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Abstract: The genus Trifolium is the largest of the tribe Trifolieae in the subfamily Papilionoideae
(Fabaceae). The paucity of mitochondrial genome (mitogenome) sequences has hindered comparative
analyses among the three genomic compartments of the plant cell (nucleus, mitochondrion and
plastid). We assembled four mitogenomes from the two subgenera (Chronosemium and Trifolium)
of the genus. The four Trifolium mitogenomes were compact (294,911-348,724 bp in length) and
contained limited repetitive (6.6-8.6%) DNA. Comparison of organelle repeat content highlighted the
distinct evolutionary trajectory of plastid genomes in a subset of Trifolium species. Intracellular gene
transfer (IGT) was analyzed among the three genomic compartments revealing functional transfer
of mitochondrial ps1 to nuclear genome along with other IGT events. Phylogenetic analysis based
on mitochondrial and nuclear rps1 sequences revealed that the functional transfer in Trifolieae was
independent from the event that occurred in robinioid clade that includes genus Lofus. A novel,
independent fission event of ccmFn in Trifolium was identified, caused by a 59 bp deletion. Fissions of
this gene reported previously in land plants were reassessed and compared with Trifolium.

Keywords: legumes; clover; organelle genetics; mitochondria; endosymbiotic gene transfer;
gene fission

1. Introduction

Plant cells comprise three genomic compartments (i.e., nucleus, mitochondrion and plastid).
Unlike the typically conservative plastid genome (plastome) [1,2], plant mitochondrial genomes
(mitogenome) display drastic evolutionary plasticity in size, content and structure, intracellular gene
transfer (IGT) and interspecific horizontal gene transfer [3—8]. Substitution rates of mitochondrial
protein coding genes, however, are the most conservative among the three genomic compartments [9].
In angiosperms, the relative rate of synonymous substitutions of mitogenome, plastome and nuclear
genome is 1:3:16 [10].

Extensive gene loss and IGT of organelle DNA to the nucleus occurred in the early stages of
endosymbiosis [11]. Nuclear genome sequences that originate from the mitogenome and plastome are
referred to as nuclear mitochondrial DNA sequences (NUMTs) and nuclear plastid DNA sequences
(NUPTs), respectively [12,13]. Transfer of mitochondrial DNA to the nuclear genome is an ongoing
process in both of plants and animals but functional transfer of mitochondrial genes has almost
ceased in animals [14]. Functional transfer of mitochondrial genes in plants has often involved
ribosomal protein or succinate dehydrogenase genes [5]. Transfer of mitochondrial genes to the
nuclear genome cannot substitute function of the original mitochondrial copy unless the nuclear copy
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acquires the appropriate expression and targeting signals [15]. Before the acquisition of regulatory
signals, NUMTs must survive mutational decay in nuclear genome, which limits the lifespan of the
nonfunctional sequences [16]. Mitochondrial IGT events may be successful or unsuccessful in terms of
functionality and the phylogenetic distribution of pseudogenization and deletion of mitochondrial
genes can be assessed in descendant lineages [17].

Following functional transfer, NUMTs attain higher substitution rates than their mitochondrial
counterparts [14] because of substantial differences in the synonymous substitution rate between
mitochondrial and nuclear genomes in plants [10]. Hence, functional transfer of mitochondrial genes
into the nucleus is often detected by the presence of intact but highly diverged copies in nuclear genome
compared to mitochondrial copies [18,19]. On rare occasions, functional transfers of mitochondrial
genes exhibit an intriguing situation in which the nuclear and mitochondrial genomes contain different
portions of the coding region resulting from mitochondrial gene fission and IGT (e.g., rpl2 in many
of eudicots) [20]. Szafranski [21] named this process “intercompartmental piecewise gene transfer.”
In plant mitogenome evolution, the protein that most commonly undergoes gene fission is cytochrome
¢ maturation protein ccmF [22-25].

In Escherichia coli, the eight ccm genes (ccmA-H) are clustered in a single locus [26]. In most
plants, three ccm genes (ccmA, cemE and ccmH) have been transferred from the mitogenome to the
nuclear genome, two (ccmD and ccmG) were lost and four (ccmB, ccemC, cemFe and ccmFn) remain in
the mitochondrion [27]. Since the fission of ccmF into ccmFc and ccmFn is shared by liverworts and
seed plants [3], this event happened early in land plant evolution. In addition, there were independent
fissions of ccmF in several lineages of land plants, including fission of ccmFc into ccmFcl and ccmFc2
in Marchantia [22] and fissions of ccmFn into ccmFnl and ccmFn2 in Brassicaceae [23,24] and Allium
(Amaryllidaceae) [25].

Fabaceae are the third largest angiosperm family with approximately 20,000 species in six
subfamilies [28]. Most species diversity occurs in subfamily Papilionoideae, which includes many
economically important species [29]. The inverted repeat (IR) lacking clade (IRLC) is one of the major
groups of Papilionoideae, which is defined by absence of the canonical plastome IR (~25 kb) [30].
Plastome studies of the IRLC elucidated several rare evolutionary phenomena, including high degree of
genome rearrangement [31], localized hypermutation [32], genome size expansion with accumulation
of dispersed repeats and unique sequences of unknown origin [33-35] and re-acquisition of a large
IR [36]. However, mitogenome evolution in IRLC is poorly understood and represented by only two
species, Vicia faba (tribe Fabeae) [37] and Medicago truncatula (tribe Trifolieae) [38]. In Trifolieae, a study
of the mitochondrial rps1 gene documented the existence of functional nuclear copies and putatively
pseudogenized mitochondrial copies from three genera (Medicago, Melilotus and Trigonella) [39].
Deletion of mitochondrial rps1 was also identified from another papilionoid species, Lotus japonicus [40].
The status of mitochondrial rps1 across Trifolieae and related taxa has not been examined until recently.
Parallel losses of several mitochondrial genes in Fabaceae were revealed in a previous study, however,
whether the losses represent a single ancestral IGT or multiple IGTs was not determined [8].

Trifolium is the largest genus (ca. 250 species) of the tribe Trifolieae [41] and is divided into two
subgenera (Chronosemium and Trifolium) [42]. Trifolieae belong to the IRLC and are closely related to
Fabeae [30]. Several evolutionary studies of Trifolieae plastid [31,33,34] and nuclear [43-46] genomes
have been conducted but mitogenome comparisons of Trifolium have been neglected. In this study,
gene content, size and repeat structure of mitogenomes of four Trifolium species from the two subgenera
Chronosemium (T. aureum and T. grandiflorum) and Trifolium (T. meduseum and T. pratense) were examined
and compared to related papilionoid species.
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2. Results

2.1. Mitogenome Features of Four Trifolium Species
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Figure 1. Linear mitogenome maps of four Trifolium species. Fragmented genes caused by duplication
or pseudogenization are not depicted. pt indicates tRNAs of plastid origin.
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Table 2. Comparison of repeat percentage between organelle genomes in Trifolium.
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Figure 3. Diistiritbutiiom patttam of dispersed repeat sequenaes im circular representations of organelle
genomes of two Trifolium species. Each ribbon represents a BLAST hit for a pair of dispersed repeats.
Brown circles are mitogenomes and green circles are plastomes. Multiple hits in a single region are
indicated by histograms in outer concentric rings. Data for repetitive sequences of all published
organelle genomes of Trifolium is available in Table 2.

2.3. Intracellular Gene Transfer (IGT) in Trifolium

The extent of IGT among the three genomic compartments was analyzed in T. pratense by BLAST
(Figure 4; Table 3). The amount of DNA shared between the two organelle genomes was very low
(0.3 kb). The organelle genomes shared considerable DNA with the nuclear genome and GC content
of shared DNA reflected the compartment of origin (45.8% for mitogenome and 35.1% for plastome).
In general, BLAST hits between nuclear and organelle genomes were very short and had high sequence
identity (Table 3).
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and occurred in a more basal position in Brassicaceae than Fabaceae. The separation of ccmFnl and
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such as nonhomologous end-joining or break-induced-replication [48-50]. In Geraniaceae, a correlation
between nonsynonymous substitution rates for DNA replication, recombination and repair (DNA-RRR)
genes and plastome complexity was reported [51]. The plastome-specific increase in repeat complexity
in the Trifolium refractory clade may be the result of disruption of “plastid specific’ DNA-RRR-protein
genes, some of which are targeted to both mitochondria and plastids [7]. More comprehensive taxon
sampling that includes data from all three plant genomic compartments of Trifolium is required to test
this hypothesis.

3.2. Multiple Functional Transfers of the Mitochondrial rps1 Gene to the Nucleus in Papilionoideae

An earlier investigation reported the functional transfer of mitochondrial rps1 to the nucleus in
three genera of Trifolieae (Trigonella, Melilotus and Medicago) [39]. In the current study, the complete
deletion of rps1 gene from mitogenomes of four Trifolium species was detected (Figure S1), which is
shared by the distantly related genus Lotus, a member of the tribe Loteae (Figure S2). There are two
possible explanations for the phylogenetic distribution of the loss/transfer. The loss of mitochondrial
rps1 could be due to a single IGT in a common ancestor with differential resolution in descendant
lineages, that is, acquisition of functional signals (or not) to stabilize transfer. Alternatively, there may
have been independent functional transfers from an ancestor in each of the two unrelated lineages.
To examine these alternatives, a maximum likelihood (ML) analysis was conducted using expanded
taxon sampling of nuclear and mitochondrial rps1 sequences. The resulting tree (Figure 5) included some
long branches, which may be affected by the well-known phenomenon of long-branch attraction [52].
Nuclear rps1 from Lotus and Trifolieae species were split into two independent clades, with intact and
pseudogenized mitochondrial rps1 placed between them. This pattern supports the explanation that
functional transfers of rps1 occurred at least two times in Papilionoideae, once in Lotus and a separate
event in the ancestor of the Trifolieae clade that includes Trigonella, Melilotus, Medicago and Trifolium.
The timing of the functional transfer of rps1 in Trifolieae would likely be after the divergence of Ononis
(Figure 5), which only has a mitochondrial copy [39].

Despite the putative functional replacement by nuclear rps1, the mitochondrial rps1 in three
genera (Trigonella, Melilotus and Medicago) was retained with limited sequence divergence (Figure 5),
whereas it is completely and precisely deleted in Trifolium (Figure S1). Coding regions of plant
mitogenomes are conserved by an accurate long homology-based repair mechanism, while non-coding
regions are not conserved and are repaired by error-prone mechanisms [50]. Differential selection
on mitogenomic molecules, which reduces harmful mutations on coding regions after double strand
breaks (DSBs), was proposed to explain this [48,49]. Pseudogenized copies of mitochondrial rps1 in the
three genera Trigonella, Melilotus and Medicago are located adjacent to nad5 exonl (ca. 200 bp apart) [39].
Mutations in 5" region of nad5 exonl that do not disturb transcription or translation of the functional
gene and only affect pseudogenized rps1 can be inherited by selection after DSBs. So, the adjacent
location of mitochondrial rpsl to nad5 exonl may enable retention of high sequence identity after
functional replacement by sharing the benefit of accurate repair. a similar situation is known for
the rps14 pseudogene that is adjacent to rpl5 in grasses [53]. Conservation of non-coding regions
adjacent to coding regions is also present in mitogenome-wide sequence divergence comparisons
across Fabaceae [8].

3.3. Shared DNA Among Genomes of Trifolium

Comparative analyses of the three genomic compartments (nuclear, mitochondrial and plastid)
in T. pratense revealed a substantial amount of shared DNA between nuclear and organelle genomes,
most of which was short fragments (Figure 4, Table 3). The shared DNAs between nuclear and
mitochondrial genome was 135.4 kb (Figure 4) and had GC content more similar to those of mitogenomes
(Tables 1 and 3) suggesting that most IGT was unidirectional (i.e., mitochondrion to nucleus) and
the nuclear genome of T. pratense includes numerous NUMTs. These NUMTs may integrate into the
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nuclear genome of T. pratense as short fragments. Alternatively, these short fragments may be the
consequence of post-IGT mutational decay and rearrangement of longer NUMT sequences [54].

The discovery of a long stretch of NUMTs (spanning 348.5 kb; GC: 44.3%) in chromosome 4 of
T. repens (Figure S3) supports a recent genomic scale IGT event. This type of large IGT was identified in
Arabidopsis thaliana (Brassicaceae) in which ~270 kb of 367 kb mitogenome transferred to the nucleus [55]
and covers an ~620 kb region of the nuclear genome [56]. To estimate the amount of NUMTs in
T. repens, a mitogenome sequence from the same DNA source (white clover cv ‘Crau’ derivative) [46,57]
is necessary. Large NUMTs were reported for animal nuclear genomes (little brown bat and fugu),
however, these were later shown represent artifacts of genome assembly [58,59]. The nuclear genomes
of Trifolium species are drafts with many gaps [43-46]. Verification of long putative NUMTs in Trifolium
is needed to confirm genomic scale IGT events from the mitochondrial to nuclear genome.

3.4. Multiple Fissions of ccmF in Land Plants and a Novel Event in Trifolium

The first fission of mitochondrial ccmF dates back to the early evolution of land plants and
split the gene into N-terminal (ccmFn) and C-terminal (ccmFc) coding regions [60]. In Marchantiales,
the ORFs are closely adjacent (Figure S5). The mitogenome study of Marchantia paleacea (misidentified
as M. polymorpha [61]) from the early 1990s [22] reported a fission of ccmFc (i.e., ccmFcl and ccmFc2) due
to a single nucleotide deletion. This fission event was accepted in several subsequent papers [3,21,60],
however, mitogenome sequences of two other Marchantia species (M. inflexa and M. polymorpha
subsp. ruderalis) did not show the single nucleotide deletion, consistent with the other two available
mitogenomes of Marchantiales (Figure S5). The initial report of a ccmFc fission in Marchantia should be
re-examined to determine if it is specific to M. paleacea or the result of sequencing error.

In angiosperms, two independent fissions of ccmFn have been reported in Allium
(Amaryllidaceae) [25] and Brassicaceae [24,62]. In both cases, ccnFn1 and ccmFn2 are distant from each
other in the mitogenome and they share a similar breakpoint for the fission (Figure 6). The phylogenetic
distribution of the fission in Amaryllidaceae was investigated by polymerase chain reaction using
four genera in the family (Narcissus, Tulbaghia, Ipheion and Allium) and revealed that the separation of
the two sequences is restricted to Allium [25]. However, the status of the other three genera without
separation of ccmFn sequences does not necessarily guarantee that the gene is not split because there
are cases of gene fission where the two new genes occupy a single locus, for example, fission of ccmF
(into ccmFn and ccmFc) in Marchantiales (Figure S5) and ccmEn (into ccmFnl and ccmFn2) in Trifolium
(Figure 2). The distribution and status of ccmFn fission in Amaryllidaceae needs further investigation
including broad taxon sampling as well as confirmation with additional sequencing.

In Brassicaceae, it was argued that the fission is shared by all members of the family because
it is present in five complete or draft mitochondrial genomes covering the earliest diverging genus
(Aethionema) and other core genera (Arabidopsis, Brassica, Raphanus), whereas the mitogenome of the
sister family Cleomaceae does not have the fission [62]. Further investigation, including additional
published mitogenomes and assembled mitochondrial contigs for ccmF genes (Table S2), indicates that
three species of Aethionema do not have the fission of ccmFn (Figure 6b). This discrepancy could be
due an assembly error since the Aethionema data in the previous study was a draft mitogenome [62].
Whatever was the cause of discrepancy, it is clear that the fission of ccmFn is shared by many but
not all Brassicaceae. The fission occurred after the divergence of Aethionema (Figure 6b); however,
it is unknown if there was an intermediate stage that had experienced the fission but not physical
separation of the ccmFnl and ccmFn?2.

The independent fission of ccmFn in Trifolium represents a novel event. The fission was caused
by a deletion of 59 bp resulting in a frame shift and premature stop codon (Figure 2). An alternative
outcome of this deletion may be pseudogenization of the ccmFn. Mutational decay and deletion of
pseudogenized mitochondrial genes can be delayed by proximity to functional genes (e.g., rps1 in some
Trifolieae genera and rps14 in grasses, see Section 3.2). However, the gene that is consistently adjacent
to ccmFn (ccmFnl and ccmFn2) is ccmC, which is ca. 8kb away from ccmFn in the four Trifolium species
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(Figure 1). Moreover, the expanded ccmFn sequence sampling confirms that the two ORFs (ccmFn1 and
ccmFn2) are conserved in eight Trifolium species with only a limited amount of sequence variation in
coding regions (Figure S4). The fission break point in Trifolium is different from other angiosperms that
express cytochrome ¢ maturation protein from two ORFs, yet the conserved domains of the product
remain intact (Figure 6¢). Hence, the two ORFs of ccmFn are regarded as functional. The fission
occurred after the divergence of genera Trigonella and Melilotus in the Trifolieae. The conserved
adjacency of the two ORFs (ccmFnl and ccmFn2) may represent an early stage of the fission as in ccmFn
and ccmFc in Marchantiales (Figure S5).

The fission of ccmFn in Trifolium leads to another question: is this event related to
“intercompartmental piecewise gene transfer” [21]? To explore this question, we searched for ORFs
of ccmFn in draft nuclear genomes of four Trifolium species (T. subterraneum, T. pratense, T. pallescens
and T. repens). Both T. pallescens and T. repens (Figure S4) contained the ccmFn NUMTs however
these were not restricted to a single ORF but included a locus covering both ORFs (ccmFnl and
ccmFn2) and their flanking regions. The NUMTs were identical to their counterpart in mitogenome
suggesting that the transfer was a recent event (or artifact in nuclear genome assembly, see discussion
Section 3.3). Furthermore, there was no post-IGT sequence modification to suggest a functional transfer.
Evidence did not support a relationship between fission of the mitochondrial gene ccmFn and piecewise
or functional transfer in Trifolium species.

4. Materials and Methods

4.1. Assembly of Trifolium Mitogenomes

Four species of Trifolium from the two subgenera Chronosemium (T. aureum and T. grandiflorum)
and Trifolium (T. meduseum and T. pratense) were selected for mitogenome assembly. The 100 bp
paired-end raw Illumina (San Diego, CA, US) reads (Table 1) for mitogenome assembly were from Sabir
etal. [31]. Assembly and mapping were conducted in Geneious Prime (https://www.geneious.com)
using Geneious assembler and mapper, respectively. To assemble mitogenomes, the methods in Choi
et al. [8] were followed. First, raw reads from the plastome were excluded by mapping total raw reads
to corresponding plastomes [T. aureum (NC_024035.1), T. grandiflorum (NC_024034.1), T. meduseum
(NC_024166.1) and T. pratense (MT039393)]. De novo assembly was subsequently conducted for
each with ~30 million plastome-filtered reads. Among the assembled contigs, mitochondrial contigs
were selected by BLAST searches against reference Fabaceae mitogenome sequences at National
Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/genome/organelle/)
using BLASTN 2.8.0+ [63] with default options. Mitochondrial contigs were manually assembled
as single chromosomes in Geneious. Finally, draft mitogenomes were refined by mapping total
plastome-filtered reads.

4.2. Annotation and Genome Content Comparison of Mitogenomes

To compare gene and intron content of Trifolium mitogenomes with related taxa, five previously
published mitogenomes were acquired—two from IRLC [Vicia faba (KC189947) and Medicago truncatula
(NC_029641)], one from the robinioid clade [Lotus japonicus (NC_016743)], which is sister to IRLC; and
two from millettioid sensu lato clade [Millettia pinnata (NC_016742)] and Glycine max (NC_020455)],
which is sister to the hologalegina clade (robinioid + IRLC). Annotation of rRNAs, protein coding genes
and introns was conducted based on a reference mitogenome of Liriodendron tulipifera (NC_021152)
with a set of 41 conserved mitochondrial genes in Geseq [64]. Annotation for protein coding genes
was manually corrected in Geneious to fit ORFs. The annotation for tRNAs was cross-checked by
tRNAscan-SE v2.0 [65].
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4.3. Completion of the Trifolium Pratense Plastome

Plastome drafts of Trifolium pratense were reported in two different studies [31,34] but these
sequences contained a complex repeat structure. Since these previous assemblies were based on short
insert size data only (400-800 bp), the T. pratense plastome was redone using sequences generated
from one of the previous studies [31] as well as mapping data from mate-pair Illumina sequences
(ERX946087) with long insert sizes (7 kb) [43]. The newly assembled plastome was annotated as
described above but with MPI-MP chloroplast references in GeSeq [64].

4.4. Repeat Estimation in Organelle Genomes

Repeat content was estimated in four mitogenomes and 13 plastomes (Table 2). Tandem repeats
were identified using Tandem Repeats Finder version 4.09 [66] with default options. Other repeats
(larger than 30 bp) were analyzed by BLASTN [63] searches using each genome as both subject and
query with a word size of 7 and an e-value of 1e~® as described in Guo et al. [67]. All BLAST hits
were retained. Sequence coordinate information for BLAST hits was transferred to each genome as an
annotation in Geneious and overlapping regions between hits were excluded from the estimations
for repetitive DNA content. The distribution of dispersed repeat sequences across the genomes was
visualized by Circoletto [68].

4.5. Shared DNA among Different Genomic Compartments

Shared DNA was evaluated in Trifolium pratense because this is the only species examined
with completed sequences from all three genomic compartments. The mitogenome (MT039389)
and plastome (MT039393) in this study were utilized and the nuclear genome was available as
a chromosome-scale reference draft (LT990601- LT990607) [43]. Shared DNA among the genomes was
evaluated in MegaBLAST with a word size of 28 and an e-value of 1e™®. For nuclear and organelle
genome comparisons, each organelle sequence was used as the query against a subject database
comprising the nuclear genome. For the comparison of organelle genomes, the plastome was used as
the query and the mitogenome was the subject. BLAST hits with sequence identity higher than 90%
were retained. Overlapping regions between hits were excluded from the estimations of shared DNA.

To search for putative large-scale IGT (> 100 kb) events, shared DNA analysis was conducted as
described above but in this case the largest mitogenome (T. meduseum) and other published nuclear
genomes of Trifolium (Table S1) were utilized. BLAST hits between the mitogenome and a long stretch
of the nuclear region of T. repens were visualized by Circoletto [68].

4.6. Investigation on Status of rps1 in Nuclear and Mitochondrial Genome

Nuclear and mitochondrial sequences of rps1 generated for a previous study [39] were acquired
from NCBL Nuclear rpsl sequences for other species were searched by MegaBLAST using the
options described above. Mitochondrial rps1 of Vicia faba was used to query nuclear genomes of
Lotus japonicus, Medicago truncatula, Trifolium subterraneum, T. pratense, T. pallescens and T. repens
(Table S1). Mitochondrial rps1 sequences were also extracted from mitogenomes of Glycine max,
Millettia pinnata, Vicia faba and Medicago truncatula. All rps1 sequences were aligned with MAFFT
v.7.017 [69] using default options. Nucleotide substitution models were evaluated in jModelTest
v.2.1.6 [70] by Akaike information criterion. ML analysis (GTR +G with 1000 bootstrap replications)
was conducted using G. max and M. pinnata as outgroups in RAXML v.8 [71] in the CIPRES Science
Gateway [72].

The status of mitochondprial rps1 in Trifolium was tested by sequence alignment of the mitochondrial
locus containing rps1 and nad5 exonl in M. truncatula and the corresponding regions in four mitogenomes
of Trifolium. Sequences were aligned in MAFFT [69] using default options followed by manual
adjustments to minimize gaps and maximize apparent homologous regions.
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4.7. Investigation of ccmF Fissions in Selected Land Plants

To investigate previously reported fission events of ccmF genes in land plants [22-25],
all available sequences from published mitogenome sequences related to Marchantia,
Brassicaceae, Allium (Amaryllidaceae) and Fabaceae were acquired. For Marchantia, published
mitogenomes [22,73,74] of three species (M. inflexa, M. polymorpha subsp. ruderalis and M. paleacen)
were examined: two from NCBI [M. polymorpha subsp. ruderalis (NC_037508.1) and M. paleacea
(NC_001660.1)] and M. inflexa, which was downloaded from FigShare (https://figshare.com/
articles/Marchantia_inflexa_mitochondrion_and_chloroplast_genomes/6639209/1). Two mitogenomes
[Dumortiera hirsuta (NC_042873) and Riccia fluitans (NC_043906)], which are closely related to Marchantia
in Marchantiales [75,76], were also included. For Amaryllidaceae, a single mitogenome [Allium cepa
(NC_030100)] was available.

In addition to previously published and newly assembled mitogenomes, mitochondrial contigs
were generated from available NGS reads for Brassicales and Fabaceae (Table S2). Raw sequences were
mapped to reference ccmF sequences and the mapped reads were assembled in Geneious. The ccmF
sequences of Medicago truncatula and Batis maritima were used as references for Fabaceae and Brassicales,
respectively. Read depth of assembled ccmF genes (ccmFn and ccmFc) were compared to confirm that
sequences originated from mitogenome rather than from other genomic compartments (i.e., nuclear
and plastid genome). To search for nuclear copies of ccmFn1 and ccmFn2, subject databases comprising
four Trifolium nuclear genomes (Table S1) were queried with the mitochondrial ccmFn of T. aureum
using MegaBLAST with default options. All sequences were aligned with MAFFT as described above.
The status of ccmFn was plotted on cladograms from published phylogenetic studies of Trifolium [42]
and Brassicaceae [47]. Conserved domains of ccmFn were detected using the Motif Scan of MyHits
(http://myhits.isb-sib.ch/cgi-bin/motif_scan) [77,78].

5. Conclusions

The newly sequenced mitogenomes of Trifolium allowed comparative analyses of genome evolution
for all three cellular compartments—mitochondrion, nucleus and plastid. Unlike many angiospermes,
Trifolium lacks the highly repetitive genome organization of mitogenome. Some Trifolium plastomes has
a much more complex organization and has accumulated more repeat contents than the mitogenome.
a substantial amount of organellar DNA was detected in nuclear genomes of Trifolium, likely resulting
from recent and nonfunctional IGT events. In addition, there has been an ancestral, functional transfer
of mitochondprial rps1 to the nuclear genome. a notable finding from the mitogenome of Trifolium was
anovel gene fission of ccmFn. Analyses of ccmF genes in selected land plants provided further insights
into the fission events. Although the current study is based on limited sampling of the three genomic
compartments, our findings expand the understanding of how these genomes evolved in Trifolium.
The underlying evolutionary and molecular mechanisms should be examined in future comparisons
that incorporate broader taxonomic sampling for all three genomic compartments.
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Abbreviations

IGT Intracellular gene transfer

NUMT Nuclear mitochondrial DNA sequences
NUPT Nuclear plastid DNA sequences

IR Inverted repeat

IRLC Inverted repeat lacking clade

ORF Open reading frame

NGS Next-generation sequencing

DNA-RRR DNA replication, recombination and repair

ML Maximum likelihood

DSB Double strand break

NCBI National Center for Biotechnology Information
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