

Communication pubs.acs.org/JACS

A Macrocyclic Ruthenium Carbene for Size-Selective Alkene Metathesis

Yutong Zhang and Steven T. Diver*

Cite This: J. Am. Chem. Soc. 2020, 142, 3371-3374

ACCESS I

III Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: The synthesis of a macrocyclic Ru carbene catalyst for selective cross alkene metathesis is reported. The new catalyst showed different reactivity for various type 1 alkenes in homodimerization which correlated with the aggregate size of the allylic substituent. The altered reactivity profile allowed for selective product formation in competition cross alkene metathesis between two different type 1 alkenes and tert-butyl acrylate. Selectivity in these reactions is attributed to the ability of the macrocyclic catalyst to differentiate alkenes based on their size. Two preparative examples of cross metathesis with the macrocyclic catalyst are also provided.

ross alkene metathesis is a powerful method for the synthesis of complex molecules. Grubbs and co-workers formulated a useful predictive model for cross metathesis where alkenes are classified into groups based on their reactivity.2 Type 1 alkenes are the most reactive and can be coupled with electron-deficient type 2 or type 3 alkenes. Because type 1 alkenes constitute a broad class of substrates, it would be desirable to promote cross metathesis between two different type 1 alkenes. This would be particularly useful in total synthesis for advanced alkene intermediates that need to be selectively coupled and/or where the use of one alkene in excess is impractical. Because joining type 1 alkenes selectively is not possible with current catalysts, we decided to approach this problem using a new class of Ru carbene catalyst featuring a macrocyclic N-heterocyclic carbene (NHC) ligand (Scheme 1). Use of an alkene metathesis catalyst that can envelop

Scheme 1. Simple Model for Size-Selective Cross Alkene Metathesis and Macrocyclic Ru Carbene

(a) Size selective cross alkene metathesis desired cross

substrates and differentiate reactivity based on size of the alkene is a new paradigm for controlling selectivity in cross alkene metathesis. In this paper, we describe the synthesis and reactivity of a new macrocyclic Grubbs catalyst, report homodimerization rates, and examine size selectivity in a competition cross alkene metathesis with tert-butyl acrylate.

Selectivity among the same functional group is a current problem in catalysis. Site selectivity, the ability of a catalyst to differentiate between two of the same functional group in different parts of a molecule, is considered a key problem in modern catalysis.³ For alkene substrates that differ in their aggregate size, a size-selective catalyst may differentiate them (Scheme 1). A new Ru carbene catalyst that can address this would be a valuable addition to the toolbox of task-specific Grubbs catalysts. The interior of the macrocycle is spatially restrictive. If the macrocyclic Ru carbene catalyst can accommodate only one alkene, such as the smaller alkene, a selective metathesis reaction is possible. Once formed, the resulting alkylidene may react externally with the larger alkene, giving the cross product (Scheme 1, panel a). The small alkene can reversibly dimerize. Reversibility is a key point of the Grubbs selectivity model for alkene cross metathesis. Type 1 homodimers are still reactive and continue to produce active metal carbenes that lead to a cross metathesis product.

There are several potential advantages of macrocyclic ligand design. For instance, in Grubbs' catalysts, the L-type ligand (H₂IMes) is situated trans to the alkene binding site so that it is difficult to sterically influence remote alkene binding. In the macrocyclic ligand, the bridging azolium ring in Ru1, can influence the outer sphere reactivity of the metal without inner sphere coordination, which would alter electronic and steric properties at the metal.⁴ Second, the bridging element might be used to restrict substrate access, as a molecular recognition domain or to help stabilize the catalyst. However, macrocycles may adopt multiple conformations and can be difficult to synthesize. Since there are few examples of NHCs in macrocyclic rings,5 it is difficult to find guidance for their design and synthesis. A recent report from our lab⁶ described a macrocyclic NHC and Ru carbene, synthesized by a ringclosing metathesis (RCM), but these did not show sizeselective reactions. In the present work, a concise synthesis of a macrocycle is reported and the reactivity of the Ru carbene is

Received: January 3, 2020 Published: February 4, 2020

compared with that of a commercial catalyst, the Hoveyda-Grubbs catalyst (HG2).

The synthesis of the macrocyclic Ru carbene is shown in Scheme 2. The structure of 3 is a symmetrical, rectangular box

Scheme 2. Synthesis of Macrocyclic NHC Scaffold

shape with identical top and bottom and identical sides. A simple and efficient synthesis would form the macrocycle at once, in a single step between bifunctional building blocks. Using a Suzuki coupling, diamine 1 and dibenzofuran 2 were joined to form macrocycle 3 in 49% isolated yield. Efforts to improve the yield were unrewarded. Cyclization of tetraamine 3 with (EtO)₃CH gave the bis(dihydroimidazolium) salt 4 with two tetrafluoroborate counterions.

Conversion to the Ru carbene complex required optimization. Salt 4 is not soluble in most organic solvents which complicated deprotonation. Following literature conditions to install a bulky NHC ligand, 4 was deprotonated and reacted with HG1 (benzene, 1.3 equiv of KHMDS, 70 °C, 2 h), to provide a 20% isolated yield of Ru1 (Table 1, entry 1). An

Table 1. Optimization of NHC Transfer to Synthesize Macrocyclic Ruthenium Carbene Ru1

4
$$\frac{\text{KHMDS (1.3 equiv), HG1 (0.7 equiv)}}{\text{benzene, 70 °C, 2 h}}$$
 Ru1 (1)

entry	change from above conditions	isolated yield
1	none	20%
2	2.5 equiv of KHMDS, CuCl, 1 h	51%
3	2.5 equiv of KHMDS, CuCl, C590 instead of HG1, 1 h	68%

aliquot at the end of the reaction showed unreacted salt 4, unreacted HG1, and an intermediate. Use of more KHMDS resulted in a color change from light yellow to orange. If this color change was not observed, Ru1 was not obtained. Longer reaction times decreased yield and mass recovery; control studies revealed that the parent Hoveyda—Grubbs carbene HG1 decomposed in the presence of KHMDS at 70 °C over a 2 h period. Based on these observations, higher equivalents of KHMDS were used, along with shorter reaction times. ¹H NMR analysis of aliquots showed complete conversion of starting HG1 with an intermediate still present after 1 h. It was found that CuCl helped convert the intermediate to Ru1, which improved the yield to an acceptable 51% (entry 2). Use of a superior phosphine leaving group Ph₂P(piperidine) further improved yield, with added CuCl (entry 3, 68%). The resulting

carbene complex has a characteristic green color with a carbene signal at δ 16.3 ppm (CDCl₃). ¹⁹F NMR confirmed the presence of the BF₄ counterion, which appears at δ –152.6 ppm (CDCl₃) for **Ru1**.

A single crystal X-ray structure verified the structure and revealed the conformation of macrocyclic Ru1 (Figure 1). Ru1

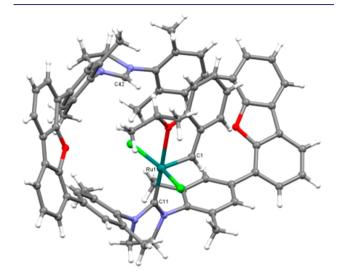


Figure 1. Solid state structure of Ru1.

was dissolved in CH2Cl2 and layered successively with 50% CH₂Cl₂-benzene and benzene. After standing 2 d in an inert atmosphere glovebox, green crystals had formed. Two Ru carbene complexes were found in the unit cell. Some of the bond lengths are typical of Hoveyda-Grubbs chelates: the Ru=C1 bond length is 1.830(11) Å, Ru-C11 to the NHC was 2.371(3) Å, and the Ru-O bond length was 2.262(7) Å. There was a slight difference in the Ru-Cl bond lengths; the endo Cl-Ru was 2.344(3) Å, and the exo Cl-Ru bond was 2.371(3) Å. The dihydroimidazolium unit bridges the Ru carbene fragment, creating a wall around the backside of the Ru=C bond and a cleft in the front. The presence of a positively charged unit in the macrocycle and its associated counteranion (tetrafluoroborate, not shown in Figure 1) is a unique characteristic of Ru1. The bridging azolium ring points its C42-H toward the oxygen atom of the chelating benzylidene.

An evaluation of catalyst reactivity showed that Ru1 was much less reactive than HG2. First, ring-closing metathesis was performed under standard reaction conditions. The apparent second-order rate constants are presented in Table 2. The RCM promoted by Ru1 took 90 h to reach 85% conversion, or

Table 2. Performance Testing: RCM⁸ and Initiation Rates⁹

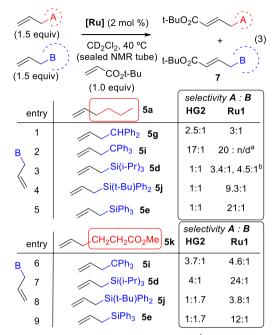
"Conditions: [DEDAM] = 0.1 M, $\mathrm{CD_2Cl_2}$, 30 °C (¹H NMR). "From ref 8. "From ref 9. "0.1 mM [Ru], 3 M EVE, $\mathrm{CH_2Cl_2}$, 25 °C (UV—vis at 379 nm). EVE = ethyl vinyl ether. DEDAM = diethyl diallylmalonate.

was 160 times slower than HG2. The kinetic data for the RCM of DEDAM provides a composite of initiation rate and rate of metathesis. Quantitative measurement of initiation rates with ethyl vinyl ether (EVE) showed an even greater difference between Ru1 and HG2. These data suggest that macrocyclic Ru1 is sterically bulky and may be useful for discrimination of alkene reactants based on the size of remote substituents.

Initially, alkene dimerization was examined to evaluate the effect of remote steric bulk. We focused on substitution at the homoallylic position since this position generally does not affect alkene reactivity classification for the Grubbs catalyst. Dimerization requires two steps: alkylidenation and cross metathesis. For a hindered catalyst, we hypothesized that bulky alkenes would register slower rates of dimerization. This was tested with macrocyclic **Ru1** by evaluating catalyst activity at low substrate conversion. The unhindered linear alkenes gave highest activities (Table 3, entries 1 and 2). For slow reacting

Table 3. Homodimerization of Various Alkenes Using Ru1

	conversion, 1 h ^a	activity ^{a,b}
5a	23, (13)	60, (33) ^c
5b	29, (16)	200, (43) ^c
5с	(1)	(2) ^d
5d	(1)	(2) ^d
5e	0	NR
5f	(14)	(33) ^c
5g	(9)	(18) ^d
5h	(6)	(12) ^d
5i	0	NR
	5b 5c 5d 5e 5f 5g 5h	5a 23, (13) 5b 29, (16) 5c (1) 5d (1) 5e 0 5f (14) 5g (9) 5h (6)


^aParentheses = includes benzoquinone (BQ), 1 mol %. ^bActivity = turnovers/h at: ^c10% conversion or ^d1 h.

alkenes, we anticipated that alkene isomerization might become problematic. When benzoquinone was included, a 2fold reduction in rate was observed. Allyl silanes showed the lowest reactivity. Though differing in substituent bulk, iPr₃Siand Me₃Si- showed similar slow rates. The bulkier Ph₃Siderivative gave no conversion after 1 h or up to 22 h. 12 Allyl benzene had a similar dimerization rate as alkenes 5a and 5b in entries 1 and 2. In the series of substituted homoallylbenzenes, increasing phenyl substitution gave a decreasing reaction rate; the -CPh3 substituent showed no reaction after 1 h or up to 22 h (entries 7-9). These alkenes showed rate variation that correlated with the aggregate size of the allylic substituent. The rate of alkene reaction with a catalyst is not the sole factor determining selectivity in cross alkene metathesis. However, alkene reactivity is important because the Grubbs model classifies alkenes based on their dimerization rates. These rate data show how traditional type 1 alkene reactivity can be separated by a bulky macrocyclic catalyst.

To determine whether there was size differentiation of alkene reactants, an alkene cross metathesis competition experiment was performed between alkene pairs and *tert*-butyl acrylate. The latter alkene is a type 2 alkene.

Comparisons were made with the acyclic catalyst HG2. The competition results are shown in Table 4. From the

Table 4. Competition Alkene Metathesis

 a Not detected by 1 H NMR spectroscopy. b Contains 4 mol % benzoquinone.

dimerization studies above, unhindered alkenes stood out as type 1 alkenes for Ru1. 1-Hexene (5a) and 5k (the homologue of 5b above) were selected as competitors for the least reactive alkenes. With 5a (Table 4, entries 1-5), HG2 surprisingly showed increased selectivity going from -CHPh2 to -CPh3, but not with the allylsilanes. Macrocyclic Ru1 similarly showed increased selectivity for -CHPh2 and -CPh3 substituents but contrastingly showed increasing selectivity that correlated with the size of silane substituents for the allyl silanes (entries 3-5). The presence of additional phenyl substituents correlated with higher selectivity. For alkene 5k, Ru1 showed parallel selectivity for all alkenes (entries 6-9), albeit not as high as seen with alkene 5a. For example, lower selectivity was seen between 5k and 5i (-CPh3 substituent, entry 6) but higher selectivity was seen for 5k and 5d (-Si(iPr)₃ substituent; entry 7 vs entry 3). The bulkiest silanes gave reversed selectivity with HG2 (favoring the bulkier cross product), and slightly diminished selectivities were found with Ru1.

Last, the homodimerization reactivity studies and the knowledge from the competition experiments led to selective cross alkene metathesis reactions (eqs 4 and 5). Using the

terminal, type 1 alkene reactants, benzoquinone was needed to prevent alkene isomerization. Conducting the reaction in NMR tubes 13 permitted reaction monitoring over several days,

and cross products 8 and 9 were isolated by chromatography in good yields. In each case, none of the corresponding allylsilane homodimer was detected in the crude reaction. Similar yields were obtained using the type 1 homodimers of alkene 5k and 5l using a lower catalyst loading and lower reaction temperatures. In these cases, no benzoquinone additive was required.

In conclusion, a selective cross metathesis has been accomplished with a macrocyclic Ru carbene catalyst. The synthesis was enabled by a macrocyclization step where two bifunctional building blocks formed the macrocyclic ligand. Though much less reactive than the Hovevda-Grubbs catalyst. Ru1 displayed a unique reactivity profile with a set of type 1 alkenes in homodimerization. Competition cross metathesis with alkene pairs showed different selectivity than that seen with HG2. The reactivity trend in the homodimerization studies and the selectivity in the competition experiments correlated with the aggregate size of the allylic substituent. The ability of a macrocyclic catalyst to differentiate substrates based on size provides a new approach to selective cross alkene metathesis. Future applications to couple different type 1 alkenes by cross metathesis and improvements in catalyst reactivity are foreseeable.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c00081.

Synthetic procedures, characterization data for new compounds, and results of rate and competition studies (PDF)

Crystallographic data for Ru1 (CIF)

AUTHOR INFORMATION

Corresponding Author

Steven T. Diver — Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260-3000, United States; orcid.org/0000-0003-2840-6726; Email: diver@buffalo.edu

Author

Yutong Zhang — Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260-3000, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.0c00081

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Anibal Davalos (UB) and Dr. Adam Johns (Umicore) for helpful suggestions. We also thank Gage Bateman (UB) for assistance with the X-ray structure determination and Umicore Precious Metals for supplying the Ru catalysts used in this study. Research grants from the National Science Foundation CHE-1300702 and CHE-1900392 supported this work.

REFERENCES

(1) (a) O'Leary, D. J.; O'Neil, G. W. Cross-metathesis. Handbook of Metathesis, 2nd ed.; Wiley-VCH: 2015; pp 171-294. (b) Cheng-

- Sánchez, I.; Sarabia, F. Recent Advances in Total Synthesis via Metathesis Reactions. *Synthesis* **2018**, *50*, 3749–3786. (c) Ogba, O. M.; Warner, N. C.; O'Leary, D. J.; Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. *Chem. Soc. Rev.* **2018**, *47*, 4510–4544.
- (2) Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H. A General Model for Selectivity in Olefin Cross Metathesis. *J. Am. Chem. Soc.* **2003**, *125*, 11360–11370.
- (3) Huang, Z.; Dong, G. Site-Selectivity Control in Organic Reactions: A Quest To Differentiate Reactivity among the Same Kind of Functional Groups. *Acc. Chem. Res.* **2017**, *50*, 465–471.
- (4) For an approach employing a metal organic framework, see Klemperer et al.: Yuan, J.; Fracaroli, A. M.; Klemperer, W. G. Convergent Synthesis of a Metal—Organic Framework Supported Olefin Metathesis Catalyst. *Organometallics* **2016**, *35*, 2149—2155.
- (5) (a) Shi, Z.; Thummel, R. P. Bridged dibenzimidazolinylidenes as new derivatives of tetraaminoethylene. Tetrahedron Lett. 1995, 36, 2741-2744. (b) Baker, M. V.; Bosnich, M. J.; Williams, C. C.; Skelton, B. W.; White, A. H. Imidazolium-Linked Cyclophanes. Aust. J. Chem. 1999, 52, 823-826. (c) Alcalde, E.; Mesquida, N.; Pérez-García, L. Imidazolium-Based [14] Heterophanes as Models for Anion Recognition. Eur. J. Org. Chem. 2006, 2006, 3988-3996. (d) Fürstner, A.; Alcarazo, M.; Krause, H.; Lehmann, C. W. Effective Modulation of the Donor Properties of N-Heterocyclic Carbene Ligands by "Through-Space" Communication within a Planar Chiral Scaffold. J. Am. Chem. Soc. 2007, 129, 12676-12677. (e) Winkelmann, O.; Näther, C.; Lüning, U. Bimacrocyclic NHC transition metal complexes. J. Organomet. Chem. 2008, 693, 923-932. (f) Jeletic, M. S.; Ghiviriga, I.; Abboud, K. A.; Veige, A. S. A New Chiral Di-N-Heterocyclic Carbene (NHC) Cyclophane Ligand and Its Application in Palladium Enantioselective Catalysis. Dalton Trans. 2010, 39, 6392-6394. (g) Edwards, P. G.; Hahn, F. E. Synthesis and coordination chemistry of macrocyclic ligands featuring NHC donor groups. Dalton Trans. 2011, 40, 10278-10288. (h) Mesquida, N.; Dinarès, I.; Ibáñez, A.; Alcalde, E. [14]Heterophane prototypes containing azolium and/or azole anion-binding motifs. Org. Biomol. Chem. 2013, 11, 6385-6396.
- (6) Davalos, A.; Sylvester, E.; Diver, S. T. Macrocyclic N-Heterocyclic Carbene: Synthesis and Catalytic Applications. *Organometallics* **2019**, *38*, 2338–2346.
- (7) Engle, K. M.; Lu, G.; Luo, S.-X.; Henling, L. M.; Takase, M. K.; Liu, P.; Houk, K. N.; Grubbs, R. H. Origins of Initiation Rate Differences in Ruthenium Olefin Metathesis Catalysts Containing Chelating Benzylidenes. *J. Am. Chem. Soc.* **2015**, *137*, 5782–5792.
- (8) Ritter, T.; Hejl, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H. "A Standard System of Characterization for Olefin Metathesis Catalysts. *Organometallics* **2006**, *25*, 5740–5745.
- (9) Ashworth, I. W.; Hillier, I. H.; Nelson, D. J.; Percy, J. M.; Vincent, M. A. "What is the initiation step of the Grubbs-Hoveyda olefin metathesis catalyst? *Chem. Commun.* **2011**, *47*, 5428–5430.
- (10) In contrast, allylic substitution has a pronounced steric effect and can move allylic alcohols from type 1 to type 2. Unlike substitution at the homoallylic position, allylic substitution is close enough to the alkene to affect reactivity with commercial, acyclic catalysts.
- (11) Grubbs used 'activity' expressed in turnovers per hour: (a) Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. "Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysts. *J. Am. Chem. Soc.* 1993, 115, 9858–9859. (b) Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. "Well-Defined Ruthenium Olefin Metathesis Catalysts: Mechanism and Activity. *J. Am. Chem. Soc.* 1997, 119, 3887–3897.
- (12) (a) With or without the benzoquinone additive, no conversion was observed. (b) For comparison, **HG2** gave a TOF of 986 for 1-hexene and 133 for allyltriphenylsilane.
- (13) Due to the long reaction times, open vessel reactions resulted in evaporation of solvent. The best results were obtained in CH_2Cl_2 ; use of dichloroethane gave inferior results.