Mathematische Annalen (2020) 376:1303-1336

https://doi.org/10.1007/500208-019-01898-1 Mathematische Annalen
q

Check for
updates

The A4, algebra and parabolic flag Hilbert schemes

1

Erik Carlsson'® - Eugene Gorsky'? . Anton Mellit?

Received: 11 November 2018 / Revised: 19 August 2019 / Published online: 13 September 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

The earlier work of the first and the third name authors introduced the algebra A, ; and
its polynomial representation. In this paper we construct an action of this algebra on
the equivariant K-theory of certain smooth strata in the flag Hilbert scheme of points
on the plane. In this presentation, the fixed points of the torus action correspond to
generalized Macdonald polynomials, and the matrix elements of the operators have
an explicit presentation.

1 Introduction

In the earlier article the first and the third name authors [4] introduced a new and
interesting algebra called the algebra A, ;. It acts on the space V = ;2 Vi, where
Vi = A®Cly1, ..., yx]l and A is the ring of symmetric functions in infinitely many
variables. The algebra has generators y;, z;, T;, d+ and d_. On each subspace Vy, y; act
as multiplication operators, 7; as Demazure-Lusztig operators, so together they form
an affine Hecke algebra. The operators z; and 7; also form an affine Hecke algebra (in
particular, z; commute). Finally, the most interesting operators d+ : Vy — Vi41 and
d_ : Vi — Vj_1 intertwine different subspaces.
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The algebra A, ; was used in [4] to prove a long-standing Shuffle Conjecture in
algebraic combinatorics [14]. Later, it was also used in [ 19] to prove a “rational” version
of Shuffle conjecture introduced in [10]. The latter yields a combinatorial expression
for certain matrix elements of the generators P, , of the elliptic Hall algebra [27]
acting in its polynomial representation. In particular, the operator Py, : Vo — Vo
was realized in [19] inside the algebra A, ;.

It is known from the work of Schiffmann and Vasserot [27], Feigin and Tsymbaliuk
[7] and Negut [23] that the elliptic Hall algebra acts on the equivariant K-theory
of the Hilbert schemes of points on the plane. In particular, [23] realized P, , by an
explicit geometric correspondence. This leads to a natural question: is there a geometric
interpretation of the algebra A, ; and its representation V,? We answer this question
in the present paper.

The key geometric object is the parabolic flag Hilbert scheme PFH, ,,_; which
is defined as the moduli space of flags {I,_x D --- D I}, where I; are ideals in
Clx, y] of codimension s and yI,_; C I,. We prove that this is in fact a smooth
quasiprojective variety. The following theorem is the main result of the paper.

Theorem 1.1 Let Uy = @, Kc*xc+(PFH, n—k) and let Uy = Do Uk. Then
there is an action of the algebra A, ; on U, and isomorphisms Uy ~ Vi for all k
compatible with the A, ;-algebra action.

The construction of the action of the generators of A, is quite natural. The
action of z; and 7; follows the classical work of Lusztig on the action of affine
Hecke algebras on flag varieties [18]. In particular, z; correspond to natural line
bundles £; = I,—;—1/l,—; on PFH, ,_x. The operators d+ change the length
of the flag and correspond to natural projections PFH,, 1 ,—x — PFH, ,—x and
PFH, ,—« — PFH, ,_i+1. Finally, the operators y; can be obtained using the com-
mutation relations between d, d_ and T;.

We compare this geometric construction with [7,23,27]. The key operator in [7,27]
is realized by a simple Nakajima correspondence Hilb™"*! with some power £¥ of a
line bundle on it, which naturally projects to Hilb” and Hilb"*!. This yields an operator
Pi; : K(Hilb") — K (Hilb"*!). We regard Hilb™"*! as a cousin of PFH,, ;1 ,, and
decompose P; i as a composition of three operators Pjx = d_z]fd+. Here d; :
Up — Uy and d_ : Uy — Uy correspond to the pullback and the pushforward under
projections, and z; : U; — Uj corresponds to the line bundle L. In Sect. 7.2 we make
a similar comparison with the construction of [23] for more complicated operators
P, , in the elliptic Hall algebra.

A combinatorial consequence of this work is the construction of generalized Mac-
donald basis corresponding to the fixed points of the torus action in PFH,, ,,_. For
k = 0 we recover the modified Macdonald basis corresponding to the fixed points on
the Hilbert scheme of points [12]. We explicitly compute the matrix elements for all the
generators of A ; in this basis, see Eqs. (4.2), (4.3) and Lemma 4.2. In fact, we prove
that these new elements have a triangularity property with respect to a version of the
Bruhat order for affine permutations, generalizing the triangularity in the dominance
order for usual Macdonald polynomials.

Finally, we would like to outline some future directions. First, the construction of the
spaces PFH,, ,,_ is very similar to the construction of so-called affine Laumon spaces
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[6]. Tsymbaliuk [28] constructed an action of the quantum toroidal algebras U (gly)
on the K-theory of Laumon spaces. In particular, for k = 1 this action coincides with
the action of the elliptic Hall algebra (which is known to be isomorphic to U (gly)) on
the K-theory of the Hilbert scheme of points. However, it appears that for k > 1 his
representation is larger than Uy . We plan to investigate the relations between A, ;
and quantum toroidal algebras in the future.

Second, the results of [10,11,20] suggest a deep relation between Hilbert schemes,
the elliptic Hall algebra, and categorical link invariants such as Khovanov-Rozansky
homology. In particular, a precise relation between the Khovanov-Rozansky homology
of (m, n) torus knots and the operators Py, , was proved for m = n+ 1 by Hogancamp
[16] and for general coprime (m, n) by the third author in [20]. It is expected [19]
that A, ; can be realized as the skein algebra of certain more general tangles in the
thickened torus, so it would be interesting to extend the approach of [11] to this more
general framework.

Finally, while our proofs of the relations in the algebra are fixed point formulas
which make sense only in K -theory, the definitions of the operators are K -theoretic
reductions of well-defined operators in the derived category. Identifying these defini-
tions is therefore the first step towards categorification. One of our motivations in doing
this is to find a geometric proof of the shuffle theorem, which we expect would have
broader implications, to Khovanov-Rozansky homology, for instance. As supporting
evidence, we conclude the paper by showing in Theorem 7.2 that the contribution
to the shuffle formula from Dyck paths with exactly k touch points, has an explicit
formula in the fixed point basis under the identification Uy = Vj. The form of these
formulas is nearly identical to Haiman’s formula for the resolution of the structure
sheaf of the punctual Hilbert scheme [13], suggesting that we have found a compactly
supported sheaf on PFH,, ,_x. This observation would be hidden without the fixed
point description.

In Sect. 2, we begin by recalling the construction of the A, ; algebra. We then
identify a subalgebra B, ; which also admits a homomorphism A, ; — B, ;. This
is the algebra which is given a geometric construction. In Sect. 3, we define the
parabolic flag Hilbert scheme PFH,, ,,_, and prove properties such as smoothness. In
Sect. 4, we define operators on K7 (PFH,, ,—x) as pullback and proper pushforwards
of natural projection maps. We show that these operators satisfy the relations of B, ,
using fixed point formulas in Sect. 5. They therefore define a representation of A ;
viaA, ; — B, ; — End(Uy), where Uy is the localization K7 (PFH, ,_x) ® Q(q, t).
In Sect. 6, we prove that Uy is isomorphic to Vj, as representations of A, ;. We finally
conclude with some example applications in Sect. 7. This includes the aforementioned
promising fixed point formula for the contribution of Dyck paths with k touch points
to the combinatorial side of the shuffle theorem, which has the appearance of the
fundamental class of a compact subscheme, similar to class of the punctual Hilbert
scheme [0z, ] € Kr(Hilb,).
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2 The algebra
2.1 Ag

The algebras under consideration can be viewed as path algebras of quivers with vertex
set Z=¢." So we implicitly assume that all our algebras contain orthogonal idempotents
Id; (i € Z>¢) and when we speak of an element R : i — j fori, j € Z>¢ we impose
the relation R = R1d; = Id; R. When we have a representation V of such an algebra
we always assume that V = @?io V; where V; = 1d; V. ThenanyelementR : i — j
as above induces a linear map V; — V. To stress the direct sum decomposition above
we denote such a representation by V,.
First we define the “half algebra” A, depending on one parameter g € Q(q):

Definition 2.1 A, is the Q(qg)-linear algebra generated by a collection of orthogonal
idempotents labeled by Z~( and elements

dy k—>k+1,d_:k—>k—1,Ti:k—k (1<i<k),y:k—>k (1<i<k)
subject to relations

(T, =D(Ti+q) =0, TTinTi=TnliTiy, TTj=T;T; (li—jl>1),
@.1)
TiyiniTi=qyi (1 <i <k—1), (2.2)
il =Ty (¢ {j,j+ 1}, yiyj =yjyi A <i,j < k),
ATy =d, d-Ti=Td- (1<i<k-2),d-y=yd- (1<i<k-1),

(2.3)

Tdi =d3, diT; =Tidy (1<i <k—1),
diyi=TT Ty T T My, (1<i <k) (2.4)
did_—d-dy =(q—1VDNTy - Tr—1 k. (2.5)

Remark 2.2 Note that relations (2.1) define the Hecke algebra, and relations (2.1) +
(2.2) define the affine Hecke algebra A Hy.

In what follows we will need a slightly different description of the algebra A, . Let
the A Hj be the affine Hecke algebra generated by T1, ..., Tx—1, ¥1, - .., Yk modulo
relations (2.1) and (2.2). The following lemma gives another presentation of the alge-
bra A Hj similar to the Iwahori-Matsumoto presentation of the affine Hecke algebra,
although in our definition y; are not invertible. The proof is similar to [4, Lemma 5.4],
but we present it here for completeness.

LA categorically inclined reader can view our algebras as categories with object set Z>(. Then a repre-
sentation of a category is a simply a functor to the category of vector spaces.
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Lemma 2.3 Consider the algebra AH] generated by Ty, ..., Ty_1 and an element ¢
modulo relations (2.1) and

oTi = Ti19 (i <k —2), ¢*Tiey = Tip™. (2.6)

Then the algebras AHy and AH, are isomorphic.

Proof Define ¢ = Tj...Tx_1yk. Let us prove that (2.2) imply (2.6). Fori < k —2
one has:

ol =T1.. TinDi=T.. Ti1Tiyg = Ti1Th ... Tr—1yk = Tit19,

while

@ Tt = T ... Ty T - Ty Ti—t = q(Ty o Tee)(Th - Te—2) Y Vi—1,
T19? = Ti(Ty ... T— )Ty - Te—)yk = Ti(Ty .. Te—)(Th - .. Te—2) yi Th—1 Yk
=T(T... Tr—)(T1 ... Te—2)Tr—1 Yk Tk—1yk = q(T1 ... Te—1)(T1 . . . Ti—2) Yk—1 k-

Conversely, let us prove that (2.6) imply (2.2). Define
_ i—kp—1 —1
yi=q "T,_,...T] ¢Tx—1...T;. 2.7
Then, clearly, T;y;+17T; = qy;. If j > i then

yiTj =" * 17 T Ty . T = ¢ T T T Ty L T

1 1

=¢' T2 T T T = Ty,

1

If j <i—1, the proof of y;T; = T}y; is similar. Finally,

yive=@Teor1 ... T T o =TS T Ty .. Tag,
ywn =T TP T T =T T e T T
=T, .. Do’ Ts... Ti =T Y. .. T ' Tio1 ... oo

The proof of other commutation relations y; y; = y;y; is similar. O

Lemma 2.4 The algebra A, is generated by T\, ..., Ty_1, ds, d_ modulo relations
(2.1), all relations in (2.3) and (2.4) not involving y;, and two additional relations:

qed— =d_¢Ti—1, Tiedy =qdio, (2.8)

where ¢ = qlTl[d+, d_]. All other relations follow from these.
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1308 E. Carlsson et al.

Proof Let us check that ¢ satisfies (2.6) on V. Clearly, for i < k — 2 one has
(dyd-—d d))T; =dyTid —d Tipdy =T (dyd —d-dy).
Furthermore,
dyd_@Ti—1 = qdred_ = Tiedd_,
and
d_dyoTi_ =q 'd_Tied Ti_1 = q ' Tid_¢Tid, = Typd_d.,,

SO

1
(dyd- —d-d)eTi-1 = Tigp(did- —d-dy) = Tig”.

2 = 1
% k—1—q_1 7—1

Therefore by Lemma 2.3 we can define y; and check the commutation relations (2.2).
Let us check the remaining relations:
doyi=d_T .. T Ty ... Ti =T ... T d_gTiy ... T
=T T ed - Tn . T =T .. T 9Tis ... Tid_ = yid_.

The last identity dyy; = T1...T;y; ... T1_1d+ is also straightforward, see [4,

1

Lemma 5.4]. O

22 Ag s

The “double algebra” A, ; depends on two parameters ¢, t € Q(g, ) and is obtained
from two copies of A, by imposing more relations:

Definition 2.5 A, ; is the Q(q, t)-linear algebra generated by a collection of orthog-

onal idempotents labelled by Z>( and elements:

dydi :k—k+1,d :k—>k—1, T :k
—k (1<i<k), yi,zi:hk—k (1<i<k)
subject to the

e relations of A, ford_,d,, T, yi,

e relations of Aq—l ford_,dy, Tl-_l, Zi,

and

dizi = zig1dy, diyi=yimdt (1<i<k), zidy=—tg"ydt.
(2.9)
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Remark 2.6 One is tempted to say that the generators T;, y; and z; form some sort of
double affine Hecke algebra as in Remark 2.2, but this is not the case. The problem
stems from the fact that double affine Hecke algebras of [3] do not embed into one
another in the way that the affine Hecke algebras do. There is a way, however, to
relate A, ; to double affine Hecke algebras by making sense of limits of the form
lim,_, oc ¢,DAHA, 1 ;e,, where e, € DAHA,, 4 is the partial symmetrization operator
on the indices k + 1, k + 2, ..., k 4+ n. In particular, we expect that the degree zero
part of A, ; coincides with the positive part of the elliptic Hall algebra which is the
stable limit of spherical DAHAs as shown in [27]. See also Remark 7.2 in [4]. In 7.2
we express the positive generators Py, , of the elliptic Hall algebra in terms of the
generators of A, ;.

We also note that the generators of A, ; are closely related to the braid group
By (Ty) of the punctured torus. Indeed, the latter has generators Tii, yii, zl.ﬂE and one
can define a related monoid %Ij (To) generated by Tii, vi, zi (see [19] for details). In
[19] the third author constructed homomorphisms from %,j (To) to Ay ; for all k. This
is similar to the homomorphism from % (Ty) to the DAHA (e. g. [17]).

In what follows we will need a certain subalgebra of Aq,, which, nevertheless,
contains an isomorphic copy of A, ;.

Definition 2.7 The algebra B, ; is generated by a collection of orthogonal idempotents
labelled by Zs¢, generators d, d—, T; and z; modulo relations:

T —D(Ti+q) =0, TTinTi =TinTiTiva, TT;=T;T; (li—jl>1),
Tl T =gy (1 <i<k—1),

zilj=Tjz; ( & {j, ]+ 1D, zizj =zjz 1 <i,j < k),

ATy =d2, d-T,=Td- (1<i<k-2),

Tid} =d3, dyTi = Tidy (1 <i <k —1),

qed— =d_¢Ti—1, Tipdy =qdie,

zid- =d_z;, dyzi = zi+1d4,

z1(qdyd— —d-dy) = qt(dyd— —d_dy)zk.
Remark 2.8 By (2.5), one can define the elements y; € B, ; and prove that y;, T;, d1
and d_ generate a copy of A,.

Proposition 2.9 There is a homomorphism a : B, ; — A, ; which sends dy,d_, T;
and z; to the corresponding generators of A, ;.

Proof Let us check that the last defining relation for B, ; holds in A ;:
z1(gdyd— —d-dy) = qzidyd- — z1d—-dy = q(z1d4)d— — d_(z1d4).
We can replace z1d by a multiple of y;d’} and obtain:

q(—tg"yidid_ — d_(—tg" VYyidt = —1g"y[d%, d 1.
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1310 E. Carlsson et al.

Since d_, d7, Ti_l, z; satisfy the relations for Aq—l , by (2.5) we get:
[df.d 1= ("= DT Tz,
SO

—tg"yildt, d_1 = —tg" @ - DT T

=tq"(qg — Dy Tfl ~~-Tk:112k =qt(q— DT ... Tr—1yrzk
= qtldy, d_Jz.

It follows from the definition and Theorem 2.4 that all other defining relations of B, ,
are satisfied in A, ;. O

Theorem 2,10 There is an algebra homomorphism B : Ay ; — B, ; such that

B(T) =T;, Bd-) =d_, B(dy) =dy, B(d) =q *z1d;

and B(z1) = —qty1z1. There is a chain of homomorphisms:

B o
Agi = By = Agyr.

Proof 1t is clear that all defining relations of A, are satisfied for 7;, d_, d and hence

for y;. We proceed to check the relations of A -1 for Ti_l, d_, B(d}),zi inBy,. In
order to apply Lemma 2.3 we will need the following computation:

(@' = De* =[BW@),d-1=q" *z1did_ — g *z1d_dy = g " z1(qdd- —d_dy)
=tq" Mdyd- —d_dy)z = 1q' " (g — Dozt

Thus we have

o* = —tq* oz,
so that we can check (2.8):
g 'o*d_ = —1q* *pzi_1d_ = —1q" Fd_g Tz = d_¢* T,
T B(d}) = —tq" T pzip1g Fzidy = —1g" T pzidy 2
=—tq" " * T  vapdiz = —tg 2 Tipdy 2k = —tq' " z1d oz
=q"'Bd})e*,

where we have used the following identity between elements k — k for k > 2:

1
w71 = qu(d+d7 — d7d+)Z] = Z2(d+d7 — d,dJr) = 220. (210)

qg—1
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Among prerequisites for Lemma 2.3 it remains to check the identities between B(d?})
and T;. We have

BT, = g *21ds Ty = ¢ * 21 Tiyidy = ¢ *Tipidy = Tip1 B(dY),
ﬂ(di)z =g ndizidy = g 212042,

hence
T1pWd;)’ = q * ' nahid] = g azd; = pd])’,

Thus we can apply Lemma 2.3 and deduce that the relations of A -1 for Ti_1 vd—, B(d}),
z; are satisfied.
It remains to check relations (2.9) for d, y;, 8(d}), B(z;). We have

B(zx) = Tt ... Tig* = —tq* Ty ... Tigz.
Therefore
Bzi) = —tq* *T;_y .. . TigTi1 ... Tizi = —qtTioy ... Tl)’lTl_l . Ti__llzl'-
Thus we have

—qtdyTi—q ... lelTl_l . Ti:llz,- = —qtT; ... lelTl_l . T-_IZ,'.H

dyB(zi) ;
B(zi+1)dy.

Using Lemma 2.3 and (2.10) we obtain

1

By = g *zidig =q " Td, = q_le_lzzfder = q_kT1_1¢21d+

=17 ' pp(d}),
which implies

By = BTN T 0Ty . T =T T o Th . Tip1 B(dY)
= yir1B(d}).

Finally, we have

Bz)dy = —qiyizids = 1" yiB(d7).
Thus we finished verifying (2.9). O
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1312 E. Carlsson et al.

2.3 Gradings

The algebras A, ; and B, ; are triply graded. The grading of d is (1, 0, 0), the grading
of d_ is (0, 1, 0), and the grading of T; is (0, 0, 0). The commutation relations imply
that y; have grading (1, 1, 0). Next, we require that d% has grading (0, 0, 1) and z;
have grading (0, 1, 1). It is easy to check that all relations are tri-homogeneous with
respect to these gradings. In particular, the degrees of z1d,. and y;d7 are both equal
to (1,1, 1).

In what follows we will use two specializations of this triple grading. The first
projection (a, b, ¢) = a — b + c assigns to d and d7 degree 1, d_ has degree (—1)
and y;, z;, T; all have degree 0. This is just the standard grading which equals & in the
idempotent ey.

The more interesting projection (a, b, ¢) — a+b+cassignstody, d—, d’ degree
1, and to y;, z; degree 2.

2.4 Polynomial representation

Denote by A the ring of symmetric functions in infinitely many variables x1, x2, . . ..
We will use the following standard notations for plethystic substitutions: if A is an
element in some A-ring R, we consider the homomorphism A — R, F +— F[A]
which sends power sums p, to p,(A). For example,

pulX + (g — Dyl = po+ (¢" — Dy

Also, we use notations Exp[A] = "7 h,[A] and Resy >, cny™dy = c_1.
Following [4] we introduce spaces

Vi= A®C@G. Dy, ] Vo= EDVi.
k>0

One of the results of [4] is the following:

Proposition 2.11 There is an action of Ay ; on V, in which

TF — @ = Dyini B+ Qi = ay)siF -
Yi+1 — Vi
d_F = —Resy, F[X — (¢ — Dyl Expl—y; ' Xldye (F € V),
diF =TT... Ti(F[X+(q— Dyrr1D-
d*

TemF =vFIX+ (@ — Dyl

where y (y;) = yi+1 and y (Vi+1) = ty1. Furthermore, we have a unique isomorphism
Ve = Aq Idg,
of left A,-modules in which 1 € Vy maps to 1d.
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Consider the space

Wei=@Wee We=01...0 Ve CA®Clg. 0yl ...y,

Clearly, Vi C Wg.

Theorem 2.12 The following statements hold:

(1) The operators T;, dy, d_ and d = —(qtyl)’ld_";’CM can be naturally extended
to the space W, and define a representation of A, ;.

(2) Inthis representation, a (B ;) preserves the subspace Vo C W,, and hence defines
a representation of By ; in V,.

(3) The composition aff(Ay ;) also preserves V,, and hence defines a representation
of Ay in V. This representation agrees with the one in Proposition 2.11.

We illustrate all these representations in the following commutative diagram:

B

o
Agi > By > Ag,

t
4tem | e

End(V,) +— Endy,(W,) — End(W,)

Here Endy, (W,) denotes the set of endomorphisms of W, preserving V,.

Proof Let us prove that T;, d, d_ and d} = —(qtyl)_ldi,CM are well-defined on
W,. If F € V,, then

Ti(F/1...y0) = (GiF)/(1-..90) € W,
de(F/(1...3) = (MT ... Tiyk1 FIX + (@ — Dyes1 )/ 01 - - - Yit1) € W,
d_(F/(1-..y0)) = =1 ... yk=1) "' Resy, FIX — (¢ — Dyily; ' Expl—y; ' X1dyx € W,
—qtdi (F/(1-..y0)) = =y 'y (FIX + (g = Dyis1l/O1 - 00)
01 k) TV (FIX + (g = Dyegr] € We.

using the fact that 7; commutes with y; ... yk, and 7; (1) = 1. The verification of the
commutation is identical to [4] and we leave it to the reader.

To prove that a(B, ;) preserves Vi, it is sufficient to prove that the commutator
[d, d_] preserves V, (then z; preserve V,, and T;, d, d— preserve V, by definition).
For F € V; we have:

—qtdid_F = =y 'FIX + (1 — q)ty1 — (¢ — Du, y2, ..., yg, ul
x Expl—u~'X —u"' (g — Dtyi]l,1.
—qtd-d} = —y; 'FIX + (1= @)ty1 = (q = Du, y2, ..., ye, u]
Exp[—u_lX]|u_|.
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1314 E. Carlsson et al.

Now

1 —ulqgty ulty
————1=(0-9

1 —ulty 1—ulty’

)
[d.d-1F = (1= ¢ HFIX + (1 = @)ty1 = (¢ = D y2, ...,y ] Explu” " tyr — ™' X0
Finally, af(d}) = —qiy1d} = d7 ¢y O

This result is very useful in the proof of our main theorem. Namely, we will define
a geometric representation of B, ; and identify it with the space V,. Then, using the
homomorphism B, we will define a representation of A, ; which, by the above, is
isomorphic to the representation from Proposition 2.11.

Finally, a key observation from [4] is that there is a symmetry in the relations of

A, ; which is antilinear with respect to the conjugation (g, t) — (g%, t71), and is
given on generators by

d_-<d_, Ti< T, yi<z, di<dt (2.11)

Furthermore, this symmetry preserves the kernel of the map A, ; — End(V,), and so
determines a map

N:Ve—=V, (2.12)
which is antilinear, and satisfies N2 = 1. On Vo = A ® C(q, t) the involution N is
related to the celebrated operator V on symmetric polynomials, see (6.5) below.

3 The spaces
3.1 Parabolic flag Hilbert schemes

Definition 3.1 The parabolic flag Hilbert scheme PFH,, ,_ of points on C? is the
moduli space of flags

I CLi—1 C-- Cly—

where I,_; is an ideal in C[x, y] of codimension (n — i) and yI,—x C I,.

Definition 3.2 The parabolic flag Hilbert scheme PFH,, ,_ of points on C? is the GIT
quotient of the space of triples (X, Y, v) by the group G, where v € C", X and Y are
(n — k, k) block lower-triangular matrices such that k x k block is lower-triangular in
X and vanishes in Y
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* 0
x 0
X = 0 .0 |.v= oo | G
£ %0 _
: 0..0
* . *

We require that [X, Y] = 0 and the stability condition C(X, Y)v = C”" holds. The
group G consists of (n — k, k) invertible block lower-triangular matrices with lower-
triangular k x k block, and acts by g.(X, Y, v) = (gXg~', g¥g~ !, gv).

Proposition 3.3 The two definitions above of PFH,, ,,_ are equivalent.

Proof The proof is standard but we include it here for completeness. Given a flag
of ideals {I, € I,—; C --- C I,—x C C[x, y]}, consider the sequence of vector
spaces Wy = Clx, y]/I;. The multiplication by x and y induces an action of two
commuting operators X and Y on each W;. There is a sequence of surjective maps
W, -» W,_1 - --- — W, _; which commute with the action of X and Y. Since
yvl,_x C I, the operator Y annihilates

Ker(Wy, = Wy—i) = In—i/In.

If one chooses a basis in all Wy compatible with the projections, then the operators
X and Y in this basis would have the form (3.1). The vector v corresponds to the
projection of 1 € C[x, y], and the matrix g corresponds to the change of basis.
Conversely, given a triple X, Y, v, let W, be the vector space spanned by the first
s coordinate vectors, and let X, Yy, vy denote the restrictions of X, Y and v to Wi.
Let Iy = {f € Clx, y] : f(Xs, Y5)(vs) = 0}. Clearly, I is an ideal, I;4; C I and
v, C I. |

Example 3.4 1f k = 0O then clearly PFH,, ,_; = Hilb" (C?).If k = n then PFH, —x =
C". Indeed, for k = n the matrix Y vanishes, and the stability condition implies
that X is determined up to conjugation by its eigenvalues (that is, all generalized
eigenvectors with the same eigenvalue belong to a single Jordan block). Therefore the
natural projection

PFH, 0 — C", (X,Y,v) = (X11, ..., Xnn)

is an isomorphism.

These examples indicate that PFH,, ,_; behaves better than the full flag Hilbert
scheme which is very singular [11]. This is indeed true in general.

Theorem 3.5 The space PFH,, ,_i is a smooth manifold of dimension 2n — k for all
n and k.
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In the proof of this theorem we will use a version of the geometric construction
of Biswas and Okounkov [1] (see also [6, Sect. 3.4], [22, Sect. 4.3] and references
therein). Consider the map

0:C = C% o(x,y) = (x, ¥
Also, consider an action of the group I' = Z/(k 4+ 1)Z on C? given by (x, y)

(x, ¢y), where ¢ is a primitive (k + 1)st root of unity. Given a sequence of ideals
I, ..., I,_, we can consider the space

JUps o Iyg) = 0%y + yo* Ly + -+ - + y*o* I, € Clx, y]

Lemma 3.6 The space J(I, ..., I,—) is an ideal in C[x, y] if and only if yI,_y C
I,Cli_i1C...C L.

Proof Clearly, multiplication by x preserves the space J (I, ..., I,_x), so it is an
ideal if and only if it is preserved by the multiplication by y. For 0 < j < k one has

yoylot oy =yt o,
which is contained in yj“cr*ln_j_l if and only if ,,_; C I,,— ;1. Furthermore,
y Yo Ly =y o iy = o* (v ),
which is contained in o *1,, if and only if yI,,_ is contained in I,. O

Lemma 3.7 An ideal J C Clx, y] is invariant under the action of U if and only if
J=JU,, ..., Iy_) for some ideals I,, C --- C I,_x with yI,,_y C I,. In this case
the ideals I, j are uniquely determined by J.

Proof Clearly, 0*C[x, y] = C[x, y**!] c C[x, y] is invariant under the action of T,
soJ (I, ..., I,_x) is also invariant. Conversely, let J be a I'-invariant ideal in C[x, y],
we can decompose it according to the action of I':

J=a&"_ IO, c(f)y=¢ffor fed®.

Since y¥t1JG) ¢ J© we can write J&) = ySo*(I,_,) for some ideal I,_;. By
Lemma 3.6, I,y C I,—s—1 and yI,_x C I,. O

Proof of Theorem 3.5 By Lemma 3.7, the space PFH,, ,_ can be identified with a
subset of the fixed point set of the action of a finite group I" on the Hilbert scheme
Hilb" ((CZ). The codimensions of I,,_g are locally constant functions on the fixed point
set. Therefore PFH,, ,— can be identified with a union of several connected com-
ponents of the fixed point set. Since Hilb” (C?) is smooth, the fixed point set is also
smooth. m]
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3.2 Torus action

The group T = C*x C* acts on C? by scaling the coordinates: (x, y) — (¢~ 'x, 17 1y).
This action can be lifted to the action on the Hilbert schemes Hilb” and the spaces
PFH,, ,,—«. The fixed points of this action on Hilb" correspond to monomial ideals I,
and are labeled by Young diagrams A with |A| = n. It is convenient to encode a single
cell O by its monomial x (OJ) = ¢“t", where ¢ resp. r is the column resp. row index
of (. It is well known (e.g. Lemma 5.4.5 in [12], see also [21]) that the equivariant
character of the cotangent space at [, is given by

ch @, Hilb" = Y (q*O+ O 4 =@ O,
Oea
=qtB, + B — (g — 1)(t — 1)B, B, (3.2)

where a(LJ) and [([J) denote the lengths of the arm and the leg of L in A, B, =
> Oeu x (D) and % in B; denotes the substitution g — g~ ', 1 — 17!,
The fixed points of PFH,, ,_ are labeled by sequences of monomial ideals 7, C
- C I, corresponding to Young diagrams AV > ... > A% The condition
yI,_i C I, canbetranslated to A®) as follows: 1\ 1"~ is a (possibly disconnected)
horizontal strip, that is, it contains at most one box in each column. Another useful

reformulation of this condition is
W =M where 2070 = 0 =40 = L), (3.3)

Note that the difference A" ~/\A=/=1 consists of a single box. Instead of keeping
track of the sequence of partitions we prefer to remember only the first one, which
we denote by A = A, and the successive differences (J; = A"=/+D\ (=) (j =
1,..., k). When drawing a picture we will display A as a Young diagram, together
with labeling of some of its cells by numbers from 1 to k where we put j in [J;.
Alternatively, we will form a vector w = (wy, ..., wg) where w; = x(O;). A fixed
point in PFH,, ,_x will be denoted by 7, ,, when we specify a pair of a partition A and
a vector w, or by ;) when we specify a decreasing sequence of partitions A,

Another way of encoding sequences of partitions A~/ comes from the proof of
Theorem 3.5.If all I, ; are monomial ideals, sois J (I, . . ., I,—k). The corresponding
Young diagram p has rows:

e A N Y S T Y
which decrease by (3.3). Note that
By = By (q, ") + 1By (g, T - + 15 By (g, 5.
To calculate the character of 2, PFH,, ,— we need to extract the terms in ch 2 I Hilb
whose ¢-degree is divisible by k + 1, and then replace each term g%r?*+1 by ¢%1°.

Performing this with (3.2) we obtain:
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k

k
qtByu-n + By + (q — 1) (Z By B} iy = t Byt By — Y BMnHl)B;(n_i)) ,
i=0 i=1

which can be rewritten as
k
qt By n-n + B;(n) +(@-1 ((B}\(n) - [B)L(nfk))B;f(,,) - Z w,‘B;f(,,i)> ,
i=1

SO we obtain

ch QA(‘) PFH, ,—x = qt B -0 + B)T(n) —(@t—-1(qg — I)Bk(n—k) B:(n)

+g-1 Y wiwj_l. (3.4)

kzizj=1

By using (3.4) and (3.2), one can check the following:

Proposition 3.8 Ler a(0, j) denote the arm length of O in A1) and let 1(D)
denote the leg length in A", The equivariant character of the tangent space to
PFH,, ,—k at a point e = A 5.5 A0y equals

ch Ty, (PFH, ) =kg+ Y 6(0)
Oern=k

where

G(D) — qa(D’O)+1l_l(D) +q—a(‘:|,k)tl(|:])+1

if there are no boxes in A" \1"=% above O, and

o) = qa(D,i)+lt—l(|:l)—1 +q—a(|:|,i—l)tl(|:l)+l

if there is a box labeled by i above L.

4 Geometric operators
4.1 Equvariant K-theory

We recall the basic constructions in equivariant K -theory, referring the reader to Chriss
and Ginzburg, as well as Okounkov’s lectures [2,25]. If X is acomplex algebraic variety
with an action of a complex torus T, we have the equivariant K-theory of coherent
sheaves on X, denoted K7(X). If f : X — Y is proper and equivariant, recall that
we have a pushforward map f, : K7(X) — K7 (Y), determined by

F(FD =) (DR fu(F)I.

i=0
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If X and Y are smooth, then the map K7.(Y) — Kr(Y) is an isomorphism, where
K7(Y) is the Grothendieck group of locally free sheaves. In this case, we also have
the pullback map f* : K7(Y) — Kr(X) given by

FAAFD = Y (=D Tor? (Ox., F),

even when f is not proper.
We denote by K (X) the localized K -theory

KX)=K(X)®gF

where R = Kr(pt) is the ring of Laurent polynomials in the torus variables, and
F is the field of fractions of R. If X is smooth with isolated fixed points, then the
localization theorem [2,29] says that the pullback i* : K7(X) —> K7 (X Ty becomes
an isomorphism after localization,

Kr(X)= @ Kr(p) ®r F.
pexT

Moreover, the pushforward and pullback maps may be uniquely extended to F-linear
maps which are uniquely determined due to the injectivity of i*.

These linear maps are given explicitly as follows: for a fixed point x € X we denote
by [x] = i.(1) = [O4] € K7(X) where i : x — X is the inclusion. We denote by
[x]’ the dual class

[x]

e Kr(X),
AL 7(X)

[x] =

where

A*Qy = Z(—l)iAiQx.
i
Then the extension of the pushforward and pullback are given by

LXI=1F@L = ), Kk 4.1)

xeXT: f(x)=y

Since our spaces Vi are vector spaces over Q(q, t), we will define our spaces as
localized K -theory, and our proofs will be based on (4.1). However, it is an important
to note for future applications to categorification that in our new description, the algebra
generators of A, ; act on on actual, nonlocalized K-theory. We derive the relations
in this algebra in localized K -theory, proving that these relations are satisfied up to
torsion elements, i.e. the kernel of the localization map i *, which we will study in future
papers. We expect that there is an integral form of A, ; and that the corresponding
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relations hold in non-localized K -theory. For instance, a similar result for the elliptic
Hall algebra was recently proved by Negut in [24].

For the rest of the paper, we will drop the symbol T from K7, and simply write
K (X). The torus will always be T = C* x C*, with coordinates (g, t).

4.2 The affine Hecke action

For 1 <m < k —1 consider the space PFHflmn)_k consisting of partial flags I,, C --- C
Li—m+1 C Ly—m—1 C ... I— with the same condition yI,,_x C I,. In complete
parallel with Theorem 3.5, one can prove that this space is smooth. There is a natural

projection 7 : PFH,, ,—x — PFH"™

k> which is projective. For a fixed point [, ) €
PFH,, ,,—x we have that 7w (/,«)) = I,/ where the sequence of partitions A s
obtained from A(® by removing 1~ There is at most one other fixed point that
goes to I, s, corresponding to a sequence which we denote by sy, (k(')). If I, is
specified as I ,, then Ism(ﬂ')) = I s, (w), Where s, swaps w;, and wy, ;1. A formula

similar to (3.4) can be proved for I, ), we have

ch Q@ PFH" | = 1B, o1 + Bl — (t — 1)(q — 1)Byut Bl

n,n—k —
+g—-1 Y wwf
k—1zi>j>1
where
w; i <m),
w; =\ Wy + Wit i =m),
Wil @i > m).

Therefore we have

m+1°

ch @,/ —ch Qs(k(‘)) =(q — 1)wm+1w,;1.

ch Q0 —ch Q@0 = (g — Dwpw

We obtain

n*ﬂ*lk,w = A" ((6] - 1)wmw,;_l|_1> I)L,w + A* ((CI - l)wl‘n—“lwy;l) IA,sm(w)

-1 1
- qWmW,, 4 | 1 — qUWm+1W,,

= 1 Dw + 1 Dy s (w)-
1-— W W, 4 1 — wyt1wn,

Note that the second summand should be omitted if /, ) is the only fixed point that
goes to I, ). This happens precisely when A ="+1D \A=m=1) i5 a pair of horizontally
adjacent cells, i.e. w,, = qw;,+1. In such situation the factor in front of I s, (w)
vanishes anyway, so the formula still holds formally even though I, s, (») does not
correspond to a point in PFH,; ;.
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We get the following lemma:

Lemmad4.1 Let T, = n*m, — q. Then

(¢ — Dwpti Wi — qWm+1
T (L) = " Dow + — S Do (w)- (4.2)
Wy — Wip41 Wy — W41

The operators z; are given by multiplication by line bundles £; = I,_;/1,—j41.
Note that we have

Lilw=wjly. 4.3)
4.3 Creation and annihilation
There are natural projection maps forgetting the first and the last ideal respectively
f ¢ PFHu410-k — PFHu k. g : PFH, g — PFH, i1 .
Here g is projective. We will denote
d-=gs dr=4q"q-Df"

Note that d increases k and d_ decreases k.

Lemma4.2 We have

d—Ik,rux - I)L,wa
k X —tw
k - i
dilow =—¢" Y xdon [ [ —Dawrw
Y lx —gtw;
X i=1
where xw = (x, w1, wa, ..., wk), and d,,_,, is the Pieri coefficient

1 (8) _ plu(s)+1 ap()+1 _ flu(s)
_ q”/ th q“ th
du@n =[] GO — o)+ [1 GO O+ _ 5

SERL $€Chp

for multiplication by ey in the modified Macdonald basis e.g. from [9] formula 3.1,
which satisfies

81[:1 = Zd)uliljl}t'
A

Here Ry, is the set of cells in the row of the unique box in A\, and Cy,_ ,, is the set
of cells in the column.
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Proof The formula for d_ is immediate from the definition. For d we calculate
ch Q)»,w —ch Qk+x,xw

k
=—x'+ (=D - DBunx = (q-Dx"Y wi—(@-1
i=1

k
— '+ =D - DBx = (g =D —tg - Dx7' Y .
i=1

Below we will show
does =x A (x4 =D@g-DBx"+1). (4.4)

Assuming (4.4) we have

k
1 X — tw;
f*l)\,w = E Xd)ﬁ—x,)\] _ l_[ Ik+x,x11)-
x

q; X —qrw

and we are done.

To prove (4.4) we will use the following summation formula for the Pieri coeffi-
cients, see e.g. Theorem 2.4 b) in [9]:

Y draax™ = (=Die[—1+ (g — Dt — DBl (i =0).

Let u be a formal variable. Multiplying both sides by «* and summing over k > 0
produces the following identity of rational functions:

Y s = A*(=1+ (g = Dt = DBw). @.5)

1

Note that the left hand side has simple pole at u = x~" and

Xdyyxp = (1= ux) A" (=14 (g — D& = DBOwW) | ,_ -
Moving 1 — ux inside A* we obtain
Xdyxg = A ((=1+(q — D)@ = DB)u+ux)| _ ;.

Now we can substitute # = x~! before applying A* and arrive at (4.4). O
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Example 4.3 Let k = 0. We have PFH,, , = Hilb,. Let us identify the fixed point
corresponding to a partition A with the symmetric function
H;, Al —n(W) ;—n(}) 17 7 -1
L=— = (—DHgT W H = B, [T (=x @)™,
H,[—1] Oex

where H, is the modified Macdonald polynomial. Then we obtain

d+I:I)L = _I:])»[_l] Z wldA+w1,AIk+w1,w1 s

w1

and using Hy 1, [—1] = —w Hy[—1]
d-d+FI)L = de+w1,kljl)»+w1 )

wi

therefore d_d acts like the operator of multiplication by e1, which matches the action
of A, ; on V,.

5 Verification of relations

Let

U = EP K(PFH, 1), Us = EP Us.

n>k k>0

In this section, we will prove the following theorem:

Theorem 5.1 The geometric operators written as T, z;, d+ and d_ define a represen-
tation of the algebra B ; on U,, and therefore a representation of A, ; via the map

B:A; — By,

We split the relations into several groups and prove them in the subsections below.
We will denote Hj_,, = (—1)*g"®) @[, - so that the H;_,, form a basis of U,
Note that the formulas for the action of T, £, d_ in the H-basis are the same as for
I-basis.

512z,T;

The following relations are easy to verify

Proposition 5.2 The operators z; = L; and T; satisfy relations of the (conjugate)
affine Hecke algebra:
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(T; =T +q) =0, TiTipT =TinTiTiv1, LT =TT (li —jl>1),
TiziT, = qziq1 (1 <i <k—1),
2T =Tizi G ¢{j.j+ 1), zizj=zjz 1 <i,j<k),

In fact, the construction of z; and 7; is very similar to the classical construction of
finite-dimensional representations of the affine Hecke algebra using “multisegments”
(see e.g. [30]). The operators 7; and z; do not change the biggest ideal I, and the
smallest ideal I,_j. In terms of the fixed point basis, this means that we can fix two
partitions A,_x C A, such that the skew shape A, \A,_x consists of several horizontal
strips. The choice of A,,_x+1, . . ., A,—1 is equivalent to the choice of a standard tableau
of this skew shape. Then (4.2) and (4.3) agree with the action of the affine Hecke
algebra on such standard tableaux [26,30].

52d_,dy, T

From Lemma 4.2 we obtain
—tw;
d+HAw =4q Zd)u—&-x)ul_[ l H)»+x XWws

for wy = (Wi, ..., Wk—1, y)

X —ty tw;
d_ d+HA wy = ¢ de+xk X —qty 1_[ X —qtul) HA+x,st
i

— tw;
k 1 i
d+d— Hk,wy - Z dA+x A 1_[ HA—&-x,xw’

—qlw;
k—1
dyd_ —d_dy _ X X —tw;
M wy = _qk lzdk—i-x,k d Ax,xws
qg—1 ~ X —qty ;X —qtw
6D
gdod_ —d_d oy —tw
+d— —d-dy
—Hl,wy = _qktzd)H»x,)» . H)»+x,xw
qg—1 ~ X =gty ;X —qtw;
5.2)

We have

Proposition 5.3 The operators d, d_, T; extend to a representation of Ay on U,.

Proof The Hecke algebra relations for 7; were verified above. The relations T;d_ =
d_T;, d+T; = Ti41d;+ are straightforward. Then we need to check that

d’Ty =d?, Td} =d3.
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The first one is straightforward. To establish the second one write

k—1

2 2%+1 y—1x T
A3 Hy =g dyyxadisatyi I
X,y yoqtx

(x —tw;)(y — tw;)
(x —qtw)(y — qtw;)

Atx+y,yxw-

Note that there are no terms with y = zx. All the terms with y = gx are invariant
under 7. Suppose y # gx, y # tx, in other words the cells x, y are non-adjacent.
Using (4.4) we have

Dytx 2 drtxty atx

= @)™ (@ = D@ = DB = DG +y™H + 6= Dig - hwy™' +2),

SO

y—tx ’ﬁ (x — twi)(y — tw;)

y—x
e :Ck,w(xsy) s
y—qix;

(x —qtw;)(y — qtw;) y—qx
(5.3)

dk+x,kdk+x+)r,k+x
=1

where the function C;_,, (x, y) is symmetric in x, y. So we have

(Ty = D%y = Z Cow (6, V) (Hygxty, yxw = Hitxty.xyw) = 0.
x,y non adjacent
Denote by ¢ the operator ¢ = ‘er;#’
x —
Hoo 1Ny » |
@ 115wy q Xx: Atx, xx “qiy U X —qiw; Atx,xw

By Theorem 2.4 it is enough to show that the following identities hold:

qed— =d_¢Ti—1, Tipdy = qdie.

The first one is easier. Let

k—2
U — tw;
Cy =dytux _
“ A nu—qlwi
1=
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Then we have

qed—H), wxy
_ u
:_qk ! § CuHA+u,uw7 d—WTk—l
— u — qtx

k-1 (g—1Dy u(u — tx) X —qy u(u —ty) )
- +
1 Z( x—y @—qty)u—gqtx) x—y (u—qtx)(u —qty)
CuHA+u,uw-

The rational function in parentheses equals
compare

qt =% S0 the identity holds. Finally we

x(y —1x)
(x —qtu)(y — qtx)

A= qd+§0H)»,wu = —qk Zd)»+x,kdk+x+y,x+x
X,y
k—1

(x —1wi)(y — rw;)
* 1_{ (x — qrwi)(y — qwy)

Ax+y, yxw

and

y(y —x)(x — tu)
(v —qtu)(y — qtx)(x — qtu)

B = Tl‘Pd+HA,wu = _qle de+x,kdk+x+y,k+x
x’y

X — qrwi)(y — qtw;) R

—1
1—[ (x —twi)(y — 1wy)
1 ¢
Similar to the computations with d_%_ we analyze two cases. If y = ¢gx, i.e. x and y
are adjacent, we have T1 Hj 1 x4y, yxw = Hytxty,yxw and coefficients of these terms

coincide. Suppose x and y are not adjacent. Using (5.3) we write the coefficient of
H)L+x+y’yxw in A as

x(y —x)
(x —qtu)(y — qx)

C)L,w(-xv )’)

Using symmetry of C; ,,(x, y), we see that the corresponding coefficient in B is

< (g — Dxy(y —x)(x — tu) n (x —gy)x(x — y)(y —tu) )
=)y —qtu)(y —gx)(x —qtu)  (x —y)(x —qtu)(x —gy)(y — qtu)
XC}»‘w(x’ )’)

Comparing the rational functions we see that the coefficients coincide. O
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53d_ N d+, Zj
It remains to check the following relations:

zid- =dizi, dyzi =ziy1dy,
z1(qdyd— —d_dy) = qt(did— —d_di)z.

The proof of the first two is straightforward, and the last one immediately follows
from (5.1) and (5.2). The proof of Theorem 5.1 is complete.

5.4 Serre duality

We have two additional involutions on K (PFH,, ,_) and K (PFH,, ,—k), given by
Serre duality and dualization of vector bundles, respectively:

SD Zak,w(‘]a t)Ik,w = Zak,w(q_ly t_l)l)»,wv
Aw

Aw

*
Y @ O, | =Y awlq I,
A,w

A,w

We have another involution NV = £ SD £~!, where £ is the pullback of the determinant
of the tautlogical bundle from Hilb,,, satisfying H, ,, = (=D)*I LI, .

N Zak,w(fb t)Hk,ru = Zak,w(q_la t_l)Hk,zl)- 54)
A,w

A,w

This operator has the commutation relations agreeing with (2.11), justifying calling

it V-
Proposition 5.4 One has
Nd_N =d_, NT.N =T', Nd N =g z1d; = Bd?).

Proof The first equation is clear from Lemma 4.2. For the second, observe that the
Hecke relations imply

T, '=q '"Tu+q '(@— 1.

On the other hand, by (4.2) one has

(q—l _ l)w—l 1 w—l _q—lw—l .
NTuN(Hj, ) = ——Hy 0 + —————" Hy s w)
W = Wy p Wi = Wiy
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_1| (@—=Dw Wi — qWm+1
=q! |:—m Hy o+ ———"Hj 5, (w)
Wy — Wiyt Wm — Wm+1

=q "[(g =1+ Tnl.

Finally,
—ly!
Nd+N = q_k Zd)\er,x(q_ , _1)1_[ _ _1t_ i H)A—x xw
l
— tw;
—ZXd)er)Ll_[ : Hk+xxw—q Zld+-
Here we used the fact that de,)»(q’l , t’l) = xdy+x.2(q, 1). O

6 Comparison with the polynomial representation

Theorem 5.1 showed that there is an action of A, ; on U,, and so in particular an action
of the subalgebra A, C A, ;. Itis an immediate consequence of Proposition 2.11 that
there is a unique A, -equivariant sequence of maps &y : Vi — Uy sending 1 € Vp to
Hy € K(PFHy ). We denote by ® : V, — U, the resulting map.

In this section, we will prove:

Theorem 6.1 The map @y is an isomorphism. Moreover, we have that
Po(Hy) = Hy,
where I:I,L is the modified Macdonald polynomial, and that Oy N = N ®y, where the

two operators denoted N are the involutions in Egs. (2.12) and (5.4).

We now start proving this theorem, beginning with the statement that &, is an
isomorphism.

Let V,, x denote the degree (n — k) part of V. Let U, x = IE(PFH,”,_k). Itis clear
that the bi-degrees of T;, d_, d+ are (0, 0), (0, —1), (1, 1) respectively both in V,, &
and U, k, so that ® preserves the bi-grading. We begin by showing that V,, x and U, x
have the same dimension.

Define two collections of sets by

A(n,k)={(u,a>erZ’;o:|u|+|a|=n—k],

M, k) = {A(") AR A =D e p N\ 7R s a horizontal StI‘lp} .

Then the elements of M (n, k) are just the indices 21(®) of the basis H, @ of U,k and
elements of A(n, k) index elements

va =d oyt oy 6.1)
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which make up a basis of V), x, because the Hall-Littlewood polynomials make up a
basis of symmetric functions. Define a function A(n, k) — M (n, k) by the following
procedure: given u, a we set

A= = sort(u, w2, e MIGs Al - aisaivr 1, ar+ D (0 <i <k),

where sort transforms a sequence into a partition by sorting the entries and throwing
away zeros, and ' takes the conjugate partition. For instance, we would have

(3,11,(1,0,1,2,3] — [[7,5,3, 11,17, 4, 3,11, [6,4, 3,11, [6, 3, 3, 11, [6, 3, 2, 1], [6, 3, 2]] .

It is straightforward to see that this is a bijection, proving that the two spaces have the
same dimension.

We will prove our theorem by showing that ®; has a triangularity property with
respect to a partial order on A(n, k) <> M (n, k) that we now define: Given (u, a) €
A(n, k), and some [ greater than the length of x, let

o= a+ D" =(@+1,...,a1+ 1w, ..., 1)

denote the reversed order of the concatenation of @ and (a; + 1, ..., ax + 1), which
always has at least one leading zeros included in the p terms. For instance, if we took
(n,a) =(2,1]; (1,0, 2)), and chose [ = 4, we would have

a=(ua+1,"=(@3,1,20012).

We will describe the procedure for determining how to compare two elements in terms
of these vectors.

For any (i, a), we start by asserting the following moves produce an element that
is larger in this order in A(n, k). In our description, the operation “set o; = ¢ and
sort” means to make the desired substitution, then sort the leading “partition terms” if
i <, so as to obtain something that we may regard as an element of A(n, k). In the
example above, the operation “set o4 = 2 and sort” would yield (3, 1, 2,0, 1, 2, 2),
corresponding to © = [2,2, 1], and a = (1, 0, 2).

(D) Ifa; > aj fori < j, set (@i, a;) = (@, a;), i.e. switch the labels and sort.
(2) Ifa; < aj — 1 foranyi, j, set (o, ;) = (oj — 1, 0 + 1) and sort.

We let <p,, denote the binary relation transitively generated by these moves, which
we can see does not depend on [, provided it is large enough. This is in fact a partial
order, which can be seen using an alternative description in terms of the Bruhat order on
affine permutations for G L. To see this, fix some value of /, and let W = 7k Wo
denote the affine Weyl group for G Ly;. Now identify compositions o with sorted final
[ coordinates with elements of SI\V/I7 /Sk+1, by choosing a representative of minimal
length from each coset, of which there is a unique one. Then <, is the order induced
by the Bruhat order on W. Without the sorting condition from the second action of Sj,
this also appears in [15]. Notice that for £ = 0 it becomes the usual dominance order
on partitions.
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Proposition 6.2 We have that

Qe(Wua) = D cunlq.Hyp (6.2)
,0)<pru(p,a)

with ¢, q(q,t) # 0.

Proof Given

f= Z Caulq, )Hy 4 € Uy g,
(a,p)

let terms( f) denote the set of those (a, u) € A(n, k) such that ¢, (g, t) # 0. Let us
write Eq. (6.2) as

LT(®x(vp,a)) = (1, a),

where the statement LT(f) = (u, a) asserts that (i, a) € terms(f), and is greater
than all other elements with respect to <p,,,. Note that not every f has a leading term
because <, is only a partial order.

Letb = s;(a), the result of switching the labels a;, a;+1. Then we use the following
description of the terms of our operators:

terms(TEL (Hy0)) = {(1, @), (w, b))
terms(¢(Hy.q)) = {( U a1 4+ 1} — (i}, (@2, ..., ag, )} -
terms(d—(H,.0)) = {(w U {a1 + 1}, (@2, ..., ar))}.

In the second to last line, v — {i} means the result of removing one of the occurrences
of i, where i ranges over all possible elements that can be removed. We include the
case where i is zero, and make the sensible convention that O € v for any v, and that
v—{0} =v.

From these statements, we can check that

LT(TEL (Hy o)) = max (i, ), (14, 5i(@)))
LT((p(H;/.,a)) = (/J's (aZs LARR] ak: Cll + 1))1 (63)
LT(d—(Hyq)) = (WU {ag + 1}, (a2, ..., ar)).

It follows from the properties of the Bruhat order on W that if (u, a) <pry (v, b),then

(. si(@), (i, @) <pru v, 51 (D)), b <pry s5i(b),
(/'Lv (a2v --~vakv Cl] + l) Sbru (Uv (va ceey bkv bl + 1))7 (64)
(wUdar + 1}, (a2, ..., ar)) <pru U {b1 + 1}, (b2, ..., bp)).
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The second set of equations gives conditions for when A ( f) has aleading term depend-
ing only on the leading term for f for each operator A, and the first set describes what
that leading term is. These two sets of rules will be enough to prove the result.

By the statements about d_ in (6.3) and (6.4), it suffices to prove the proposition
in the case when u is the empty partition. We will prove this by induction on |a|. If
m = max(a) is zero, then we are done. Otherwise, let i be the smallest index such that
a; = m. Let g € U,k be any element with a leading term given by LT(g) = (4, b),
where b is the composition that agrees with a, except that b; = a;_1. It suffices to
show that LT (yx—;g) = (9, a), where y; is the operator on U, ; defined in terms of
T;, Ti_l, ¢ by Eq. (2.7). Note the reversal of the ordering of a in the definition (6.1)
of the basis v, 4, which is why we use y;_; instead of y;.

Consider the sequences of elements of U, ; given by

g =g g =T_jg/tHforl<j<i-1,
ff=eeh. =T fori < j <k 1.

We also define a sequence of compositions by
bi=s;bITY), k= (b;, bl bl 1), al =sj(alth).
For instance, ifa = (2,0, 3,1, 3,0, 3,0, 1), then we would have i = 3, and

b, b% b a%, ab a7, 4% @, a*, a® = (2,0,2,1,3,0,3,0,1),(2,2,0,1,3,0,3,0, 1),
(2,2,0,1,3,0,3,0,1),(2,0,1,3,0,3,0,1,3),(2,0,1,3,0,3,0,3, 1),
(2,0,1,3,0,3,3,0,1),(2,0,1,3,0,3,3,0, 1), (2,0,1,3,3,0,3,0, 1),
(2,0,1,3,3,0,3,0,1),(2,0,3,1,3,0,3,0,1).

By (2.7), we have that f = f', and we clearly have that @ = a'. It therefore suffices
to prove the the more general statement that

@, a’) =LT(f7), @, b)) =LT(g’)

for all j.

To see this, notice that we have @/ <p,,, a’/~!,and b/ <p,,, b/~ 1. The first statement
follows simply because a; = m is the maximum entry, and so the order can only be
increased by moving it to the left. The second statement follows because i is the
leftmost occurrence of the maximum entry, so b; = m — 1 greater than or equal to
every term to its left. Therefore, the condition in the first part of (6.4) is satisfied, and
the desired statement follows by induction from the first two parts of equations (6.3)
and (6.4). O

To complete the proof of Theorem 6.1, we first see that @3N = N @ by Proposi-
tion 5.4, so it only remains to show that the fixed points map to the modified Macdonald
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polynomials for k = 0. For k = 0, it was proved in [4] that A/ acts as V composed
with conjugation, i.e.

N awa@. 08 | =Y awq ' tHH,. (6.5)
Aw

Aw

In [8], it was shown that the ring of symmetric functions are generated by the multipli-
cation operator ey, and Ve v or equivalently, Ney V. It therefore suffices to show
that V', e; have the same representation in each basis. The involution N fixes both sets
of basis by definition. To show that e; has the same coefficients, it suffices to notice
that ey = d_d+ when restricted to Vj, and recall that the coefficients in Lemma 4.2
are just the coefficients in the Pieri rule for e. O

7 Examples
7.1 Simple Nakajima correspondences

An important collection of operators on the K -theory of Hilbert schemes can be defined
as follows. Consider nested Hilbert scheme Hilb™" 1 = {J c I c Clx, y]}, where
J and [ are ideals of codimensions (n + 1) and n, respectively. The variety Hilb™"+1
is well known to be smooth [5] and carries a natural line bundle £ := I/J. It has
two projections f : Hilb™"*! — Hilb" and g : Hilb™"*! — Hilb"*! which send a
pair (J C I) to I and J, respectively. In the constructions of [7,27] a crucial role was
played by the operators

Py K(HIb") — K (Hilb""), Pyg = g (L5 ® f*(-).
Remark that the quotient //J in the nested Hilbert scheme is supported at one point,
which can be translated to the line {y = 0}. Thus, Hilb™"+! = PFH, 11, xC;, and

K (Hilb™" 1) C U,. Using the algebra A, ,, we can realize these operators as a
composition of three:

(q—Df*=dy:Uy— U, Ly=2":U - U, ge=d_:U — U,
SO
1

Plo=— d 7.
G- Da - TN

7.2 Generators of the elliptic Hall algebra

We next describe another proof of the formula from [23] for the generator Py, , of the
elliptic Hall algebra (for coprime m and n). It was proved in [19] that
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Sy Su- s mi
P =d-(z"y12)" 'y1 ... 20 ydy, Si = {7J - {

n

m( — I)J

Negut’s formula is equivalent to the following proposition, after substituting these
values of §; into (7.1).

Proposition 7.1 The following identity holds for all S;:

Si+1
d_(&}" 1z y1 .2 y)dy = 0t Y [Tewiwp o=t

tw;
T i<j — Wil

(7.1)

where T is a standard tableaux of shape A and size n, w; is the q, t-content of the box
labeled by i in T, and

1= —q1x)

©0) = o =)

Proof First, we need an explicit formula for the action of y; on Uj. Since there are no
T’sand k = 1, by (5.1) we have

(Ho) = —[de.d_1H, , = Y d * H (7.2)
Y1y, y _q—l +, A— 1T}y = - A+x,Ax_ ty Atx,x. .
Next, it is sufficient to prove by induction that
WSt
N
(" y1Z1 vz yndy =(—1)'1Zl_[w(wz/wj)WHx,Dn-
l

T i<j

If we apply y; to the right hand side, we need to sum over all possible ways to add a
box wy41 to a standard Young tableau T, that is, over all standard Young tableaux of
size (n + 1). The additional factor is described by (7.2) with x = w,4+1 and y = wy:

Wn+1 +1
~dypwpp————=—]] w(wt/wn-i-l)—
Wp+1 — qIwy Wp41 — Wy
i<n
. S
The action of z}"*' on the result just adds a factor w," w

7.3 Complete symmetric functionsin y;

We conclude with a result describing the complete symmetric functions in y; in the
fixed point basis.

@ Springer



1334 E. Carlsson et al.

Theorem 7.2 Suppose that

hais -y = Y a w(g. DHo

,,,,,

JIai
Then the following identity holds:
— 1)ghtk=D/2 A(B,o—1
a0 . Mk(q,t)—(q k)ql ' ( Iz )
k—1!  det(B,0)A (Tg PFHn,n_k>
Proof First we obtain a recursive relation for 4, (y1, ..., yx) in terms of the operators

d4, d_ and ¢. By definition of d (see Proposition 2.11):

dy(hyO1s ..o y0) =T Teh (Y1, -0 v)
=T Ti(hn(Y1s -5 Ye+1) = Ynt1hn—1(V15 - -5 k1))
=hy(Y1s - Ve+1) = T1 o T Yut1hn—1 (V15 - - -5 Ykt 1)
=hn(V1s ooy Vi) — @hn—1 (1, -+ Yit1),

SO

hat, s Vi) =de (e, o0 1) + @hu—1 (Y1, -0, Y1) (7.3)

It is not hard to see that the right hand side satisfies (7.3) as well. Indeed, the actions
of d; and ¢ in the fixed point basis are given by (5.1), and summing the terms and
applying an analogue of (4.5) yields the desired equation.

It remains to check the base case n = 0. In this case ho(y1,..., %) =1 € V.
The corresponding moduli space is PFH o = C¥ (see Example 3.4), which contains a
unique fixed point corresponding to the partition u° = (k). Now B W =1+.. Agk T,
sodet B,o = g"*~D/2 and A (B, — 1) = [k — 1],

Finally, A (Tg PFHk,o) =1 -g* H

Example7.3 Fork = 1 we get y{ = Y ay, »(q,1)H,, , and

(1—q)x(By—1)
det(B)A (T;t, PFH, nt1)

au,v(Qa 1 =

Observe that for k = 1 we have y; = ¢, so in this case Theorem 7.2 follows from the
explicit formula for the action of ¢ in the Macdonald basis (5.1).

By comparing the numerator in Theorem 7.2 with the numerator in Haiman’s
description of the punctual Hilbert scheme [13], we expect that 4, (y1, ..., Yk) is the
class of a compactly supported sheaf on PFH,, ,,_;. Combinatorially, after twisting by
O(1), its contribution to the shuffle formula must consist of those Dyck paths with &
touch points. We expect this to be part of a potential geometric proof of the shuffle
theorem, which we leave for future papers.
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