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Advances in tools to gather environmental, phenotypic, and

molecular data have accelerated our ability to detect abiotic

drivers of variation across the genome-to-phenome spectrum

in model and non-model insects. However, differences in the

spatial and temporal resolution of these data sets may create

gaps in our understanding of linkages between environment,

genotype, and phenotype that yield missed or misleading

results about adaptive variation. In this review we highlight

sources of variability that might impact studies of phenotypic

and ‘omic environmental adaptation, challenges to collecting

data at relevant scales, and possible solutions that link

intensive fine-scale reductionist studies of mechanisms to

large-scale biogeographic patterns.
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Introduction

“It is simpler to examine most biological phenomena

in uniform or invariable environments than under

variable conditions” – Beardmore and Levine [1]

Methodological advances have greatly aided the quest to

link genotype to phenotype in diverse organisms, provid-

ing new tools for addressing major questions in ecology

and evolution [2,3]. High-throughput DNA sequencing

has enabled rapid determination of individual genotypes

at genome-wide resolution [4–6], facilitating comparisons

among individuals, populations, and species. Linking

genotypes with relevant phenotypes is a powerful

approach for inferring adaptation of insects to the abiotic

environment [7]. However, the abiotic environment,

insect phenotypes, and the ‘omics that determine those

phenotypes are often far more variable in time and space

than commonly appreciated, complicating inferences of

adaptation. A better understanding of variation at all of

these levels will be crucial to deciphering how organisms

adapt to the abiotic environment.

Insects experience some degree of spatial and temporal

environmental variation whether they have broad or

restricted distributions [8–10]. Such variation includes

large-scale bioclimatic gradients for species with broad

geographic ranges, such as temperature changes with lati-

tude or elevation [11], small-scale local extremes for species

that occupy multiple microhabitats during a day [12��], or

seasonal extremes for long-lived or multivoltine species

[13]. Individuals or populations must thus express physio-

logical traits emerging from underlying ‘omic variation (e.g.

genomic, transcriptomic, proteomic, metabolomic) that

facilitate tolerance of variation over space and time [14].

However, an explicit appreciation for variation in abiotic

environments, in phenotypes necessary to live in those

environments, and in the genetic basis of those pheno-

types is rare in the literature. Abiotic variables like

temperature are rarely measured at spatial and temporal

scales relevant to insects [8,10]. Phenotypes are generally

measured for a small number of individuals from a few

populations of relatively few species, and, for many

species, it may not even be clear what phenotypes are

most important to measure. The ability to characterize

molecular variation from large numbers of individuals

sampled across abiotic gradients has provided many

examples of genes that facilitate abiotic adaptation

[15��,16��,17�,18��]; however, analytical challenges (such

as multiple, co-occurring population genetic processes)

and a lack of high resolution environmental data mean we

may often be missing much of the picture. Methodologi-

cal issues can be overcome, but conceptual advances will

also be necessary to better account for variation (at all

these levels) in studies of insect adaptation to the abiotic

environment. Understanding ecological and evolutionary

responses to abiotic variation across relevant spatial and

temporal scales will improve our capacity to predict how

species will respond to local and global environmental

change [19–21].
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In this review we discuss how abiotic variability may

influence variation in phenotypes and genotypes, and

how integration of experimental physiology and genomic

approaches can yield novel insights into environmental

adaptation. We focus on temperature because it has been

best studiedfromcharacterizationofenvironments (includ-

ing microclimates) to phenotypic and genotypic responses.

Other abiotic variables, including precipitation [22], oxy-

gen [23], wind speed, solar radiation, acidity, and salinity, or

anthropogenic stressors like pesticides [24�] orurbanization

[25], may similarly create fine-grained landscapes of stress

to which insects must respond, and the principles discussed

here should largely apply to studies of these other factors.

Variation in the abiotic environment at the
insect scale
Variation in phenotypes across individuals, populations,

and species reflects, to a large extent, tolerance to abiotic

conditions, which vary geographically [26]. It is only

recently becoming clear that variation per se may be

more important than mean conditions in determining

organisms responses to climate [19,27,28] and that organ-

isms respond to variation at much finer temporal and

spatial scales (seconds to hours and mm to meters) than

those typically considered (monthly to annual and km to

continents) [12��,29]. Despite this growing appreciation

of how fine scale variation can determine traits critical for

population persistence [8,9,21,27,30], characterizing spa-

tial and temporal variation in abiotic variables and incor-

porating those key elements of variation in studies of

adaptation remains a hurdle (but see Refs. [31,32,33��]).

The capacity to gather and analyze data at fine temporal

and spatial scales currently limits mapping of tempera-

tures at insect scales [8,10,34]. Although countless studies

have likely measured, for example, field temperatures at

high temporal frequencies (1/s), that temporal variation is

usually lost in statistical summaries in publications

[10,35], leaving few data sets with temperatures measured

at high temporal frequency and with broad geographic

coverage (but see Refs. [34,36,37]). Fortunately, the

recent development of low-cost thermal imaging will

facilitate characterization of temperature variation over

spatial scales relevant to insects [38,39].

Insect body temperatures are determined by complex

interactions between biophysical characteristics and

behavior and a mosaic of ambient conditions that dictate

heat (or moisture or respiratory gas) transfer between the

environment and the organism. New approaches for pre-

dicting landscapes of insect body temperatures from

mechanistic biophysical models [40,41] and organismal

climatology [42], combined with methods for extracting

important metrics of variation [31,43–45], will facilitate

more insect-centric characterization and manipulation of

abiotic variables. These approaches have rarely been

applied in evolutionary ‘omics studies (but see e.g.

[46]) and require continued refinement to make them

broadly available [47]. A key challenge will be identifying

the habitats and spatial scales over which variation is

predictable [43,48], as continuous measurement of all

sites at high frequency and at relevant scales is currently

impractical. Characterization of abiotic stressors at the

appropriate spatial and temporal scales not only provides

a more accurate picture of what insects are adapting to,

but also directly informs measurements of physiological

traits of insects living in those environments (Figure 1).

Insect physiological responses to
environmental variation
Mounting evidence suggests that fine-scale variation in

temperature (and likely other abiotic factors: precipitation
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Spatial and temporal variation in abiotic stressors challenges

characterization of environments, of insect phenotypes, and therefore of

inference of abiotic adaptation. (a) Within a square meter, an insect could

experience as much temperature variation as is found across 1000 km [39].

Therefore, insects from warm (red) climates (gray border squares) may rely

on cooler (blue) microclimates to maintain similar body temperatures (gray

outlined point) as insects from cool climates (black outlined point). (b) Even

after sampling across habitats, current temperatures (gray box) may not

reflect past temperatures or predict future conditions. Insects sampled from

apparently similar thermal environments (magenta points) could have

strikingly different thermal histories, resulting in differences in thermal traits.

(c) The enhanced heat tolerance of the insect on the right could reflect

previous exposure to hot temperatures (dashed line), and the enhanced

cold tolerance of the insect on the left could reflect previous cold exposure

as an adult (dotted line), or during development (d), or (e) thermal

experience of its parents. (f) Ultimately, these physiological differences

arise from cellular level differences in genotype, in transcribed RNA and

proteins, and in interacting metabolites, all of which can be measured with

‘omics approaches.
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[22], oxygen [23]) often drives insect physiological

responses [9,12��,49,50], calling into question the standard

approach of characterizing physiology via ‘thermal perfor-

mance curves’ (TPCs) based on static temperature treat-

ments [27,51–53]. A single TPC is likely insufficient to

characterize responses of insect species or populations

because insects rarely experience constant temperatures

but rather have adapted to the temporal and spatial varia-

tions in body temperatures (including extremes) experi-

enced in their lifetimes [54,55]. For example, in the case of

heat tolerance, both the shapes of TPCs and the optimal

temperatures for performance depend more strongly on

temperature variation, than on mean temperature [53,56].

Over shorter timescales, TPCs of individual insects can

vary due to recent temperatures experienced during a

heat/cold shock [57], diurnal cycles [58], a heat or cold

front [59], or temperatures experienced in previous life

stages (developmental plasticity, e.g. [60]) or by the

parent (transgenerational or epigenetic, e.g. [61]) (Fig-

ure 1). Physiological traits can also vary over short spatial

scales. For example, ants and bees in urban environments

tolerate higher temperatures than those in nearby rural

areas [62,63] and canopy ants are more heat tolerant than

those on the forest floor [64]. Even at the level of

individual leaves, insects can differ in upper lethal tem-

perature by up to 8�C, despite separation of only a few

centimeters [12��]. It will be critical to incorporate these

thermal history effects into estimates of the physiological

responses of insects to environmental temperatures

[51,53,65] if we are to appropriately characterize pheno-

types and their adaptive variation in response to abiotic

stressors.

Broadly speaking, these differences reflect responses to

thermal history via trait plasticity at different time

scales. The extent to which physiological traits are

plastic, whether trait plasticity varies consistently

across geographic gradients, and whether plasticity

itself evolves to facilitate persistence in the face of

abiotic stressors are all critical questions that have

engaged physiologists for decades [66–68]. Environ-

mental variation itself can also drive both plasticity

and its evolvability [69]. For example, in ants, both

thermal tolerance and plasticity of thermal tolerance

evolve rapidly in response to urban heat clines [70].

However, plasticity can vary strikingly between traits

[71], insects may tradeoff constitutive (local adaptation)

and induced tolerance (plasticity), and traits may evolve

together [72] or be uncorrelated [73], all of which

potentially muddle inferences about insect adaptation

to temperature or other abiotic stressors [74].

Complicating the matter further, short duration extreme

events may exert exceptionally strong selection pres-

sure, resulting in phenotypes adapted to levels of abiotic

stress not measured in a particular study [27,64,65].

Surviving exposure to extremes requires mounting a

physiological response and can result in physiological

damage, both of which likely alter responses to subse-

quent exposures to abiotic stressors in complicated ways

[27,75–77]. And organisms may adapt to the predictabil-

ity of extreme fluctuations rather than their amplitude.

For example, flies exposed to unpredictable temperature

fluctuations were less stress-resistant than those exposed

to predictable temperature fluctuations of the same

magnitude [78].

Individual insects are also likely responding to multiple,

often interrelated abiotic challenges, and may vary in the

measured phenotype in time and space for reasons that

may be unrelated to a focal abiotic stressor [22]. For

example, body size [74,79,80], age [81], nutritional state

[82], pathogenic and beneficial microorganims [83], repro-

ductive state, biotic [84] and anthropogenic chemicals

[85] can all alter tolerance traits. Cross-talk and cross-

tolerance between traits [86] can alter insect responses to

stressors but are rarely considered, particularly in the

context of detecting adaptation. Awareness of these

diverse effects when designing studies (see below) and

implementation of standardized approaches to measuring

relevant physiological traits [87,88] will help overcome

potential confounding effects and generate robust evi-

dence for physiological adaptation to abiotic stressors.

Separating signal from noise to detect
adaptation with ‘-omics’ data
Population genomics of local adaptation

The search for genes influencing responses to environ-

mental pressures like temperature has a long history from

traditional genetics approaches in model insects like

Drosophila melanogaster [89�]. More recently, ‘omics tools

have led to major advancements in understanding envi-

ronmental adaptation across levels of molecular organiza-

tion, from the effects of DNA sequence changes on

protein coding variation, to changes in expression of this

variation across environments. In this section we focus on

population genomics, which has leveraged these devel-

opments for discovery of environment-associated loci in

natural populations of model and non-model organisms

[90�], especially where traditional genetics experiments

are challenging. Statistical population genomics methods

to detect loci (usually single nucleotide polymorphisms,

or SNPs) with strong allele frequency differentiation

among populations in different environments have aided

the search for genes underlying local adaptation [91–93].

In just over a decade, investigations of adaptive variation

have become nearly as commonplace in molecular ecol-

ogy as estimating neutral demographic processes like

dispersal [94]. Molecular tools to genotype SNPs in

species with limited genome resources have facilitated

such studies by reducing the genome to bioinformati-

cally tractable subsets [6,95,96], and as more insect

genomes are sequenced [97], whole genome
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resequencing will likely become the norm. Even with

whole genome data, however, uncovering the genomic

basis of locally adapted phenotypes remains challenging.

Discussion of these challenges [7,91–93] has focused

primarily on methodological and statistical concerns,

with less consideration for appropriately sampling geno-

types in time and space [98�,99].

Sampling individuals across spatial-environmental gradi-

ents is currently the most common approach to population

genomic detection of adaptation. Insect examples include

adaptation to high elevations in honey bees [18��], latitu-

dinal gradients in Drosophila [100�], and gradients in

temperature and precipitation in damselflies [101] and

midges [17�]. Spatial variation represents the low hanging

fruit for genome-environment association analyses, but

still can present challenges. One issue is that abiotic

gradients may correlate with spatial population structure,

confounding isolation by distance and environmental

adaptation [93,102]. Statistical approaches can model

population structure when detecting environmental adap-

tation (e.g. [103,104]), but distance and environment can

be further decoupled with creative sampling. Compara-

tive analyses of multiple species can detect concordance

across the same environmental gradient [105,106], the

same abiotic gradient can be sampled in widely separated

transects [107], or paired designs can leverage landscape

heterogeneity by sampling genotypes from distinct envir-

onments at multiple spatial scales [92,108] (Figure 2).

Such approaches are most effective when selection drives

parallel changes across replicated environments, how-

ever, and may miss population-specific mutations. A

second issue is that detecting local adaptation across

heterogeneous landscapes requires relevant environmen-

tal data. But, as discussed above, environmental data are

often only available at coarse spatial or temporal resolu-

tions [109]. Whether this ‘spatial gap’ [8] is a problem for

adaptation studies depends on the study question and

organismal traits (e.g. dispersal distance, longevity).

For long-lived species, genetic variation may reflect
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Some issues of spatial and temporal complexity when sampling environmental gradients for genomic adaptation scans. (a) The potential spatial

gap [8] between available environmental data and local-scale realities when sampling across an abiotic gradient (see also Figure 1a). In this case

two genotypes from an intermediate value environment actually segregate by habitat, with activity ranges (dashed lines) restricted to discrete

microenvironments, potentially masking any signature of local adaptation using coarse spatial data. (b) Mountains illustrate how complex

environmental landscapes can be used to design paired sampling studies. In this case, pairing elevation and latitude extremes allows genotypes

to be sampled from different temperatures at multiple spatial scales, in part decoupling confounding effects of gene flow when testing for

environmental adaptation. This hypothetical species also illustrates how using latitude as a proxy for temperature without considering elevation

could produce misleading adaptation scan results. (c) Temporally fluctuating selection pressures can produce oscillating allele frequencies [110��]

for multivoltine species that can produce misleading signatures of local environmental adaptation in genomic data that depends on when samples

are taken during a single field collection trip. Black genotype samples might produce a strong signal of differentiation (FST) near the seasonal

locus, while gray genotypes show no evidence of differentiation between environments. Both results are misleading, the former because a

conclusion would be made about the strength of local adaptation when both populations are responding similarly to the same environmental

fluctuations at different times, and the latter because while no local adaptation is detected, another interesting form of selection from the

environmental variable of interest is overlooked.
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long-term bioclimatic patterns captured by annual means

and extremes at large spatial scales. However, many

insects will experience microclimates at finer scales than

are represented in such data sets (Figures 1 and 2), and

multivoltine species may experience temporal fluctua-

tions in selection within a year. For such species, it will be

important to both fully characterize relevant environmen-

tal variables, and carefully design collections so that

samples are comparable among populations (Figure 1).

Many examples of rapid genomic evolution in response to

environmental change in insects [101,110��,111�] suggest

that effects of fluctuating selection on population genetic

data may be underappreciated [98�]. For species with

short generation times relative to environmental changes,

intra-season fluctuations in allele frequencies from stand-

ing genetic variation could confound statistical genotype-

environment associations, depending on when sampling

is conducted (Figure 2). Importantly, the timing of such

fluctuations may vary across a species range; Bergland

et al. [110��] has provided some of the clearest evidence

for seasonal selection on insect genomes using D. mela-

nogaster populations from a latitudinal cline, with repeat-

able oscillations of allele frequencies observed within and

between years at seasonal loci throughout the genome

that could be recapitulated with spatial comparisons. In

addition to selection favoring different genotypes in

different environments, some genetic variants may be

selected on by variation itself, including loci associated

with seasonal rhythms or traits like diapause and circadian

clocks [112,113]. Migratory species like monarch butter-

flies have additional complexities, as selection will shape

responses to local climates [114], requiring consideration

of the question ‘which environment is local?’ with respect

to genomic variation. Finally, range expansions (e.g. of

insect pests) highlight the importance of environmental

adaptation associated with colonization of new environ-

ments [101,115]. Expansions produce spatially and tem-

porally non-equilibrium scenarios that may complicate

population genetics analyses; however, certain population

genomics tools may be particularly effective at detecting

adaptation in such situations [116]. So, spatio-temporally

fluctuating selection can be strong in insect populations,

but methods to detect its effects are in their infancy.

Models incorporating time-series data or chronological

sampling are potentially promising but require further

development [117�].

Beyond genome sequence variation

Other ‘omic technologies provide additional opportu-

nities for uncovering the basis of environmental adapta-

tion. DNA sequence variation can clearly contribute to

local adaptation across environments through structural

protein coding changes or mutations in regulatory regions

that alter gene expression. However, mechanistic insights

into tolerance of abiotic variation may often be more

clearly revealed in other parts of the ‘omic spectrum,

including transcriptomics (gene expression), methylo-

mics (epigenetics), or metabolomics (small molecules).

While DNA sequences are stable within an individual,

other layers of the molecular spectrum are variable across

space, environment, time, and tissue [118,119]. This

inherent responsiveness makes these methods ideal for

determination of mechanisms underlying organismal sen-

sitivity to environmental pressures, further illuminating

links between genotype and phenotype. Ample evidence

suggests that gene expression regulation under environ-

mental stress contributes to adaptive phenotypes. For

example, differences in transcription in flies are substan-

tial after cold shock (�10�C), but rare following prolonged

cold hardening (0�C) [120]. Population (i.e. genotypic

background) by environment effects also reveal that

adaptive evolution may shape gene expression responses

in individuals from regions with different conditions

[121,122]. Gene expression is not only influenced by

spatial variation [16��], but also responds to temporal

(seasonal) variation [123]. For some traits, adaptation

may not be detectable at genomic or transcriptional

levels, requiring assays of other levels of the ‘omic spec-

trum [120,124,125].

A multi-scale integrative approach
Many insects have large geographic distributions that

span environmental gradients, so understanding adapta-

tion across the species range is important. Recording

abiotic data at high spatio-temporal resolution at each

collecting locality may be impractical at these scales,

where samples are often taken over multiple years or

even from natural history collections [126]. Likewise,

collecting physiology data, genome sequences, transcrip-

tome sequences, and so on in all populations is infeasible,

and traditional laboratory genetics experiments are diffi-

cult for many species. However, a multi-scale integrative

approach may help address these limitations. One part of

a project could include a biogeographic clinal adaptation

study of many individuals and populations, incorporating

population genomics to detect adaptation candidate

genes and measurement of traits hypothesized a priori

to be physiologically relevant (e.g. body size or wing size

variation with latitude or altitude: [127]). Such observa-

tional studies could be combined with extensive spatial

and temporal sampling of individuals and environmental

conditions in focal populations, perhaps at the abiotic

extremes of the study region. A more comprehensive

suite of molecular assays, including RNAseq, epige-

nomics, and metabolomics in these focal populations

could be directly tied to experimentally measured physi-

ological variation, and cross-validated against results from

large-scale analyses to predict how different sources of

variation enable adaptation to abiotic conditions. Of

course, fully addressing the question of adaptation ulti-

mately requires fitness measurements for genotypes and

phenotypes across environments; this will be a major

challenge for most non-model organisms. Developing
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approaches to overcome such challenges and integrate

distinct data types collected at different spatial and

temporal resolutions will be necessary if we hope to make

accurate and actionable predictions (e.g. [128,129,130�])

about insect evolution in contemporary and future

landscapes.
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analysis of gene regulation reveals new insights into the
molecular basis of upper thermal limits. Mol Ecol 2014,
23:6135-6151.

122. Kelly MW, Pankey MS, DeBiasse MB, Plachetzki DC: Adaptation
to heat stress reduces phenotypic and transcriptional
plasticity in a marine copepod. Funct Ecol 2017, 31:398-406.

123. Toxopeus J, Des Marteaux LE, Sinclair BJ: How crickets become
freeze tolerant: the transcriptomic underpinnings of
acclimation in Gryllus veletis. Comp Biochem Physiol Part D
Genomic Proteomics 2019, 29:55-66.

124. Brankatschk M, Gutmann T, Knittelfelder O, Palladini A, Prince E,
Grzybek M, Brankatschk B, Shevchenko A, Coskun Ü, Eaton S: A
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