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RECURSIONS FOR RATIONAL ¢, t-CATALAN NUMBERS
EUGENE GORSKY, MIKHAIL MAZIN, AND MONICA VAZIRANI

ABSTRACT. We give a simple recursion labeled by binary sequences which computes rational
g, t-Catalan power series, both in relatively prime and non relatively prime cases. It is inspired
by, but not identical to recursions due to B. Elias, M. Hogancamp, and A. Mellit, obtained in their
study of link homology. We also compare our recursion with the Hogancamp-Mellit’s recursion
and verify a connection between the Khovanov-Rozansky homology of N, M-torus links and
the rational g, t-Catalan power series for general positive N, M.

1. INTRODUCTION

In the last decade the rational g, ¢-Catalan numbers attracted a lot of interest in algebraic
combinatorics. Given a pair of integers (M, N), we can consider the set of all partitions which
are simultaneously M- and N-cores, that is, none of their hook lengths are divisible by M or
N. Itis easy to see (e.g. [10]) that such (M, N)-cores are in bijection with the subsets A C Zx
suchthat 0 € A, A+ N C AJA+ M C Aand A := Zs \ Ais finite. We will relax the
normalization condition 0 € A and call such subsets (M, N )—invariant.

If M and N are coprime, then Anderson [1] proved that the set of (M, N) cores is finite and,
in fact, is in bijection with the set Dyck(M, V) of Dyck paths in the M x N rectangle. For such
paths one can define two statistics area and dinv and define a bivariate polynomial

CM,N(q; t) _ Z qarea(D)tdinv(D) )
DeDyck(M,N)

This polynomial generalizes ¢, t-Catalan numbers of Garsia and Haiman [6] (which appear at
M = N + 1) and has lots of remarkable properties, for example, it is symmetric in ¢ and
t. The latter follows from the so-called rational Shuffle conjecture [12, 4] recently proved by
Mellit [20]. The statistic dinv has several equivalent definitions (see Definition 2.5 below);
the most elegant one is obtained using the sweep map of Armstrong et. al. [2, 3]. Using the
above bijections, one can translate dinv as a statistics on (), V)-invariant subsets, which was
explicitly defined in [9], see Section 2 for details. Thus,

(1) CM,N(Q, f;) — Z qarea(A)tdinv(A) — (1 _ q) Z qarea(A)tdinv(A).

Aelg/l’N Aely, N

where I/ n (respectively, 11(34, ) denotes the set of (M, N) invariant subsets (with 0 € A).

If M and N are not coprime, then the sets of (M, N) cores and invariant subsets are still in
bijection and are infinite, but the relation between them and Dyck paths is more involved. Still,
in [11] the authors defined a surjection from I},  to Dyck(M, N), such that the dinv statistic
is constant on the fibers, and the area statistic behaves in a natural and easily controlled way.
In this case one can define c); n(g,t) by the same equation (1). However, ¢y n(g,t) is no
longer a polynomial but a power series. In fact, we will show that it is a rational function with
denominator (1 — ¢)¢!, where d = ged(M, N).
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The work of A. Mellit on Shuffle conjecture can be extended to show that the polynomial
(1 — q)% tearn(g, t) is symmetric in ¢ and ¢ in the non relatively prime case as well. However,
to our knowledge, this did not appear in the literature yet. Note that in the non relatively prime
case the coefficients of (1 —¢q)% cys n(g, t) are not necessarily positive anymore (see Examples
3.1, 3.2, and 3.3).

One of the most remarkable properties of cys v (g, t) is its connection to Khovanov-Rozansky
homology of (M, N) torus links conjectured in [7, 12, 13] and proved by Elias, Hogancamp and
Mellit in a series of papers [5, 16, 21, 17] in various special cases. See section 4.2 for a precise
statement. In short, the comparison between the power series c)s v (¢, t) and the Poincaré power
series of this homology is proved by obtaining certain recursions on the topological side and
then verifying them on combinatorial side. The terms in these recursions are labeled by binary
sequences of varying length.

The main objective of this paper is to understand these recursions as clearly as possible in
combinatorial terms. Given an (M, N) invariant subset A, we consider a length A/ + N binary
sequence u = u(A) recording the characteristic function of the intersection AN[0, M + N —1].

We define
P, (q’ t) _ Z qarea(A)tCOdinv(A).
Ay, Nu(A)=u
where
codinv(A) = 6(N, M) — dinv(A),
and
@) SN, M) = NM — N — M + ged(M, N)

2

is the maximal possible value of dinv. In Theorem 2.14 we prove a simple recursion for the
power series P, (q,t). In Theorem 2.19 we prove that this recursion has a unique solution given
the initial condition Pym+~(gq,t) = 1. These results hold both for coprime and non-coprime
(M, N). We also observe in Lemma 2.10 that

qM+N
(3) té(N7M)POM+N <Q7 til) = 1 CM’N(q’ t)7

and hence the function c); v (g, t) can be computed using this recursion.

In Section 3 we write complete decision trees for this recursion for (M, N) = (2,2),(3,3)
and (4, 6), and compute the corresponding rational Catalan series.

In Section 4 we compare our recursion with the ones appearing in [5, 16, 21, 17]. One
important distinction is that our recursion is labeled by binary sequences of fixed length M + N
while their recursion is labeled by pairs of binary sequences of varying length. Still, we prove
that the recursions are very similar, and the resulting expressions for ¢); v (g, t) agree. In Section
5 we add higher a-degrees and give recursions for the rational ¢, t-—Schroder power series.
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2. THE RECURSION

Let (M, N) = (dm, dn) be a pair of positive integers, where m and n are relatively prime, so
d = ged(M, N).

Definition 2.1. The set /), x of M, N-invariant subsets is defined by
Iy ={ACZso: A+ NCAA+MCAHA < x},
where A + N denotes the shift of A by IV, i.e.
A+N:={keZ:k— N e A},

A = Z>o \ A is the complement to A, and #A is the number of elements in A. The elements
of A are often called gaps in A.

We define statistics area and codinv on the invariant subsets. The area statistic simply
counts the number of gaps in A :

Definition 2.2. We set
area(A) := fA.

The statistics dinv and codinv are more involved.

Definition 2.3. Let A € [); y be an invariant subset. The set Ngen(A) of N-generators of A is
defined by

Ngen(A) =A\(A+N)={geA:g— N ¢& A}
The M-generators are defined similarly:
Mgen(A) :=A\(A+M)={gecA:g— M ¢ A}

Remark 2.4. The condition fA < oo implies that fNgen(A) = N, one N-generator in each
congruence class modulo V.

Definition 2.5. We set

codinv(A) = Z g, g+ M —1]NA, dinv = §(V, M) — codinv(A),
gENgen(A)

where 6(N, M) is as in (2) and we use the integer interval notation:

g.g+kl={gg+1l, ....g+k}

Remark 2.6. One can check (see e.g [9, 10]) that the definition of codinv(A) is in fact sym-
metric in M and N.

Definition 2.7. Let u = (uo, ..., un+p—1) be a sequence of 0’s and 1’s. We set
IUZI{AEIM,N2v0§i<N+M, ZEA<:>uZ:1}

We say that a sequence u is admissible if I,, # (). Note that we number the entries of w starting
at 0.

Definition 2.8. Let the power series P, (q, t) be given by
P, := Z qarea(A)tcodinv(A).
A€EI,

Remark 2.9. Note that while the set [,, is often infinite, the sets {A € [, : area(A) = k}
are always finite. Therefore, P, is a well defined power series in g and ¢ with positive integer
coefficients. Observe P,, = 0 if u is not admissible.
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Lemma 2.10. One has
P0M+N (q,t) _ qM+N Z qarea(A)tcodinv(A)’
A€l N
and
e (q,t) = ¢ VM1 — g) Posen (g, 7).

Proof. Indeed, for u = 0M*¥ the set I,, consists of all (M, N)—invariant subsets which do not
intersect with [0, M + N — 1]. All such subsets are obtained from (M, N)-invariant subsets
in Ip; n by shift by (M + N). It is easy to see that the shift does not change codinv and
changes area by (M + N). The second formula now follows from Equation (1) and the relation

dinv(A) + codinv(A) = §(N, M). O
Definition 2.11. Define p : Iy; v — Ip,n to be the shift map given by
A—1 if0¢ A
p(A) = : i
(A\{0})—1 if0oeA.
Definition 2.12. Let uw € {0, 1}V, We define
M-1
AMu) == Z(UH-N — ;)
i=0

If A € I, we set A(A) := \(u).

Remark 2.13. Note that if A € I, , then A\(u) counts the N-generators of A in the interval
[N, N + M — 1], or, equivalently, the number of A/ -generators in the interval [M, N + M — 1].
Indeed,

M—1 N+M-1 -1
AMu) = Z(UHN —u;) = Z (T Z u;
i=0 j= i=
N+M-1 N-1 ~1
= Z uj — Ui = Z(ui-i—M — u;),
j=M i=0 i=0

as the u; for i € [min(N, M), max(N, M) — 1] cancel out. Also, clearly,
-1

S

(uipn — u;) = §(Ngen(A) N[N, N + M — 1)),

iN\g

and
N-1
(wirnr — u;) = §(Mgen(A) N [M, N + M — 1]).
i=0
Theorem 2.14. Let u = (ug, . .., un,r—1) be an admissible sequence. Let also
v = (ub <o UNGM-1, 1)7
’Ul = (ul, s s UNS M1, 0)

The power series P, satisfy the following recurrence relation:
q(Py + Py), if ug=1uy =uy =0,

4) P, =1 qP,, if ugp=0 anduy + uy > 0,
tA(u)P,U, ifuozuN:ule,

M-1

where A\(u) :== Y (uipn — u;).
i=0
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Proof. With respect to the statistics above, the shift map p of Definition 2.11 has the following
properties:
(a) If 0 ¢ A, then area(p(A)) = area(A) — 1, while if 0 € A, then area(p(A)) =
area(A).
(b) If at least one of the numbers N and M belongs to A, then N + M — 1 € p(A),
while if neither N nor M are in A, then either possibility N + M — 1 € p(A) or
N+ M —1 ¢ p(A) may occur.
(c) If0 ¢ A, then codinv(p(A)) = codinv(A).
(d) If 0 € A, then

codinv(p(A)) = codinv(A) — £ ([0, M —1]NA) +§ ([N, N+ M —1]NA).

To prove part (d), one should observe that all the N-generators of A, except 0, are simply shifted
down by one in p(A), while retaining the same contributions to codinv. The N-generator
0 € A get replaced by N — 1 € p(A). The contribution to codinv changes accordingly, and
this change is measured by A(u) for A € I,,. O

Definition 2.15. We visualize the recursion (4) using the decision tree. Each node corresponds
to a binary sequence u and the edges connect u with v and v’ and are labeled by the corre-
sponding coefficients:

case 1 case 2 case 3
Ow Ow lw
9 \4 Ja [
wl w( wl wl

Here w € {0, 1}M+V=1 4 = Qw incases 1 and 2 and w = 1w in case 3, v = w1l and v’ = w0.
Note that we can view case 2 as a special instance of case 1 for which w0 is not admissible and
s0 Py0 = 0. We color edges and labels in case 3 in red to emphasize that these carry powers of
t while all other (black) edges are labeled by g.

Remark 2.16. If we never identify vertices with the same label, we will indeed get an infinite
tree. However, it is convenient to make the graph finite by keeping each 1"+ as a terminal
vertex, and identifying the pairs of vertices with the same label, whenever one vertex is a prede-
cessor of another. This leads to directed cycles, which we analyze below. See also the examples
in Section 3.

Definition 2.17. We will call w € {0, 1} *¥ p-periodic if for all i € Z, @; = @;,,, where @ is
the infinite sequence formed via @; (4w = u; forr € Z,0 < i < M + N.

Lemma 2.18. For u admissible, \(u) = 0 if and only if u is p-periodic for some p | ged(M, N).

Proof. The <= direction is clear. For the = direction, it suffices to show w is both M -periodic
and N-periodic.

First suppose 0 < 7 < M. Recall u being admissible means u;, y = 0 — wu; = 0.
Suppose 0 = u; = @;. Then 0 = A(u) = Ei]\igl(uHN — u;) forces ;1 ny = u;pny = 0 as well.

Next suppose M < ¢ < M+ N,s00 <t — M < N. If 0 = 4; = u; = ug_prn4+m, then
the admissibility of w implies 0 = u;_»; = ;. n. On the other hand, if 0 = w;.n = u;_p
then 0 = A(u) = E?L—Ol(uHM — ;) = Ei]‘iﬂv_l(ui — u;_py) forces @; = u; = 0 as well.
These arguments show that for all ¢, u; = 0 <= u;; vy = 0 and so w is N-periodic. A similar
argument shows u is M -periodic. U

Theorem 2.19. The recursion in Theorem 2.14 has a unique solution given the initial condition
Pimin(q,t) = 1. Moreover, for any sequence u the power series Py(q,t) can be expressed as
a rational function with the denominator [[_,(1 — ¢%), where 0 < {; < d for all i.
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Proof. We prove the statement by induction on the number £ of zeroes in the sequence w. If
there are no zeroes, i. e. k = 0, we have u = 1MV and Pju+v = 1. Assume now that a
sequence u has k zeroes and k£ > 1. Assume also that w is admissible, since otherwise P,, = 0.
Note that no cases of the recursion increase the number of Os in the sequence, and the case 2
recursion steps always decrease it.

Let us apply the recursion relation to F,. If it is a case 2 relation, then the number of 0’s
decreased, and we can determine P, by induction. Otherwise, we get exactly one term with
exactly £ zeros in the next step of the recursion. Note that the corresponding sequence is simply
a cyclic rotation of w : 0w — w0 in case 1 and lw — w1 in case 3. Let us keep applying
the recursion to the terms with &k zeros, until either there are no such terms, and P, can be
determined by induction, or the term P, is repeated. It is not hard to see that in the latter case
the sequence w is both M- and N- periodic. Indeed, otherwise one would have to use a case 2
recursion relation at some point.

We get the linear equation

(5) Py =7Pu+ Y 7Py
j€J

where the binary sequences P, ;) contain £ — 1 zeros each, v, 7, are some monomials in ¢ and
t, and v # 1.Indeed, since u contains k£ > 0 zeros, a case 1 relation must occur at least once.
By the inductive hypothesis, we can compute the series P, for all j € J, and then we can
solve (5) to obtain P,,.

Finally, one can show that the constant y in (5) is just a power of ¢. Indeed, let p| gcd(M, N)
be the period of w. Then by Lemma 2.18, A\(u) = 0, hence all the case 3 edges carry weight

1 = t°. Finally, if w contains k zeroes then the number of zeroes in the period equals Mk_f ~> SO

v = q% and from (5) we get

1 — qM+N j

1
Pam S P
eJ

Note that 0 < M'ff ~ < d, and that one will use the equation 5 in the computation of P,(q,t)
at most d times. Indeed, this equation is only applied when w is periodic with period dividing
d, and each time it is applied the number of 1’s in the sequence increases. Therefore, in the
end (before reducing) one gets a rational function with the denominator equal to Hle(l —q"),

where 0 < ¢; < d for all i.

OJ

We will see in Section 4, that the denominator of Py~ can, in fact, be reduced to (1 — q)d.

3. EXAMPLES

In this section we present some examples of decision trees defined in Definition 2.15 and
Remark 2.16. As all black edges have weight ¢, we can drop this label. Further, it is sometimes
convenient to just record the (new) rightmost entry at each node, simplifying the picture in
Definition 2.15 as follows:

/ \ t/\(parenl)
1 0 1 1

Also, we will replace all branches with a single terminal vertex by the corresponding monomial.
We will refer to the result as to “compact decision tree”.
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Example 3.1. The decision tree for (M, N) = (2,2) is shown in Figure 1. We immediately
compute

Pioi1 = qt,  Poion = ¢(Pio11 + Poior) = ¢*t + qPoror,

SO ,
qt
Poio1 = .
1—gq
Now
3 2 3 q4t
Pooor = ¢° + ¢"Poron = ¢° + ¢
Finally,
Foooo = qFPooo1 + qFo000,
hence

qPooon  ¢* n ¢t

‘F%OOO == - .
l—q 1-q (1-¢q)?

Observe the g, t-symmetry of
(1—q)ean(q,t) = ¢ (1 — q)*Poooo(q, t ') = g+t — gt.

0001 1
7Ny / \
0011 0010 1 0
la la q? |
0111 0101 1
la v g / \
1111 1011 1010 1 0
It 1 at 1
0111
la

FIGURE 1. Decision tree for (M, N) = (2,2) and the corresponding compact
decision tree on the right.

Example 3.2. The decision tree for the recursion for (M, N) = (3,3) is shown in Figures 2
and 3. The compact version is shown in Figure 4.
We first compute the value of the loop

q2t2
A= Punon = ¢*t°+Aq, A= T
Next we compute the values of
q4t2
B = Pyoron1 = ¢’t + A= ¢t + g
and
C=¢"®?+ PtA+ B + ¢*C = ¢*t* + ¢PtA + ¢°t* + (1A + ¢°C,
hence
P+ PA+ PP+ A (1 +q) (¢ + ¢PtA 12 o3
6 c-9Lrta CrtgtA A+t +td) ¢ g

1—¢? 1—¢? l—q (1-9*
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|

020000\j::> .

000001
ST
000011 000010
&l el
000111 000110 000101 000100
al a a 7
001111 001101 [001011]=B | 001001 | =C
di i 1] g
011111 =A 010111 010110
di 7] 7]
11111 101111 101101
tl ll

011111

|

111111

FIGURE 2. Decision tree for (M, N) = (3, 3). See Figure 3 for the inserts A and C.

[orior] =

] g a]
110111 110110 010011
‘| 1| !
101111 101101 100111 100110
| |
011111 001111 001101
ql ql ql

011111
|
111

111111

FIGURE 3. The subgraphs A and C for (M, N) =

main graph).

Finally,

C

o001 ] =

™~y

010010

qlN
100101

t]

100100

[oror ] =x

(3,3) (see Figure 2 for the

742 842 8,2 9,3
q't qt q°t ¢t
(1 —q)Poooooo = ¢® + "PA+¢*B+¢*'C =¢* + — + ¢t + + + _
1-¢ l—q¢ 1-q¢ (1-q)
6
T . q)? (@ =2 + Pt + P = 2%+ gt + ¢ + gt — 20+ 1) .
Or, in a positive form
Poooooo 1 +qt  qt* + 2¢°° ¢t
A N

Observe the ¢, t-symmetry of
(1—q)%es3(q,t) = ¢ °(1 = ¢)° Poooooo (g, )

— q3t2 + q2t3 _ 2q3t _ 2qt3 +q3

+ 2+ Pt + gt? — 2%t + ¢t
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OOOOOOQ
q

|
1

1/ \O
1 0 1 0
Q@ | | \
1‘ [1kB 001001 = C =
011011:A:m 1/ \0 1/ \O
/ \ 7t | / N\ / N\
0 1 1 0 1 0o/
qt? |1 |1 q*t* | ¢ |t
1 A [1]a ‘1 -B
/ N\ \
1 0 [1FA 1 0
qt? ‘l / \ a*t ‘
1 1 0 1
qt? ‘1 ‘1
4! [1]A
/ N\
1 0
qt2 ‘1
1

FIGURE 4. Compact decision tree for (M, N) = (3,3) .

Example 3.3. The decision tree for (M, N) = (4,6) is shown in Figure 5. We will use the
shorthand notations Py := FPyooooooooo and Po1)s = Foio1o10101 and so on. We compute

P(01)5 = qP(01)5 —+ q2t(q3t -+ q4t6)

and so i

Powe = 22 (14 qf)
Now

Py = qFPoo + qFpo1,
hence

1

18t8 _ q18t7 + q17t7 _ q17t6 + q16t7 _ q16t5 + q15t7 _ q15t4 + 2q14t6 +

1
(1—4q)? (a
2q14t6 _ q14t3 _ q14t5 + 2q13t5 _ q13t4 _ q13t2 + 2q12t4 _ qmt +
q11t3 + q11t2 + qllt o qll + q10)

Observe the ¢, t-symmetry of

(1= q)eas(q, t) = (1 — @)% " Powo(g, t71)

= Bt — gt + P+ — - P+t gt — 53— B+ St + qtf +
Pt + qt® — Pt — ¢ — ¢ — Bt 4 200 + 2631 + 24383,
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0000000000
N
|/\q
1/ \o 1/\
ANVANE PN

o 95 1o R4 |
2 q'tt ¢t | \ \

9 q
1 1 1
1/ \0 1/ \0 1/\0 1/ \

@t ¢%tt | | %% q"tt | |
1 1
A
/ \ / N\ / \
| 0 /N | 0 1 0
¢A3 gt 1‘ (‘) O 55 | ‘
1 5 _ / N\
1
/0D m\ Y e \0
1 0 q t* @°t® |42 |t
A5 gs 1 o 7 '
|t 1 /\ A
1 | 0 /.
/' \ ¢t ot 1
! \
B3 gitd !

FIGURE 5. Compact decision tree for (M, N) = (4,6).

Also, as before, one gets a positive form:

P 1
qoﬁf e U A U R A A RS

1
(1—q)?

4. COMPARISON WITH THE WORK OF HOGANCAMP AND MELLIT.

4.1. Hogancamp-Mellit recursion. Our next goal is match this recursion with the a = 0
specialization of the following recursion due to Hogancamp and Mellit [17].

Definition 4.1 ([17]). The power series R, ,(q,t,a) in variables ¢, ¢ and a depend on a pair

of words « and y in the alphabet {0, x }. These power series satisfy the following recursive
relations:

ROa:,Oy = t_IwIRa:X,yx + qt_IwIRmO,yOa

Rxac,Oy = Rmx,ya

RO:I:,Xy = Rm,yx;
Rxac,xy = (tlwl + a)R:l:,ya
Ryg =1,

where |x| denotes the number of X’s in x.

Remark 4.2. Our recursion differs from the one in [17] by reversing the order in both sequences
T, y.
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In order to do so, we will need to go through certain reformulations and also adjust both
the area and codinv statistics. First, we will need to replace the binary sequence w of length
N + M by two sequences (v, w) in the alphabet {0, e, x} of lengths M and N respectively.
Sequence v records gaps (encoded by 0), /N-generators (encoded by x), and the rest of the
elements of A (encoded by e) on the interval [N, N + M — 1]. Similarly, sequence w records
gaps, M-generators, and the rest of the elements of A on the interval [M, N + M — 1]. More
formally, one gets the following definition:

Definition 4.3. Let u = (ug,...,unia—1) € {0,1}¥™™ be an admissible binary sequence.
Define v = (v, ...,vy—1) € {0, 0, x }* as follows:

(1) v; = 0 whenever uy,; =0,

(2) v; = @ whenever uy,; = u; = 1, and

(3) v; = x whenever uy; = 1 and u; = 0.
Similarly, define the sequence w = (wy, ..., wy_1) € {0, e, X}V as:

(1) w; = 0 whenever up;.; = 0,

(2) w; = e whenever uy;; = u; = 1, and

(3) w; = x whenever uy;; = 1 and u; = 0.
We say that a pair of sequences (v, w) is admissible if v and w are obtained from an admissible
binary sequence u according to the rule above.

Clearly, the pair of sequences v, w fully determine the binary sequence w. In other words,
the above Definition 4.3 describes a map

b: {0, 1} — {0, e, x}M x {0, e, x}
and it is injective when restricted to the domain of admissible sequences. Indeed,
1ifi € [0,M — 1] and v; = e,
u; = lifi € [M,M + N — 1] and w;_ps € {X, o},
0 otherwise.

Remark 4.4. If (v, w) = b(u) then by Remark 2.13 we have |v| = |w| = A(u). Here, as
above, |v| denotes the number of x entries in v.

Definition 4.5. By slightly abusing notation, we set
Iyw = Iy,
and
Pow(q,t) = Pulg, 1),
Now we can reformulate the recursion from Theorem 2.14 using the new notation.

Proposition 4.6. The recursion (4) is equivalent to the following recursion:
Pov,ow = ¢(Pox,wx + Puo,wo);
Povow = qPox we,
POv,xw = qu.,wx,
Prvxw = (Prewe:
Pupow = " Pos .
This recursion looks very similar to the @ = 0 version of the Hogancamp-Mellit [17] re-

cursion, but not exactly the same. In order to get an exact match, let us make the following
adjustments to the statistics:
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Definition 4.7. Define statistics area’ and codinv’ on the set /), y of (M, N)-invariant subsets
in Z>q by
_ area’(A) = §(A N Zx ),
and
AMA)AA) = 1)

codinv’(A) = Z # ([g,g + M —1] NAN ZZN+M) -

2
gE€Ngen(A)
where as in Definition 2.12 above A(A) = f(Ngen(A) N[N, N + M —1]).
Definition 4.8. As before, let u = (uo,...,unia-1) € {0, 1} be an admissible binary

sequence. The generating series (g, t) is defined by
Qu (q’ t) — Z t—codinv’(A)qarea’(A).
JANSY P
We also set
Qv,w(% t) = Qu(Q7 t)u
where the sequences v = (v, ...,vp—1) € {0, 0, x}* and w = (wy, ..., wy_1) € {0, 0, x}¥
are determined in the same way as in Definition 4.3, i.e. (v, w) = b(u).

Note that for any A € Iyn+~ one gets area’(A) = —N — M + area(A) and codinv’(A) =
codinv(A). Therefore,

(7 Qov v (g, 1) = ¢~ M Powr g (g, 7).
Remark 4.9. More generally, let A € [gu+n-ryr for K < min(M, N). Then
kE(k—1
area’(A) = =N — M + k + area(A) and codinv'(A) = codinv(A) — %

and
(8) Q()Mkakprka (q, t) = q_N_M+ktk(k_1)/2POJVI+N—k1k (q, t_l).
Theorem 4.10. The following recursion holds:

Qovow =t "1 Qux wx + qt "1 Quo,uw0,

va,Ow = va,wn

QO'v,xw = Qvo,wx>

va,xw = t|v|Qvo,wu

Qov,ow = Qvo,wo;

Proof. Let A € I); y be an invariant subset. Similar to the proof of Theorem 2.14, we consider
the shift map p.
For the area’ statistic we get that if N + M ¢ A, then

area’(p(A)) = area’(A) — 1,
while if N + M € A, then
area’(p(A)) = area’(A).
One has to consider the two summands of the codinv’ statistic separately. The first summand

is given by

) > e g+ M—1NANZsy m).

gENgen(A)
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Clearly, it is enough to sum over the N-generators that are bigger than N, because otherwise
the interval [g, g + M — 1] does not intersect Z> y 7. We can thus rewrite (9) as

Z tlgg+M—1NANZsnim).
g€Ngen(A)NZs v

The N-generators of p(A) agree with those of A shifted down by 1, except in the case that
0 € Ngen(A), in which case it is replaced by Ngen(p(A)) > N — 1 < Nj; so regardless
Ngen(p(A)) N Zsy = (Ngen(A) N Z~n+1) — 1 holds. Hence

Z t(lg g+ M — 11N p(A) N Zoniu)

gENgen(p(A))

- Z ﬂ([g,g+ M — 1] OZOZzNJrMJrl)-
geNgen(A)

Therefore if N + M € A then (9) does not change. If N + M ¢ A then

. tlee+M—1NpA)NZsnim)

g€Ngen(p(A))
= Z t(lg, g+ M~ 1UNANZsnni1)
gE€Ngen(A)
= > tlgg+M-1UNANZonin) — >, H(gg+M—1n{N+M})
g€Ngen(A) gENgen(A)
= > ilgg+M—-1UNANZsnim) — AA)
gE€Ngen(A)

since N ¢ Ngen(A) in this case. Recall that if A € [, ,,, then by Remark 4.4 one has A\(A) =
|v| = |w|. Combining the above in comparing A to p(A), we get:
(1) A € Iy ow, then 0, N, M ¢ A. Then we can eitherhave N +M € Aor N+ M ¢ A.
If N+ M € A, then p(A) € I, 4, and area’ and (9) do not change, but A(A) increases
by 1, i.e., A(p(A)) = A(A) + 1, which decreases the second summand of the codinv’
statistic by A(A) = |v|. f N + M ¢ A, then p(A) € Iy40 and

area’(p(A)) = area’(A) — 1;
furthermore (9) decreases by A(A) = |v|, and A(A) = A(p(A)) does not change. All
combined, we get the first relation:
QOv,Ow = t_IvIQ'vx,wx + qt_‘v‘QvO,wO-

2) f A € I yow, then 0, M ¢ A but N € Ngen(A). Then also N + M € A with
N + M € Ngen(A) but N + M ¢ Mgen(A) so that p(A) € I« we. Furthermore area’
and (9) do not change, and A\(A) = | x v| = |[v x | = A(p(A)) does not change either.

The case of A € I, . 1S analogous to the above. We get

va,Ow = va,wn
QO'v,Xw = Qvo,wx-

(3) If A € Iy xw, then0 ¢ A but N € Ngen(A) and M € Mgen(A). Then also N + M €
A, therefore area’ and (9) do not change, and A\(A) decreases by 1. Since N + M is
neither an N-generator nor M -generator, p(A) € e 0. We get

va,xw = t|v|Qvo,wo-
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(4) Finally, if A € oy ew, then 0, N, M € A, and also N+ M € A, but N+ M ¢ Ngen(A)
and N + M ¢ Mgen(A). Therefore, no statistics change in this case and we get

Qov,ow = Qvo,wo-
[

The final observation is that in the recursion for () one can completely ignore all the e’s,
stated more precisely in Theorem 4.13. This motivates the definition of the following partial
order that we will use in the proof of our next result.

Definition 4.11. Let (v, w) and (v, w’) be two admissible pairs of sequences. We say that
(v',w') < (v, w) if and only if either the total number of e’s in the sequences v’ and w’ is
greater than the total number of e’s in the sequences v and w, or those numbers are the same,
but then |v'| > |v], i.e. the number of x in v’ is greater then the number of X’s in v.

Note that (¢, eV) is minimal with respect to <. Further if (v, w) and (v’, w’) have the same
total number of @’s and x’s, but (v, w) # (v, w’) then they are incomparable.

Definition 4.12. Let ¢ be the map from the words in the alphabet {0, ®, X} to the words in the
alphabet {0, x } given by simply forgetting all es.

Theorem 4.13. Let x = ¢(v) and y = ¢p(w). Then
Rw,y(Qa tu 0) = Qv,w(% t)-

Proof. The proof is by induction with respect to the order <.
The base is covered by the normalization conditions:

R@,@(qa i, 0) =1= Qo...o,o...o-

Consider a pair of admissible sequences (v, w) and assume that for all pairs (v’, w’) such that
(v',w') < (v, w) we have already proved that

Rd)(v/),(b(w/) (Q> l 0) = Qv’,w’(Q> t)'
Now we apply the recurrence relations to (), ,,. Note that all the recurrence relations listed in
Theorem 4.10, except the first one and the last one increase the number of e’s, in which case
we are done by the inductive hypothesis and by using the corresponding recurrence relation for
R, 4(gq,t,0). Therefore, the only cases left are when either both v and w start with 0’s, and we
are forced to use the first relation:

Qov,0w = f‘v‘va,wx + qti‘v‘QUO,w(M
or they both start with e’s, and we are forced to use the last relation:

Qov,ow = Q’vo,wo-

Note that in the case of the first relation our only concern is the second summand, as for the
first summand we have (v X, wx) < (0v, 0w). In either case, we keep applying the recurrence
relations to the terms not covered by the inductive assumption until either no such terms are
left, and we are done by the inductive assumption and the corresponding recurrence relations
for R, ,(q,t,0), or we get into a cycle and get back the same term (), ,,. In this case we get

Qv,w = fYQv,w + Z ’yv/,w/Qv’,w’a
(v, w')=(v,w)
where 7y and all v, ,,,’s are monomials in ¢ and ¢ (or Os). Note that in this case both sequences
v and w don’t contain any X’s, and neither do the intermediate pairs of sequences along the
cycle, as those pairs are simply cyclic shifts of (v, w). Also, since we are not in the base case of
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the induction, the period contains at least one 0, meaning that we used the first relation at least
once. Therefore, the coefficient v = ¢* where k is a positive integer. We can rewrite the above
equation as

Z 7v’,w’@v’,w’
_ (Waw)=(vw)
Qv,w - 1 o qk
Now we are done by the inductive assumptions and the corresponding recurrence relations for
R44(q,t,0), as in all previous cases. O

By Theorem 4.13, Lemma 2.10 and Remark 4.9 we immediately get the following.
Corollary 4.14. We have
t*é(N,M)

1—g¢q

Rom ov (q,1,0) = Qom on (g, ) = g VM Poren (g, t7h) =

Corollary 4.15. For k < min(M, N) we have
Royi—k gk gnv—k (q,t,0) = QoM—k sk ON—k (q,t) = q_N_M+ktk(k_1)/2P0A/1+N—k1k (q, t_l).

4.2. Relation to Khovanov-Rozansky homology. For the reader’s convenience, in this section
we give a short summary of the main results of [17] and provide a topological interpretation of
the series 7, , which appeared in their work. All further details can be found in [17].

In [18, 19] Khovanov and Rozansky defined a new link invariant called HOMFLY-PT (or
Khovanov-Rozansky) homology. To each link L they associate a triply graded vector space
H(L) = ®; ;xH"**(L). It is usually infinite dimensional, but all graded components H*/*(L)
are finite dimensional. The generating function for their dimensions is usually called Poincaré
series:

CM,N(Q? t)

PQ,T.A) =) QAT"dimH"*(L).
ivj,k
The Euler characteristic of this homology P(Q, —1,4) = 7, ., Q"AI(=1)* dim H"/*(L)
equals the HOMFLY-PT polynomial of L. For various reasons it is useful to make a change
of variables
=0 t=TQ?, a=AQ".

Recall that the (M, N) torus link has d = ged(M, N) components, each of which is a (m,n)
torus knot but they are linked nontrivially. For example, (2, 2) torus link is a pair of unknots
linked the simplest possible way.

Theorem 4.16. ([17]) The Poincaré series of the HOMFLY-PT homology of the (M, N) torus
link equals Rom v (g, t, a).
Theorem 4.17. ([17]) Let M = dm, N = dn where gcd(m,n) = 1 and m,n,d € Z>y.

Consider the (m,n) torus knot colored by the representation Sym®. Then the Poincaré series
of the corresponding colored homology equals

g - qtl dRoM—dld’ON—dld (q,t,a).

Corollaries 4.14 and 4.15 immediately give a combinatorial interpretation of these results.
Indeed, Corollary 4.14 relates the HOMFLY-PT homology (at @ = 0) of the (M, N) torus link
to the rational Catalan polynomial ¢, (g, t) while Corollary 4.15 relates the colored homology
of the (m, n) torus knot to the polynomial Pyr+n-aja(q,t).

Example 4.18. The S*-colored homology of the trefoil corresponds to d = 2,m = 2,n = 3, so
M = 4, N = 6. The corresponding Poincaré series corresponds to the polynomial Pysq2(q, t)
which can be easily computed from Figure 5.
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Remark 4.19. It is easy to see that the (M, N)-invariant subsets in Iyw+~-a1a are in bijec-
tion with d-tuples of (m,n)-invariant subsets. Therefore the polynomials Py+~-aq4(q,t) and
Rorr-aja gv-aja(q,t,0) have ¢, (1, 1)¢ terms in agreement with the “exponential growth con-
jecture” of [14, 8].

4.3. Denominators of the rational functions. The Hogancamp-Mellit recursion for the series
R: 4 (q,t,0) as well as for the full series R (g, t, a) has an important advantage over the recur-
sion for P, (g, t) : one can use it to show that the denominator of R, , (¢, ¢, a) can be simplified
to a power of (1 — ¢) as compared to the denominator [J%_, (1 — ¢%), 0 < ¢; < d predicted by
Theorem 2.19 before reducing expressions.

Indeed, let us apply the same argument as in the proof of Theorems 4.6 and 4.10 to the
recursion for R, ,(q,t,a). Similar to Theorem 4.10, let us introduce a partial order on pairs
(x,y) of words in the alphabet {0, x } which by abuse of notation we also call < .

Definition 4.20. Let (x,y) and (2, y’) be two pairs of words in the alphabet {0, x }. We say
that (z’,y’) < (@, y) if and only if either the sum of lengths of ' and ¥’ is less than the sum
of lengths of x and y, or those sums are the same, but then |2'| > |x|, i.e. the number of X in
a’ is greater then the number of x’s in .

Note that the only case of the recursion that doesn’t go down in the above order is the second
term of the first recursive relation, where the pair (Ox, 0y) gets replaced by (0, y0). Therefore,
the only way one gets back the same pair of words one started from is if the initial pair was
(0...0,0...0), in which case one gets denominator (1 — q) :

Roo...0,00..0 = Ro..0x,0..0x + q0...00,0...00,
or

RO...OX,O...OX

1—q

In all other cases the recursion relations reduce to terms with pair of words smaller in our
order without introducing any denominators. This in particular holds for the fourth equation
Definition 4.1 which is the only relation involving the parameter a.

ROO...O,OO...O =

Corollary 4.21. The power series Ry, ,(q,t,a) can be expressed as a rational function with the
denominator equal to a power of (1 — q).

Combining this with Theorem 4.10, Equation (7), and Theorem 4.6, we get

Corollary 4.22. The power series Pyu+n(q,t) can be expressed as a rational function with
denominator equal to (1 —q)?, where d = gcd(N, M). In particular, the power series cyr n(q, t)
can be expressed as a rational function with denominator equal to (1 — q)%~1, where d =
ged(N, M).

In terms of the decision trees, as we replace the labels (v, w) by the labels (x, y) = (¢(v), d(w))
by forgetting es (as in Definition 4.12), more vertices become identical. As a result, long cycles
in the decision tree for (), ., locally trivially cover the length one cycles in the decision tree for
R, 4, with all the branches matching up perfectly. Note that one has to use the decision tree for
() 4 rather then the decision tree for P,, i.e., the weights of edges have to correspond to area’
and codinv’, rather than area and codinv. Also, the edges (ev,ew) — (ve, we) become
trivial and should be collapsed. We illustrate this in the following example:

Example 4.23. In Figure 6 we show the decision tree for the Hogancamp-Mellit recursion for
(M,N) = (3,3). Since we start from (v,w) = (000,000), it is easy to see that v = w
everywhere in the tree and so we may just record v. In fact, for M = N this is always the case,
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and the recursion in [17] is identical to the one in [5]. In the Figure 6 we label the vertices by
¢(v). We remind the reader of Remark 4.2.

One can compare the decision trees in Figures 2,3,4 to the one in Figure 6. The former surject
to the latter via u ~ v — ¢(v), and the marked nodes A, B, C' are mapped to the corresponding
nodes. Indeed,

A=011011~0ee:% 0, B=001011 ~0 x &+ 0x,

C = 001001 ~ 00 % 00.

Here we underline the last three letters in w which yield both v and w.
One may verify from Figure 6 that

1 _ _ _ _
Rooo,000(g: 1, 0) T (T+qt™" + (¢t + ¢t 7*)Roo + ¢°t*Roo.00)

L4ttt gt 420772 ¢t3
1—q (1-q)? (1—¢q)*

In this decision tree, edges from the first relation in Definition 4.1 are colored blue, while those
involving the fourth relation are black and all black edges are weighted with ¢/*/4-a (or with non-
negative powers of ¢ in the a = 0 specialization). Compare this to Rooo,000(¢, ¢, @) in Example
5.11.

One can also observe that the cycle containing C in Figure 3 covers the corresponding cycle
in Figure 6 twice, and two branches exiting this cycle get collapsed into one. Algebraically, this
double cover corresponds to the cancellation (1 + ¢)/(1 — ¢*) = 1/(1 — q) in equation (6) of
Example 3.2.

00x
1=t ¢!
0x x 0x0
N 2 e
X X X X x 0 X 0x x00
£ +al t+al t+al 1+al

1ta| =A X X x0 0x
g 1] 7 4l 1+al - Ngt?
X X A X X x0
l+al 1+al | \Dq t+al 1+al
0 0 x =A
l—l—a‘ @ q
l+a| 0 1
1] X
1+a‘
0

FIGURE 6. Decision tree for (M, N) = (3, 3) in Hogancamp-Mellit recursion.
Everywhere © = y.
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5. HIGHER a-DEGREES

The Mellit-Hogancamp construction involves an extra variable a. One can enhance the gener-
ating series and the recurrence relations described in Section 2 to recover the full three variable
functions in the following way.

Definition 5.1. Let A € I,y be an invariant subset. A number k € A is called a double
cogenerator of A if k + N € Aand k + M € A. Let Cogen(A) C A denote the set of all
double cogenerators of A.

Remark 5.2. Note that we only consider non-negative double cogenerators. If A € [, then
all cogenerators are positive, so it does not matter for such A’s. However, this choice will matter
for the recurrence relations.

We will also need the following statistic:
Definition 5.3. Let A € Iy ), be an invariant subset, and k£ € Z be an integer. We set
Me(A) :=f(Ngen(A)N[k+N+1,k+ N+ M]) =i(Mgen(A)N[k+M+1,k+ N+ M]).

Remark 5.4. Note that if A € [,,, where w = (ug, ..., unrp-1), then

(10) Ao(A) = A(p(A)) = A(v),
where v = (uy,...,unyp—1, 1) as in Definition 2.12. However, for any A we have A\ _;(A) =
A(A).

Now we are ready to define the enhancement of the counting function from Section 2.

Definition 5.5. Let the power series P, (g, ¢, a) be given by

Pu — Z qarea(A)tcodinv(A) H (1 + at’\’“(A)) .
Acly k€Cogen(A)

Remark 5.6. We can think about the enumerating functions P, in another way to by expanding
the parenthesis in the above product. In this way one gets a summation over labeled invariant
subsets, i.e. invariant subsets with some (from none to all) of the double cogenerators labeled.
This should be view as a generalization of the Schroder paths enumeration in the relatively
prime case (see [15]).

Theorem 5.7. Let uw = (uo, ..., unyn—1) be an admissible sequence. Let also
V= (Uu s UN+ M1, 1),
v = (u17 <oy UNGM -1, 0)

The power series P, satisfy the following recurrence relation:

q(Py + Py), if up = uy =uy =0,
po_ qPy, if up=0 andun +up =1,
e q(l—l—atA(”))Pv, if up=0 anduy =uy =1,
tNwp, if up =uy =uy = 1.

Proof. The proof is very similar to that of Theorem 2.14, but we need to account for double
cogenerators. As in the proof of Theorem 2.14, consider the shift map p of Definition 2.11. The
sets Cogen(A) and Cogen(p(A)) are in bijection unless 0 is a double cogenerator of A. This
happens if and only if vy = 0 and uy; = uxy = 1; and in this case the extra term for £ = 0 is
(14 at*@®)) = (1 + at*™®)) according to equation (10). O
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Similar to Section 4, in order to match with the recursion of Hogancamp and Mellit, we
switch to the adjusted statistics area’, codinv’, and dinv’.

Definition 5.8. As before, let u = (uo, ..., unia-1) € {0, 1} be an admissible binary
sequence. The generating series (), (q, t, a) is defined by

(],t (1, — Z t—codlnv (A) area( ) H (1 +at—)\k(A)) )
A€l k€eCogen(A)

We also set
Q'v,'w(Qa t) a) = Qu(Q> ta a’))

where the sequences v = (vg, ..., vy_1) € {0, 0, x}M and w = (wy, ..., wy_1) € {0, 0, x}V
are determined in the same way as in Definition 4.3, i.e. (v, w) = b(u).

Note that similar to arguments in Section 4, one gets

(1 1) CAQOM,ON (Q7 t, (1,) = q_N_MpOM,ON (qv t_17 a)'
Theorem 5.9. The following recursion holds:
Quv.ow = t "1 Qo awx + a1 Qu0.100,
va,Ow = va,wn
C?O'u,xw = Q’uo,wx>
QXU,XU} = (t|v| + Q)Qvo,wu
Qov,ow = Q'vo,woa

Proof. The proof proceeds the same way as in Theorem 4.10, with the exception for the fourth
relation

va,xw = (t‘v‘ + a)@'vo,wo-
The corresponding relation for Pu(q, t,a)is
Pu(q, t,a) =q (1 + atk(z)) P,,

where up = 0 and uy = uy = 1, and z = (uq,...,unsp—1,1). This differs from the
corresponding relation for P, (g, t) by the factor of (1 + at’\(z)) , which after switching ¢ to ¢!
becomes (1 + at~**)) . Therefore, one should multiply the corresponding relation

va,xw = t|v|Qvo,wo
by (1 + at_‘”‘) , which yields the desired relation. U

Corollary 5.10. Let x = ¢(v) and y = ¢(w). Then

Rauy(q.t,a) = Quuw(q,t,a).

The proof is almost identical to Theorem 4.13 and we leave it to the reader.
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Example 5.11. Let us use the Hogancamp-Mellit recursion to compute [ygp 000 (see Figure 6
for the decision tree):

R0007000<q, t, CL) :1—1(] ([(tz + a) + Q(t + a)] f;73(t -+ a)(l + a) +

(q + q2>t73(t + CL)(l + CL)RQ,O(Q, t, a) + q2t72(1 + a)ROO,OO(Q7 t, a))

:1—1(1 [(+a)+q(t+a)]t?t+a)(l+a) +

§ —1q)2 (¢+2¢°)t°(t+a)(1+a)* +

W(q t_)(1+a)

Example 5.12. One can also modify Example 3.2 to include higher powers of a and compute
Poooooo (g, t, a). We first compute the value of the loop

2 1
—q

Next we compute the values of B and C':

4t2 1+ 2
B=¢t1+at)(1+a)+¢(1+a)A=gt(1+at)(l+a)+ %,

C=¢"P(1+at)(l+a)+@t(l+a)A+ ¢tB+¢°C

hence
o Pl +at)(1+a)+@t(1+a)A+ @1+ at)(1+a) + ¢*(1 + a)A
= e
(1 +at)(1+a) N ¢t (1 + a)?
1—q (1—q?
Finally,

(1= @) Pooonco (g, 1, a) = ¢°(1 + at®) (1 + at)(1 + a) + (1 + at)(1+a)A +
¢ (1+at)B+¢*(1+a)C
=¢* (1 +at>) (1 +at)(1+a) +qt(1 +at)*(1+a) +
g1+ at)(1+a)? + 2¢3%(1 + at) (1 + a)?
l—q

¢t°(1 + a)’
(1-q)?

Note that according to Corollary 5.10 and Formula 11 one should get

Rooo,000(q, t,a) = C:2000,000((17 t,a) = q_ﬁpoooooo(q, t™' a).

Indeed, one gets
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(1- Q)poooooo(q, t,a)
¢

=(1+at ™A +at (1+a)+g ' (1+at)(1+a) +

@21+ at ™) (14 a)? + 2¢*t2(1 + at™')(1 + a)?
l—q

¢*t*(1 +a)®
(1—4¢)?
=t7t+a)(l+a)[(®+a)+qlt+a)] +
gt *(t+a)(1+a)*(1+2¢) ¢t °(1+a)
+ 7
1—gq (1—-4q)
which matches the computation in Example 5.11. Observe the ¢, t-symmetry of

347°(1—¢)* Poooooo (¢, ', @) = (1+a) (a® + a(t + g + 12 + ¢* + ¢*t* + qt — 2qt* — 2¢°t)+
(@° + ¢*° = 2¢°t — 2qt° + ¢ + & + ¢t + qt® — 2¢°¢° + qt)) .
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