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Abstract
We prove that the full twist is a Serre functor in the homotopy category of type
A Soergel bimodules. As a consequence, we relate the top and bottom Hochschild
degrees in Khovanov–Rozansky homology, categorifying a theorem of Kálmán.
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1 Introduction

The category of Soergel bimodules is a categorification of the Hecke algebra. It can be
defined for anyCoxeter group, but herewe focus on typeAonly, where the correspond-
ing group is Sn and the category of Soergel bimoduleswill be denoted bySBimn . Given
a braid on n strands, Rouquier [26] constructed a complex of bimodules in SBimn and
proved that it is unique up to a canonical homotopy equivalence. Khovanov andRozan-
sky [16,17] used Rouquier complexes to define Khovanov–Rozansky homology HHH,
a categorification of the HOMFLY-PT polynomial.

In recent years, the Rouquier complex for the full twist braid FTn has attracted a lot
of attention. Elias and the second author [3] proved that FTn is in the Drinfeld center
of the homotopy category of Soergel bimodules Kb(SBimn). They also computed the
Khovanov–Rozansky homology of the full twist [4] and the categorified eigenvalues
of FTn acting on Kb(SBimn). The work of the first and second author, Negut, and
Rasmussen [7,8] related FTn to a natural line bundle O(1) on the isospectral Hilbert
scheme Xn .

In this paper, we prove that FTn (or rather its inverse FT−1
n ) acts as a kind of

Serre functor [2] in Kb(SBimn). Let k be a field of characteristic �= 2, and set R :=
k[x1, . . . , xn]. We will consider Soergel bimodules over k. Given a complex of free
R-modules X , we denote by X∨ = Hom(X , R) the dual complex. Note that the
cohomology of X∨ and of X are, in general, related by the universal coefficient spectral
sequence which can be rather complicated.

Theorem 1.1 For any two complexes A, B ∈ Kb(SBimn) one has

Hom(A, B) � Hom(FTn ⊗B, A)∨ = Hom(B,FT−1
n ⊗A)∨.

Here Hom(−,−) denotes the complex of homs; in the category of complexes of
Soergel bimodules, Hom(A, B) is a Z × Z-graded complex of (R, R)-bimodules.
Theorem 1.1 is true whether we regard Hom(−,−) as complexes of right R-modules
or left R-modules.

Remark 1.2 Typically one states Serre duality in the context of categories which are
linear over a field k. The statement above differs from this typical situation in several
ways. First, our category is monoidal, and the duality is taken with respect to the ring
R ∼= End(1) instead of a field. Second, the morphism spaces are bimodules over this
ring, and one may take the duals with respect to either the left or right actions. Finally,
the Serre duality functor itself is tensoring with an object of the category.

Remark 1.3 In [1,23] it was proven that action of the full twist on the BGG category
O is the Serre functor (see Sect. 6.4), which holds in more general types. We expect
that our result also generalizes to other types, though we do not consider this here.

Remark 1.4 Theorem 1.1 can be compared with a result of Haiman [11] which states
that the isospectral Hilbert scheme Xn is Gorenstein with the canonical sheafO(−1),
so tensor multiplication by O(−1) is a Serre functor.
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1.1 A reformulation

It is much more convenient to restate Theorem 1.1 in a more canonical form. First,
let SBim1,...,1 ⊂ SBimn denote the full subcategory consisting of direct sums of
shifted copies of the trivial bimodule 1 = R. The inclusion SBim1,...,1 → SBimn has
left and right adjoints �L ,�R : SBimn → SBim1,...,1 defined as follows. The left
adjoint�L(M) = HH0(M) is the quotient of M by the sub-bimodule of commutators
f m − m f , for all f ∈ R and all m ∈ M , while the right adjoint �R(M) = HH0(M)

is the sub-bimodule consisting of elements m ∈ M with f m − m f = 0 for all f ∈ R.
When M is a Soergel bimodule, HH0(M) and HH0(M) are free R-modules, hence
can be regarded as objects of SBim1,...,1 (see Sect. 3).

The additive functors HH0 and HH0 can be extended to complexes, and it is not
hard to see that

HH0(X) ∼= HomR,R(R, X), HH0(X) ∼= HomR,R(X , R)∨,

naturally in X ∈ Kb(SBimn). The second of these uses properties of Soergel bimod-
ules. Thus, Theorem 1.1 has the following as a special case (set A = R and B = X ).

Theorem 1.5 For any complex X ∈ Kb(SBimn) we have HH0(X) � HH0(FT⊗X)

in Kb(SBim1,...,1).

Using the rigid monoidal structure on Kb(SBimn) is not hard to see that in fact
Theorem 1.1 is equivalent to Theorem 1.5. However, the latter is often preferable
because the R-action is now canonically defined (the left and right R-actions on
HH0(−) and HH0(−) coincide). More importantly, the latter theorem generalizes to
a relative version, which we discuss next.

For each subset I ⊂ {1, . . . , n − 1}, let SBim I ⊂ SBimn denote the full monoidal
subcategory generated by the Bott-Samelson bimodules Bs with s ∈ I . Alternatively,
the subgroup of Sn generated by s ∈ I is of the form Sk1 × · · · × Skr ⊂ Sn , and we
will write

SBim I =: SBimk1,...,kr

by abuse.
The inclusion SBimn−1,1 → SBimn has left and right adjoints πL , πR : SBimn →

SBimn−1,1 defined as follows. With respect to the identification R = k[x1, . . . , xn],
πL(M) and πR(M) are the cokernel and kernel of xn ⊗ 1 − 1 ⊗ xn acting on M ,
respectively.

Remark 1.6 In the main body of the paper, we write π+ = πL and π− = πR because
of the interaction of these functors with positive and negative Rouquier complexes.

Theorem 1.7 Let Ln := FTn ⊗FT−1
n−1 denote the Rouquier complex of the Jucys–

Murphy braid σn−1 · · · σ2σ 2
1 σ2 · · · σn−1. For each complex X ∈ Kb(SBimn) we have

πR(X) � πL(Ln ⊗ X),
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naturally in X.

By analogy with Theorem 1.5, we may refer to L−1
n as the relative Serre functor

for SBimn relative to SBimn−1,1. In relation to the conjectures in [8], this result is a
monoidal, algebraic analogue of a geometric statement regarding theHilbert scheme of
points Hilbn(C2) relative to the nested Hilbert scheme Hilbn−1,1(C2). More precisely,
Hilbn−1,1(C2) yields a smooth correspondence between Hilbn(C2) and Hilbn−1(C2),
and the analogues of πR and πL differ by the canonical line bundle on Hilbn−1,1(C2)

which was computed e.g. in [11, Proposition 3.6.4] and corresponds to L−1
n .

We expect that this statement generalizes to arbitrary Coxeter systems in the follow-
ing way. Let (W , S) be any finite Coxeter system with longest element w0 ∈ W . After
choosing a realization h of W , there is an associated category SBim = SBim(W , h) of
Soergel bimodules (or its diagrammatic version; see [6] and references therein). Given
a subset I ⊂ S, we let SBim I ⊂ SBim denote the full monoidal, idempotent com-
plete, subcategory generated by Bott-Samelson bimodules Bs with s ∈ I . Note that
SBim I is just the category of Soergel bimodules associated to the parabolic subgroup
W I ⊂ W , defined using the given realization h of W .

Let FT := F⊗2
w0

denote the Rouquier complex for the “full twist” in Kb(SBim),
and let FTI := F⊗2

wI
, where wI is the longest element of W I ⊂ W . Set FTS/I :=

FT⊗FT−1
I . Equivalently, FTS/I = F

v−1
I

⊗ FvI , where vI ∈ W denote a shortest
length representative of the coset w0WI .

Conjecture 1.8 Let πL , πR : SBim → SBim I denote the left and right adjoints to
the fully faithful inclusion SBim I → SBim. Then FTS/I tensor commutes all with
complexes in Kb(SBim I ) up to natural homotopy equivalence, and

πR(X) � πL(FTS/I ⊗X) ∈ Kb(SBim I ),

naturally in X ∈ Kb(SBim).

The results in this paper prove this conjecture in the special case of subgroups
Sr × (S1)n−r ⊂ Sn .

1.2 Khovanov–Rozansky homology

Finally, we apply the above results to relate the “top” and “bottom” a-degrees in the
Khovanov–Rozansky homology. This categorifies a result of Kálmán [19] relating the
“top” and “bottom” parts of the HOMFLY-PT polynomial.

Theorem 1.9 For any braid β on n strands one has

HHHn(β ⊗ FTn)(−2n) � HHH0(β).

Remark 1.10 For torus knots, Theorem1.9was conjectured in [9,10,25]. Itwas recently
proved by the fourth author [24] based on the explicit computation of the Khovanov–
Rozansky homology for torus knots [21].
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We also prove a “folk result” relating the Hochschild cohomology (or homology)
of X ∈ Kb(SBimn) and its dual X∨.

Theorem 1.11 Let H̃H
k
(M) := HHk(M)(−2k). Then

H̃H
k
(X) ∼= H̃H

n−k
(X∨)∨

as complexes of R-modules, for all X ∈ Kb(SBimn).

If β is a braid, let r(β) denote the reversed braid, defined by r(σ±
i ) = σ±

i for
each elementary braid generator σ±

i , and r(ββ ′) = r(β ′)r(β) for all β, β ′ ∈ Brn . If
L is a link which is presented as the closure of a braid β, then the mirror image L
can be presented as the closure of the reversed inverse braid r(β−1). There is an anti-
involution of SBimn defined by switching the right and left actions of all bimodules,
which exchanges the Rouquier complexes for β and its reverse r(β). It follows that
HHk(β) ∼= HHk(r(β)). Since the Rouquier complexes satisfy F(β−1) = F(β)∨, we
obtain the following corollary:

Corollary 1.12 We have H̃H
k
(β) ∼= H̃H

n−k
(β−1)∨ as complexes of R-modules, for all

braids β ∈ Brn. In particular the complexes which compute the Khovanov–Rozansky
homologies of L and L are graded dual as complexes of free R-modules.

1.3 Remark on conventions

In this paper we have made the choice to work with honest Soergel bimodules
rather than the diagrammatic version of Elias-Khovanov [5], so that we may discuss
Hochschild (co)homology. Also, we have chosen to work over an infinite field k of
characteristic �= 2, so that Soergel’s results apply. When k is a more general ring, one
can still defineSBimn , but one loses control over the indecomposable objects inSBimn .
Nonetheless, we believe that all of our main results should hold over Z, but where
Kb(SBimn) gets replaced by the homotopy category of complexes of Bott-Samelson
bimodules. These two categories are equivalent when Soergel’s results apply.

2 Decategorified story

2.1 Jones-Ocneanu trace

Let Hn be the Hecke algebra for Sn . We adopt Soergel’s conventions below. We will
work over the fieldQ(q) or occasionally Q(q) ⊂ Q(v), where q = v−2. (The variable
v corresponds to the grading downshift endofunctor (1) of SBimn .) The algebra Hn is
formally generated by elements H1, . . . , Hn−1 modulo the braid relations and

(Hi + v)(Hi − v−1) = 0.

Given w ∈ Sn with a reduced expression w = si1 · · · sik , we define Hw = Hi1 · · · Hik .
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The algebra Hn has two standard bases as a Q(v)-vector space, namely the positive
standard basis {Hw}w∈Sn and the negative standard basis {H−1

w−1}w∈Sn .

Remark 2.1 It is also common to express everything above in terms of Tw :=
(−v)�(w) Hw, where �(w) is the Bruhat length of w.

Jones and Ocneanu [14,15] defined a trace function Tr : Hn → Q(v)[a], which
(up to a normalization factor) agrees with the HOMFLY-PT polynomial. We define
Jones-Ocneanu trace in Sect. 2.2 and list some of its most important properties here.

For x ∈ Hn , Tr(x) is a polynomial in a of degree at most n with coefficients being
rational functions in v. Let Trn(x) (resp. Tr0(x)) be the coefficient of an (resp. a0) in
Tr(x).

Lemma 2.2 If we express x ∈ Hn in the positive and negative standard bases as

x =
∑

w∈Sn

φw Hw =
∑

w∈Sn

ψw H−1
w−1 ,

then we have Trn(x) = (1 − q)−nφ1 and Tr0(x) = (1 − q)−nψ1.

Indeed, it follows from Lemma 2.6 below that for w �= 1 one has Trn(Hw) = 0
and Tr0(H−1

w−1) = 0, while Tr0(1) = Trn(1) = (1 − q)−n .

Let ε : Hn → Q(v) be the vector space projection
∑

w∈Sn
ψw H−1

w−1 �→ ψ1, and let

(−)∨ : Hn → Hn be the ring anti-automorphism defined by H∨
i = H−1

i and v∨ =
v−1. (We remark that (H−1

w−1)
∨ = Hw−1 .) Define a pairing 〈−,−〉 : Hn×Hn → Z[q±]

over Hn by 〈x, y〉 := ε(yx∨). By the definition, we have 〈xz, y〉 = 〈
x, yz∨〉

. We also
have ε(xy) = ε(yx), hence 〈zx, y〉 = 〈

x, z∨y
〉
.

Remark 2.3 This is the pairing which is categorified by the hom pairing of Soergel
bimodules (see for instance [5], modulo conventions).

Theorem 2.4 [19] For all x ∈ Hn one has 〈x FT, 1〉 = 〈1, x〉∨ and Trn(x FT) =
Tr0(x).

In [19], this is proved by the fact that φw0 = ψw0 in the expansions of x HT.

Equivalently, one has
〈
HT, H−1

w−1

〉
= 0 if w �= w0 and

〈
HT,HT−1

〉 = 1. It is also

known that the basis {H−1
w−1}w∈Sn is the dual basis of {Hw}w∈Sn with respect to this

pairing. (In fact, this orthogonality holds for Hecke algebras with any Coxeter group.
For more details and a categorified result, see Appendix A.)

2.2 Partial traces

We define Jones-Ocneanu trace on the Hecke algebra and its “partial analogues”
following [15]. The somewhat nonstandard conventions below are chosen to match
with the categorical picture, in SBimn , discussed later.
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The algebra Hn may be regarded as a bimodule over Hn−1, and we have an iso-
morphism

Hn ∼= Hn−1 ⊕ Hn−1 ⊗Hn−2 Hn−1

This isomorphism is not canonical, but two natural choices are (recall that q = v−2)

Hn−1 ⊕ Hn−1⊗Hn−2 Hn−1

±−→ Hn, (x, y⊗z) �→ (1−q)x + y H±

n−1z. (2.1)

With respect to these isomorphisms, the induced projections π± : Hn → Hn−1 are
characterized by

π±(x) = 1

1 − q
x, π±(x H±

n−1y) = 0

for all x, y ∈ Hn−1. We have a close relationship between π± and the Jones-Ocneanu
trace.

Definition 2.5 Let π : Hn[a] → Hn−1[a] be the map defined by π(x) = π−(x) +
aπ+(x).

Lemma 2.6 The map π : Hn → Hn−1 satisfies

π(x) = 1 + a

1 − q
x, π(x Hn−1y) = −vxy, π(x H−1

n−1y) = av−1xy,

for all x, y ∈ Hn−1. Furthermore, the composition

Hn[a] π−→ Hn−1[a] π−→ · · · π−→ H0[a] = Q(q)[a]

is the Jones-Ocneanu trace.

In particular, we have (π−)n(x) = Tr0(x) and (π+)n(x) = Trn(x) for x ∈ Hn . We
wish to categorify this story. It will turn out that the functors which categorify π± are
related by a relative version of Serre duality.

3 Background

In this section we discuss the backround in Soergel bimodules and Khovanov–
Rozansky homology. Throughout this paper, let k be an infinite field of characteristic
�= 2. This guarantees that the results of [28] apply, though we will only need these
results in type A.
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3.1 Soergel bimodules

Fix an integer n ≥ 1, and let R = k[x1, . . . , xn]. The ring R is graded such that the
variables xi have degree 2. The notions of an R-bimodule and an Re-module will be
identified, where Re = R ⊗k R = k[x1, . . . , xn, x ′

1, . . . , x ′
n].

Let Bi denote the elementary bimodules B1, . . . , Bn−1, defined by

Bi = R ⊗R(i,i+1) R(1),

where R(i,i+1) ⊂ R is the subalgebra of polynomials which are symmetric in xi , xi+1.
We may identify Bi (−1) with k[x1, . . . , xn, x ′

1, . . . , x ′
n] modulo the ideal generated

by

xi + xi+1 − x ′
i − x ′

i+1, xi xi+1 − x ′
i x ′

i+1, x j − x ′
j ( j �= i, i + 1).

Definition 3.1 Let SBimn denote the full subcategory of graded (R, R)-bimodules
generated by R, B1, . . . , Bn−1 and closed under direct sums, tensor product⊗R , grad-
ings shifts (±1), and direct summands (i.e. retracts). A tensor product of shifts of
elementary bimodules Bi is called a Bott-Samelson bimodule; by convention, R (the
“empty tensor product”) is also regarded as a Bott-Samelson bimodule.

Notation 3.2 Henceforth, the tensor product ⊗R will simply be denoted ⊗.

The category SBimn is additive but not abelian. An important result of Soergel
[28] states that, up to isomorphism and shift, the indecomposables Bw in SBimn(k)

are in one-to-one correspondence with w ∈ Sn . Furthermore, if si1 · · · si� is a reduced
expression of w ∈ Sn , then the Bott-Samelson bimodule Bs1 ⊗ · · · ⊗ Bs� has a unique
summand isomorphic to Bw, and the remaining summands are Bv for elements v ∈ Sn

of shorter length.
The morphisms in SBimn are degree preserving R-bilinear maps. In this paper we

almost exclusively workwith space ofmorphisms of arbitrary degree HomZ(M, N ) =⊕
Hom(M, N (i)). In fact, HomZ will occur so often that we will simply write

HomZ = Hom by abuse, and we will write Hom0 when we wish to emphasize degree
zero morphisms. By convention, every arrow M → N will be a degree preserving
map in whatever category, unless otherwise specified.

Now, the (graded) hom spaces Hom(M, N ) are graded R-bimodules, via

f · φ · g : m �→ f φ(m)g = φ( f mg)

for all f , g ∈ R, m ∈ M , and φ ∈ Hom(M, N ).
Given two complexes A = (A•, dA) and B = (B•, dB) in Kb(SBimn), we define

a complex Hom(A, B) = (Ck, dHom) where

Ck =
∏

i∈Z

Hom(Ai , Bi+k), dHom( f ) := dB ◦ f − (−1)k f ◦ dA.
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Notation 3.3 It would be more precise to write HomZ×Z

Kb(SBimn)
(A, B) instead of

Hom(A, B).

3.2 Hochschild (co)homology

If M is a graded R-bimodule, the zerothHochschild cohomologyHH0(M) is defined to
be the sub-bimodule of M spanned by homogeneous elementsm ∈ M with xi m = mxi

for all i = 1, . . . , n. Note that by definition,

HH0(M) ∼= Hom(R, M). (3.1)

Dually, the zeroth Hochschild homology HH0(M) is defined to be the quotient bimod-
ule M/[R, M], that is to say M modulo the k-submodule spanned by commutators
xi m − mxi for all homogeneous elements m ∈ M and all i = 1, . . . , n.

The higher derived functors of HH0 and HH0 are denoted by HHk and HHk ; they
are zero outside the range 0 ≤ k ≤ n.

Self-duality of the Koszul resolution of R as a graded bimodule implies the follow-
ing.

Lemma 3.4 For each graded R-bimodule M, we have

HHk(M) ∼= HHn−k(M)(−2n).

��
We will regard HHk(M) and HHk(M) as graded R, R-bimodules on which the

left and right R-actions coincide. That is to say, HHk and HHk may be viewed as
endofunctors of the category of graded R-bimodules.

We have the following “Markov moves” for HHk and HHk .

Lemma 3.5 Let M ∈ SBimn−1 be given. Then

HHk(M � 11) ∼=
(
HHk(M) � 11

)
⊕

(
HHk−1(M) � 11

)
(2) (3.2a)

HHk
(
(M � 11) ⊗ Bn−1 ⊗ (N � 11)

)

∼=
(
HHk(M ⊗ N ) � 11

)
(−1) ⊕

(
HHk−1(M ⊗ N ) � 11

)
(3) (3.2b)

HHk(M � 11) ∼=
(
HHk(M) � 11

)
⊕

(
HHk−1(M) � 11

)
(−2) (3.2c)

HHk

(
(M � 11) ⊗ Bn−1 ⊗ (N � 11)

)

∼=
(
HHk(M ⊗ N ) � 11

)
(1) ⊕

(
HHk−1(M ⊗ N ) � 11

)
(−3) (3.2d)

Here M � 11 = M[xn] is the induced R-bimodule.

Proof Standard, see [16] and also Proposition 3.10 in [13]. Note that (3.2c) and (3.2d)
follow from (3.2a) and (3.2b) using the isomorphism HHk(M) ∼= HHn−k(M)(−2n).

��
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Corollary 3.6 For each 1 ≤ k ≤ n and each B ∈ SBimn, the Hochschild cohomology
HHk(B) is a free R-module of finite rank.

Proof Since summands of free graded finite rank R-modules are free of finite rank, it
suffices to prove in the case when B = Bi1 ⊗ · · · ⊗ Bir is a Bott-Samelson bimodule.
We have

(Bi ⊗ Bi+1 ⊗ Bi ) ⊕ Bi+1 ∼= (Bi+1 ⊗ Bi ⊗ Bi+1) ⊕ Bi , (3.3)

B⊗2
i

∼= Bi (1) ⊕ Bi (−1), (3.4)

so a straightforward induction allows us to reduce to the case when the index n − 1
appears at most once among the indices i j . Applying (3.2a) or (3.2b) we reduce to the
statement for n − 1. ��

Thus, we may view HHk as an endofunctor of SBimn : the input is an arbitrary
Soergel bimodule and the output is a direct sum of finitely many copies of 1 with
shifts.

3.3 Duals

The category SBimn has a contravariant functor (−)∨ : SBimn → SBimn so that B∨
is the two-sided dual (or biadjoint) to B. This functor satisfies B∨

i = Bi for all i and
(M ⊗ N )∨ ∼= N∨ ⊗ M∨. The duality functor comes from the observation that each
bimodule B1, . . . , Bn−1 is a Frobenius algebra object in SBimn . Precisely, there are
canonical chain maps

Bi ⊗ Bi → Bi (−1), Bi (−1) → R, R → B(1), Bi (1) → Bi ⊗ Bi .

The first and and third of thesemaps give Bi (−1) the structure of an algebra object, and
the second and fourth maps give Bi (1) the structure of a coalgebra object. Moreover,
the composition of the first two defines a map Bi ⊗ Bi → R, the composition of
the last two defines a map R → Bi ⊗ Bi , and these maps realize the fact that Bi is
self-dual. In general we have natural isomorphisms:

Hom(A, B) ∼= Hom(R, B ⊗ A∨) ∼= Hom(A ⊗ B∨, R), (3.5a)

Hom(A, B) ∼= Hom(R, A∨ ⊗ B) ∼= Hom(B∨ ⊗ A, R). (3.5b)

Remark 3.7 Recall that Hom(A, B) is a graded R-bimodule. The isomorphisms (3.5a)
are isomorphisms of graded left R-modules, while (3.5b) are isomorphisms of graded
right R-modules. In fact we can say more; for instance the right action on Hom(A, B)

can be understood as corresponding to the R-action on Hom(R, B ⊗ A∨) via “middle
multiplication” on B ⊗ A∨.

Remark 3.8 We can also consider the duality isomorphisms for complexes. For each
A, B ∈ Kb(SBimn) we have

Hom(A, B) ∼= Hom(1, B ⊗ A∨) ∼= Hom(A ⊗ B∨,1)
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as complexes of R-modules (with the left R-action on Hom(A, B)), and

Hom(A, B) ∼= Hom(1, A∨ ⊗ B) ∼= Hom(B∨ ⊗ A,1)

as complexes of R-modules (with the right R-action on Hom(A, B)).

It can be useful to phrase this categorical duality in terms of the usual duality in
the category of R-modules. If M is a graded R-module, we let M� := HomZ

R(M, R)

denote the graded R-module of homs. There is a natural map M → (M�)�, which is
an isomorphism if M is free and finitely generated.

If B is an R, R-bimodule, then we can forget the left action, obtaining a dual
bimodule B� := Homk⊗R(B, R), or we can forget the right R-action, obtaining a
dual bimodule �B := HomR⊗k(B, R).

Lemma 3.9 We have natural isomorphisms

B� ∼= B∨ ∼= �B

for B ∈ SBimn.

Proof We will define inverse isomorphisms 
 : B� ↔ B∨ ∼= HomZ⊗R(R, B∨) : �.
Let f : B → R be a morphism of graded right R-modules. Define 
( f ) to be the
composition

R → B ⊗R B∨ → R ⊗R B∨ ∼= B∨,

where the first map is given by duality and the second is f ⊗ Id.
In the other direction, let g : R → B∨ be a morphism of graded right R-modules,

and define � to be the composition

B ∼= R ⊗R B → B∨ ⊗R B → R,

where the second map is g ⊗ IdB∨ and the last map is given by duality. It is an
easy exercise to show that � and 
 are inverse isomorphisms of graded bimodules
B� ∼= HomZ⊗R(R, B∨); they are clearly natural in B.

The proof that B∨ ∼= �B naturally is similar. ��
Notation 3.10 Henceforth, if M is a finitely generated free R-module, then M will be
regarded as an object of SBimn , and M� will be denoted by M∨.

The following is standard.

Lemma 3.11 For all M, N ∈ SBimn the hom bimodule Hom(M, N ) is free as a left
or right R-module.

Proof By Remark 3.7, it suffices to prove the lemma in the special case M = R; in
this case Hom(R, N ) = HH0(N ) is free by Corollary 3.6. ��
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Now we consider how the duality functor interacts with Hochschild (co)homology.

Lemma 3.12 For each B ∈ SBimn one has HHk(B∨)(−2n) = HHn−k(B)∨.

Proof It is easy to see from the definition that complexes of R-modules computing
Hochschild cohomology of B the Hochschild homology of B∨ are dual to each other.
Since the cohomology of both complexes are free over R, the cohomologies are dual
to each other as well, i.e. HHk(B∨) ∼= HHk(B)∨. The Lemma now follows from
Lemma 3.4. ��

The symmetries between HHk , HHn−k , HHk , and HHn−k are quite a bit more
attractive (and easy to remember) after a change in normalization.

Definition 3.13 Let H̃H
k
(M) := HHk(M)(−2k) and H̃Hk(M) := HHk(M)(2k).

Proposition 3.14 If k + l = n, then we have

H̃H
k
(M) ∼= H̃Hl(M) ∼= H̃H

l
(M∨)∨.

for all M ∈ SBimn. These are isomorphisms of functors from SBimn to the category
of finitely generated free graded R-modules.

Proof This is just a restatement of Lemmas 3.4 and 3.12. ��
Remark 3.15 When expressing the Poincaré series of Khovanov–Rozansky homology,
the variable a = AQ−2 is often used instead of A. This precisely corresponds to
replacing HHk by H̃H

k
. (Here, Q denotes the degree in Soergel bimodules and A

denotes the usual Hochschild degree).

Corollary 3.16 We have HH0(M) ∼= Hom(M, R)∨, natural for M ∈ SBimn.

Proof Indeed

Hom(M, R)∨ ∼= Hom(R, M∨)∨ ∼= HH0(M∨)∨ ∼= HH0(M).

Each of these isomorphisms is functorial in M . ��

3.4 Rouquier complexes

Let Kb(SBimn) denote the homotopy category of bounded complexes of Soergel
bimodules, with differentials of degree +1. It inherits all the structures from SBimn :
it is an additive tensor category with (two-sided) duals and shifts (±1). It is also
triangulated, with cohomological shift functors [±1].

We will need special complexes

Fi := 0 → Bi → R(1) → 0,

F−1
i := 0 → R(−1) → Bi → 0,
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where we have underlined terms in degree zero. Note that Fi = Cone(bi )[−1]
and F−1

i = Cone(b∗
i ) for some distinguished morphisms b : Bi → R(1) and

b∗ : R(−1) → Bi which are adjoint to each other.

Theorem 3.17 [26] The complexes Fi and F−1
i satisfy the braid relations up to canon-

ical homotopy equivalence:

(1) Fi ⊗ Fi+1 ⊗ Fi � Fi+1 ⊗ Fi ⊗ Fi+1,
(2) Fi ⊗ F−1

i � 1 � F−1
i ⊗ Fi ,

(3) Fi ⊗ Fj � Fj ⊗ Fi if |i − j | ≥ 2.

As a corollary, for any braid β expressed as a product of the standard generators σ±
i

we can define a complex F(β) as a tensor product of complexes of the form F±1
i ; the

resulting complex depends only on β and not the expression as a product of generators,
up to coherent homotopy equivalence. Since F∨

i � F−1
i , we have

F(β)∨ � F(β−1) � F(β)−1

for all β.

Definition 3.18 Given a collection of complexes X1, . . . , Xr ∈ Kb(SBimn), define the
graded triangulated hull 〈X1, . . . , Xr 〉 to be the smallest full triangulated subcategory
of Kb(SBimn) containing X1, . . . , Xr and closed under grading shifts. We also refer
to 〈X1, . . . , Xr 〉 as the span of {Xi }.
Proposition 3.19 For each w ∈ Sn let Fw and F−1

w denote the Rouquier complexes
associated to the positive braid lift of a chosen reduced expression for w. Then
{Fw}w∈Sn and {F−1

w }w∈Sn span Kb(SBimn).

3.5 Triply graded Khovanov–Rozansky homology

Every additive functor can be extended term-wise to complexes. In particular, for a
complex C = (C•, dC ) and j ∈ Z we can define Hochschild cohomology HH j (C) as
the complex

· · · → HH j (Ck) → HH j (Ck+1) → · · ·

whose differential is just the functor HH j applied to dC . If C � D then HH j (C) �
HH j (D) as complexes of R-modules. Eachof the natural isomorphisms in §3.2 extends
without trouble to the corresponding categories of complexes. In particular if X ∈
Kb(SBimn) is a complex of Soergel bimodules then

HHk(X)(−2n) ∼= HHn−k(X∨)∨ ∼= HHn−k(X)

naturally.

Definition 3.20 For each X ∈ Kb(SBimn), let HH•(X) := ⊕n
k=0 HH

k(X) and
HH•(X) := ⊕n

k=0 HHk(X).
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The homology of HH•(X) is often denoted HHH•(X), but we will not need this.

Lemma 3.21 (Markov moves) Let X , Y ∈ Kb(SBimn−1) be arbitrary. Then

HHk(X ⊗ Fn−1 ⊗ Y ) � HHk(X ⊗ Y )[−1](1)

and

HHk(X ⊗ F−1
n−1 ⊗ Y ) � HHk−1(X ⊗ Y )(−1).

Proof Standard; see [16] and Proposition 3.10 in [13]. ��
Corollary 3.22 In the notation of Lemma 3.21 we have

HH0(X ⊗ Fn−1 ⊗ Y ) � 0, HH0(X ⊗ F−1
n−1 ⊗ Y ) � 0.

We also record an important connection of HH to the Jones-Ocneanu trace:

Theorem 3.23 [16] The Euler characteristic of HH equals the Jones-Ocneanu trace:

∑

i

aiχ(HHi (X)(−2i)) = Tr([X ])

for all X ∈ Kb(SBimn), where χ is a graded Euler characteristic and [X ] is the class
of X in the Grothendieck group K0(SBimn) ∼= Hn.

Corollary 3.24 We have χ(HH0(X)) = Tr0([X ]) and χ(HHn(X)) = Trn([X ]).

4 Decompositions of categories

We first recall some background on categorical idempotents and semi-orthogonal
decompositions.

4.1 Adjoints to inclusions

Let A be a category and B a category with functor σ : B → A. The following is
classical; its proof is an exercise in category theory and Yoneda embedding. See also
Theorem 1 in §IV.3 of [22].

Lemma 4.1 Suppose σ : B → A has a left adjoint πL : A → B. Then σ is fully
faithful if and only if the counit of the adjunction is an isomorphism πL ◦ σ → IdB.

Dually, if σ has a right adjoint πR : A → B, then σ is fully faithful if and only if
the unit of the adjunction is an isomorphism IdB → πR ◦ σ . ��

If these equivalent conditions hold, then EL := σ ◦ πL and ER := σ ◦ πR are
idempotent functors A → A with essential image equivalent to B. We discuss these
next, after an example.
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Example 4.2 Let A be an algebra and I ⊂ A a two-sided ideal. Let A be the category
of A-modules and B ⊂ A the category of objects on which I acts by zero. Then the
inclusion B → A has a left adjoint sending an A-module M to M/I M , and a right
adjoint sending M to the annihilator of I in M . Both functors can be regarded as
idempotent endofunctors of A with image B.

Definition 4.3 A localization functor on a category C is a pair (E, η) consisting of an
endofunctor E : C → C and a natural transformation η : IdC → E such that Eη and

ηE are isomorphisms E
∼=→ EE.

A colocalization functor on C is a pair (E, ε) consisting of an endofunctor E : C →
C and a natural transformation ε : E → IdC such that Eε and εE are isomorphisms

EE
∼=→ E.

Lemma 4.4 Let E be an endofunctor of a category C with essential image B ⊂ C. If
η : IdC → E (resp. ε : E → IdC) gives E the structure of a localication (resp. colo-
calization) endofunctor, then E defines a left (resp. right) adjoint to the inclusion
B → C.

Conversely ifB ⊂ C is a full subcategory such that the inclusion σ : B → C admits
a left (resp. right) adjont π : C → B, then the σπ is a localization (resp. colocaliza-
tion) endofunctor.

Proof Suppose that E : C → C is a localization functor. We must show that if E(Y ) ∼=
Y and X ∈ A is arbitrary, then the unit map ηX : X → E(X) induces an isomorphism

HomA(X , Y ) ∼= HomB(E(X), Y ) = HomA(E(X), Y ).

This is proven, for example in [18], Proposition 2.4.1.
The statement about colocalization functors follows by taking opposite categories.
Conversely, if σ : B → C admits a left adjoint π : C → B, then the counit of

the adjunction ε : πσ → IdB is an isomorphism of functors. Let η : IdC → σπ be
the unit of the adjunction. Then ησπ, σπη : σπ → σπσπ are isomorphisms with
inverse σεπ . ��
Remark 4.5 In linear algebra there can bemany idempotent endomorphisms of a vector
space V which project onto a given subspace W ⊂ V (the embedding W → V has
many left inverses). In the realm of category theory, idempotents are quite a bit more
rigid. Indeed, the inclusion B → A of a full subcategory can be the image of at most
one localization functor and at most one colocalization functor (because left and right
adjoints to a given functor are unique when they exist).

4.2 Semi-orthogonal decompositions

In the setting of triangulated categories it is possible to discuss the notion of comple-
mentary idempotent functors. LetM a triangulated category and letA be a triangulated
monoidal category which acts onM by exact endofunctors (see [12] for details).
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Example 4.6 The only example we will need in this paper is the following. Let C be
an additive k-linear category with End(C) the category of linear endofunctors. Then
the homotopy category of complexes M := Kb(C) is an A-module category where
A := Kb(End(C)). In other words, complexes of endofunctors of C can be thought
of as endofunctors of Kb(C). For instance if F : C → C, then F can be thought of
as a complex in Kb(End(C)) of degree zero, and the action of F on complexes is the
usual:

F(X) := · · · F(d)−→ F(Xk)
F(d)−→ F(Xk+1)

F(d)−→ · · ·

Definition 4.7 An idempotent triangle in A is a distinguished triangle of the form

P
ε→ I

η→ Q
δ→ P[1] (4.1)

such thatPQ � 0 � QP inA. In such a triangle, we refer toP andQ as complementary
idempotents in A.

A unital idempotent in A is an object Q ∈ A with a map η : I → Q such that ηQ
and Qη are isomorphisms Q → QQ. A counital idempotent in A is an object P ∈ A

with a map ε : P → I such that Pε and εP are isomorphisms PP → P.

We will denote the identity of A by I, and we will write the monoidal structure in
A simply by juxtaposition of functors. Moreover, if f is a morphism inA and X is an
object of A, then we write f X and X f for f ⊗ IdX and IdX ⊗ f , respectively. This
notation is compatible with the usual conventions for writing horizontal compositions
of functors and natural transformations.

Remark 4.8 If E ∈ A has the structure of a (co)unital idempotent, then its action on
M is a (co)localization functor.

Observe that if (4.1) is an idempotent triangle in A and X ∈ M is an object of the
A-module category M, then X fits into a distinguished triangle

P(X) → X → Q(X) → P(X)[1].

IfQ(X) � 0 then the first map is an isomorphism inMP(X) → X , while ifP(X) � 0
then the second map is an isomorphism X → Q(X), by properties of distinguished
triangles. Thus, we arrive at the following:

Observation 4.9 The essential image of P acting on M coincides with the kernel of Q
acting on M, and vice versa.

Lemma 4.10 In any idempotent triangle (4.1) the maps ε and η give P and Q the
structure of a counital and unital idempotent, respectively. Conversely:

(1) if (Q, η) is a unital idempotent in A, then P := Cone(η)[−1] has the structure of
a counital idempotent.

(2) If (P, ε) is a counital idempotent in A then Q := Cone(ε) has the structure of a
unital idempotent in A.
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Proof Straightforward. ��
Definition 4.11 If (P, ε) is a counital idempotent, then Pc := Cone(ε) is called the
(unital) complement of P. If (Q, η) is a unital idempotent, then Qc := Cone(η)[−1]
is called the (counital) complement of Q.

Note that (Pc)c � P and (Qc)c � Q.
Next we discuss the relation between categorical idempotents and semi-orthogonal

decompositions. The following property is key.

Lemma 4.12 Let (P, ε) be a counital idempotent in A with complement Q := Pc.
Then for each X , Y ∈ M we have

HomM(P(X),Q(Y )) ∼= 0.

Proof See Theorem 4.13 in [12]. ��
This semi-orthogonality property is closely tied with the discussion of adjoints to

inclusions in the previous section. Let Q(M) denote the essential image of Q, and let
Y ∈ Q(M) be given, so thatQ(Y ) � Y . Let X be arbitrary. Then Lemma 4.12 implies
that HomM(P(X), Y ) ∼= 0. Applying HomM(−,Q(Y )) to the distinguished triangle
P(X) → X → Q(X) → P(X)[1], we find that precomposing with ηX : X → Q(X)

is an isomorphism

η∗
X : HomQ(M)(Q(X), Y )

∼=→ HomM(X , Y )

This shows that Q, when regarded as a functor M → Q(M) is the left adjoint to the
inclusion Q(M) → M.

Similarly, if X ∈ P(M) and Y ∈ M is arbitrary then applying HomM(X ,−) to
the distinguished triangle P(Y ) → Y → Q(Y ) → P(Y )[1] and using Lemma 4.12
shows that post-composing with εY : P(Y ) → Y is an isomorphism

(εY )∗ : HomP(M)(X ,P(Y ))
∼=→ HomM(X , Y ).

Thus, P defines the right adjoint to the inclusion P(M) → M.

Definition 4.13 Let N1,N2 ⊂ M be full triangulated subcategories. We say that
(N1,N2) is a semi-orthogonal decomposition of M, writtenM � (N1 → N2), if

(1) each object X ∈ M fits into a distinguished triangle

Y2
α→ X

β→ Y1
γ→ Y2[1], Yi ∈ Ni . (4.2)

(2) HomA(Y2, Y1) ∼= 0 for all Yi ∈ Ni .

The following is an immediate corollary of Lemma 4.12 and the fact that the kernel
of a (co)unital idempotent in A is the image of its complement.
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Corollary 4.14 If P (resp. Q) is a counital (resp. unital) idempotent in A then each A-
module category M inherits a semi-orthogonal decomposition M � (ker P → im P)

(resp. M � (imQ → kerQ)). ��
Definition 4.15 If N ⊂ M is a full triangulated subcategory then N⊥ ⊂ M and
⊥N ⊂ M denote the full subcategories of objects X such that HomM(B, X) ∼= 0
(resp. HomM(X , B) ∼= 0) for all B ∈ N.

Theorem 4.16 If M � (N1 → N2) is a semi-orthogonal decomposition then

(1) Each distinguished triangle (4.2) is unique up to unique isomorphism (extending
the identity of X).

(2) The categories N1 and N2 determine each other: N1 = ⊥N2 and N2 = N⊥
1 .

It is also possible to show that in any semi-orthogonal decompositionM � (N1 →
N2) the “projections onto Ni” are well-defined idempotent endofunctors of M (the
projection onto N1 is unital, while projection onto N2 is counital). However, we will
not need this.

Proof LetM � (N1 → N2) be a semi-orthogonal decomposition. We will first show
(1). Let

Z2
α′→ X

β ′
→ Z1

γ ′
→ Z2[1]

be a distinguished triangle with Zi ∈ Ni . We must construct a map to this triangle
from (4.2) and show that this map is unique. First, since Hom(Y2, Z1) ∼= 0 it follows
that:

• post-composingwith themapα′ : Z2 → X gives an isomorphismHom(Y2, Z2) →
Hom(Y2, X).

• pre-composing with the map β : X → Y1 gives an isomorphism Hom(Y1, Z1) →
Hom(X , Z1).

One sees this by applyingHom(Y2,−) to the distinguished triangle Z2 → X → Z1 →
and by applying Hom(−, Z1) to the distinguished triangle Y2 → X → Y1 →. Thus
there is a unique f2 : Y2 → Z2 such that α′ ◦ f2 = α and a uniqe f1 : Y1 → Z1 such
that f1 ◦ β = β ′. Thus, there is a unique map of triangles as claimed. The uniqueness
also implies that all such maps are isomorphisms of triangles.

Now we show (2). The containment N2 ⊂ N⊥
1 holds by the assumption of

semiorthogonality. To prove the opposite containment N⊥
1 ⊂ N2, suppose Z2 ∈ N⊥

1
is given. We have a distinguished triangle

Y2 → Z2 → Y1 → Y2[1]

with Yi ∈ Ni .Wewant to show that Y2 = Z2. To do this it suffices to show that Y1 = 0.
Apply the cohomological functor Hom(−, Y1), and consider the resulting long exact
sequence in cohomology:

HomM(Y1, Y1[k]) → HomM(Z2, Y1[k])
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→ HomM(Y2, Y1[k]) → HomM(Y1, Y1[k + 1]).

The second term is zero for all k by hypothesis that Z2 ∈ N⊥
1 , and the third term is zero

for all k by semi-orthogonality between N1 and N2. It follows that EndM(Y1) ∼= 0,
hence Y1 = 0, hence Z2 = Y2 ∈ N2, as claimed.

A similar argument shows that N1 = ⊥N2. ��
The following is useful in determining the images and kernels of (co)unital idem-

potents.

Lemma 4.17 Let {Xi } and {Y j } be a collection of objects in M. Let E be a unital or
counital idempotent in A, with complement Ec. Assume that E(Xi ) � 0 for all i and
E(Yi ) � Y j for all j . Then:

(1) E(X) � 0 for all X ∈ 〈Xi 〉i .
(2) E(Y ) � Y for all Y ∈ 〈

Y j
〉

j .
(3) If {Xi }i and {Y j } j together span all of C, then {Xi }i spans the kernel of E while

{Y j } j spans the image of E.

Proof Statements (1) follows by the five lemma, and (2) is equivalent to (1) for the
complement Ec. Now, for (3), let us assume for the sake of concreteness that E is a
counital idempotent with counit ε : E → I. Now, let Z ∈ M be given.Wemay express
Z as an iterated cone involving various Xi and Y j (with shifts). But E annihilates
each Xi , which implies that E(Z) can be expressed as some iterated cone involving
E(Y j ) � Y j , since E is assumed to be exact. It follows that the essential image of E
is spanned by the Y j . The same argument applied to Ec shows that the kernel of E is
spanned by the Xi . ��

5 Semi-orthogonal decompositions of the Hecke category

5.1 Two adjoints

Let C1 ⊂ SBimn denote the full subcategory generated by the trivial bimodule 1 = R
and its shifts. In this section we make the key observation that the inclusion ι : C1 →
SBimn has both a left adjoint and a right adjoint, given by HH0 and HH0.

First, for each B ∈ SBimn we will identify HH0(B) with the sub-bimodule of B
consisting of elements b ∈ B with f b = b f for all f ∈ R. This is free as a graded
R-module, hence is isomorphic to a finite direct sum of shifted copies of R. Thus, HH0

can be thought of as a functor from SBimn → C1, or as an endofunctor of SBimn .
The inclusion HH0(B) ⊂ B defines a natural transformation ε : HH0 → IdSBimn .

Also, for each B recall that HH0(B) is the quotient of B by the sub-bimodule
spanned by elements of the form f b − b f for all b ∈ B and all f ∈ R. This, too, is
free as a graded R-module, hence can be regarded as an object of C1. The projection
B → HH0(B) defines a natural transformation η : IdSBimn → HH0.

Lemma 5.1 We have the following:
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(1) the map ε : HH0 → IdSBimn makes HH0 into a counital idempotent endofunctor
of SBimn with image C1.

(2) the map η : IdSBimn → HH0 makes HH0 into a unital idempotent endofunctor of
SBimn with image C1.

Furthermore, when regarded as functors SBimn → C1, HH0 and HH0 are right and
left adjoints to the inclusion C1 → SBimn, respectively.

Proof It is clear that if B is a direct sum of shifted copies of R, then HH0(B) = B
and εB : HH0(B) → B is the identity map. On the other hand, HH0(B) ∈ C1 for all
B ∈ SBimn , so the image of HH0 is C1. A moment’s thought confirms that εHH0(B)

and HH0(εB) are natural isomorphisms HH0(HH0(B))
∼=→ HH0(B). This proves (1).

The proof of (2) is similar.
The fact that HH0 and HH0 define right and left adjoints to the inclusion of C1 →

SBimn now follows from general properties of (co)unital idempotent endofunctors. ��
Example 5.2 In case n = 2, HH0 sends R �→ R and Bs �→ R(1), while HH0 sends
R �→ R and Bs �→ R(−1).

5.2 Triangulated perspective on HH0 and HH0

We already know that the images of the idempotent functors HH0, HH0 are both
C1. What about the kernels? To answer this extend the functors HH0 and HH0 to
complexes. For each X ∈ Kb(SBimn), we have:

(1) HH0(X) ⊂ X is the subcomplex consisting of those homogeneous elements b
with f b = b f for all f ∈ R.

(2) HH0(X) is the quotient of X by the subcomplex spanned by elements f b − b f
for all homogeneous b ∈ X , f ∈ R.

Following Definition 4.11, we define endofunctors Q± : Kb(SBimn) which are
complementary to HH0,HH0, as follows. For each X ∈ Kb(SBimn) define

Q−(X) := Cone(HH0(X) → X),

Q+(X) := Cone(B → HH0(X))[−1].

In order to use the setup of Sect. 4.2, one should set M := Kb(SBimn) and A :=
Kb(End(SBimn)). ThenHH0 is a unital idempotent inEnd(SBimn) ⊂ A, and Q+ is its
complement. Similarly HH0 is a counital idempotent inA, and Q− is its complement.

Example 5.3 In case n = 2, recall that HH0 sends R �→ R and Bs �→ R(1). The unit
of HH0 consists of the identity map R → R and the dot map Bs → R(1). Thus, the
complementary idempotent Q+ sends R to the contractible complex Cone(IdR), and
sends Bs to Fs , the Rouquier complex associated to s.

A similar computation shows that Q− sends R to a contractible complex and Bs to
F−1

s .

Next we intend to use Lemma 4.17 to describe the images and kernels of HH0,HH0.
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Lemma 5.4 For all w �= 1 one has HH0(F−1
w ) � 0 and HH0(Fw) � 0.

Proof If w �= 1, we can find an integer 1 ≤ k ≤ n − 1 and a minimal length
representative of w which contains a unique copy of sk and no s j for j > k, so that
F±1

w = A ⊗ F±1
k ⊗ B for A, B ∈ Kb(SBimk). Then Corollary 3.22 gives the desired

relations. ��
Definition 5.5 Let T+ := 〈Fw〉w �=1 and T− := 〈

F−1
w

〉
w �=1 be the full triangulated

subcategories of Kb(SBim) generated by Fw (resp. F−1
w ) and their shifts, where w

ranges over all non-identity elements of Sn .

Theorem 5.6 The kernels of HH0 and HH0, regarded as endofunctors Kb(SBimn) →
Kb(SBimn) are T− and T+ respectively. That is to say, we have two semi-orthogonal
decompositions

Kb(SBimn) � (T− → 〈1〉)
� (〈1〉 → T+).

in which the projections onto 〈1〉 are HH0 and HH0, respectively.

Proof The triangulated category Kb(SBimn) is spanned by {F−1
w }w∈Sn . Now, since

HH0 annihilates F−1
w for w �= 1 (Lemma 5.4) and fixes F1 = 1, it follows from

Lemma 4.17 that 〈1〉 and T− are the image and kernel of HH0, respectively.
A similar argument shows that 〈1〉 and T+ are the image and kernel of HH0. This

yields the semi-orthogonal decompositions in the statement and completes the proof.
��

Remark 5.7 Theorem 5.6 can be regarded as a categorification of Lemma 2.2. Indeed,
HH0 is a counital idempotent functor whose image is 〈1〉 and whose kernel is〈
F−1

w

〉
w �=1. This is a categorification of the fact that the coefficient of a0 in the Jones-

Ocneanu trace picks out the coefficient of 1 in the {F−1
w }-expansion of x ∈ Hn .

On the other hand, HH0 is a unital dempotent endofunctor with image 〈1〉 and
kernel 〈Fw〉w �=1. Since HH0(X) ∼= HHn(X)(−2n), this yields a categorification of
the fact that the coefficient of an in Jones-Ocneanu trace picks out the coefficient of 1
in the {Fw}-expansion of x ∈ Hn .

5.3 Partial trace functors

We introduce some intermediate categories betweenSBimn andC1. For each parabolic
subgroup P := Sm1 × · · · × Smr ⊂ Sn , let SBimm1,...,mr = SBim(P) denote the full
subcategory of SBimn spanned by the bimodules Bw with w ∈ P and their shifts.
Note that SBim1,...,1 = C1. We regard SBimm1,...,mr as a full monoidal subcategory
of SBimn , and so SBimn can be thought of as a bimodule category over SBimm1,...,mr .

Definition 5.8 For M ∈ SBimn define π−(M) and π+(M) to be the kernel and cok-
ernel of xn ⊗ 1 − 1 ⊗ xn acting on M , respectively.
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The following is obvious.

Lemma 5.9 The functors π± are SBimn−1,1-bilinear, in the sense that

π±(X ⊗ Y ⊗ Z) ∼= X ⊗ π±(Y ) ⊗ Z

for all X , Z ∈ SBimn−1,1 and all Y ∈ SBimn; this isomorphism is natural in X , Y , Z.
��

Lemma 5.10 If M ∈ SBimn, then π±(M) is an object of SBimn−1,1, so π± are
well-defined functors SBimn → SBimn−1,1.

Proof An easy exercise shows that π±(Bn−1) ∼= R(±1) and π±(R) = R, hence

π±(X) = X (5.1)

and
π±(X ⊗ Bn−1 ⊗ Y ) ∼= X ⊗ Y (±1) (5.2)

for all X , Y ∈ SBimn−1,1. Every indecomposable Soergel bimodule appears as a direct
summand of some Bott-Samelson bimodule in which Bn−1 appears at most once, so
it follows that π±(Z) ∈ SBimn−1,1 for all Z ∈ SBimn . ��

Since π+(M) is a sub-bimodule of M , the inclusion π+(M) ↪→ M defines a
natural transformation ε : π+ R → Id. Similarly, the projection M � π−(M) defines
a natural transformation η : Id → π−.
Proposition 5.11 The functors π+ and π− are the left and right adjoints to the inclu-
sion SBimn−1,1 ↪→ SBimn.

Proof It is clear that π+ and π− are strict idempotent functors: (π±)2 = π±. In fact
the inclusion π−(M) → M makes π− into a localization functor and the projection
M → π+(M) makes π+ into a colocalization functor.

Lemma 4.4 then tells us that π− is right adjoint to the inclusion of its essential
image SBimn−1,1, and similarly π+ is left adjoint to the inclusion of its essential
image, which again is SBimn−1,1. ��

Since π+, π− are additive functors SBimn → SBimn−1,1 they can be extended to
complexes. Next we record how these functors interact with Rouquier complexes.

Lemma 5.12 We have the following “Markov moves” for π±:

π+(X ⊗ Fn−1 ⊗ Y ) � 0 � π−(X ⊗ F−1
n−1 ⊗ Y ) (5.3a)

π+(X ⊗ F−1
n−1 ⊗ Y ) ∼= Cone

(
X ⊗ Y (−1)

f→ X ⊗ Y (1)

)
, (5.3b)

π−(X ⊗ Fn−1 ⊗ Y ) ∼= Cone

(
X ⊗ Y (−1)

f→ X ⊗ Y (1)

)
[1] (5.3c)

for every X , Y ∈ Kb(SBimn−1,1), where f is “middle multiplication” by xn−1 − xn.
��
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Remark 5.13 If we forget the action of xn , then we obtain the more recognizable
Markov moves π+(X ⊗ F−1

n−1 ⊗ Y ) � X ⊗ Y (−1)[1] and π−(X ⊗ Fn−1 ⊗ Y ) �
X ⊗ Y (1)[−1].

Remark 5.14 We refer to π± as the partial trace functors. They can be regarded as
functorsSBimm,1,...,1 → SBimm−1,1,1,...,1 for all 1 ≤ m ≤ n. Composing themyields

HH0 = (π−)n : SBimn → SBim1,...,1 = C1

and

HH0 = (π+)n : SBimn → SBim1,...,1 = C1

Remark 5.15 Note that the inclusion SBimn−1 → SBimn−1,1 is not full: hom spaces
in SBimn−1,1 are obtained from those in SBimn−1 by applying − ⊗k k[xn]. On
the other hand, there is a fully faithful functor on the level of homotopy categories
σ : Kb(SBimn−1) → Kb(SBimn−1,1), sending

X �→ Cone
(
(X � 11)

xn−→ (X � 11)
)

.

The Grothendieck groups of SBimn−1 and SBimn−1,1 are both naturally identified
with Hn−1, and σ categorifies multiplication by (1 − q).

There is a forgetful functor F : SBimn−1,1 → Rn−1-bimod, where Rn−1 :=
k[x1, . . . , xn−1]. Note that F(Bw � 11) = Bw[xn] for all Bw ∈ SBimn−1, hence F
could be regarded (loosely speaking) as a categorification of multiplication by 1

1−q .

In any case F(σ (X)) � X for all X ∈ Kb(SBimn−1).
This explains how the apparently mysterious factor of (1− q) in (2.1) is built-in to

the categorical picture.

5.4 Relative semi-orthogonal decompositions

In the previous section we constructed idempotent endofunctors π± if SBimn which
project ontoSBimn−1,1.Nowwewould like to understand the semi-orthogonal decom-
positions they determine. That is to say, we want to understand the kernels of these
functors after extending to complexes π± : Kb(SBimn) → Kb(SBimn). To study
the kernels, we define the complementary idempotents by the usual formulas (Defini-
tion 4.11).

Q−(X) := Cone(π−(X) → X), Q+(X) := Cone(X → π+(X))[−1].

Definition 5.16 Let U± ⊂ Kb(SBimn) denote the full triangulated subcategory
spanned by the Rouquier complexes F±

w with w ∈ Sn�(Sn−1 × S1). Equivalently,
U± is the span of complexes of the form X ⊗ F±

n−1 ⊗ Y with X , Y ∈ Kb(SBimn−1,1).
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Theorem 5.17 The kernel of the idempotent endofunctor π± : Kb(SBimn) →
Kb(SBimn) is U±, so that we have semi-orthogonal decompositions

Kb(SBimn) �
(
Kb(SBimn−1,1) → U+)

�
(
U− → Kb(SBimn−1,1)

)
.

With respect to these semi-orthogonal decompositions π± can be described as the
projection onto Kb(SBimn−1,1) with kernel U±.

Proof The proof is similar to the proof of Theorem 5.6. If w ∈ Sn � (Sn−1 × S1), then
w can be presented as

w = w′sn−1w
′′

with w′, w′′ ∈ Sn−1 × S1. For such w we have

π+(Fw) ∼= Fw′ ⊗ π+(Fn−1) ⊗ Fw′′ � 0

and

π−(F−1
w ) ∼= F−1

w′ ⊗ π+(F−1
n−1) ⊗ F−1

w′′ � 0.

On the other hand, if w ∈ Sn−1 × S1, then we have Fw ∈ Kb(SBimn−1,1), and
so π±(Fw) ∼= Fw. Thus, Lemma 4.17 tells us that the image and kernel of π± :
Kb(SBimn) → Kb(SBimn) are Kb(SBimn−1,1) and U±, respectively. This gives the
desired semi-orthogonal decompositions and completes the proof. ��

6 Serre duality

Let HTn = Fw0 denote the Rouquier complex associated to the half twist, and let
FTn := HT⊗2

n denote the full twist. When the index n is understood, it will be omitted.
The purpose of this section is to prove the following.

Theorem 6.1 We have HH0(FT−1 ⊗X) � HH0(X) and HH0(X) � HH0(FT⊗X) as
complexes of R-modules, for all X ∈ K−(SBimn).

We will prove this theorem as a corollary of a certain “relative version.”

6.1 Jucys–Murphy braids and the splittingmap

Define braids Ln ∈ Brn inductively by L1 = 11 and

Ln = σn−1(Ln−1 � 11)σn−1, n ≥ 2.
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Wewill denote the braidLn and the Rouquier complex F(Ln) by the same notation.
Note that

FTn = L2 ⊗ L3 ⊗ · · · ⊗ Ln .

For any i we define the chain map ψi : Fi → F−1
i by the following diagram:

Fi = [Bi R(1)]

F−1
i = [R(−1) Bi ]

ψi

Clearly, Cone[ψi ] = [R(1) → R(−1)]. By combining these maps we get a “splitting
map” � : Ln → 1n . This map was studied in [7, Section 4] in a more complicated
“y-ified” version.

Lemma 6.2 The space of chain maps Hom(Ln,1n) is homotopy equivalent to R,
generated by the “splitting map” � : Ln → 1n. This splitting map becomes a
homotopy equivalence after applying π+.

Proof The first statement follows from the second. Indeed, if � becomes a homotopy
equivalence after applying π+ then we have

Hom(Ln,1) ∼= Hom(π+(Ln),1) � Hom(1,1) = R,

generated by �, as claimed. The first isomorphism above holds since π+ is the left
adjoint to the inclusion SBimn−1,1 → SBimn (Proposition 5.11).

To prove the second statement it suffices to show that the cone of the splitting map
� : Ln → 1n is mapped to a contractible complex by π+. However, Cone(�) is in
the triangulated hull of the Rouquier complexes

F(σn−1 · · · σk+1σkσk+1 · · · σn−1)

� F(σk · · · σn−2σn−1σn−2 · · · σk), 1 ≤ k ≤ n − 1,

Each of these is annihilated by π+ by Lemma 5.12, and the lemma follows. ��

6.2 Relative Serre duality

Lemma 6.3 Tensoring on the left (or right) with Ln restricts to an equivalence of
categories U− → U+ with inverse given by tensoring on the left (or right) with L−1

n ,
where U± is as in Definition 5.16.

Proof It is clear that tensoring on the left withLn restricts to a functorU− → U+, since
Ln ⊗ F−1

n−1 � Fn−1 ⊗ Ln−1 and Ln tensor commutes with all Rouquier complexes
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Fw withw ∈ Sn−1 × S1. Similarly, tensoring on the left withL−1
n restricts to a functor

U+ → U−. These functors are inverse equivalences. A similar argument takes care of
tensoring on the right with L±

n . ��

Theorem 6.4 We have π−(X) � π+(Ln⊗X) � π+(X⊗Ln) for all X ∈ Kb(SBimn).
These homotopy equivalences are natural isomorphisms of functors Kb(SBimn) →
Kb(SBimn−1,1).

Proof We only consider the equivalence π−(X) � π+(Ln ⊗ X); the equivalence
π−(X) � π+(X ⊗ Ln) is proven similarly. Let X ∈ Kb(SBimn) be given. We may
as well assume that X is expressed as

X � (Q−(X)
[1]→ π−(X))

where Q−(X) ∈ U−. Here, the label [1] above an arrow indicates a chain map of

degree 1 so for instance B � (C
[1]→ A) means that B � Cone(C[−1] → A) or,

equivalently B fits into a distinguished triangle of the form A → B → C → A[1].
Tensoring with Ln yields

Ln ⊗ X � (Ln ⊗ Q−(X)
[1]→ Ln ⊗ π−(X)).

Since Ln ⊗ Q−(X) ∈ U+, it follows that π+(Ln ⊗ Q−(X)) � 0, hence

π+(Ln ⊗ X) � π+(Ln ⊗ π−(X)) � π−(X).

In this last equivalence we used Lemma 6.2.
Now we consider the naturality of this homotopy equivalence. Let X → Y be

a chain map. Then in terms of the decompositions X � (π−(X) → Q−(X)) and
Y � (π−(Y ) → Q−(Y )), the chain map f can be written as

X �
( )

Q−(X) π−(X)

Y �
( )

Q−(Y ) π−(Y )

[1]

[1]

f π−( f )

.
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Applying π+(Ln ⊗ −) and contracting the contractible terms π+(Ln ⊗Q−(X)) and
π+(Ln ⊗ Q−(Y )), we obtain a diagram which commutes up to homotopy:

π+(Ln ⊗ X) � π+(Ln ⊗ π−(X)) π−(X)

π+(Ln ⊗ Y ) � π+(Ln ⊗ π−(Y ))

�

� π−(Y )

π+(Ln ⊗ f ) π+(Ln ⊗ π−( f )) π−( f )

.

The second square commutes up to homotopy because it is induced by the splitting
map Ln → 1 (together with the observation that π+(π−(X)) = π−(X) naturally).
This proves the statement about naturality. ��

6.3 Top versus bottom

For each 1 ≤ r ≤ n, let U±
r ⊂ Kb(SBimn) denote the full triangulated subcategories

spanned by X ⊗ F±
r−1 ⊗ Y for all X , Y ∈ Kb(SBim(Sr × Sn−r

1 ).
Iterating the semi-orthogonal decompositions from Sect. 5.4 yields more sophisti-

cated semi-orthogonal decompositions of Kb(SBimn) of the form:

Kb(SBimn) � (
SBim(Sr × Sn−r

1 ) → U+
r → U+

r+1 → · · · → U+
n

)
,

Kb(SBimn) � (
U−

n → · · · → U−
r+1 → U−

r → SBim(Sr × Sn−r
1 )

)
,

or more generally

Kb(SBimn) �
(
U−

lb
→ · · · → U−

l1
→ SBim(Sr × Sn−r

1 ) → U+
k1

→ · · · → U+
ka

)
,

for any decomposition {r + 1, . . . , n} = {k1 < · · · < ka} � {l1 < · · · < lb}.
The case r = 1 yields the semi-orthogonal decompositions considered in Sect. 5.2:

Kb(SBimn) � (
SBim(Sn

1 ) → T+) � (
T− → SBim(Sn

1 )
)
,

where T± ⊂ Kb(SBimn) is the full triangulated category spanned by the Rouquier
complexes F±1

w with w �= 1.

Proof of Theorem 6.1 We must show that

HH0(X) � HH0(FTn ⊗X)

for all X ∈ Kb(SBimn), and that these homotopy equivalences yield a natural isomor-
phism of functors Kb(SBimn) → Kb(R − gmod).
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We will prove this by induction on n. The base case n = 1 is trivial. Note that
FTn = Ln ⊗ FTn−1, HH0(X) = (π−)n(X), and HH0(X) = (π+)n(X). Thus,

HH0(X) = (π−)n(X)

� HH0(FTn−1 ⊗π−(X))

� HH0(FTn−1 ⊗π+(Ln ⊗ X))

∼= HH0(π
+(FTn−1 ⊗Ln ⊗ X))

= HH0(FTn ⊗X).

In the second line we used the induction hypothesis, in the third line we used Theo-
rem 6.4, in the fourth we used Lemma 5.9, and the last line is clear. ��
Remark 6.5 In light of the isomorphism HH0(Y ) ∼= HHn(Y )(−2n), we prefer to view
the result of Theorem 6.1 as saying

HHn(X)(−2n) � HH0(FT−1 ⊗X).

Theorem 6.6 The Rouquier complex for the full twist braid is a Serre functor for
Kb(SBimn). In other words, for all A, B ∈ Kb(SBimn) we have

Hom(A, B) = Hom(B ⊗ FT, A)∨,

where the dual on the right hand side is defined using the left R-action on the hom
complex.

Proof Recall that SBimn has duals, hence Hom(A, B) ∼= Hom(A ⊗ B∨,1) as com-
plexes of left R-modules. By Theorem 6.1, we have

Hom(A, B) ∼= Hom(A ⊗ B∨,1) ∼= HH0(A ⊗ B∨)∨

as complexes of left R-modules (the right action of R on Hom(A, B) corresponds to
“middle multiplication” on A ⊗ B∨. By Theorem 6.1, this latter complex is homotopy
equivalent to

HH0(A ⊗ B∨ ⊗ FT−1)∨ = Hom(1, A ⊗ B∨ ⊗ FT−1)∨ ∼= Hom(FT⊗B, A)∨

where in the last complex we use the left R-action on Hom(FT⊗B, A) when forming
the dual R-module (−)∨. These are homotopy equivalences of complexes of left R-
modules. ��

6.4 Soergel modules

In this section we review the Serre duality for the category of Soergel modules SMod,
which is closely related to the Bernstein-Gelfand-Gelfand category O for the Lie
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algebra gln . Soergel modules are obtained from Soergel bimodules as quotients by the
right R-action. Given M ∈ SBimn , we define

M = M ⊗R R/(x1, . . . , xn) = M ⊗R k.

For example, R = k. Note that the R ⊗k R action on the Soergel bimodule M factors
through the quotient R ⊗RSn R, so the residual R ⊗k k-action on M factors through
R ⊗RSn k. This latter ring is called the coinvariant ring, denoted C ; it is the quotient
of R by the ideal generated by positive degree symmetric functions in the xi . By
definition, a morphism in SMod is a homogeneous C-linear map.

Remark 6.7 Let us explain the connection between SMod and the BGG categories
O. Let O0 = O0(gln) denote the principal block of the category O for gln (i.e. the
block containing the trivial 1-dimensional representation). This category has a special
projective module P = Pw0 , the anti-dominant projective, whose endomorphism
ring is isomorphic to the coinvariant ring C . Soergel [28] proved that the functor
O0 → C-mod sending M �→ HomO0(P, M) is fully faithful on projectives, hence
identifies Db(O0) (� the homotopy category of projectives) with a full subcategory of
Kb(C-mod). This full subcategory is preciselyKb(SMod). An important consequence
(and the original motivation) for such a description is that it yields a Z-graded lift of
O0.

Soergel modules do not form amonoidal category, but they form amodule category
over SBimn : given A, B ∈ SBimn , we have

AB = A ⊗R B. (6.1)

The functor · can be extended to complexes, and defines a functor Kb(SBimn) →
Kb(SModn). Equation (6.1) holds for complexes as well. As a consequence, left tensor
multiplication with Rouquier complexes defines a braid group action onKb(SModn).

Lemma 6.8 For A, B ∈ Kb(SBimn) one has

Hom(A, B) = Hom(A, B) ⊗R k,

where we consider Hom(A, B) as a right R-module.

Proof It is sufficient to prove the lemma for A, B ∈ SBimn . Then A and B are free as
right R-modules, and Hom(A, B) is free as a right R-module by Lemma 3.11, so the
result follows. ��
Theorem 6.9 For all A, B ∈ Kb(SMod) one has

Hom(A, B) = Hom(B,FT−1 ⊗A)∗,

where in the right hand side we take a linear dual over k.
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Again, here we regard FT−1 as a complex of Soergel bimodules acting (on the left)
on the complex of Soergel modules A.

Proof We can assume A = M and B = N for M, N ∈ SBimn . Then

Hom(M, N ) = Hom(N ,FT−1 ⊗M)∨,

where we regard both sides as complexes of (right) R-modules. Now.

Hom(A, B) = Hom(M, N ) = Hom(M, N ) ⊗R k,

Hom(B,FT−1 ⊗A) = Hom(N ,FT−1 ⊗M) = Hom(N ,FT−1 ⊗M)

= Hom(N ,FT−1 ⊗M) ⊗R k,

and

Hom(B,FT−1 ⊗A)∗ = Hom(N ,FT−1 ⊗M)∨ ⊗R k.

��
Theorem6.9was proved earlier in [1,23] by differentmethods and using the relation

between SMod and the category O.
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Appendix A: Semiorthogonal decompositions for coxeter groups

Let W be a Coxeter group with the set of reflections S. Let h be a realization of
W . Define R = k[h], and Bs = R ⊗Rs R for s ∈ S. The category SBimW of
Soergel bimodules is the smallest full subcategory of the category of R − R bimodules
containing R and all Bs and closedunder direct sums, direct summands, tensor products
and grading shifts. For W = Sn and h = kn we recover the category SBimn defined
in Sect. 3.1.

Rouquier complexes can be defined in the homotopy category Kb(SBimW ) simi-
larly to Sect. 3.4:

Fs = [Bs → R], F−1
s = [R → Bs]

In [26] Rouquier proved that they satisfy the relations in the braid group associated to
W . Therefore for anyw ∈ W one can consider a Rouquier complex Fw corresponding
to the positive permutation braid associated to any reduced expression of w. It does
not depend on the choice of a reduced expression up to homotopy equivalence.
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We define triangulated subcategories U<w and U≤w of Kb(SBimW ) generated by
the Rouquier complexes Fv with v < w (and v ≤ w) in Bruhat order.

For any s ∈ S, there exists a chain map ψs : Fs → F−1
s such that

Cone[Fs → F−1
s ] = [R → R]. (A.1)

As an immediate corollary, we get the following:

Proposition A.1 For any w ∈ W there is a chain map ψw : Fw → F−1
w−1 . The cone of

ψw is filtered by F−1
u−1 for u < w in Bruhat order.

In [20] Libedinsky and Williamson proved a much stronger statement (conjectured
by Rouquier in [27], p. 215 before Remark 4.12).

Theorem A.2 [20] If w �= v then Hom(Fv, F−1
w−1) = 0. If w = v then

Hom(Fw, F−1
w−1) = R is generated by the map ψw.

Corollary A.3 We have Hom(Fw, R) = 0 for w �= 1.

In type A this corollary is an easy consequence of Corollary 3.22. In fact, Theo-
rem A.2 also can be deduced:

Proposition A.4 Theorem A.2 follows from Corollary A.3.

Proof Assume that Hom(Fw, R) = 0 for w �= 1. Note that

Hom(Fv, F−1
w−1)

∼= Hom(Fv Fw−1 , R).

We induct on the number min(l(v), l(w)). The base case follows from the assumption.
Without loss of generality, we may assume l(v) ≤ l(w). Let v = v′s for a simple
reflection s and l(v′) = l(v) − 1. If l(ws) > l(w) then w �= v and ws �= v′, so we
have

Hom(Fv Fw−1 , R) = Hom(Fv′ Fsw−1 , R) = Hom(Fv′ F(ws)−1 , R) ∼= 0,

where the last equality follows from the induction hypothesis. So we assume l(ws) <

l(w). Let w = w′s. The map ψs : Fs → F−1
s induces a map

Hom(Fv′, F−1
w′−1) = Hom(Fv′ F−1

s , F−1
w′−1 F−1

s ) → Hom(Fv′ Fs, F−1
w′−1 F−1

s )

= Hom(Fv, F−1
w−1),

whose cone is filtered byHom(Fv′, F−1
w−1), which vanishes by the induction hypothesis

since l(v′) < l(v) ≤ l(w). So we are reduced to the statement for the pair v′, w′. ��
We use Theorem A.2 to deduce a very important fact about Rouquier complexes

which does not appear to be explicitly stated in the literature.

Theorem A.5 We have Hom(Fw, Fv) = 0 unless w ≤ v in Bruhat order.



79 Page 32 of 33 E. Gorsky et al.

Proof By Proposition A.1 Fv is homotopy equivalent to a complex filtered by F−1
u−1

with u ≤ v. Therefore Hom(Fw, Fv) = 0 unless Hom(Fw, F−1
u−1) �= 0 for some

u ≤ v. But by Theorem A.2 this is possible only if u = w, and hence w ≤ v. ��
Corollary A.6 For all w we have semiorthogonal decompositions U≤w = 〈U<w, Fw〉
and U≤w = 〈F−1

w−1 ,U<w〉.
Proof By Proposition A.1 the category U≤w is generated by U<w and Fw, or, equiv-
alently, by U<w and F−1

w−1 (since Cone[Fw → F−1
w−1 ] ∈ U<w). Now for all u < w we

have Hom(Fw, Fu) = 0 by Theorem A.5 and Hom(Fu, F−1
w−1) = 0 by Theorem A.2.

��
Corollary A.7 If W is a finite Coxeter group then for all w ∈ W the inclusion U≤w ↪→
Kb(SBimW ) has both left and right adjoints.

Proof Fix an arbitrary total order ≺ on W refining the Bruhat order, let w0 be the
longest element in W . Then for all w we have a chain

w = w(1) ≺ w(2) ≺ · · · ≺ w(k) = w0.

Similarly to Corollary A.6, the inclusions U≤w(i) ↪→ U≤w(i+1) have both left and right
adjoints, and by combining these we get adjoints to the inclusion

U≤w(i) ↪→ U≤w0 = Kb(SBimW ).

��
If W ′ is a parabolic subgroup of W , we can consider the category of Soergel

bimodules SBimW ′ associated to the same realization h.

Corollary A.8 Let W be a finite Coxeter group and W ′ a parabolic subgroup. Then the
inclusion Kb(SBimW ′) → Kb(SBimW ) has both left and right adjoints.

Proof We have Kb(SBimW ′) = U≤w where w is the longest element of W ′. ��
Note that in type A this gives an alternative construction of adjoints to inclusions of

SBimn,1,...,1 in SBimm . However, it seems that the direct construction of adjoints in
Sect. 5 is easier to work with than the induction on Bruhat graph as in Corollary A.7.
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