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Abstract

We prove that the full twist is a Serre functor in the homotopy category of type
A Soergel bimodules. As a consequence, we relate the top and bottom Hochschild
degrees in Khovanov—Rozansky homology, categorifying a theorem of Kéalman.
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1 Introduction

The category of Soergel bimodules is a categorification of the Hecke algebra. It can be
defined for any Coxeter group, but here we focus on type A only, where the correspond-
ing groupis S, and the category of Soergel bimodules will be denoted by SBim,,. Given
a braid on n strands, Rouquier [26] constructed a complex of bimodules in SBim,, and
proved that it is unique up to a canonical homotopy equivalence. Khovanov and Rozan-
sky [16,17] used Rouquier complexes to define Khovanov—Rozansky homology HHH,
a categorification of the HOMFLY-PT polynomial.

In recent years, the Rouquier complex for the full twist braid FT,, has attracted a lot
of attention. Elias and the second author [3] proved that FT,, is in the Drinfeld center
of the homotopy category of Soergel bimodules K’ (SBim,,). They also computed the
Khovanov—Rozansky homology of the full twist [4] and the categorified eigenvalues
of FT, acting on kP (SBim,,). The work of the first and second author, Negut and
Rasmussen [7,8] related FT,, to a natural line bundle O(1) on the isospectral Hilbert
scheme X,,.

In this paper, we prove that FT, (or rather its inverse FT;I) acts as a kind of
Serre functor [2] in Kb (SBim,,). Let k be a field of characteristic # 2, and set R :=
k[x1, ..., x,]. We will consider Soergel bimodules over k. Given a complex of free
R-modules X, we denote by XY = Hom(X, R) the dual complex. Note that the
cohomology of XV and of X are, in general, related by the universal coefficient spectral
sequence which can be rather complicated.

Theorem 1.1 For any two complexes A, B € K?(SBim,,) one has
Hom(A, B) ~ Hom(FT, ®B, A)" = Hom(B, FT, ' ®A)".

Here Hom(—, —) denotes the complex of homs; in the category of complexes of
Soergel bimodules, Hom(A, B) is a Z x Z-graded complex of (R, R)-bimodules.
Theorem 1.1 is true whether we regard Hom(—, —) as complexes of right R-modules
or left R-modules.

Remark 1.2 Typically one states Serre duality in the context of categories which are
linear over a field k. The statement above differs from this typical situation in several
ways. First, our category is monoidal, and the duality is taken with respect to the ring
R = End(1) instead of a field. Second, the morphism spaces are bimodules over this
ring, and one may take the duals with respect to either the left or right actions. Finally,
the Serre duality functor itself is tensoring with an object of the category.

Remark 1.3 In [1,23] it was proven that action of the full twist on the BGG category
O is the Serre functor (see Sect. 6.4), which holds in more general types. We expect
that our result also generalizes to other types, though we do not consider this here.

Remark 1.4 Theorem 1.1 can be compared with a result of Haiman [11] which states
that the isospectral Hilbert scheme X, is Gorenstein with the canonical sheaf O(—1),
so tensor multiplication by O(—1) is a Serre functor.
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1.1 A reformulation

It is much more convenient to restate Theorem 1.1 in a more canonical form. First,
let SBim;, 1 C SBim, denote the full subcategory consisting of direct sums of
shifted copies of the trivial bimodule 1 = R. The inclusion SBim;,_; — SBim, has
left and right adjoints I1z, [T : SBim, — SBimj,_ defined as follows. The left
adjoint [Ty (M) = HHy(M) is the quotient of M by the sub-bimodule of commutators
fm —mf, forall f € R and all m € M, while the right adjoint [Tg(M) = HHO (M)
is the sub-bimodule consisting of elements m € M with fm —mf = Oforall f € R.
When M is a Soergel bimodule, HHy (M) and HH(M) are free R-modules, hence
can be regarded as objects of SBimj 1 (see Sect. 3).

The additive functors HHy and HHO can be extended to complexes, and it is not
hard to see that

HH(X) = Hompg p(R. X),  HHy(X) = Hompg z(X, R)",

naturally in X € K?(SBim,). The second of these uses properties of Soergel bimod-
ules. Thus, Theorem 1.1 has the following as a special case (set A = R and B = X).

Theorem 1.5 For any complex X € K?(SBim,,) we have HH®(X) ~ HHy(FT ®X)
in K’ (SBim;,__1).

Using the rigid monoidal structure on Kb (SBim,,) is not hard to see that in fact
Theorem 1.1 is equivalent to Theorem 1.5. However, the latter is often preferable
because the R-action is now canonically defined (the left and right R-actions on
HH(—) and HHy(—) coincide). More importantly, the latter theorem generalizes to
a relative version, which we discuss next.

For each subset I C {1, ...,n — 1}, let SBim; C SBim,, denote the full monoidal
subcategory generated by the Bott-Samelson bimodules B with s € I. Alternatively,
the subgroup of S, generated by s € [ is of the form Sg, x --- x S, C S,, and we
will write

SBim; =: SBimy, ..,
by abuse.
The inclusion SBim,,—1,; — SBim,, has left and right adjoints 7z, mg : SBim, —
SBim,_1,; defined as follows. With respect to the identification R = k[xy, ..., x,],

(M) and (M) are the cokernel and kernel of x, ® 1 — 1 ® x,, acting on M,
respectively.

Remark 1.6 In the main body of the paper, we write 7+ = 7, and 7~ = 7y because
of the interaction of these functors with positive and negative Rouquier complexes.

Theorem 1.7 Let £, := FT, ®FT;11 denote the Rouquier complex of the Jucys—
Murphy braid 6,1 - - '0201202 -~ 0y—1. For each complex X € lCh(SBimn) we have

mR(X) @ (Ln ® X),
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naturally in X.

By analogy with Theorem 1.5, we may refer to £, ! as the relative Serre functor
for SBim,, relative to SBim,_1 1. In relation to the conjectures in [8], this result is a
monoidal, algebraic analogue of a geometric statement regarding the Hilbert scheme of
points Hilb" (C?) relative to the nested Hilbert scheme Hilb" -1 (C?). More precisely,
Hilb*~1-1(C?) yields a smooth correspondence between Hilb” (C?%) and Hilb" 1 (C?),
and the analogues of 7 and 7 differ by the canonical line bundle on Hilb" 1! (C?
which was computed e.g. in [11, Proposition 3.6.4] and corresponds to £, L

We expect that this statement generalizes to arbitrary Coxeter systems in the follow-
ing way. Let (W, S) be any finite Coxeter system with longest element wg € W. After
choosing a realization b of W, there is an associated category SBim = SBim(W, h) of
Soergel bimodules (or its diagrammatic version; see [6] and references therein). Given
asubset I C S, we let SBim; C SBim denote the full monoidal, idempotent com-
plete, subcategory generated by Bott-Samelson bimodules B with s € 1. Note that
SBim; is just the category of Soergel bimodules associated to the parabolic subgroup
W! c W, defined using the given realization b of W.

Let FT := Flf?oz denote the Rouquier complex for the “full twist” in K?(SBim),
and let FT; = FS’IZ, where wy is the longest element of Wl c W. Set FTg;; =

FT®FTI_1. Equivalently, FTs;; = F, -1 ® Fy;, where v; € W denote a shortest
1
length representative of the coset woWj.

Conjecture 1.8 Let 7y, wg : SBim — SBim; denote the left and right adjoints to
the fully faithful inclusion SBim; — SBim. Then FTg,; tensor commutes all with
complexes in KP(SBim;) up to natural homotopy equivalence, and

7r(X) = 71, (FTs/r ®X) € K (SBim;),

naturally in X € K’ (SBim).
The results in this paper prove this conjecture in the special case of subgroups

Sp x (SN C Sp.

1.2 Khovanov-Rozansky homology

Finally, we apply the above results to relate the “top” and “bottom” a-degrees in the
Khovanov-Rozansky homology. This categorifies a result of Kadlmén [19] relating the
“top” and “bottom” parts of the HOMFLY-PT polynomial.

Theorem 1.9 For any braid 8 on n strands one has
HHH" (8 ® FT,,)(—2n) ~ HHH’(B).
Remark 1.10 For torus knots, Theorem 1.9 was conjectured in [9,10,25]. It was recently

proved by the fourth author [24] based on the explicit computation of the Khovanov—
Rozansky homology for torus knots [21].
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We also prove a “folk result” relating the Hochschild cohomology (or homology)
of X € K’(SBim,,) and its dual X V.

K '

Theorem 1.11 Let HH (M) := HH*(M)(—2k). Then
ik ~ Tk vy

HH (X)=HH (X")

as complexes of R-modules, for all X € K(SBim,,).

If B is a braid, let r(8) denote the reversed braid, defined by r(aii) = ol.i for
each elementary braid generator oii, and r(BB") = r(B)r(B) for all B, B’ € Br,. If
L is a link which is presented as the closure of a braid f, then the mirror image L
can be presented as the closure of the reversed inverse braid (8~'). There is an anti-
involution of SBim,, defined by switching the right and left actions of all bimodules,
which exchanges the Rouquier complexes for 8 and its reverse r(8). It follows that
HH*(B) = HHF(r(B)). Since the Rouquier complexes satisfy F(8~1) = F(8)", we
obtain the following corollary:

~k o~k
Corollary 1.12 We have HH (8) = HH (8~ ')" as complexes of R-modules, for all
braids B € Bry. In particular the complexes which compute the Khovanov—Rozansky
homologies of L and L are graded dual as complexes of free R-modules.

1.3 Remark on conventions

In this paper we have made the choice to work with honest Soergel bimodules
rather than the diagrammatic version of Elias-Khovanov [5], so that we may discuss
Hochschild (co)homology. Also, we have chosen to work over an infinite field k of
characteristic # 2, so that Soergel’s results apply. When k is a more general ring, one
can still define SBim,,, but one loses control over the indecomposable objects in SBim,,.
Nonetheless, we believe that all of our main results should hold over Z, but where
K’ (SBim,,) gets replaced by the homotopy category of complexes of Bott-Samelson
bimodules. These two categories are equivalent when Soergel’s results apply.

2 Decategorified story

2.1 Jones-Ocneanu trace

Let Hj,, be the Hecke algebra for S,,. We adopt Soergel’s conventions below. We will
work over the field Q(g) or occasionally Q(g) C Q(v), where g = v2. (The variable
v corresponds to the grading downshift endofunctor (1) of SBim,,.) The algebra Hi, is
formally generated by elements Hy, ..., H,_1 modulo the braid relations and

(H; +v)(H; —v™ ) =0.

Given w € S, with areduced expression w = s;, - - - 5;,, we define H,, = H;, --- H;,.
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The algebra Hj, has two standard bases as a Q(v)-vector space, namely the positive
standard basis {Hy, },yes, and the negative standard basis {Huj_l1 hwes, -

Remark 2.1 It is also common to express everything above in terms of Ty, :=
(—v)*™ g, where £(w) is the Bruhat length of w.

Jones and Ocneanu [14,15] defined a trace function Tr: H,, — Q(v)[a], which
(up to a normalization factor) agrees with the HOMFLY-PT polynomial. We define
Jones-Ocneanu trace in Sect. 2.2 and list some of its most important properties here.

For x € H,,, Tr(x) is a polynomial in a of degree at most n with coefficients being
rational functions in v. Let Tr" (x) (resp. TrO(x)) be the coefficient of a” (resp. a%) in
Tr(x).

Lemma 2.2 Ifwe express x € H, in the positive and negative standard bases as

X = Z ¢wHw = Z wwHu:—ll’

weS, weS,

then we have Tr" (x) = (1 — ¢) "¢1 and T (x) = (1 — ¢) " 1.

Indeed, it follows from Lemma 2.6 below that for w # 1 one has Tr" (Hy,) = 0
and TrO(HUj,ll) =0, while Tr(1) = Tr" (1) = (1 — ¢) ™.

Let ¢: H,, — Q(v) be the vector space projection ZweSn Y H;,ll — 1, and let
(—)": H, — H, be the ring anti-automorphism defined by H,Y = Hl._1 and v¥ =
v~!. (We remark that (Hl;_ll)v = H,-1.)Define a pairing (—, —) : H, xH, — Z[g¥]
over H, by (x, y) := e(yx"). By the definition, we have (xz, y) = (x, yzv). We also
have &(xy) = e(yx), hence (zx, y) = (x,z"y).

Remark 2.3 This is the pairing which is categorified by the hom pairing of Soergel
bimodules (see for instance [5], modulo conventions).

Theorem 2.4 [19] For all x € H, one has (xFT, 1) = (1,x)Y and Tr" (x FT) =
TrO (x).

In [19], this is proved by the fact that ¢, = v, in the expansions of x HT.
Equivalently, one has <HT, Hl;,l1> = 0if w # wo and (HT, HT’I) = 1. It is also

known that the basis {Huj ,11 }wes, is the dual basis of {H,, }yes, with respect to this
pairing. (In fact, this orthogonality holds for Hecke algebras with any Coxeter group.
For more details and a categorified result, see Appendix A.)

2.2 Partial traces

We define Jones-Ocneanu trace on the Hecke algebra and its “partial analogues”
following [15]. The somewhat nonstandard conventions below are chosen to match
with the categorical picture, in SBim,,, discussed later.
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The algebra H,, may be regarded as a bimodule over H,,_;, and we have an iso-
morphism

Hn = Hn—l ® Hn—l ®Hn_2 Hn—l
This isomorphism is not canonical, but two natural choices are (recall that g = v2)
(Di
Hoot @ Hyo1 ®m,, Hoot — Hyy (6, y®2) > (I—@)x+yH, 2. (2.1)

With respect to these isomorphisms, the induced projections 7F :H, —» H,_; are
characterized by

t(x) =

T X, ni(anlL_ly) =0

forall x, y € H,_;. We have a close relationship between 7+ and the Jones-Ocneanu
trace.

Definition 2.5 Let 7 : H,[a] — H,_;[a] be the map defined by 7 (x) = 7~ (x) +
arn T (x).

Lemma 2.6 The map w : H, — H,,_ satisfies

1+a
l—g¢q

m(x) = X, m(xH,_1y) = —vxy, n(an__lly) = av_lxy,

forall x,y € H,,_1. Furthermore, the composition
Hyla] = H,-ila] = -+ = Hyla] = Q(g)la]

is the Jones-Ocneanu trace.

In particular, we have (7 7)" (x) = Tr(x) and (7 1) (x) = Tr" (x) for x € H,,. We
wish to categorify this story. It will turn out that the functors which categorify 7+ are
related by a relative version of Serre duality.

3 Background

In this section we discuss the backround in Soergel bimodules and Khovanov—
Rozansky homology. Throughout this paper, let k be an infinite field of characteristic
# 2. This guarantees that the results of [28] apply, though we will only need these
results in type A.
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3.1 Soergel bimodules

Fix an integer n > 1, and let R = Kk[x1, ..., x,]. The ring R is graded such that the
variables x; have degree 2. The notions of an R-bimodule and an R¢-module will be
identified, where R® = R ®x R = k[x1, ..., x,, x], ..., x;].

Let B; denote the elementary bimodules By, ..., B,_1, defined by
B; = R Qgi.i+n R(1),

where RU-i+1D R is the subalgebra of polynomials which are symmetric in x;, x; 1.
We may identify B;(—1) with k[x1, ..., x,, x{, ..., x,] modulo the ideal generated
by

! / ’ ! ! . L
Xi + Xig1 —X; — Xj4q» XiXi+1 — X; X415 Xj—Xj (J#iLi+1).

Definition 3.1 Let SBim,, denote the full subcategory of graded (R, R)-bimodules
generated by R, By, ..., B,_ and closed under direct sums, tensor product ® g, grad-
ings shifts (£1), and direct summands (i.e. retracts). A tensor product of shifts of
elementary bimodules B; is called a Bott-Samelson bimodule; by convention, R (the
“empty tensor product”) is also regarded as a Bott-Samelson bimodule.

Notation 3.2 Henceforth, the tensor product ® g will simply be denoted Q.

The category SBim,, is additive but not abelian. An important result of Soergel
[28] states that, up to isomorphism and shift, the indecomposables B,, in SBim,, (k)
are in one-to-one correspondence with w € S,,. Furthermore, if s;, - - - 5;, is a reduced
expression of w € S, then the Bott-Samelson bimodule By, ® - - - ® By, has a unique
summand isomorphic to By, and the remaining summands are B,, for elements v € S,
of shorter length.

The morphisms in SBim,, are degree preserving R-bilinear maps. In this paper we
almost exclusively work with space of morphisms of arbitrary degree Hom%(M, N) =
@ Hom(M, N(i)). In fact, Hom?% will occur so often that we will simply write
Hom? = Hom by abuse, and we will write Hom® when we wish to emphasize degree
zero morphisms. By convention, every arrow M — N will be a degree preserving
map in whatever category, unless otherwise specified.

Now, the (graded) hom spaces Hom(M, N) are graded R-bimodules, via

f-d-g:m— fo(m)g=ad(fmg)

forall f,g € R,m € M, and ¢ € Hom(M, N).
Given two complexes A = (A®,d4) and B = (B°®, dp) in K?(SBim,,), we define
a complex Hom(A, B) = (Cy, dgom) Where

ck= ]_[Hom(A", By, dyom(f) :=dpo f— (=1 foda.
i€Z
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Notation 3.3 It would be more precise to write Homﬁbxémm )(A, B) instead of
Hom(A, B).

3.2 Hochschild (co)homology

If M is a graded R-bimodule, the zeroth Hochschild cohomology HH (M) is defined to
be the sub-bimodule of M spanned by homogeneous elements m € M withx;m = mx;
foralli =1, ..., n. Note that by definition,

HH’(M) = Hom(R, M). (3.1)

Dually, the zeroth Hochschild homology HHg (M) is defined to be the quotient bimod-
ule M/[R, M], that is to say M modulo the k-submodule spanned by commutators
x;m — mx; for all homogeneous elements m € M andalli =1, ..., n.

The higher derived functors of HH? and HH,) are denoted by HH* and HHy; they
are zero outside the range 0 < k < n.

Self-duality of the Koszul resolution of R as a graded bimodule implies the follow-
ing.

Lemma 3.4 For each graded R-bimodule M, we have
HHy (M) = HH" K (M) (—2n).

O

We will regard HH*(M) and HHg (M) as graded R, R-bimodules on which the
left and right R-actions coincide. That is to say, HH* and HH; may be viewed as
endofunctors of the category of graded R-bimodules.

We have the following “Markov moves™ for HH; and HH¥.

Lemma 3.5 Let M € SBim,,_ be given. Then

HH (M U 1)) = (HH"(M) U 111) o (HH""(M) U 111)(2) (3.22)
HH ((Mu11)®3,,_1 ®(N|_1]11)>

=~ (HHk(M ®N) U 11])(—1) ® (HHH(M ® N) L 111)(3) (3.2b)
HH (M U1)) = (HHk(M) L ]11) o (HHk_l(M) L ]11)(—2) (3.2¢)
HH (MU1)® By @ (NUTY)

~ (HHk(M®N) L 111)(1) @ (HHk,l(M®N) L 111)(—3) (3.2d)

Here M U 1| = M|x,] is the induced R-bimodule.

Proof Standard, see [16] and also Proposition 3.10 in [13]. Note that (3.2¢) and (3.2d)
follow from (3.2a) and (3.2b) using the isomorphism HHy (M) = HH"‘k(M)(—2n).
O
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Corollary 3.6 Foreach 1 < k < n and each B € SBim,,, the Hochschild cohomology
HH*(B) is a free R-module of finite rank.

Proof Since summands of free graded finite rank R-modules are free of finite rank, it
suffices to prove in the case when B = B;; ® - - - ® B;, is a Bott-Samelson bimodule.
We have

(Bi ® Bi+1® B;) ® Biy1 = (Bi+1 ® Bi ® Biy1) @ B, (3.3)
B®* = B;(1) ® Bi(—1), (3.4)

so a straightforward induction allows us to reduce to the case when the index n — 1
appears at most once among the indices i ;. Applying (3.2a) or (3.2b) we reduce to the
statement for n — 1. O

Thus, we may view HH¥ as an endofunctor of SBim,,: the input is an arbitrary
Soergel bimodule and the output is a direct sum of finitely many copies of 1 with
shifts.

3.3 Duals

The category SBim,, has a contravariant functor (—)" : SBim,, — SBim,, so that BY
is the two-sided dual (or biadjoint) to B. This functor satisfies Bl.v = B; for all i and
(M ® N)V = NV ® MV. The duality functor comes from the observation that each
bimodule By, ..., B,_| is a Frobenius algebra object in SBim,,. Precisely, there are
canonical chain maps

B; ® B — B;(-1), Bi(-1) >R, R— B(l), Bi(l)—> Bi® B;.

The first and and third of these maps give B; (—1) the structure of an algebra object, and
the second and fourth maps give B;(1) the structure of a coalgebra object. Moreover,
the composition of the first two defines a map B; ® B; — R, the composition of
the last two defines a map R — B; ® B;, and these maps realize the fact that B; is
self-dual. In general we have natural isomorphisms:

Hom(A, B) = Hom(R, B® AY) = Hom(A ® BY, R), (3.5a)
Hom(A, B) = Hom(R, AY ® B) = Hom(BY ® A, R). (3.5b)

Remark 3.7 Recall that Hom(A, B) is a graded R-bimodule. The isomorphisms (3.52a)
are isomorphisms of graded left R-modules, while (3.5b) are isomorphisms of graded
right R-modules. In fact we can say more; for instance the right action on Hom(A, B)
can be understood as corresponding to the R-action on Hom(R, B ® AY) via “middle
multiplication” on B ® A".

Remark 3.8 We can also consider the duality isomorphisms for complexes. For each
A, B € K?(SBim,,) we have

Hom(A, B) = Hom(1,B® AY) = Hom(A ® B, 1)
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as complexes of R-modules (with the left R-action on Hom(A, B)), and
Hom(A, B) = Hom(1, AY ® B) = Hom(B" ® 4, 1)
as complexes of R-modules (with the right R-action on Hom(A, B)).

It can be useful to phrase this categorical duality in terms of the usual duality in
the category of R-modules. If M is a graded R-module, we let M* := Hom% (M, R)
denote the graded R-module of homs. There is a natural map M — (M*)*, which is
an isomorphism if M is free and finitely generated.

If B is an R, R-bimodule, then we can forget the left action, obtaining a dual
bimodule B* := Homyggr(B, R), or we can forget the right R-action, obtaining a
dual bimodule *B := Homggi (B, R).

Lemma 3.9 We have natural isomorphisms

for B € SBim,,.

Proof We will define inverse isomorphisms @ : B* <> BY = Homzggr(R, BY) : V.
Let f : B — R be a morphism of graded right R-modules. Define ®(f) to be the
composition

R—> B®rBY - R®r BY = B,

where the first map is given by duality and the second is f ® Id.
In the other direction, let g : R — B be a morphism of graded right R-modules,
and define W to be the composition

B=R®rB— BY®r B — R,

where the second map is ¢ ® Idpv and the last map is given by duality. It is an
easy exercise to show that ¥ and ® are inverse isomorphisms of graded bimodules
B* = Homzgr(R, BY); they are clearly natural in B.

The proof that BY = * B naturally is similar. O

Notation 3.10 Henceforth, if M is a finitely generated free R-module, then M will be
regarded as an object of SBim,,, and M* will be denoted by M.

The following is standard.

Lemma 3.11 Forall M, N € SBim,, the hom bimodule Hom(M, N) is free as a left
or right R-module.

Proof By Remark 3.7, it suffices to prove the lemma in the special case M = R; in
this case Hom(R, N) = HHO(N) is free by Corollary 3.6. m]
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Now we consider how the duality functor interacts with Hochschild (co)homology.

Lemma 3.12 For each B € SBim,, one has HH* (BY)(—2n) = HH" %(B)".

Proof 1t is easy to see from the definition that complexes of R-modules computing
Hochschild cohomology of B the Hochschild homology of BY are dual to each other.
Since the cohomology of both complexes are free over R, the cohomologies are dual
to each other as well, i.e. HH;(BY) = HH¥(B)". The Lemma now follows from
Lemma 3.4. O

The symmetries between HH*, HH"*, HHg, and HH,,_ are quite a bit more
attractive (and easy to remember) after a change in normalization.

Definition 3.13 Let HH" (M) := HH (M)(—2k) and HH, (M) := HH; (M) (2K).
Proposition 3.14 [fk 4 [ = n, then we have

——*k — ——1
HH (M) = HH;(M) = HH (M")".

for all M € SBim,,. These are isomorphisms of functors from SBim,, to the category
of finitely generated free graded R-modules.

Proof This is just a restatement of Lemmas 3.4 and 3.12. O

Remark 3.15 When expressing the Poincaré series of Khovanov—Rozansky homology,
the variable « = AQ~? is often used instead of A. This precisely corresponds to

replacing HH* by e (Here, Q denotes the degree in Soergel bimodules and A
denotes the usual Hochschild degree).

Corollary 3.16 We have HHy(M) = Hom(M, R)Y, natural for M € SBim,,.
Proof Indeed

Hom(M, R)” = Hom(R, M¥)" = HH(M")" = HHy(M).

Each of these isomorphisms is functorial in M. O

3.4 Rouquier complexes

Let K”(SBim,,) denote the homotopy category of bounded complexes of Soergel
bimodules, with differentials of degree +1. It inherits all the structures from SBim,,:
it is an additive tensor category with (two-sided) duals and shifts (£1). It is also
triangulated, with cohomological shift functors [11].

We will need special complexes

Fi:=0— B; - R(1) = 0,
F7':=0— R(-=1) > B >0,
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where we have underlined terms in degree zero. Note that F; = Cone(b;)[—1]
and Ffl = Cone(b}) for some distinguished morphisms » : B; — R(1) and
b* : R(—1) — B; which are adjoint to each other.

Theorem 3.17 [26] The complexes F; and Fi_1 satisfy the braid relations up to canon-
ical homotopy equivalence:

(1) FiF®Fi+1QF; Fiy1 ® F; ® Fit1,
Q FoF ' ~1~F'®F,
(3) FF®F; ~ F;®F;ifli — j| > 2.

~
~

As a corollary, for any braid 8 expressed as a product of the standard generators ol.i

we can define a complex F(B) as a tensor product of complexes of the form Fijtl ; the
resulting complex depends only on 8 and not the expression as a product of generators,
up to coherent homotopy equivalence. Since F,’ >~ F i_l, we have

FB)Y ~FPB H~F@p)!
for all 8.

Definition 3.18 Given a collection of complexes X, ..., X, € Kb (SBim,,), define the
graded triangulated hull (X1, ..., X,) to be the smallest full triangulated subcategory
of K? (SBim,,) containing X1, ..., X, and closed under grading shifts. We also refer
to (X1, ..., X;) as the span of {X;}.

Proposition 3.19 For each w € S, let Fy, and Fujl denote the Rouquier complexes
associated to the positive braid lift of a chosen reduced expression for w. Then
{Fy)wes, and {Fy Yyes, span KP(SBim,,).

3.5 Triply graded Khovanov-Rozansky homology

Every additive functor can be extended term-wise to complexes. In particular, for a
complex C = (C®,d¢) and j € Z we can define Hochschild cohomology HH/ (C) as
the complex

... — HH/(C*) —» HH/ (C*) — ...

whose differential is just the functor HH/ applied to d¢. If C ~ D then HH/ (C) ~
HH/ (D) as complexes of R-modules. Each of the natural isomorphisms in §3.2 extends
without trouble to the corresponding categories of complexes. In particular if X €
K’ (SBim,,) is a complex of Soergel bimodules then

HHF(X)(—2n) = HH" % (XY)" = HH,_4(X)

naturally.

Definition 3.20 For each X € K’(SBim,), let HH*(X) = @}_,HH*(X) and
HH.(X) := @] _o HHx (X).
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The homology of HH® (X) is often denoted HHH® (X)), but we will not need this.
Lemma 3.21 (Markov moves) Let X, Y € K’(SBim,_) be arbitrary. Then

HHN(X ® F,_; ® Y) ~ HH*(X ® Y)[—1](1)
and
HH' (X ® F,”!| ® Y) ~ HH* ' (X @ V) (1),

Proof Standard; see [16] and Proposition 3.10 in [13]. O

Corollary 3.22 [n the notation of Lemma 3.21 we have
HHy(X ® F_1 @ Y) ~ 0, HH'X @ F, ', ® ¥) ~0.

We also record an important connection of HH to the Jones-Ocneanu trace:

Theorem 3.23 [16] The Euler characteristic of HH equals the Jones-Ocneanu trace:

> al X (HH (X)(=2i)) = Tr(IX])

forall X € Kb (SBimy,), where x is a graded Euler characteristic and [ X] is the class
of X in the Grothendieck group Ko(SBim,) = H,.

Corollary 3.24 We have x (HH?(X)) = Tr([X]) and x (HH"(X)) = Tr"([X]).

4 Decompositions of categories

We first recall some background on categorical idempotents and semi-orthogonal
decompositions.

4.1 Adjoints to inclusions

Let A be a category and B a category with functor ¢ : B — A. The following is
classical; its proof is an exercise in category theory and Yoneda embedding. See also
Theorem 1 in §1V.3 of [22].

Lemma 4.1 Suppose o : B — A has a left adjoint 7; : A — B. Then o is fully

faithful if and only if the counit of the adjunction is an isomorphism wty o 0 — Idg.
Dually, if o has a right adjoint wg : A — B, then o is fully faithful if and only if

the unit of the adjunction is an isomorphism Idg — 7w o 0. O

If these equivalent conditions hold, then E; := ¢ o 7y and ER := o o g are
idempotent functors A — A with essential image equivalent to B. We discuss these
next, after an example.
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Example 4.2 Let A be an algebra and I C A a two-sided ideal. Let A be the category
of A-modules and B C A the category of objects on which I acts by zero. Then the
inclusion B — A has a left adjoint sending an A-module M to M /I M, and a right
adjoint sending M to the annihilator of 7 in M. Both functors can be regarded as
idempotent endofunctors of A with image B.

Definition 4.3 A localization functor on a category C is a pair (E, ) consisting of an
endofunctor E : € — C and a natural transformation n : Ide — E such that En and

nE are isomorphisms E = EE.
A colocalization functor on C is a pair (E, &) consisting of an endofunctor E : ¢ —
C and a natural transformation ¢ : E — Ide such that E¢ and ¢E are isomorphisms

EE S E.

Lemma 4.4 Let E be an endofunctor of a category C with essential image B C C. If
n:Ide — E (resp. ¢ : E — Ide) gives E the structure of a localication (resp. colo-
calization) endofunctor, then E defines a left (resp. right) adjoint to the inclusion
B — C.

Conversely if B C Cis a full subcategory such that the inclusion o : B — C admits
a left (resp. right) adjont w : C — B, then the o1 is a localization (resp. colocaliza-
tion) endofunctor.

Proof Suppose that E : € — € is a localization functor. We must show that if E(Y) =
Y and X € A is arbitrary, then the unit map ny : X — E(X) induces an isomorphism

Hom 4 (X, Y) = Homg (E(X), Y) = Hom 4 (E(X), ).

This is proven, for example in [18], Proposition 2.4.1.
The statement about colocalization functors follows by taking opposite categories.
Conversely, if 0 : B — € admits a left adjoint 7 : € — B, then the counit of
the adjunction ¢ : mo — Idg is an isomorphism of functors. Let n : Ide — om be
the unit of the adjunction. Then nomw,onn : omr — omom are isomorphisms with
inverse o 7. O

Remark 4.5 Inlinear algebra there can be many idempotent endomorphisms of a vector
space V which project onto a given subspace W C V (the embedding W — V has
many left inverses). In the realm of category theory, idempotents are quite a bit more
rigid. Indeed, the inclusion B — A of a full subcategory can be the image of at most
one localization functor and at most one colocalization functor (because left and right
adjoints to a given functor are unique when they exist).

4.2 Semi-orthogonal decompositions

In the setting of triangulated categories it is possible to discuss the notion of comple-
mentary idempotent functors. Let M a triangulated category and let A be a triangulated
monoidal category which acts on M by exact endofunctors (see [12] for details).



79 Page 16 of 33 E. Gorsky et al.

Example 4.6 The only example we will need in this paper is the following. Let C be
an additive k-linear category with End(C) the category of linear endofunctors. Then
the homotopy category of complexes M := K" (@) is an A-module category where
A := KP(End(€)). In other words, complexes of endofunctors of € can be thought
of as endofunctors of K”(€). For instance if F : @ — C, then F can be thought of
as a complex in Kb (End(€@)) of degree zero, and the action of F' on complexes is the
usual:

Fd Fd Fd
FX) = - 29 poxty BD pxrty 29

Definition 4.7 An idempotent triangle in A is a distinguished triangle of the form

P5S15 QS Pl (4.1)

suchthat PQ ~ 0 >~ QP in A. In such a triangle, we refer to P and Q as complementary
idempotents in A.

A unital idempotent in A is an object Q € A with amap n : I — Q such that nQ
and Qg are isomorphisms Q — QQ. A counital idempotent in A is an object P € A
with a map ¢ : P — I such that Pe and ¢P are isomorphisms PP — P.

We will denote the identity of A by I, and we will write the monoidal structure in
A simply by juxtaposition of functors. Moreover, if f is a morphism in A and X is an
object of A, then we write fX and X f for f ® Idx and Idx ® f, respectively. This
notation is compatible with the usual conventions for writing horizontal compositions
of functors and natural transformations.

Remark 4.8 1If E € A has the structure of a (co)unital idempotent, then its action on
M is a (co)localization functor.

Observe that if (4.1) is an idempotent triangle in A and X € M is an object of the
A-module category M, then X fits into a distinguished triangle

P(X) - X - QX) = P(X)[1].

If Q(X) =~ 0 then the first map is an isomorphism in M P(X) — X, whileif P(X) ~ 0
then the second map is an isomorphism X — Q(X), by properties of distinguished
triangles. Thus, we arrive at the following:

Observation 4.9 The essential image of P acting on M coincides with the kernel of Q
acting on M, and vice versa.

Lemma 4.10 In any idempotent triangle (4.1) the maps € and n give P and Q the
structure of a counital and unital idempotent, respectively. Conversely:

(1) if (Q, n) is a unital idempotent in A, then P := Cone(n)[—1] has the structure of
a counital idempotent.

(2) If (P, ¢) is a counital idempotent in A then Q := Cone(e) has the structure of a
unital idempotent in A.
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Proof Straightforward. O

Definition 4.11 If (P, ) is a counital idempotent, then P¢ := Cone(e) is called the
(unital) complement of P. If (Q, n) is a unital idempotent, then Q¢ := Cone()[—1]
is called the (counital) complement of Q.

Note that (P€)¢ >~ P and (Q°)¢ ~ Q.
Next we discuss the relation between categorical idempotents and semi-orthogonal
decompositions. The following property is key.

Lemma4.12 Let (P, €) be a counital idempotent in A with complement Q = P¢.
Then for each X, Y € M we have
Homy(P(X), Q(Y)) = 0.

Proof See Theorem 4.13 in [12]. O

This semi-orthogonality property is closely tied with the discussion of adjoints to
inclusions in the previous section. Let Q(M) denote the essential image of Q, and let
Y € Q(M) be given, so that Q(Y) ~ Y. Let X be arbitrary. Then Lemma 4.12 implies
that Homy¢ (P(X), Y) = 0. Applying Homy¢(—, Q(Y)) to the distinguished triangle
P(X) - X - Q(X) — P(X)[1], we find that precomposing with nx : X — Q(X)
is an isomorphism

ny : Homgv) (Q(X), Y) = Homy (X, Y)

This shows that Q, when regarded as a functor M — Q(M) is the left adjoint to the
inclusion Q(M) — M.

Similarly, if X € P(M) and Y € M is arbitrary then applying Homy¢ (X, —) to
the distinguished triangle P(Y) — Y — Q(Y) — P(Y)[1] and using Lemma 4.12
shows that post-composing with ¢y : P(Y) — Y is an isomorphism

(ey)s : Homp(yo) (X, P(Y)) = Homy(X, Y).

Thus, P defines the right adjoint to the inclusion P(M) — M.

Definition 4.13 Let Nj, N, € M be full triangulated subcategories. We say that
(N1, N») is a semi-orthogonal decomposition of M, written M >~ (N — Np), if

(1) each object X € M fits into a distinguished triangle
o B 14
Yo > X = Y] = Yp[1], Y; e N;. “4.2)

(2) Hom 4 (Y>, Y1) =0forall Y; € N;.

The following is an immediate corollary of Lemma 4.12 and the fact that the kernel
of a (co)unital idempotent in A is the image of its complement.
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Corollary 4.14 IfP (resp. Q) is a counital (resp. unital) idempotent in A then each A-
module category M inherits a semi-orthogonal decomposition M >~ (ker P — im P)
(resp. M >~ (im Q — ker Q)). O

Definition 4.15 If N C M is a full triangulated subcategory then N+ < M and
LN c M denote the full subcategories of objects X such that Homy¢(B, X) = 0
(resp. Hom( (X, B) = 0) forall B € N.

Theorem 4.16 If M =~ (N1 — N») is a semi-orthogonal decomposition then

(1) Each distinguished triangle (4.2) is unique up to unique isomorphism (extending
the identity of X).
(2) The categories N1 and N» determine each other: N1 = +Ny and N, = Nf-.

It is also possible to show that in any semi-orthogonal decomposition M >~ (N| —
N3) the “projections onto N;”” are well-defined idempotent endofunctors of M (the
projection onto N7 is unital, while projection onto N, is counital). However, we will
not need this.

Proof Let M >~ (N1 — N>) be a semi-orthogonal decomposition. We will first show
(1). Let
a/ ﬁ/ y/
Zy —> X —> Z1 — Zo[1]
be a distinguished triangle with Z; € N;. We must construct a map to this triangle

from (4.2) and show that this map is unique. First, since Hom(Y>, Z1) = 0 it follows
that:

e post-composing withthemapa’ : Z; — X gives anisomorphism Hom (Y3, Z;) —
Hom(Y>, X).

e pre-composing with the map 8 : X — Y gives an isomorphism Hom(Yy, Z;) —
Hom(X, Z,).

One sees this by applying Hom (Y, —) to the distinguished triangle Z, — X — Z| —
and by applying Hom(—, Z) to the distinguished triangle Y» —- X — Y| —. Thus
there is a unique f> : Yo — Z; such thata’ o fp = « and a unige f] : Y; — Z; such
that f; o 8 = B’. Thus, there is a unique map of triangles as claimed. The uniqueness
also implies that all such maps are isomorphisms of triangles.

Now we show (2). The containment N, C Nll holds by the assumption of
semiorthogonality. To prove the opposite containment Nf‘ C Na, suppose Z, € Nf‘
is given. We have a distinguished triangle

Y > Zo — Y1 — 1o[l]
with ¥; € N;. We want to show that Y, = Z;. To do this it suffices to show that Y1 = 0.
Apply the cohomological functor Hom(—, Y1), and consider the resulting long exact

sequence in cohomology:

Homy¢ (Y71, Y1[k]) — Homy(Z3, Yi[k])
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— Homyy (Y2, Yi[k]) — Homy (Y1, Yi[k + 1]).

The second term is zero for all k by hypothesis that Z» € N+, and the third term is zero
for all k by semi-orthogonality between N1 and Nj. It follows that Endy (Y1) = 0,
hence Y1 = 0, hence Z, = Y, € N», as claimed.

A similar argument shows that N = IN,. O

The following is useful in determining the images and kernels of (co)unital idem-
potents.

Lemma4.17 Let {X;} and {Y;} be a collection of objects in M. Let E be a unital or
counital idempotent in A, with complement E€. Assume that E(X;) >~ 0 for all i and
E(Y;) = Y; for all j. Then:

(1) E(X) ~0forall X € (X;);.

(2) E(Y)~Y forallY € (Y,),..

Q) If {X;}i and {Y}; together span all of C, then {X;}; spans the kernel of E while
{Y;}; spans the image of E.

Proof Statements (1) follows by the five lemma, and (2) is equivalent to (1) for the
complement E°. Now, for (3), let us assume for the sake of concreteness that E is a
counital idempotent with counite : E — 1. Now, let Z € M be given. We may express
Z as an iterated cone involving various X; and Y; (with shifts). But E annihilates
each X;, which implies that E(Z) can be expressed as some iterated cone involving
E(Y;) = Y}, since E is assumed to be exact. It follows that the essential image of E
is spanned by the Y;. The same argument applied to E¢ shows that the kernel of E is
spanned by the X;. O

5 Semi-orthogonal decompositions of the Hecke category
5.1 Two adjoints

Let 1 C SBim,, denote the full subcategory generated by the trivial bimodule 1 = R
and its shifts. In this section we make the key observation that the inclusion ¢ : €1 —
SBim,, has both a left adjoint and a right adjoint, given by HHy and HH®.

First, for each B € SBim,, we will identify HH?(B) with the sub-bimodule of B
consisting of elements b € B with fb = bf for all f € R. This is free as a graded
R-module, hence is isomorphic to a finite direct sum of shifted copies of R. Thus, HH°
can be thought of as a functor from SBim, — Cjp, or as an endofunctor of SBim,,.
The inclusion HHO(B) C B defines a natural transformation ¢ : HH? — IdsBim,, -

Also, for each B recall that HHy(B) is the quotient of B by the sub-bimodule
spanned by elements of the form fb — bf for all b € B and all f € R. This, too, is
free as a graded R-module, hence can be regarded as an object of Cy. The projection
B — HHy(B) defines a natural transformation 7 : Idsgim, — HHo.

Lemma 5.1 We have the following:
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(1) themap ¢ : HHO — Idsgim, makes HHC into a counital idempotent endofunctor
of SBim,, with image C1.

(2) the map n : Idsgim, — HHo makes HHy into a unital idempotent endofunctor of
SBim,, with image C1.

Furthermore, when regarded as functors SBim,, — €1, HH® and HHy are right and
left adjoints to the inclusion C1 — SBim,,, respectively.

Proof 1t is clear that if B is a direct sum of shifted copies of R, then HHO(B) =B
and e : HHY(B) — B is the identity map. On the other hand, HH%(B) € @y for all
B € SBim,, so the image of HH” is C1. A moment’s thought confirms that EHHO(B)

and HH? (¢) are natural isomorphisms HH?(HH®(B)) = HHY(B). This proves (1).
The proof of (2) is similar.

The fact that HH? and HH, define right and left adjoints to the inclusion of €1 —
SBim,, now follows from general properties of (co)unital idempotent endofunctors. O

Example 5.2 In case n = 2, HHO sends R — R and B; — R(1), while HH sends
R +— R and By — R(-1).

5.2 Triangulated perspective on HH® and HH,

We already know that the images of the idempotent functors HHY, HHg are both
Cy. What about the kernels? To answer this extend the functors HH® and HHy to
complexes. For each X € Kb (SBim,,), we have:

(1) HHY(X) C X is the subcomplex consisting of those homogeneous elements b
with fb = bf forall f € R.

(2) HHp(X) is the quotient of X by the subcomplex spanned by elements fb — bf
for all homogeneous b € X, f € R.

Following Definition 4.11, we define endofunctors Qi : ICb(SBimn) which are
complementary to HHo, HH?, as follows. For each X € K”(SBim,,) define

0~ (X) := Cone(HH’(X) — X),
01(X) := Cone(B — HHo(X))[—1].

In order to use the setup of Sect. 4.2, one should set M := K?(SBim,,) and A :=
Kb (End(SBim,,)). Then HHy is a unital idempotent in End (SBim,,) C A, and Q7 isits
complement. Similarly HH? is a counital idempotent in A, and Q~ is its complement.

Example 5.3 In case n = 2, recall that HHg sends R — R and B; — R(1). The unit
of HHy consists of the identity map R — R and the dot map By — R(1). Thus, the
complementary idempotent Q% sends R to the contractible complex Cone(Idg), and
sends B; to Fy, the Rouquier complex associated to s.

A similar computation shows that Q™ sends R to a contractible complex and By to
F L

Next we intend to use Lemma 4.17 to describe the images and kernels of HH?, HH,.
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Lemma 5.4 For all w # 1 one has HH®(F;') =~ 0 and HHy(F,,) = 0.

Proof If w # 1, we can find an integer | < k < n — 1 and a minimal length
representative of w which contains a unique copy of s; and no s; for j > k, so that
Ffl=A® Fk:tl ® B for A, B € KP(SBimy). Then Corollary 3.22 gives the desired
relations. o

Definition 5.5 Let T+ := (Fu)wx1 and T7 = <F_1>w;t1 be the full triangulated

w
subcategories of K”(SBim) generated by F,, (resp. F, ') and their shifts, where w
ranges over all non-identity elements of Sj,.

Theorem 5.6 The kernels of HHC and HH,, regarded as endofunctors Kb (SBim,,) —
K (SBimy,) are T~ and T+ respectively. That is to say, we have two semi-orthogonal
decompositions

KP(SBim,) ~ (T~ — (1))
~ (1) —» TH).

in which the projections onto (1) are HH® and HHy, respectively.

Proof The triangulated category Kb (SBim,,) is spanned by {F,; l}wegn. Now, since
HHY annihilates F, U for w # 1 (Lemma 5.4) and fixes F; = 1, it follows from

Lemma 4.17 that (1) and T~ are the image and kernel of HH?, respectively.
A similar argument shows that (1) and T are the image and kernel of HHg. This
yields the semi-orthogonal decompositions in the statement and completes the proof.
O

Remark 5.7 Theorem 5.6 can be regarded as a categorification of Lemma 2.2. Indeed,
HHC is a counital idempotent functor whose image is (1) and whose kernel is

(Fuj 1>w 41" This is a categorification of the fact that the coefficient of a” in the Jones-

Ocneanu trace picks out the coefficient of 1 in the {F,; }-expansion of x € H,,.

On the other hand, HHy is a unital dempotent endofunctor with image (1) and
kernel (Fy),21. Since HHo(X) = HH"(X)(—2n), this yields a categorification of
the fact that the coefficient of a” in Jones-Ocneanu trace picks out the coefficient of 1
in the {F,,}-expansion of x € H,,.

5.3 Partial trace functors

We introduce some intermediate categories between SBim,, and C1 . For each parabolic
subgroup P := Sy, X -+ X Sp, C Sy, let SBimy,, .. », = SBim(P) denote the full
subcategory of SBim,, spanned by the bimodules B,, with w € P and their shifts.
Note that SBimy, = Cp. We regard SBim,,,,, . ,», as a full monoidal subcategory
of SBim,,, and so SBim,, can be thought of as a bimodule category over SBimy,,, . m, .

Definition 5.8 For M € SBim,, define w ~ (M) and 7+ (M) to be the kernel and cok-
ernel of x, ® 1 — 1 ® x,, acting on M, respectively.
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The following is obvious.

Lemma 5.9 The functors 7T are SBim,,_1,1-bilinear, in the sense that
+ ~ +
T XRYRZH) =X (Y)®Z

forall X, Z € SBim,_11 andallY € SBim,; this isomorphismis naturalin X, Y, Z.
O

Lemma5.10 If M € SBim,, then n=(M) is an object of SBim,_1 1, so ¥ are
well-defined functors SBim,, — SBim,_j 1.

Proof An easy exercise shows that 7% (B,_) = R(%£1) and 7*(R) = R, hence
5X) =X (5.1

and
T5HXQ®B,_1QY) =X QY (£]) (5.2)

forall X, Y € SBim,_1 1. Every indecomposable Soergel bimodule appears as a direct
summand of some Bott-Samelson bimodule in which B, appears at most once, SO
it follows that 7¥(Z) € SBim,_1,; for all Z € SBim,,. O

Since 71 (M) is a sub-bimodule of M, the inclusion 7+ (M) < M defines a
natural transformation & : 7+ R — Id. Similarly, the projection M — 7~ (M) defines
a natural transformation n : Id — 7~

Proposition 5.11 The functors m+ and 7w~ are the left and right adjoints to the inclu-
sion SBim,_; 1 < SBim,,.
Proof 1t is clear that 7+ and 7 ~ are strict idempotent functors: (7%)? = 7%, In fact
the inclusion 7~ (M) — M makes 7~ into a localization functor and the projection
M — 7™ (M) makes 7™ into a colocalization functor.

Lemma 4.4 then tells us that 7~ is right adjoint to the inclusion of its essential

image SBim,_1 1, and similarly 7 is left adjoint to the inclusion of its essential
image, which again is SBim,_1 1. O
Since 7+, 7~ are additive functors SBim,, — SBim,,_ 1.1 they can be extended to

complexes. Next we record how these functors interact with Rouquier complexes.

Lemma 5.12 We have the following “Markov moves” for w™:

TTX®F1®Y) 20~ (XQF | ®Y) (5.32)

n

n

(X ®F, ', ®Y) = Cone <X Y- L Xx® Y(])) , (5.3b)

7 (X ® F,_1 ®Y) = Cone (x ®Y(-) b Xx® Y(l)) (11 (5.3¢)

forevery X,Y € ICb(SBim,,_lyl), where f is “middle multiplication” by x,—1 — x.
O
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Remark 5.13 If we forget the action of x,, then we obtain the more recognizable
Markov moves 7T (X ® F, 11 RY) > XQY(—D[lland 7 " (X ® F,-1 QYY) ~
X®Y(D[-1]

Remark 5.14 We refer to ™ as the partial trace functors. They can be regarded as
functors SBimy, 1.1 — SBimy,_1,1.1,..1 forall 1 <m < n.Composing them yields

H’ = (#7)" : SBim, — SBim;__| = C;
and

HH) = (z*)" : SBim, — SBim;___
Remark 5.15 Note that the inclusion SBim,_; — SBim,_1 1 is not full: hom spaces
in SBim,_; 1 are obtained from those in SBim,_; by applying — ®x k[x,]. On
the other hand, there is a fully faithful functor on the level of homotopy categories
o : KP(SBim,_;) — ICb(SBim,,,L]), sending

X — Cone ((X LT =2 (X U 111)> .

The Grothendieck groups of SBim,_; and SBim,_j,; are both naturally identified
with Hj,_1, and o categorifies multiplication by (1 — gq).

There is a forgetful functor F : SBim,_1,;1 — R,—1-bimod, where R,_; =
Kk[xi, ..., x,—1]. Note that F(B,, U 1;) = By[x,] for all B,, € SBim,,_, hence F
could be regarded (loosely speaking) as a categorification of multiplication by ﬁ

In any case F(o (X)) >~ X forall X € Kb (SBim,,_1).
This explains how the apparently mysterious factor of (1 — ¢g) in (2.1) is built-in to
the categorical picture.

5.4 Relative semi-orthogonal decompositions

In the previous section we constructed idempotent endofunctors 7+ if SBim,, which
projectonto SBim,,_1,1. Now we would like to understand the semi-orthogonal decom-
positions they determine. That is to say, we want to understand the kernels of these
functors after extending to complexes 77 : KP(SBim,) — K?(SBim,). To study
the kernels, we define the complementary idempotents by the usual formulas (Defini-
tion 4.11).

0~ (X) := Cone(n~ (X) — X), 0T (X) := Cone(X — 7T (X))[—1].

Definition 5.16 Let U* < K’(SBim,) denote the full triangulated subcategory
spanned by the Rouquier complexes F; + with u) € Sy~ (Sy—1 x S1). Equivalently,
U* is the span of complexes of the form X® F 1 ®YwithX, Y € Kb (SBim,,_ 1.1)-
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Theorem 5.17 The kernel of the idempotent endofunctor 7+ : KP(SBim,) —
K?(SBim,,) is UE, so that we have semi-orthogonal decompositions

K (SBim,) ~ (le(SBimn_M) = u+)
~ (u— = ICb(SBim,,_U)).

+

With respect to these semi-orthogonal decompositions 7= can be described as the

projection onto Kb (SBim,,_1,1) with kernel U=,

Proof The proof is similar to the proof of Theorem 5.6. If w € S,, \ (S,—1 x S1), then
w can be presented as

/ "
w=ws,_1w
with w’, w” € S,_1 x S;. For such w we have
AT (F)ZFy @n T (F_1) ® Fyr >~ 0
and
r(F,hY=F) et (F)®F, ~0.

On the other hand, if w € S, x Si, then we have F,, € ICb(SBim,,_Ll), and
so 7*(F,) = F,. Thus, Lemma 4.17 tells us that the image and kernel of Tt
K?(SBim,) — K’(SBim,,) are K’ (SBim,—1,1) and U*, respectively. This gives the
desired semi-orthogonal decompositions and completes the proof. O
6 Serre duality
Let HT, = F,, denote the Rouquier complex associated to the half twist, and let

FT, = HT;?2 denote the full twist. When the index # is understood, it will be omitted.
The purpose of this section is to prove the following.

Theorem 6.1 We have HHY(FT~! ® X) ~ HHo(X) and HH®(X) ~ HHo(FT ®X) as
complexes of R-modules, for all X € K~ (SBim,,).

We will prove this theorem as a corollary of a certain “relative version.”
6.1 Jucys—Murphy braids and the splitting map
Define braids £, € Br,, inductively by £; = 1; and

Ly =0,-1(Ly1 U)oy, n>2.
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We will denote the braid £,, and the Rouquier complex F (L) by the same notation.
Note that

FT, =L RL3® - ® L.

For any i we define the chain map ¥; : F; — Fi_l by the following diagram:

F = I[B

— R(1)]
l‘//i \

[R(=1) — Bi]

8
|

Clearly, Cone[y;] = [R(1) — R(—1)]. By combining these maps we get a “splitting
map” ¥ : £, — 1,. This map was studied in [7, Section 4] in a more complicated
“y-ified” version.

Lemma 6.2 The space of chain maps Hom(L,, 1,) is homotopy equivalent to R,
generated by the “splitting map” V : L, — 1,. This splitting map becomes a
homotopy equivalence after applying n.

Proof The first statement follows from the second. Indeed, if ¥ becomes a homotopy
equivalence after applying = then we have

Hom(L,, 1) = Hom(z*(£,), 1) ~ Hom(1, 1) = R,

generated by W, as claimed. The first isomorphism above holds since 7T is the left
adjoint to the inclusion SBim,_;,; — SBim, (Proposition 5.11).

To prove the second statement it suffices to show that the cone of the splitting map
W : L, — 1, is mapped to a contractible complex by 7. However, Cone(¥) is in
the triangulated hull of the Rouquier complexes

F(op—1-"-0%k410k0k41 " - - On—1)
>~ F(ok -+ 032031052+ 0%), l<k<n-1,

Each of these is annihilated by 7™ by Lemma 5.12, and the lemma follows. O

6.2 Relative Serre duality

Lemma 6.3 Tensoring on the left (or right) with L, restricts to an equivalence of
categories U~ — U™ with inverse given by tensoring on the left (or right) with L, L
where U* is as in Definition 5.16.

Proof Itis clear that tensoring on the left with £,, restricts to a functor U™ — U™, since
L, ® Fnill ~ F,_1 ® L,-1 and L, tensor commutes with all Rouquier complexes
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Fy, withw € S,_1 x S;. Similarly, tensoring on the left with E;l restricts to a functor
U*T — U~. These functors are inverse equivalences. A similar argument takes care of
tensoring on the right with E,jf. O

Theorem 6.4 We haver—(X) ~ (L, ®X) ~ 7 H(X®L,) forall X € K’(SBim,).
These homotopy equivalences are natural isomorphisms of functors Kt (SBim,) —
KP(SBim,,_1 1).

Proof We only consider the equivalence 7~ (X) ~ 77 (L, ® X); the equivalence
77 (X) ~ n (X ® L,) is proven similarly. Let X kP (SBim,,) be given. We may
as well assume that X is expressed as

X~ @Q x) Y7 x)

where Q7 (X) € U™. Here, the label [1] above an arrow indicates a chain map of

. 1
degree 1 so for instance B ~ (C [—; A) means that B >~ Cone(C[—1] — A) or,
equivalently B fits into a distinguished triangle of the form A — B — C — A[l].
Tensoring with £, yields

Li®X =~ L, ®Q (X) Y £, @7 (X)).

Since £, ® Q7 (X) € U™, it follows that 77 (£, ® Q™ (X)) ~ 0, hence
AL, ®@X) =T (L, ® 7™ (X)) ~ 7~ (X).

In this last equivalence we used Lemma 6.2.

Now we consider the naturality of this homotopy equivalence. Let X — Y be
a chain map. Then in terms of the decompositions X ~ (x~(X) — Q7 (X)) and
Y~ @™ (Y) — Q (Y)), the chain map f can be written as

e
IR

(ew—2—rw)

f T ()

(1]

Y ~ (ey————> 7 m )
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Applying 7 (£, ® —) and contracting the contractible terms 7+ (£, ® Q™ (X)) and
7T (L, ® Q7 (Y)), we obtain a diagram which commutes up to homotopy:

7t (L, ® X) >~ T (Ly @ (X)) >~ T (X)
7t Ly ® f) At Ly ®TT(f)) 7 (f)
At (L, ®Y) ~ at Ly @ T (Y)) ~ 7= (Y)

The second square commutes up to homotopy because it is induced by the splitting
map £, — 1 (together with the observation that 7 (7 (X)) = 7~ (X) naturally).
This proves the statement about naturality. O

6.3 Top versus bottom
Foreach1l <r <un,let uﬁt c Kb (SBim,) denote the full triangulated subcategories
spanned by X ® Fri_1 QY forall X,Y € K’(SBim(S, x ST,

Iterating the semi-orthogonal decompositions from Sect. 5.4 yields more sophisti-
cated semi-orthogonal decompositions of K?(SBim,,) of the form:

K (SBim,) = (SBim(S; x $]7) = Uf = Uy = -+ = W),
Kb(SBim,) = (U — -+ — U, — U7 — SBim(S, x $§™)),

or more generally
KPSBim,) = (U = - = W, = SBIm(S, x $]7) = U, > -+ > ),

for any decomposition {r + 1,...,n} ={k; < --- <kju{l; <--- <lp}.
The case r = 1 yields the semi-orthogonal decompositions considered in Sect. 5.2:

KP@Bim,) = (SBim(S]) — T7) = (I — SBim(s})).

where T+ C K’(SBim,,) is the full triangulated category spanned by the Rouquier
complexes FX! with w # 1.

Proof of Theorem 6.1 We must show that
HH’(X) ~ HHy(FT,, ®X)

forall X € K?(SBim,,), and that these homotopy equivalences yield a natural isomor-
phism of functors Kb (SBim,) — K?(R — gmod).
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We will prove this by induction on n. The base case n = 1 is trivial. Note that
FT, = £, ® FT,_1, HH*(X) = (7 )" (X), and HHy(X) = (7 )" (X). Thus,
HH'(X) = (7)"(X)
~ HHo(FT,—1 ®7 ™ (X))
~ HHo(FT,—1 @7 " (L, ® X))
= HHo (7" (FT,-1 ®L, ® X))
= HHy(FT, ®X).

In the second line we used the induction hypothesis, in the third line we used Theo-
rem 6.4, in the fourth we used Lemma 5.9, and the last line is clear. O

Remark 6.5 In light of the isomorphism HHo(Y) = HH" (Y)(—2n), we prefer to view
the result of Theorem 6.1 as saying

HH"(X)(—2n) ~ HH*(FT~!' ®X).

Theorem 6.6 The Rouquier complex for the full twist braid is a Serre functor for
Kb (SBim,,). In other words, for all A, B € K?(SBim,,) we have

Hom(A, B) = Hom(B @ FT, A)Y,

where the dual on the right hand side is defined using the left R-action on the hom
complex.

Proof Recall that SBim,, has duals, hence Hom(A, B) = Hom(A ® BY, 1) as com-
plexes of left R-modules. By Theorem 6.1, we have

Hom(A, B) = Hom(A ® BY, 1) = HHyp(A ® BY)"
as complexes of left R-modules (the right action of R on Hom(A, B) corresponds to
“middle multiplication” on A ® BY. By Theorem 6.1, this latter complex is homotopy
equivalent to
HH’(A ® B¥ @ FT1)Y = Hom(1, A ® BY @ FT™ 1)V =~ Hom(FT ®B, A)"
where in the last complex we use the left R-action on Hom(FT ® B, A) when forming

the dual R-module (—)V. These are homotopy equivalences of complexes of left R-
modules. O

6.4 Soergel modules

In this section we review the Serre duality for the category of Soergel modules SMod,
which is closely related to the Bernstein-Gelfand-Gelfand category O for the Lie
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algebra gl,,. Soergel modules are obtained from Soergel bimodules as quotients by the
right R-action. Given M € SBim,,, we define

M=MQgR/(x1,...,x) =M ®p k.

For example, R = k. Note that the R ®y, R action on the Soergel bimodule M factors
through the quotient R ®gs, R, so the residual R ® k-action on M factors through
R ®ps, k. This latter ring is called the coinvariant ring, denoted C; it is the quotient
of R by the ideal generated by positive degree symmetric functions in the x;. By
definition, a morphism in SMod is a homogeneous C-linear map.

Remark 6.7 Let us explain the connection between SMod and the BGG categories
O. Let Og = Op(gl,) denote the principal block of the category O for gl, (i.e. the
block containing the trivial 1-dimensional representation). This category has a special
projective module P = Py, the anti-dominant projective, whose endomorphism
ring is isomorphic to the coinvariant ring C. Soergel [28] proved that the functor
Oy — C-mod sending M — Home, (P, M) is fully faithful on projectives, hence
identifies D?(Op) (~ the homotopy category of projectives) with a full subcategory of
K (C-mod). This full subcategory is precisely X’ (SMod). An important consequence
(and the original motivation) for such a description is that it yields a Z-graded lift of
Oop.

Soergel modules do not form a monoidal category, but they form a module category
over SBim,,: given A, B € SBim,,, we have

AB = AQg B. (6.1)
The functor - can be extended to complexes, and defines a functor KP(SBim,) —

Kb (SMod,,). Equation (6.1) holds for complexes as well. As a consequence, left tensor
multiplication with Rouquier complexes defines a braid group action on K2 (SMod,,).

Lemma 6.8 For A, B € K’(SBim,,) one has
Hom(A, B) = Hom(A, B) g k,

where we consider Hom(A, B) as a right R-module.

Proof 1t is sufficient to prove the lemma for A, B € SBim,,. Then A and B are free as
right R-modules, and Hom(A, B) is free as a right R-module by Lemma 3.11, so the
result follows. O

Theorem 6.9 For all A, B € K”(SMod) one has
Hom(A, B) = Hom(B, FT~' ® A)*,

where in the right hand side we take a linear dual over k.
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Again, here we regard FT~! as a complex of Soergel bimodules acting (on the left)
on the complex of Soergel modules A.

Proof We can assume A = M and B = N for M, N € SBim,,. Then
Hom (M, N) = Hom(N, FT~' @ M)V,
where we regard both sides as complexes of (right) R-modules. Now.

Hom(A, B) = Hom(M, N) = Hom(M, N) ®g k,
Hom(B, FT~!' ®A) = Hom(N, FT~! @ M) = Hom(N, FT~! @ M)
= Hom(N, FT" ' @M) ®x k,

and
Hom(B,FT~ ' ®A)* = Hom(N, FT~! @M)" ®x k.

]

Theorem 6.9 was proved earlier in [1,23] by different methods and using the relation
between SMod and the category O.
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Appendix A: Semiorthogonal decompositions for coxeter groups

Let W be a Coxeter group with the set of reflections S. Let ) be a realization of
W. Define R = Kk[h], and By = R Qps R for s € S. The category SBimy of
Soergel bimodules is the smallest full subcategory of the category of R — R bimodules
containing R and all B and closed under direct sums, direct summands, tensor products
and grading shifts. For W = S, and ) = k" we recover the category SBim,, defined
in Sect. 3.1.

Rougquier complexes can be defined in the homotopy category K”(SBimy) simi-
larly to Sect. 3.4:

Fy =[B; — Rl, F,' =[R — By]

In [26] Rouquier proved that they satisfy the relations in the braid group associated to
W. Therefore for any w € W one can consider a Rouquier complex F,, corresponding
to the positive permutation braid associated to any reduced expression of w. It does
not depend on the choice of a reduced expression up to homotopy equivalence.
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We define triangulated subcategories U, and U<, of K (SBimy) generated by
the Rouquier complexes F;, with v < w (and v < w) in Bruhat order.

For any s € §, there exists a chain map v : Fy — FS_1 such that

Cone[F; — F,'1=[R — R). (A1)

As an immediate corollary, we get the following:

Proposition A.1 For any w € W there is a chain map ¥y, : Fyy — Fuj_l,. The cone of
Yy is filtered by F;_ll or u < w in Bruhat order.

In [20] Libedinsky and Williamson proved a much stronger statement (conjectured
by Rouquier in [27], p. 215 before Remark 4.12).

TheoremA.2 [20] If w # v then Hom(F,,F ') = 0. If w = v then
Hom(Fy,, Fuj,ll) = R is generated by the map Y.
Corollary A.3 We have Hom(Fy,, R) = 0 for w # 1.

In type A this corollary is an easy consequence of Corollary 3.22. In fact, Theo-
rem A.2 also can be deduced:

Proposition A.4 Theorem A.2 follows from Corollary A.3.

Proof Assume that Hom(F,,, R) = 0 for w # 1. Note that
Hom(F,, Fuj_ll) =~ Hom(F,F,-1, R).

We induct on the number min(/(v), /(w)). The base case follows from the assumption.
Without loss of generality, we may assume [(v) < [(w). Let v = v's for a simple
reflection s and /(v') = I(v) — 1. If [(ws) > [(w) then w # v and ws # v/, so we
have

Hom(F, F,,-1, R) = Hom(Fy Fy,,-1, R) = Hom(Fy F-1, R) =0,

where the last equality follows from the induction hypothesis. So we assume /(ws) <
I(w). Let w = w's. The map V5 : F; — F, ! induces a map
Hom(F,, Fuj,l,l) = Hom(F, F, ', Fl;,l,l F7 ') — Hom(F, Fy, Fuj,l,l Fh
= Hom(F,, F, '),

whose cone is filtered by Hom (F,, Fuj_l 1), which vanishes by the induction hypothesis
since [(v") < I(v) < I(w). So we are reduced to the statement for the pair v/, w’. 0O

We use Theorem A.2 to deduce a very important fact about Rouquier complexes
which does not appear to be explicitly stated in the literature.

Theorem A.5 We have Hom(F,,, Fy) = 0 unless w < v in Bruhat order.
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Proof By Proposition A.1 F, is homotopy equivalent to a complex filtered by FM__I]

with u < v. Therefore Hom(F,,, F,) = 0 unless Hom(F),, F’;ll) % 0 for some
u < v. But by Theorem A.2 this is possible only if # = w, and hence w < v. O

Corollary A.6 For all w we have semiorthogonal decompositions U<y, = (U<y, Fy)
and U<y = (F ! Uy).

Proof By Proposition A.1 the category U<, is generated by U, and F,, or, equiv-
alently, by U, and Fuj,ll (since Cone[ Fy,, — Fu;l1] € U.y). Now forall u < w we

have Hom(F,,, F,,) = 0 by Theorem A.5 and Hom(F,,, Fu;l]) = 0 by Theorem A.2.
O

Corollary A.7 If W is a finite Coxeter group then for all w € W the inclusion U<,, —
KP(SBimy) has both left and right adjoints.

Proof Fix an arbitrary total order < on W refining the Bruhat order, let wg be the
longest element in W. Then for all w we have a chain

(€]

w=w <w(2)<-~-<w(k)=wo.

Similarly to Corollary A.6, the inclusions uswm > Ufw(m) have both left and right
adjoints, and by combining these we get adjoints to the inclusion

uSw(,’) > U<y = ]Cb(SBimw).

]

If W’ is a parabolic subgroup of W, we can consider the category of Soergel
bimodules SBimy associated to the same realization §.

Corollary A.8 Let W be a finite Coxeter group and W' a parabolic subgroup. Then the
inclusion KP(SBimy) — K?(SBimy) has both left and right adjoints.

Proof We have K?(SBimy) = U<y, where w is the longest element of W', O

Note that in type A this gives an alternative construction of adjoints to inclusions of
SBim,, 1.1 in SBim,,. However, it seems that the direct construction of adjoints in
Sect. 5 is easier to work with than the induction on Bruhat graph as in Corollary A.7.
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