1/

√
2 Σjk/

√
2

Σjk 1 Σjk/
√
2 1/

√
2

1/
√
2 Σjk/

√
2 1 Σjk

Σjk/
√
2 1/

√
2 Σjk 1

 .

We also show that the inverse bridge function exists for all of the cases.

Theorem 5. For any constants ∆j, ∆k, the bridge functions F (Σjk) in Theorems 2–4 are 160

strictly increasing in Σjk ∈ (−1, 1), and thus the corresponding inverse functions F−1(τjk) exist.

Remark 2. While the inverse functions exist, they do not have the closed form. In practice we
estimate R̂ element-wise by solving R̂jk = argminr{F (r)− τ̂jk}2. This leads to O(p2) computa-
tions which can be done in parallel to alleviate the computational burden.

Theorems 2–5 complement the results of Fan et al. (2017) summarized in Theorem 1 by adding 165

three more cases: continuous/truncated, binary/truncated and truncated/truncated. This allows
us to construct a rank-based estimator R̂ for Σ in the presence of mixed variables.

Remark 3. Since R̂ is not guaranteed to be positive semidefinite, Fan et al. (2017) regularize
R̂ by projecting it onto the cone of positive semidefinite matrices. We follow this approach using
the nearPD function in the Matrix R package leading to estimator R̂p. Furthermore, we consider 170

R̃ = (1− ν)R̂p + νI (3)

with a small value of ν > 0, so that R̃ is strictly positive definite. Throughout, we fix ν = 0.01.

Remark 4. As in the binary case, ∆j = fj(Cj) is unknown for truncated variables. Sim-
ilar to Fan et al. (2017), we use a plug-in estimator ∆̂j based on the moment equation
E {I(Xij > 0)} = P(Xj > 0) = P {fj(Uj) > ∆j} = 1− Φ(∆j). Let nzero =

∑n
i=1 I(Xij = 0), then

we use ∆̂j = Φ−1 (nzero/n). 175

For clarity, we summarize below all the steps in the construction of our rank-based estimator
R̃ based on the observed data matrix X ∈ Rn×p.

1. Calculate τ̂jk for all pairs of variables 1 ≤ j < k ≤ p.
2. Estimate ∆̂j = Φ−1{

∑n
i=1 I(Xij ̸= 0)/n} for all j of truncated or binary type.
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3. Compute R̂jk = F−1(τ̂jk), where F is the bridge function chosen according to the type of180

variables j and k (with possible dependence on ∆̂j , ∆̂k).
4. Project R̂ onto the cone of positive semidefinite matrices to form R̂p.
5. Set R̃ = (1− ν)R̂p + νI for small ν > 0.

3·2. Consistency of rank-based estimator for latent correlation matrix
We next show that our proposed estimator R̃ is consistent for Σ. Similar to Fan et al. (2017),185

we use the following two assumptions:

Assumption 1. All the elements of Σ satisfy |Σjk| ≤ 1− δ for some δ > 0.

Assumption 2. All the thresholds ∆j satisfy |∆j | ≤ M for some constant M > 0.

We first prove Lipschitz continuity of the inverse of the bridge function, F−1(τjk).

Theorem 6. Under Assumptions 1–2, for any constants ∆j and ∆k, the inverses of the bridge190

functions in Theorems 2–4, F−1(·), satisfy for any τ1, τ2

|F−1(τ1)− F−1(τ2)| ≤ L|τ1 − τ2|,

where L > 0 is a constant independent of τ1, τ2, ∆j and ∆k.

Fan et al. (2017) also prove Lipschitz continuity in the continuous/binary case, however their
proof technique cannot be directly used for the truncated case considered here due to a more
complex form of the bridge functions. Instead, we develop a new proof technique based on the195

multivariate chain rule, which also leads to simplified proofs in the continuous/binary case. The
full proof is given in the Supplementary Material Section S.1. The Lipschitz continuity of the
inverse bridge functions is then used to prove consistency of R̂.

Theorem 7. Let a random X = (X1,X2,X3) ∈ Rp satisfy the latent Gaussian copula model
with correlation matrix Σ, with X1 ∈ Rp1 being continuous, X2 ∈ Rp2 being binary, and X3 ∈ Rp3

being truncated with p = p1 + p2 + p3. Let R̂ be the rank-based estimator for the correlation matrix
Σ from Section 3·1 constructed by inverting corresponding bridge functions element-wise. Under
Assumptions 1–2, with probability at least 1− p−1, for some C > 0 independent of n, p

∥R̂− Σ∥max = max
j,k

|R̂jk − Σjk| ≤ C(log p/n)1/2.

Theorem 7 states that R̂ is consistent in estimating Σ with respect to sup norm, and the
consistency rate coincides up to constants with the rate obtained by the sample covariance matrix200

in the Gaussian case. In practice, we further regularize R̂ by forming R̃ = (1− ν)R̂p + νI. By
Corollary 2 in Fan et al. (2017), R̂p has the same consistency rate as R̂, hence Theorem 7 implies
the consistency of R̃ with the same rate as long as ν ≤ (log p/n)1/2.

3·3. Semiparametric sparse canonical correlation analysis
Our proposal is based on formulating sparse canonical correlation analysis using a latent cor-205

relation matrix from the Gaussian copula model for mixed data. At a population level, let Σ
be the latent correlation matrix for (X1,X2) ∼ LNPN(0,Σ, f,C) where each X1 and X2 follows
one of the three data types: continuous, binary or truncated. In Section 3·1 we derived a rank-
based estimator for Σ, which we propose to use within the sparse canonical correlation analysis
framework (2).210

Given the semiparametric estimator R̃ in (3), we propose to find canonical vectors by solving

minimize
w1,w2

{
− w⊤

1 R̃12w2 + λ1∥w1∥1 + λ2∥w2∥1
}

subject to w⊤
1 R̃1w1 ≤ 1, w⊤

2 R̃2w2 ≤ 1.

(4)
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Remark 5. Mai & Zhang (2019) establish the consistency of estimated canonical vectors from

the sparse canonical correlation analysis problem (2) in the Gaussian case. Their proof relies on
the sup norm bound for the sample covariance matrix. Since Theorem 7 establishes such a bound
for our rank-based estimator, these results can be directly extended to (4). 215

While we focus only on the estimation of the first canonical pair, the subsequent canonical
pairs can be found sequentially by using a deflation scheme as follows. Let R̃

(1)
12 = R̃12 and let

ŵ1, ŵ2 be the (k − 1)th estimated canonical pair. To estimate the kth pair for k > 1, form

R̃
(k)
12 = R̃

(k−1)
12 − (ŵ⊤

1 R̃
(k−1)
12 ŵ2)R̃1ŵ1ŵ

⊤
2 R̃2,

and solve (4) using R̃
(k)
12 instead of R̃12.

While problem (4) is not jointly convex in w1 and w2, it is biconvex. Therefore, we propose to
iteratively optimize over w1 and w2. First, consider optimizing over w1 with w2 fixed.

Proposition 1. For a fixed w2 ∈ Rp2 , let

ŵ1 = argmin
w1

{
− w⊤

1 R̃12w2 + λ1∥w1∥1
}

subject to w⊤
1 R̃1w1 ≤ 1. (5)

This problem is equivalent to finding 220

w̃1 = argmin
w1

{
(1/2)w⊤

1 R̃1w1 − w⊤
1 R̃12w2 + λ1∥w1∥1

}
, (6)

and then setting ŵ1 = 0 if w̃1 = 0, and ŵ1 = w̃1/(w̃
⊤
1 R̃1w̃1)

1/2 if w̃1 ̸= 0.

Both problems (5) and (6) are convex, but unlike (5), problem (6) is unconstrained. Further-
more, problem (6) is of the same form as the well-studied penalized LASSO problem (Tibshirani,
1996), which can be solved efficiently using for example the coordinate-descent algorithm. Hence,
the proposed optimization algorithm for (4) can be viewed as a sequence of LASSO problems 225

with rescaling. Given the value of w2 at iteration t, the updates at iteration t+ 1 have the form

w̃1 = argmin
w1

{
(1/2)w⊤

1 R̃1w1 − w⊤
1 R̃12w

(t)
2 + λ1∥w1∥1

}
;

ŵ
(t+1)
1 = w̃1/(w̃

⊤
1 R̃1w̃1)

1/2;

w̃2 = argmin
w2

{
(1/2)w⊤

2 R̃2w2 − w⊤
2 R̃

⊤
12w

(t+1)
1 + λ2∥w2∥1

}
;

ŵ
(t+1)
2 = w̃2/(w̃

⊤
2 R̃2w̃2)

1/2. 230

If a zero solution is obtained at any of the steps, the optimization algorithm stops, and both
w1 and w2 are returned as zeros. Otherwise, the algorithm proceeds until convergence, which is
guaranteed due to biconvexity of (4) (Gorski et al., 2007).

We further describe a coordinate-descent algorithm for (6). Consider the KKT conditions (Boyd
& Vandenberghe, 2004) 235

R̃1w1 − R̃12w2 + λ1s1 = 0,

where s1 is the subgradient of ∥w1∥1. If λ1 ≥ ∥R̃12w2∥∞, it follows that w̃1 = 0. Otherwise, the
ith element of w1 can be expressed through the other coordinates as

w1i = Sλ1

{
(R̃12)iw

(t)
2 − (R̃1)i,−i(w1)−i

}
,

where Sλ(t) = sign(t) (|t| − λ)+ is the soft-thresholding operator, (R12)i denotes the ith row of
matrix R12 and (R1)i,−i denotes ith row of matrix R1 without the ith component that is (R)i,−i =
(Ri1, . . . , Ri,i−1, Ri,i+1, . . . , Rip). The coordinate-descent algorithm proceeds by using the above 240

formula to update one coordinate at a time until the convergence to a global optimum is achieved.
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This convergence is guaranteed due to convexity of the objective function and separability of the
penalty with respect to coordinates (Tseng, 1988).

3·4. Selection of tuning parameters
Cross-validation is a popular approach to select the tuning parameter in LASSO. In our context,245

however, it amounts to performing a grid search over both λ1 and λ2. Moreover, splitting the data
as in cross-validation may lead to too small a number of testing samples to construct the rank-
based estimator of the latent correlation matrix. Instead, motivated by Wilms & Croux (2015),
we propose to adapt the Bayesian information criterion to the canonical correlation analysis to
avoid splitting the data and decrease computational costs.250

For the Gaussian linear regression model, the Bayesian information criterion (BIC) has the form

BIC = −2ℓ+ df logn,

where df indicates the number of parameters in the model, and ℓ is the log-likelihood

ℓ = logL = −(n/2) logσ2 −
n∑

i=1

(yi −Xiβ)
2
/(2σ2).

Two cases can be considered depending on whether the variance σ2 is known or unknown.

1. If σ2 is known, and the data are scaled so that σ2 = 1, then

BIC = n−1
n∑

i=1

(
yi −Xiβ̂

)2

+ df logn
n

.

2. If σ2 is unknown, using σ̂2
MLE = n−1

∑n
i=1

(
yi −Xiβ̂

)2

leads to255

BIC = n log
{
n−1

n∑
i=1

(
yi −Xiβ̂

)2}
+ df logn.

Wilms & Croux (2015) use criterion 2 for canonical correlation analysis by substituting
∥X1w̃1 −X2w2∥22/n instead of

∑n
i=1(yi −Xiβ̂)

2/n for centered X1 and X2. Since ∥X1w̃1 −
X2w2∥22/n = w̃⊤

1 S1w̃1 − 2w̃⊤
1 S12w2 + w⊤

2 S2w2, and we use R̃ instead of the sample covariance
matrix S, we substitute

f(w̃1) = w̃⊤
1 R̃1w̃1 − 2w̃⊤

1 R̃12w2 + w2R̃2w2

instead of residual sum of squares. Furthermore, motivated by the performance of the adjusted260

degrees of freedom variance estimator in Reid et al. (2016), we also adjust f(w̃1) for the 2nd
criterion leading to

BIC1 = f(w̃1) + dfw̃1

logn
n

; BIC2 = log
{ n

n− dfw̃1

f(w̃1)
}
+ dfw̃1

logn
n

.

Here dfw̃1
coincides with the size of the support of w̃1 (Tibshirani & Taylor, 2012). The BIC criteria

for w2 are defined analogously to those for w1.
We use both criteria in evaluating our approach. Given the selected criterion (either BIC1 or265

BIC2), we apply it sequentially at each step of the biconvex optimization algorithm of Section 3·3,
and each time select the tuning parameter corresponding to the smallest value of the criterion.
Due to alternating minimization, the solution will in general depend on the choice of the ini-
tial starting point. By default, we initialize the algorithm with the unpenalized solution to (1)
obtained using R̃+ 0.25I, which corresponds to canonical ridge solution with fixed amount of270

regularization (González et al., 2008). We find that this initialization works well compared to a
random initialization, more details are provided in Section S3·2 of the Supplementary Material.
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Remark 6. A sequence of λ values for w1 and w2 are separately generated for the algorithm if

there is no specification. For example, a sequence for λ1 is generated as follows. We first calculate
λmax = R̃12ŵ

(0)
2 and λmin = ϵλmax, where ŵ

(0)
2 is the initial starting point for w2. Then, from 275

λmin to λmax, the sequence is generated to be equally spaced on a logarithmic scale. As a default,
we use 20 lambda values for each side with ϵ = 0.01. The sequence for λ2 is analogously defined.

4. Simulation studies
In this section we evaluate the performance of the following methods: (i) Classical canonical

correlation analysis based on the sample covariance matrix; (ii) Canonical ridge available in the 280

R package CCA (González et al., 2008); (iii) Sparse canonical correlation analysis of Witten et al.
(2009) available in the R package PMA; (iv) Sparse canonical correlation analysis of Gao et al.
(2017) available in the Matlab package SCCALab; (v) Sparse canonical correlation analysis via
Kendall’s τ proposed in this paper. For our method, we evaluate both types of BIC criteria as
described in Section 3·4. We also consider using the Pearson sample correlation instead of R̃ 285

within our optimization framework with the same BIC-criteria for parameter selection. For fair
comparison with R̃, we also apply shrinkage to the Pearson correlation matrix as in (3). Direct
comparison of estimation performance between our rank-based estimator and Pearson sample
correlation as a function of sample size and level of truncation can be found in the Supplementary
Material Section S3.1. 290

We generate n = 100 independent pairs (Z1,Z2) ∈ Rp1+p2 following(
Z1

Z2

)
∼ N

{(
0
0

)
,

(
Σ1 ρΣ1w1w

⊤
2 Σ2

ρΣ2w2w
⊤
1 Σ1 Σ2

)}
.

We consider two settings for the number of variables: low-dimensional (p1 = p2 = 25) and high-
dimensional (p1 = p2 = 100). Each canonical vector wg (g = 1, 2) is defined by taking a vector
of ones at the coordinates (1, 6, 11, 16, 21) and zeros elsewhere, and normalizing it such that
w⊤

g Σgwg = 1; a similar model is used in Chen et al. (2013). We use an autoregressive struc- 295

ture for Σ1 = {γ|j−k|}p1

j,k=1 and a block-diagonal structure for Σ2 =block-diag(Σγ , . . . ,Σγ), where
Σγ ∈ Rd×d is an equicorrelated matrix with value 1 on the diagonal and γ off the diagonal. We
use five blocks of size d ∈ {6, 6, 3, 7, 3} for low-dimensional, and d ∈ {14, 21, 12, 25, 28} for high-
dimensional setting. We set γ = 0·7 for both Σ1 and Σ2. We further randomly permute the order
of variables in each Zg to remove the covariance-induced ordering. The value of the canonical 300

correlation is set at ρ = 0·9.
We consider transformations Ug = fg(Zg + Bg) where the elements of vector Bg are 0 or 1

with equal probability. The variation in the shift of Zg across pg variables due to Bg leads to the
variation in the proportion of zeros across the variables in the 5–80% range for the same choice of
truncation constant C. We consider three choices for fg: (copula 0) no transformation, fg(z) = z 305

for g = 1, 2; (copula 1) exponential transformation for U1, f1(z) = exp(z), and no transformation
for U2, f2(z) = z; (copula 2) exponential transformation for U1, f1(z) = exp(z), and cubic trans-
formation for U2, f2(z) = z3. Finally, we set Xg to be equal to Ug for continuous variable type,
and dichotomize/truncate Ug at the same value C for all variables to form binary/truncated
Xg. We set C = 1·5 for exponentially transformed variables, and C = 0 for the others. For each 310

case, we consider three combinations of variable types for X1/X2: truncated/truncated, trun-
cated/continuous and truncated/binary.

To compare the methods’ performance, we evaluate expected out-of-sample correlation

ρ̂ =

∣∣∣∣ ŵ⊤
1 Σ12ŵ2

(ŵ⊤
1 Σ1ŵ1)1/2(ŵ⊤

2 Σ2ŵ2)1/2

∣∣∣∣ , (7)
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Fig. 1. Truncated/truncated case. Left: The value of ρ̂ from (7). The horizontal lines indicate the
true canonical correlation value ρ = 0·9. Right: The value of predictive loss (8). Results over 500
replications. CCA: Sample canonical correlation analysis; RidgeCCA: Canonical ridge of González
et al. (2008); WittenCCA: method of Witten et al. (2009); GaoCCA: method of Gao et al. (2017);
PearsonBIC1, PearsonBIC2: proposed algorithm with Pearson sample correlation matrix; Kendall-
BIC1, KendallBIC2: proposed algorithm with rank-based estimator R̃; BIC1 or BIC2 refer to tuning
parameter selection criteria; LD: low-dimensional setting (p1 = p2 = 25); HD: high-dimensional setting

(p1 = p2 = 100).

and predictive loss

L(wg, ŵg) = 1−
|ŵ⊤

g Σgwg|
(ŵ⊤

g Σgŵg)1/2
(g = 1, 2); (8)

a similar loss is used in Gao et al. (2017). By definition of the true canonical correlation ρ, for any
ŵ1 and ŵ2 it holds that ρ̂ ≤ ρ, with equality when ŵ1 = w1 and ŵ2 = w2. Since w⊤

g Σgwg = 1,
L(wg, ŵg) ∈ [0, 1] with L(wg, ŵg) = 0 if ŵg = wg. We also evaluate the variable selection perfor-
mance using the selected model size, true-positive rate and true-negative rate defined as

TPRg =
#{j : ŵgj ̸= 0 and wgj ̸= 0}

#{j : wgj ̸= 0}
, TNRg =

#{j : ŵgj = 0 and wgj = 0}
#{j : wgj = 0}

(g = 1, 2).

The results for the truncated/truncated case over 500 replications are presented in Figures315

1–2. From Figure 1, the majority of methods achieve higher values of ρ̂ in the absence of data
transformation (copula 0) compared to cases where transformation is applied (copula 1 and 2).
The only exception is our approach based on Kendall’s τ , which as expected has comparable
performance across the copula types. The performance of all methods deteriorates with increased
dimension leading to smaller values of ρ̂ and larger predictive losses. The classical canonical320

correlation analysis performs especially poorly in high-dimensional settings with ρ̂ being almost
0 and predictive loss being close to 1 for both w1 and w2. Canonical ridge works well in the copula
0 setting, however its performance is strongly affected in the presence of transformations (copula 1
and 2). Surprisingly to us, Gao’s method, as implemented in SCCALab, performs poorly compared
to other approaches. Since Gao’s method is designed for Gaussian data, the poor performance325

is likely due to its sensitivity to the presence of copulas and zero truncation (in the copula 0
case, proportions of zero values for each variable range from 5% to 70%). We also use the default
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Fig. 2. Truncated/truncated case. TopLeft: True positive rate (TPR); TopRight: True negative rate
(TNR); BottomMiddle: Selected model size. Results over 500 replications. WittenCCA: method
of Witten et al. (2009); GaoCCA: method of Gao et al. (2017); PearsonBIC1, PearsonBIC2: proposed
algorithm with Pearson sample correlation matrix; KendallBIC1, KendallBIC2: proposed algorithm
with rank-based estimator R̃; BIC1 or BIC2 refer to tuning parameter selection criteria; LD: low-

dimensional setting (p1 = p2 = 25); HD: high-dimensional setting (p1 = p2 = 100).

values in SCCALab for all of the parameters, so better performance could possibly be achieved
by adjusting those values. Sparse canonical correlation analysis based on Pearson’s correlation
outperforms all other methods in low dimensional setting when no data transformation is applied 330

(copula 0), however its performance deteriorates when the monotone transformations are applied
to the data (copulas 1 and 2). It also performs worse than our rank-based approach in high-
dimensional setting. This is likely due to the increase in variables with zero inflation due to
truncation, which Pearson’s correlation doesn’t take into account. In low-dimensional settings,
BIC1 and BIC2 criteria lead to similar values of ρ̂, with larger variance in BIC1 performance. In 335

high-dimensional settings, BIC2 is clearly better than BIC1 in predictive performance, and this
better performance is irrespective of the choice of the estimator for the latent correlation matrix
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(Pearson’s correlation matrix or proposed rank-based correlation matrix). Overall, our method
based on Kendall’s τ with BIC2 criterion leads to highest values of ρ̂ and smallest values of
predictive loss across dimensions and different copula types.340

Figure 2 illustrates variable selection performance of each method. The classical canonical
correlation analysis and canonical ridge are excluded as they do not perform variable selection.
To ensure the results are consistent with numerical precision of optimization algorithm, we treat
variable as nonzero if its loading is above 10−6 threshold in absolute value. Unexpected to us, the
number of selected variables varies significantly across replications for Witten’s method (bottom345

figure in Figure 2), leading to significant variations in true positive and true negative rates. We
suspect this is due to the use of a permutation approach for selection of tuning parameters.
Our approach based on Kendall’s τ leads to a more favorable combination of true positive and
true negative rates compared to competing methods, especially when data transformations are
applied. Furthermore, this advantage is maintained independently of tuning parameter selection350

scheme. In Section S3·3 of the Supplementary Material, we compare the true positive versus false
positive curves obtained by each method over the range of tuning parameters, and find that our
rank-based estimator leads to highest area under the curve in the copula settings. Comparing BIC1

with BIC2 performance in Figure 2, BIC1 leads to the sparsest model and the highest true negative
rate for both Pearson correlation and our rank-based correlation , at the expense of missing some355

true variables in the high-dimensional settings. Given the comparison in predictive performance
between the two selection criteria, we conclude that BIC1 is better suited for variable selection,
especially when it is desired to have a high true negative rate, whereas BIC2 works better for
prediction.

In addition to the truncated/truncated case, we also consider truncated/continuous and trun-360

cated/binary cases in Section S3·4 of the Supplementary Material. The conclusions of methods’
comparison are similar to the truncated/truncated case. Overall, all the methods perform best in
the truncated/continuous case and worst in the truncated/binary case, which is not surprising,
since dichotomization of continuous variable leads to a loss of information, thus reducing the
effective sample size.365

5. Application to TCGA data
The Cancer Genome Atlas (TCGA) project collects data from multiple platforms using high-

throughput sequencing technologies. We consider gene expression data (p1 = 891) and micro RNA
data (p2 = 431) for n = 500 matched subjects from the TCGA breast cancer database. We treat
gene expression data as continuous and micro RNA data as truncated continuous. The range370

of proportions of zero values contained in each variable in micro RNA data is 0− 49·8%. The
subjects belong to one of the 5 breast cancer subtypes: Normal, Basal, Her2, LumA and LumB,
with 37 subjects having missing subtype information (denoted as NA). The goal of the analysis
is to characterize the association between gene expression and micro RNA data, and investigate
whether this association is related to breast cancer subtypes.375

To investigate the performance of our method relative to other approaches, we randomly split
the data 500 times. Each time 400 samples are used for training, and the remaining 100 test
samples are used to assess the association via

ρ̂test =

∣∣∣∣∣ ŵ⊤
1,trainΣ12,testŵ2,train

(ŵ⊤
1,trainΣ1,testŵ1,train)1/2(ŵ⊤

2,trainΣ2,testŵ2,train)1/2

∣∣∣∣∣ .
Here Σtest is evaluated based on the test samples, and is either the rank-based estimator R̃ for
our method, or the sample covariance matrix for other methods. We also compare the number380

of selected genes and selected micro RNAs, and the results are presented in Table 1. We have
not considered the method of Gao et al. (2017) in this section due to its poor performance in
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Table 1. Mean support sizes and values of ρ̂test’s over 500 random splits of

breast cancer data. The standard deviation is given in parentheses
Method Selected Genes Selected micro RNAs ρ̂test
CCA 891·00 (0·00) 431·00 (0·00) 0·004 (0·109)
RidgeCCA 891·00 (0·00) 431·00 (0·00) 0·712 (0·126)
WittenCCA 338·36 (194·58) 165·53 (100·30) 0·789 (0·041)
PearsonBIC1 9·92 (2·62) 16·08 (3·18) 0·813 (0·044)
PearsonBIC2 27·68 (6·20) 40·50 (12·54) 0·857 (0·034)
KendallBIC1 18·24 (3·51) 9·68 (3·15) 0·880 (0·030)
KendallBIC2 38·18 (8·47) 31·01 (6·74) 0·913 (0·029)

CCA: Sample canonical correlation analysis; RidgeCCA: Canonical Ridge of González et al.
(2008); WittenCCA: method of Witten et al. (2009); PearsonBIC1, PearsonBIC2: proposed
algorithm with Pearson sample correlation matrix; KendallBIC1, KendallBIC2: proposed
algorithm with rank-based estimator R̃; BIC1 or BIC2 refer to tuning parameter selection
criteria.

Section 4 and high computational cost (it takes around 40 minutes per replication on these data
on a Windows 3·60GHz Intel Core i7 CPU machine).

Of course, neither the sample canonical correlation analysis nor the canonical ridge method 385

performs variable selection. In addition, ρ̂test is very close to 0 for the sample canonical correla-
tion, confirming poor performance of the method. Canonical ridge leads to significantly higher
values of ρ̂test demonstrating the advantage of added regularization, however it still has smaller
correlation values compared to other approaches. The method of Witten et al. (2009) leads to
higher correlation values compared to both sample canonical correlation analysis and canonical 390

ridge, however it still selects a significant number of variables, with highly variable model sizes
across replications. We suspect this is due to the use of a permutation-based algorithm for tuning
parameter selection: similar behaviour is also observed in Section 4. Sparse canonical correlation
analysis based on Pearson’s correlation selects a much smaller number of genes and micro RNAs
but achieves higher values of ρ̂test than the method of Witten et al. (2009). This is consistent 395

with results in Section 4. The highest values of ρ̂test are achieved by our approach based on
Kendall’s τ with smaller number of selected variables, confirming that found association is not
due to over-fitting as it generalizes well to out-of-sample data. BIC1 criterion leads to the sparser
model than BIC2 consistently for both Pearson and Kendall-based correlation estimates, with BIC2

criterion having the larger out-of-sample correlation value. In light of these results and results 400

of Section 4, we conclude that BIC1 is advantageous for variable selection due to its selection of
sparser model and higher true negative rate observed in simulations, whereas BIC2 is advantageous
for prediction.

We next investigate possible relationships between selected variables and breast cancer sub-
types. Since the selected variables may change across the random data splits, we consider the 405

selection frequency of each gene and micro RNA across all 500 replications of our method with
BIC2 criterion, and choose the variables that are selected at least 80% of the times. Figure 3 shows
heatmaps of expression levels of resulting 19 genes and 16 micro RNAs, with samples ordered by
their respective cancer subtype. The heatmaps show clear separation between Basal and other
subtypes, suggesting that the found association is relevant to cancer biology. 410

Many of the selected genes and micro RNAs can be found in recent literature which supports
their association with breast cancer. Kim et al. (2016) indicates that ERBB4 is a prognostic
marker for triple negative breast cancer, which is often used interchangeably with Basal-like
breast cancer. In agreement with our results, Castilla et al. (2014) identifies that VGLL1 and
miR-934 are highly correlated with each other, and that both are overexpressed in the Basal- 415

like subtype. They also find that selected FOXA1 and GATA3 genes, as well as ESR1 gene
(not selected at 80% frequency threshold, but still has a 73.4% frequency), have strong negative
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Fig. 3. Genes and micro RNAs selected often more than 80% of 500 repetitions by our approach with
the BIC2 criterion are used for heatmap. Left: A heatmap of 19 genes. The blue indicates positive
expression level, and red for negative expression level. The white means zero expression level. Right:
A heatmap of 16 micro RNAs. The saturation level of colors are assigned based on variable-specific
quantiles. For both figures, the dissimilarity measure is set as 1− R̃ with our rank-based correlation

R̃, and Ward linkage is used.

correlation with both VGLL1 and miR-934. The expression level of selected ELF5 is shown to
play a key role in determining breast cancer molecular subtype in Kalyuga et al. (2012) and
Piggin et al. (2016). Furthermore, Jonsdottir et al. (2012) validate that selected hsa-miR-18a420

and hsa-miR-505 miRNAs are significantly correlated with prognostic breast cancer biomarkers,
and high expression of hsa-miR-18a is strongly associated with Basal-like breast cancer features.
Finally, the selected hsa-miR-135b is reported to be related to breast cancer cell growth in Aakula
et al. (2015) and Hua et al. (2016).

6. Discussion425

One of the main contributions of this work is a truncated Gaussian copula model for the
zero-inflated data, and corresponding development of a rank-based estimator for the latent cor-
relation matrix. While our focus is on canonical correlation analysis, our estimator can be used
in conjunction with other covariance-based approaches. For example it can be used for con-
structing graphical models as in Fan et al. (2017) in cases where some or all of the variables430

have an excess of zeros. Micro RNA data is one example that we have explored in this work,
however another prominent example is microbiome abundance data. It would be of interest to
further explore the potential of our modeling approach in different application areas. The R
package mixedCCA with our method’s implementation is available from the authors github page
https://github.com/irinagain/mixedCCA.435
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