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Abstract
The earlier work of the first and the third name authors introduced the algebraAq,t and
its polynomial representation. In this paper we construct an action of this algebra on
the equivariant K-theory of certain smooth strata in the flag Hilbert scheme of points
on the plane. In this presentation, the fixed points of the torus action correspond to
generalized Macdonald polynomials, and the matrix elements of the operators have
an explicit presentation.

1 Introduction

In the earlier article the first and the third name authors [4] introduced a new and
interesting algebra called the algebra Aq,t . It acts on the space V = ⊕∞

k=0 Vk , where
Vk = � ⊗ C[y1, . . . , yk] and � is the ring of symmetric functions in infinitely many
variables. The algebra has generators yi , zi , Ti , d+ and d−. On each subspace Vk , yi act
as multiplication operators, Ti as Demazure–Lusztig operators, so together they form
an affine Hecke algebra. The operators zi and Ti also form an affine Hecke algebra (in
particular, zi commute). Finally, the most interesting operators d+ : Vk → Vk+1 and
d− : Vk → Vk−1 intertwine different subspaces.
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The algebra Aq,t was used in [4] to prove a long-standing Shuffle Conjecture in
algebraic combinatorics [14].Later, itwas alsoused in [19] to prove a “rational” version
of Shuffle conjecture introduced in [10]. The latter yields a combinatorial expression
for certain matrix elements of the generators Pm,n of the elliptic Hall algebra [27]
acting in its polynomial representation. In particular, the operator Pm,n : V0 → V0
was realized in [19] inside the algebra Aq,t .

It is known from the work of Schiffmann and Vasserot [27], Feigin and Tsymbaliuk
[7] and Negut, [23] that the elliptic Hall algebra acts on the equivariant K -theory
of the Hilbert schemes of points on the plane. In particular, [23] realized Pm,n by an
explicit geometric correspondence. This leads to a natural question: is there a geometric
interpretation of the algebra Aq,t and its representation V•? We answer this question
in the present paper.

The key geometric object is the parabolic flag Hilbert scheme PFHn,n−k which
is defined as the moduli space of flags {In−k ⊃ · · · ⊃ In}, where Is are ideals in
C[x, y] of codimension s and y In−k ⊂ In . We prove that this is in fact a smooth
quasiprojective variety. The following theorem is the main result of the paper.

Theorem 1.1 Let Uk = ⊕∞
n=k KC∗×C∗(PFHn,n−k) and let U• = ⊕∞

k=0Uk. Then
there is an action of the algebra Aq,t on U• and isomorphisms Uk � Vk for all k
compatible with the Aq,t -algebra action.

The construction of the action of the generators of Aq,t is quite natural. The
action of zi and Ti follows the classical work of Lusztig on the action of affine
Hecke algebras on flag varieties [18]. In particular, zi correspond to natural line
bundles Li = In−i−1/In−i on PFHn,n−k . The operators d± change the length
of the flag and correspond to natural projections PFHn+1,n−k → PFHn,n−k and
PFHn,n−k → PFHn,n−k+1. Finally, the operators yi can be obtained using the com-
mutation relations between d+, d− and Ti .

We compare this geometric construction with [7,23,27]. The key operator in [7,27]
is realized by a simple Nakajima correspondence Hilbn,n+1 with some power Lk of a
line bundle on it, which naturally projects toHilbn andHilbn+1. This yields an operator
P1,k : K (Hilbn) → K (Hilbn+1). We regard Hilbn,n+1 as a cousin of PFHn+1,n , and
decompose P1,k as a composition of three operators P1,k = d−zk1d+. Here d+ :
U0 → U1 and d− : U1 → U0 correspond to the pullback and the pushforward under
projections, and z1 : U1 → U1 corresponds to the line bundle L. In Sect. 7.2 we make
a similar comparison with the construction of [23] for more complicated operators
Pm,n in the elliptic Hall algebra.

A combinatorial consequence of this work is the construction of generalized Mac-
donald basis corresponding to the fixed points of the torus action in PFHn,n−k . For
k = 0 we recover the modified Macdonald basis corresponding to the fixed points on
theHilbert scheme of points [12].We explicitly compute thematrix elements for all the
generators of Aq,t in this basis, see Eqs. (4.2), (4.3) and Lemma 4.2. In fact, we prove
that these new elements have a triangularity property with respect to a version of the
Bruhat order for affine permutations, generalizing the triangularity in the dominance
order for usual Macdonald polynomials.

Finally,wewould like to outline some future directions. First, the construction of the
spaces PFHn,n−k is very similar to the construction of so-called affine Laumon spaces
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TheAq,t algebra and parabolic flag... 1305

[6]. Tsymbaliuk [28] constructed an action of the quantum toroidal algebras Ü (glk)
on the K -theory of Laumon spaces. In particular, for k = 1 this action coincides with
the action of the elliptic Hall algebra (which is known to be isomorphic to Ü (gl1)) on
the K -theory of the Hilbert scheme of points. However, it appears that for k > 1 his
representation is larger than Uk−1. We plan to investigate the relations between Aq,t

and quantum toroidal algebras in the future.
Second, the results of [10,11,20] suggest a deep relation between Hilbert schemes,

the elliptic Hall algebra, and categorical link invariants such as Khovanov-Rozansky
homology. In particular, a precise relation between theKhovanov-Rozansky homology
of (m, n) torus knots and the operators Pm,n was proved form = n+1 by Hogancamp
[16] and for general coprime (m, n) by the third author in [20]. It is expected [19]
that Aq,t can be realized as the skein algebra of certain more general tangles in the
thickened torus, so it would be interesting to extend the approach of [11] to this more
general framework.

Finally, while our proofs of the relations in the algebra are fixed point formulas
which make sense only in K -theory, the definitions of the operators are K -theoretic
reductions of well-defined operators in the derived category. Identifying these defini-
tions is therefore the first step towards categorification. One of ourmotivations in doing
this is to find a geometric proof of the shuffle theorem, which we expect would have
broader implications, to Khovanov-Rozansky homology, for instance. As supporting
evidence, we conclude the paper by showing in Theorem 7.2 that the contribution
to the shuffle formula from Dyck paths with exactly k touch points, has an explicit
formula in the fixed point basis under the identification Uk ∼= Vk . The form of these
formulas is nearly identical to Haiman’s formula for the resolution of the structure
sheaf of the punctual Hilbert scheme [13], suggesting that we have found a compactly
supported sheaf on PFHn,n−k . This observation would be hidden without the fixed
point description.

In Sect. 2, we begin by recalling the construction of the Aq,t algebra. We then
identify a subalgebra Bq,t which also admits a homomorphism Aq,t → Bq,t . This
is the algebra which is given a geometric construction. In Sect. 3, we define the
parabolic flag Hilbert scheme PFHn,n−k , and prove properties such as smoothness. In
Sect. 4, we define operators on KT (PFHn,n−k) as pullback and proper pushforwards
of natural projection maps. We show that these operators satisfy the relations of Bq,t

using fixed point formulas in Sect. 5. They therefore define a representation of Aq,t

via Aq,t → Bq,t → End(Uk), whereUk is the localization KT (PFHn,n−k) ⊗ Q(q, t).
In Sect. 6, we prove thatUk is isomorphic to Vk , as representations of Aq,t . We finally
conclude with some example applications in Sect. 7. This includes the aforementioned
promising fixed point formula for the contribution of Dyck paths with k touch points
to the combinatorial side of the shuffle theorem, which has the appearance of the
fundamental class of a compact subscheme, similar to class of the punctual Hilbert
scheme [OZn ] ∈ KT (Hilbn).
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1306 E. Carlsson et al.

2 The algebra

2.1 Aq

The algebras under consideration can be viewed as path algebras of quivers with vertex
setZ≥0.1 Sowe implicitly assume that all our algebras contain orthogonal idempotents
Idi (i ∈ Z≥0) and when we speak of an element R : i → j for i, j ∈ Z≥0 we impose
the relation R = R Idi = Id j R. When we have a representation V of such an algebra
we always assume that V = ⊕∞

i=0 Vi where Vi = Idi V . Then any element R : i → j
as above induces a linear map Vi → Vj . To stress the direct sum decomposition above
we denote such a representation by V•.

First we define the “half algebra” Aq depending on one parameter q ∈ Q(q):

Definition 2.1 Aq is the Q(q)-linear algebra generated by a collection of orthogonal
idempotents labeled by Z≥0 and elements

d+ : k → k + 1, d− : k → k − 1, Ti : k → k (1 ≤ i < k), yi : k → k (1 ≤ i ≤ k)

subject to relations

(Ti − 1)(Ti + q) = 0, Ti Ti+1Ti = Ti+1Ti Ti+1, Ti Tj = Tj Ti (|i − j | > 1),

(2.1)

Ti yi+1Ti = qyi (1 ≤ i ≤ k − 1), (2.2)

yi Tj = Tj yi (i /∈ { j, j + 1}), yi y j = y j yi (1 ≤ i, j ≤ k),

d2−Tk−1 = d2−, d−Ti = Tid− (1 ≤ i ≤ k − 2), d−yi = yid− (1 ≤ i ≤ k − 1),

(2.3)

T1d
2+ = d2+, d+Ti = Ti+1d+ (1 ≤ i ≤ k − 1),

d+yi = T1T2 · · · Ti yi T−1
i · · · T−1

1 d+, (1 ≤ i ≤ k) (2.4)

d+d− − d−d+ = (q − 1)T1T2 · · · Tk−1yk . (2.5)

Remark 2.2 Note that relations (2.1) define the Hecke algebra, and relations (2.1) +
(2.2) define the affine Hecke algebra AHk .

In what follows we will need a slightly different description of the algebra Aq . Let
the AHk be the affine Hecke algebra generated by T1, . . . , Tk−1, y1, . . . , yk modulo
relations (2.1) and (2.2). The following lemma gives another presentation of the alge-
bra AHk similar to the Iwahori-Matsumoto presentation of the affine Hecke algebra,
although in our definition yi are not invertible. The proof is similar to [4, Lemma 5.4],
but we present it here for completeness.

1 A categorically inclined reader can view our algebras as categories with object set Z≥0. Then a repre-
sentation of a category is a simply a functor to the category of vector spaces.

123



TheAq,t algebra and parabolic flag... 1307

Lemma 2.3 Consider the algebra AH ′
k generated by T1, . . . , Tk−1 and an element ϕ

modulo relations (2.1) and

ϕTi = Ti+1ϕ (i ≤ k − 2), ϕ2Tk−1 = T1ϕ
2. (2.6)

Then the algebras AHk and AH ′
k are isomorphic.

Proof Define ϕ = T1 . . . Tk−1yk . Let us prove that (2.2) imply (2.6). For i ≤ k − 2
one has:

ϕTi = T1 . . . Tk−1ykTi = T1 . . . Tk−1Ti yk = Ti+1T1 . . . Tk−1yk = Ti+1ϕ,

while

ϕ2Tk−1 = T1 . . . Tk−1ykT1 . . . Tk−1ykTk−1 = q(T1 . . . Tk−1)(T1 . . . Tk−2)yk yk−1,

T1ϕ
2 = T1(T1 . . . Tk−1)yk(T1 . . . Tk−1)yk = T1(T1 . . . Tk−1)(T1 . . . Tk−2)ykTk−1yk

= T1(T2 . . . Tk−1)(T1 . . . Tk−2)Tk−1ykTk−1yk = q(T1 . . . Tk−1)(T1 . . . Tk−2)yk−1yk .

Conversely, let us prove that (2.6) imply (2.2). Define

yi = qi−kT−1
i−1 . . . T−1

1 ϕTk−1 . . . Ti . (2.7)

Then, clearly, Ti yi+1Ti = qyi . If j > i then

yi Tj = qi−kT−1
i−1 . . . T−1

1 ϕTk−1 . . . Ti Tj = qi−kT−1
i−1 . . . T−1

1 ϕTj−1Tk−1 . . . Ti

= qi−kT−1
i−1 . . . T−1

1 TjϕTk−1 . . . Ti = Tj yi .

If j < i − 1, the proof of yi Tj = Tj yi is similar. Finally,

y1yk = ϕTk−1 . . . T1T
−1
k−1 . . . T−1

1 ϕ = ϕT−1
k−2 . . . T−1

1 Tk−1 . . . T2ϕ,

yk y1 = T−1
k−1 . . . T−1

1 ϕ2Tk−1 . . . T1 = T−1
k−1 . . . T−1

1 T1ϕ
2Tk−2 . . . T1

= T−1
k−1 . . . T2ϕ

2Tk−2 . . . T1 = ϕT−1
k−2 . . . T−1

1 Tk−1 . . . T2ϕ.

The proof of other commutation relations yi y j = y j yi is similar. ��

Lemma 2.4 The algebra Aq is generated by T1, . . . , Tk−1, d+, d− modulo relations
(2.1), all relations in (2.3) and (2.4) not involving yi , and two additional relations:

qϕd− = d−ϕTk−1, T1ϕd+ = qd+ϕ, (2.8)

where ϕ = 1
q−1 [d+, d−]. All other relations follow from these.
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Proof Let us check that ϕ satisfies (2.6) on Vk . Clearly, for i ≤ k − 2 one has

(d+d− − d−d+)Ti = d+Tid− − d−Ti+1d+ = Ti+1(d+d− − d−d+).

Furthermore,

d+d−ϕTk−1 = qd+ϕd− = T1ϕd+d−,

and

d−d+ϕTk−1 = q−1d−T1ϕd+Tk−1 = q−1T1d−ϕTkd+ = T1ϕd−d+,

so

ϕ2Tk−1 = 1

q − 1
(d+d− − d−d+)ϕTk−1 = 1

q − 1
T1ϕ(d+d− − d−d+) = T1ϕ

2.

Therefore by Lemma 2.3 we can define yi and check the commutation relations (2.2).
Let us check the remaining relations:

d−yi = d−T−1
i−1 . . . T−1

1 ϕTk−1 . . . Ti = T−1
i−1 . . . T−1

1 d−ϕTk−1 . . . Ti

= T−1
i−1 . . . T−1

1 ϕd−Tk−2 . . . Ti = T−1
i−1 . . . T−1

1 ϕTk−2 . . . Tid− = yid−.

The last identity d+yi = T1 . . . Ti yi T
−1
i . . . T−1

1 d+ is also straightforward, see [4,
Lemma 5.4]. ��

2.2 Aq,t

The “double algebra” Aq,t depends on two parameters q, t ∈ Q(q, t) and is obtained
from two copies of Aq by imposing more relations:

Definition 2.5 Aq,t is the Q(q, t)-linear algebra generated by a collection of orthog-
onal idempotents labelled by Z≥0 and elements:

d+, d∗+ : k → k + 1, d− : k → k − 1, Ti : k
→ k (1 ≤ i < k), yi , zi : k → k (1 ≤ i ≤ k)

subject to the

• relations of Aq for d−, d+, Ti , yi ,
• relations of Aq−1 for d−, d∗+, T−1

i , zi ,

and

d+zi = zi+1d+, d∗+yi = yi+1d
∗+ (1 ≤ i ≤ k), z1d+ = −tqk+1y1d

∗+.

(2.9)
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Remark 2.6 One is tempted to say that the generators Ti , yi and zi form some sort of
double affine Hecke algebra as in Remark 2.2, but this is not the case. The problem
stems from the fact that double affine Hecke algebras of [3] do not embed into one
another in the way that the affine Hecke algebras do. There is a way, however, to
relate Aq,t to double affine Hecke algebras by making sense of limits of the form
limn→∞ enDAHAn+ken , where en ∈ DAHAn+k is the partial symmetrization operator
on the indices k + 1, k + 2, …, k + n. In particular, we expect that the degree zero
part of Aq,t coincides with the positive part of the elliptic Hall algebra which is the
stable limit of spherical DAHAs as shown in [27]. See also Remark 7.2 in [4]. In 7.2
we express the positive generators Pm,n of the elliptic Hall algebra in terms of the
generators of Aq,t .

We also note that the generators of Aq,t are closely related to the braid group
Bk(T0) of the punctured torus. Indeed, the latter has generators T±

i , y±
i , z±i and one

can define a related monoidB+
k (T0) generated by T±

i , yi , zi (see [19] for details). In
[19] the third author constructed homomorphisms fromB+

k (T0) toAq,t for all k. This
is similar to the homomorphism from Bk(T0) to the DAHA (e. g. [17]).

In what follows we will need a certain subalgebra of Aq,t which, nevertheless,
contains an isomorphic copy of Aq,t .

Definition 2.7 The algebraBq,t is generated by a collection of orthogonal idempotents
labelled by Z≥0, generators d+, d−, Ti and zi modulo relations:

(Ti − 1)(Ti + q) = 0, Ti Ti+1Ti = Ti+1Ti Ti+1, Ti Tj = Tj Ti (|i − j | > 1),

T−1
i zi+1T

−1
i = q−1zi (1 ≤ i ≤ k − 1),

zi Tj = Tj zi (i /∈ { j, j + 1}), zi z j = z j zi (1 ≤ i, j ≤ k),

d2−Tk−1 = d2−, d−Ti = Tid− (1 ≤ i ≤ k − 2),

T1d
2+ = d2+, d+Ti = Ti+1d+ (1 ≤ i ≤ k − 1),

qϕd− = d−ϕTk−1, T1ϕd+ = qd+ϕ,

zi d− = d−zi , d+zi = zi+1d+,

z1(qd+d− − d−d+) = qt(d+d− − d−d+)zk .

Remark 2.8 By (2.5), one can define the elements yi ∈ Bq,t and prove that yi , Ti , d+
and d− generate a copy of Aq .

Proposition 2.9 There is a homomorphism α : Bq,t → Aq,t which sends d+, d−, Ti
and zi to the corresponding generators of Aq,t .

Proof Let us check that the last defining relation for Bq,t holds in Aq,t :

z1(qd+d− − d−d+) = qz1d+d− − z1d−d+ = q(z1d+)d− − d−(z1d+).

We can replace z1d+ by a multiple of y1d∗+ and obtain:

q(−tqk)y1d
∗+d− − d−(−tqk+1)y1d

∗+ = −tqk+1y1[d∗+, d−].
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Since d−, d∗+, T−1
i , zi satisfy the relations for Aq−1 , by (2.5) we get:

[d∗+, d−] = (q−1 − 1)T−1
1 · · · T−1

k−1zk,

so

−tqk+1y1[d∗+, d−] = −tqk+1(q−1 − 1)y1T
−1
1 . . . T−1

k−1zk

= tqk(q − 1)y1T
−1
1 . . . T−1

k−1zk = qt(q − 1)T1 . . . Tk−1ykzk
= qt[d+, d−]zk .

It follows from the definition and Theorem 2.4 that all other defining relations of Bq,t

are satisfied in Aq,t . ��
Theorem 2.10 There is an algebra homomorphism β : Aq,t → Bq,t such that

β(Ti ) = Ti , β(d−) = d−, β(d+) = d+, β(d∗+) = q−k z1d+

and β(z1) = −qty1z1. There is a chain of homomorphisms:

Aq,t
β−→ Bq,t

α−→ Aq,t .

Proof It is clear that all defining relations of Aq are satisfied for Ti , d−, d+ and hence
for yi . We proceed to check the relations of Aq−1 for T−1

i , d−, β(d∗+), zi in Bq,t . In
order to apply Lemma 2.3 we will need the following computation:

(q−1 − 1)ϕ∗ = [β(d∗+), d−] = q1−k z1d+d− − q−k z1d−d+ = q−k z1(qd+d− − d−d+)

= tq1−k(d+d− − d−d+)zk = tq1−k(q − 1)ϕzk .

Thus we have

ϕ∗ = −tq2−kϕzk,

so that we can check (2.8):

q−1ϕ∗d− = −tq2−kϕzk−1d− = −tq1−kd−ϕTk−1zk−1 = d−ϕ∗T−1
k−1,

T−1
1 ϕ∗β(d∗+) = −tq1−kT−1

1 ϕzk+1q
−k z1d+ = −tq1−2kT−1

1 ϕz1d+zk
= −tq1−2kT−1

1 z2ϕd+zk = −tq−2k z1T1ϕd+zk = −tq1−2k z1d+ϕzk

= q−1β(d∗+)ϕ∗,

where we have used the following identity between elements k → k for k ≥ 2:

ϕz1 = 1

q − 1
(d+d− − d−d+)z1 = 1

q − 1
z2(d+d− − d−d+) = z2ϕ. (2.10)
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Among prerequisites for Lemma 2.3 it remains to check the identities between β(d∗+)

and Ti . We have

β(d∗+)Ti = q−k z1d+Ti = q−k z1Ti+1d+ = q−kTi+1d+ = Ti+1β(d∗+),

β(d∗+)2 = q−2k−1z1d+z1d+ = q−2k−1z1z2d
2+,

hence

T1β(d∗+)2 = q−2k−1z1z2T1d
2+ = q−2k−1z1z2d

2+ = β(d∗+)2.

Thuswecan applyLemma2.3 anddeduce that the relations ofAq−1 forT−1
i , d−, β(d∗+),

zi are satisfied.
It remains to check relations (2.9) for d+, yi , β(d∗+), β(zi ). We have

β(zk) = Tk−1 . . . T1ϕ
∗ = −tq2−kTk−1 . . . T1ϕzk .

Therefore

β(zi ) = −tq2−kTi−1 . . . T1ϕTk−1 . . . Ti zi = −qtTi−1 . . . T1y1T
−1
1 . . . T−1

i−1zi .

Thus we have

d+β(zi ) = −qtd+Ti−1 . . . T1y1T
−1
1 . . . T−1

i−1zi = −qtTi . . . T1y1T
−1
1 . . . T−1

i zi+1

= β(zi+1)d+.

Using Lemma 2.3 and (2.10) we obtain

β(d∗+)ϕ = q−k z1d+ϕ = q−1−k z1T1ϕd+ = q−kT−1
1 z2ϕd+ = q−kT−1

1 ϕz1d+
= T−1

1 ϕβ(d∗+),

which implies

β(d∗+)yi = β(d∗+)T−1
i−1 . . . T−1

1 ϕTk−1 . . . Ti = T−1
i . . . T−1

1 ϕTk . . . Ti+1β(d∗+)

= yi+1β(d∗+).

Finally, we have

β(z1)d+ = −qty1z1d+ = −tqk+1y1β(d∗+).

Thus we finished verifying (2.9). ��
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2.3 Gradings

The algebrasAq,t andBq,t are triply graded. The grading of d+ is (1, 0, 0), the grading
of d− is (0, 1, 0), and the grading of Ti is (0, 0, 0). The commutation relations imply
that yi have grading (1, 1, 0). Next, we require that d∗+ has grading (0, 0, 1) and zi
have grading (0, 1, 1). It is easy to check that all relations are tri-homogeneous with
respect to these gradings. In particular, the degrees of z1d+ and y1d∗+ are both equal
to (1, 1, 1).

In what follows we will use two specializations of this triple grading. The first
projection (a, b, c) �→ a − b + c assigns to d+ and d∗+ degree 1, d− has degree (−1)
and yi , zi , Ti all have degree 0. This is just the standard grading which equals k in the
idempotent ek .

The more interesting projection (a, b, c) → a+b+c assigns to d+, d−, d∗+ degree
1, and to yi , zi degree 2.

2.4 Polynomial representation

Denote by � the ring of symmetric functions in infinitely many variables x1, x2, . . ..
We will use the following standard notations for plethystic substitutions: if A is an
element in some λ-ring R, we consider the homomorphism � → R, F �→ F[A]
which sends power sums pn to pn(A). For example,

pn[X + (q − 1)yk+1] = pn + (qn − 1)ynk+1.

Also, we use notations Exp[A] = ∑∞
n=0 hn[A] and Resy

∑
m cm ymdy = c−1.

Following [4] we introduce spaces

Vk = � ⊗ C(q, t)[y1, . . . , yk], V• =
⊕

k≥0

Vk .

One of the results of [4] is the following:

Proposition 2.11 There is an action of Aq,t on V• in which

Ti F = (q − 1)yi+1F + (yi+1 − qyi )si F

yi+1 − yi
, yi F = yi · F,

d−F = −Resyk F[X − (q − 1)yk]Exp[−y−1
k X ]dyk (F ∈ Vk),

d+F = T1T2 . . . Tk(F[X + (q − 1)yk+1]).
d∗+,CM F = γ F[X + (q − 1)yk+1],

where γ (yi ) = yi+1 and γ (yk+1) = t y1. Furthermore, we have a unique isomorphism

V• = Aq Id0,

of left Aq -modules in which 1 ∈ V0 maps to Id0.
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Consider the space

W• :=
⊕

Wk, Wk = (y1 . . . yk)
−1Vk ⊂ � ⊗ C(q, t)[y±1

1 , . . . , y±1
k ].

Clearly, Vk ⊂ Wk .

Theorem 2.12 The following statements hold:

(1) The operators Ti , d+, d− and d∗+ = −(qty1)−1d∗+,CM can be naturally extended
to the space W• and define a representation of Aq,t .

(2) In this representation,α(Bq,t ) preserves the subspace V• ⊂ W•, and hence defines
a representation of Bq,t in V•.

(3) The composition αβ(Aq,t ) also preserves V•, and hence defines a representation
of Aq,t in V•. This representation agrees with the one in Proposition 2.11.

We illustrate all these representations in the following commutative diagram:

Aq,t Bq,t Aq,t

End(V•) EndV•(W•) End(W•)

β

d∗+,CM

α

d∗+

Here EndV•(W•) denotes the set of endomorphisms of W• preserving V•.

Proof Let us prove that Ti , d+, d− and d∗+ = −(qty1)−1d∗+,CM are well-defined on
W•. If F ∈ V•, then

Ti (F/(y1 . . . yk)) = (Ti F)/(y1 . . . yk) ∈ W•,
d+(F/(y1 . . . yk)) = (T1T2 . . . Tk yk+1F[X + (q − 1)yk+1])/(y1 . . . yk+1) ∈ W•,
d−(F/(y1 . . . yk)) = −(y1 . . . yk−1)

−1 Resyk F[X − (q − 1)yk ]y−1
k Exp[−y−1

k X ]dyk ∈ W•,
−qtd∗+(F/(y1 . . . yk)) = −y−1

1 γ (F[X + (q − 1)yk+1]/(y1 . . . yk))

= (y1 . . . yk+1)
−1γ (F[X + (q − 1)yk+1] ∈ W•.

using the fact that Ti commutes with y1 . . . yk , and Ti (1) = 1. The verification of the
commutation is identical to [4] and we leave it to the reader.

To prove that α(Bq,t ) preserves V•, it is sufficient to prove that the commutator
[d∗+, d−] preserves V• (then zi preserve V•, and Ti , d+, d− preserve V• by definition).
For F ∈ Vk we have:

−qtd∗+d−F = −y−1
1 F[X + (1 − q)t y1 − (q − 1)u, y2, . . . , yk, u]

×Exp[−u−1X − u−1(q − 1)t y1]|u−1,

−qtd−d∗+ = −y−1
1 F[X + (1 − q)t y1 − (q − 1)u, y2, . . . , yk, u]

Exp[−u−1X ]|u−1 .
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Now

1 − u−1qty1
1 − u−1t y1

− 1 = (1 − q)
u−1t y1

1 − u−1t y1
,

so

[d∗+, d−]F = (1 − q−1)F[X + (1 − q)t y1 − (q − 1)u, y2, . . . , yk , u]Exp[u−1t y1 − u−1X ]|u0 .

Finally, αβ(d∗+) = −qty1d∗+ = d∗+,CM . ��
This result is very useful in the proof of our main theorem. Namely, we will define

a geometric representation of Bq,t and identify it with the space V•. Then, using the
homomorphism β, we will define a representation of Aq,t which, by the above, is
isomorphic to the representation from Proposition 2.11.

Finally, a key observation from [4] is that there is a symmetry in the relations of
Aq,t which is antilinear with respect to the conjugation (q, t) �→ (q−1, t−1), and is
given on generators by

d− ↔ d−, Ti ↔ T−1
i , yi ↔ zi , d+ ↔ d∗+ (2.11)

Furthermore, this symmetry preserves the kernel of the map Aq,t → End(V•), and so
determines a map

N : V• → V• (2.12)

which is antilinear, and satisfies N 2 = 1. On V0 = � ⊗ C(q, t) the involution N is
related to the celebrated operator ∇ on symmetric polynomials, see (6.5) below.

3 The spaces

3.1 Parabolic flag Hilbert schemes

Definition 3.1 The parabolic flag Hilbert scheme PFHn,n−k of points on C
2 is the

moduli space of flags

In ⊂ In−1 ⊂ · · · ⊂ In−k

where In−i is an ideal in C[x, y] of codimension (n − i) and y In−k ⊂ In .

Definition 3.2 The parabolic flag Hilbert scheme PFHn,n−k of points onC
2 is the GIT

quotient of the space of triples (X ,Y , v) by the group G, where v ∈ C
n , X and Y are

(n − k, k) block lower-triangular matrices such that k × k block is lower-triangular in
X and vanishes in Y :
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X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

* 0
...

...

* 0 …0
* * …0

...
...

...
...

* · · · *

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

* 0

0 …0
...

...

0 …0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.1)

We require that [X , Y ] = 0 and the stability condition C〈X ,Y 〉v = C
n holds. The

group G consists of (n − k, k) invertible block lower-triangular matrices with lower-
triangular k × k block, and acts by g.(X ,Y , v) = (gXg−1, gYg−1, gv).

Proposition 3.3 The two definitions above of PFHn,n−k are equivalent.

Proof The proof is standard but we include it here for completeness. Given a flag
of ideals {In ⊂ In−1 ⊂ · · · ⊂ In−k ⊂ C[x, y]}, consider the sequence of vector
spaces Ws = C[x, y]/Is . The multiplication by x and y induces an action of two
commuting operators X and Y on each Ws . There is a sequence of surjective maps
Wn � Wn−1 � · · · � Wn−k which commute with the action of X and Y . Since
y In−k ⊂ In , the operator Y annihilates

Ker(Wn � Wn−k) = In−k/In .

If one chooses a basis in all Ws compatible with the projections, then the operators
X and Y in this basis would have the form (3.1). The vector v corresponds to the
projection of 1 ∈ C[x, y], and the matrix g corresponds to the change of basis.

Conversely, given a triple X ,Y , v, let Ws be the vector space spanned by the first
s coordinate vectors, and let Xs,Ys, vs denote the restrictions of X ,Y and v to Ws .
Let Is = { f ∈ C[x, y] : f (Xs,Ys)(vs) = 0}. Clearly, Is is an ideal, Is+1 ⊂ Is and
y In−k ⊂ In . ��
Example 3.4 If k = 0 then clearly PFHn,n−k = Hilbn(C2). If k = n then PFHn,n−k =
C
n . Indeed, for k = n the matrix Y vanishes, and the stability condition implies

that X is determined up to conjugation by its eigenvalues (that is, all generalized
eigenvectors with the same eigenvalue belong to a single Jordan block). Therefore the
natural projection

PFHn,0 → C
n, (X ,Y , v) �→ (x11, . . . , xnn)

is an isomorphism.

These examples indicate that PFHn,n−k behaves better than the full flag Hilbert
scheme which is very singular [11]. This is indeed true in general.

Theorem 3.5 The space PFHn,n−k is a smooth manifold of dimension 2n − k for all
n and k.
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In the proof of this theorem we will use a version of the geometric construction
of Biswas and Okounkov [1] (see also [6, Sect. 3.4], [22, Sect. 4.3] and references
therein). Consider the map

σ : C
2 → C

2, σ (x, y) = (x, yk+1).

Also, consider an action of the group 	 = Z/(k + 1)Z on C
2 given by (x, y) �→

(x, ζ y), where ζ is a primitive (k + 1)st root of unity. Given a sequence of ideals
In, . . . , In−k , we can consider the space

J (In, . . . , In−k) = σ ∗ In + yσ ∗ In−1 + · · · + ykσ ∗ In−k ⊂ C[x, y]

Lemma 3.6 The space J (In, . . . , In−k) is an ideal in C[x, y] if and only if y In−k ⊂
In ⊂ In−1 ⊂ . . . ⊂ In−k .

Proof Clearly, multiplication by x preserves the space J (In, . . . , In−k), so it is an
ideal if and only if it is preserved by the multiplication by y. For 0 ≤ j < k one has

y · y jσ ∗ In− j = y j+1σ ∗ In− j

which is contained in y j+1σ ∗ In− j−1 if and only if In− j ⊂ In− j−1. Furthermore,

y · ykσ ∗ In−k = yk+1σ ∗ In−k = σ ∗(y In−k),

which is contained in σ ∗ In if and only if y In−k is contained in In . ��
Lemma 3.7 An ideal J ⊂ C[x, y] is invariant under the action of 	 if and only if
J = J (In, . . . , In−k) for some ideals In ⊂ · · · ⊂ In−k with y In−k ⊂ In. In this case
the ideals In− j are uniquely determined by J .

Proof Clearly, σ ∗
C[x, y] = C[x, yk+1] ⊂ C[x, y] is invariant under the action of 	,

so J (In, . . . , In−k) is also invariant. Conversely, let J be a	-invariant ideal inC[x, y],
we can decompose it according to the action of 	:

J = ⊕k
s=0 J

(s), ζ( f ) = ζ s f for f ∈ J (s).

Since yk+1 J (s) ⊂ J (s), we can write J (s) = ysσ ∗(In−s) for some ideal In−s . By
Lemma 3.6, In−s ⊂ In−s−1 and y In−k ⊂ In . ��
Proof of Theorem 3.5 By Lemma 3.7, the space PFHn,n−k can be identified with a
subset of the fixed point set of the action of a finite group 	 on the Hilbert scheme
Hilbn(C2). The codimensions of In−s are locally constant functions on the fixed point
set. Therefore PFHn,n−k can be identified with a union of several connected com-
ponents of the fixed point set. Since Hilbn(C2) is smooth, the fixed point set is also
smooth. ��
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3.2 Torus action

Thegroup T = C
∗×C

∗ acts onC
2 by scaling the coordinates: (x, y) → (q−1x, t−1y).

This action can be lifted to the action on the Hilbert schemes Hilbn and the spaces
PFHn,n−k . The fixed points of this action on Hilbn correspond to monomial ideals Iλ
and are labeled by Young diagrams λ with |λ| = n. It is convenient to encode a single
cell � by its monomial χ(�) = qctr , where c resp. r is the column resp. row index
of �. It is well known (e.g. Lemma 5.4.5 in [12], see also [21]) that the equivariant
character of the cotangent space at Iλ is given by

ch�Iλ Hilb
n =

∑

�∈λ

(qa(�)+1t−l(�) + q−a(�)t l(�)+1)

= qt Bμ + B∗
μ − (q − 1)(t − 1)BμB

∗
μ, (3.2)

where a(�) and l(�) denote the lengths of the arm and the leg of � in λ, Bμ =∑
�∈μ χ(�) and ∗ in B∗

μ denotes the substitution q → q−1, t → t−1.
The fixed points of PFHn,n−k are labeled by sequences of monomial ideals In ⊂

· · · ⊂ In−k corresponding to Young diagrams λ(n) ⊃ · · · ⊃ λ(n−k). The condition
y In−k ⊂ In can be translated toλ(i) as follows:λ(n)\λ(n−k) is a (possibly disconnected)
horizontal strip, that is, it contains at most one box in each column. Another useful
reformulation of this condition is

λ
(n−k)
i ≥ λ

(n)
i+1, where λ(n− j) = (λ

(n− j)
1 ≥ λ

(n− j)
2 ≥ . . .). (3.3)

Note that the difference λ(n− j)\λ(n− j−1) consists of a single box. Instead of keeping
track of the sequence of partitions we prefer to remember only the first one, which
we denote by λ = λ(n), and the successive differences � j = λ(n− j+1)\λ(n− j) ( j =
1, . . . , k). When drawing a picture we will display λ as a Young diagram, together
with labeling of some of its cells by numbers from 1 to k where we put j in � j .
Alternatively, we will form a vector w = (w1, . . . , wk) where w j = χ(� j ). A fixed
point in PFHn,n−k will be denoted by Iλ,w when we specify a pair of a partition λ and
a vector w, or by Iλ(•) when we specify a decreasing sequence of partitions λ(•).

Another way of encoding sequences of partitions λ(n− j) comes from the proof of
Theorem3.5. If all In− j aremonomial ideals, so is J (In, . . . , In−k). The corresponding
Young diagram μ has rows:

μ =
(
λ

(n)
1 , . . . , λ

(n−k)
1 , λ

(n)
2 , . . . , λ

(n−k)
2 , λ

(n)
3 , . . .

)
,

which decrease by (3.3). Note that

Bμ = Bλ(n) (q, tk+1) + t Bλ(n−1) (q, tk+1) + · · · + tk Bλ(n−k) (q, tk+1).

To calculate the character of�λ• PFHn,n−k we need to extract the terms in ch�Iμ Hilb
whose t-degree is divisible by k + 1, and then replace each term qatb(k+1) by qatb.
Performing this with (3.2) we obtain:
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qt Bλ(n−k) + B∗
λ(n) + (q − 1)

(
k∑

i=0

Bλ(n−i) B∗
λ(n−i) − t Bλ(n−k) B∗

λ(n) −
k∑

i=1

Bλ(n−i+1) B∗
λ(n−i)

)

,

which can be rewritten as

qt Bλ(n−k) + B∗
λ(n) + (q − 1)

(

(Bλ(n) − t Bλ(n−k) )B∗
λ(n) −

k∑

i=1

wi B
∗
λ(n−i)

)

,

so we obtain

ch�λ(•) PFHn,n−k = qt Bλ(n−k) + B∗
λ(n) − (t − 1)(q − 1)Bλ(n−k) B∗

λ(n)

+(q − 1)
∑

k≥i≥ j≥1

wiw
−1
j . (3.4)

By using (3.4) and (3.2), one can check the following:

Proposition 3.8 Let a(�, j) denote the arm length of � in λ(n−k+ j), and let l(�)

denote the leg length in λ(n). The equivariant character of the tangent space to
PFHn,n−k at a point λ• = (λ(n) ⊃ · · · ⊃ λ(n−k)) equals

ch Tλ•(PFHn,n−k) = kq +
∑

�∈λ(n−k)

θ(�)

where

θ(�) = qa(�,0)+1t−l(�) + q−a(�,k)t l(�)+1

if there are no boxes in λ(n)\λ(n−k) above �, and

θ(�) = qa(�,i)+1t−l(�)−1 + q−a(�,i−1)t l(�)+1

if there is a box labeled by i above �.

4 Geometric operators

4.1 Equvariant K-theory

We recall the basic constructions in equivariant K -theory, referring the reader to Chriss
andGinzburg, aswell asOkounkov’s lectures [2,25]. If X is a complex algebraic variety
with an action of a complex torus T , we have the equivariant K -theory of coherent
sheaves on X , denoted KT (X). If f : X → Y is proper and equivariant, recall that
we have a pushforward map f∗ : KT (X) → KT (Y ), determined by

f∗([F]) =
∑

i≥0

(−1)i [Ri f∗(F)].
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If X and Y are smooth, then the map K ◦
T (Y ) → KT (Y ) is an isomorphism, where

K ◦
T (Y ) is the Grothendieck group of locally free sheaves. In this case, we also have

the pullback map f ∗ : KT (Y ) → KT (X) given by

f ∗([F]) =
∑

i

(−1)i [TorOY
i (OX ,F)],

even when f is not proper.
We denote by K̄ (X) the localized K -theory

K̄ (X) = K (X) ⊗R F

where R = KT (pt) is the ring of Laurent polynomials in the torus variables, and
F is the field of fractions of R. If X is smooth with isolated fixed points, then the
localization theorem [2,29] says that the pullback i∗ : KT (X) → KT (XT ) becomes
an isomorphism after localization,

K̄T (X) ∼=
⊕

p∈XT

KT (p) ⊗R F .

Moreover, the pushforward and pullback maps may be uniquely extended to F-linear
maps which are uniquely determined due to the injectivity of i∗.

These linear maps are given explicitly as follows: for a fixed point x ∈ X we denote
by [x] = i∗(1) = [Ox ] ∈ KT (X) where i : x ↪→ X is the inclusion. We denote by
[x]′ the dual class

[x]′ = [x]
�∗�x

∈ K̄T (X),

where

�∗�x =
∑

i

(−1)i�i�x .

Then the extension of the pushforward and pullback are given by

f∗[x] = [ f (x)], f ∗[y]′ =
∑

x∈XT : f (x)=y

[x]′. (4.1)

Since our spaces Vk are vector spaces over Q(q, t), we will define our spaces as
localized K -theory, and our proofs will be based on (4.1). However, it is an important
to note for future applications to categorification that in our newdescription, the algebra
generators of Aq,t act on on actual, nonlocalized K -theory. We derive the relations
in this algebra in localized K -theory, proving that these relations are satisfied up to
torsion elements, i.e. the kernel of the localizationmap i∗, whichwewill study in future
papers. We expect that there is an integral form of Aq,t and that the corresponding
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relations hold in non-localized K -theory. For instance, a similar result for the elliptic
Hall algebra was recently proved by Negut, in [24].

For the rest of the paper, we will drop the symbol T from KT , and simply write
K (X). The torus will always be T = C

∗ × C
∗, with coordinates (q, t).

4.2 The affine Hecke action

For 1 ≤ m ≤ k−1 consider the space PFH(m)
n,n−k consisting of partial flags In ⊂ · · · ⊂

In−m+1 ⊂ In−m−1 ⊂ . . . In−k with the same condition y In−k ⊂ In . In complete
parallel with Theorem 3.5, one can prove that this space is smooth. There is a natural
projection π : PFHn,n−k → PFH(m)

n,n−k , which is projective. For a fixed point Iλ(•) ∈
PFHn,n−k we have that π(Iλ(•) ) = Iλ′(•) where the sequence of partitions λ′(•) is
obtained from λ(•) by removing λ(n−m). There is at most one other fixed point that
goes to Iλ′(•) , corresponding to a sequence which we denote by sm(λ(•)). If Iλ(•) is
specified as Iλ,w then Ism (λ(•)) = Iλ,sm (w), where sm swaps wm and wm+1. A formula
similar to (3.4) can be proved for Iλ′(•) , we have

ch�λ′(•) PFH(m)
n,n−k = qt Bλ(n−k) + B∗

λ(n) − (t − 1)(q − 1)Bλ(n−k) B∗
λ(n)

+(q − 1)
∑

k−1≥i≥ j≥1

w′
iw

′∗
j ,

where

w′
i =

⎧
⎪⎨

⎪⎩

wi (i < m),

wm + wm+1 (i = m),

wi+1 (i > m).

Therefore we have

ch�λ′(•) − ch�λ(•) = (q − 1)wmw−1
m+1,

ch�λ′(•) − ch�s(λ(•)) = (q − 1)wm+1w
−1
m .

We obtain

π∗π∗ Iλ,w = �∗ ((q − 1)wmw−1
m+1

)
Iλ,w + �∗ ((q − 1)wm+1w

−1
m

)
Iλ,sm (w)

= 1 − qwmw−1
m+1

1 − wmw−1
m+1

Iλ,w + 1 − qwm+1w
−1
m

1 − wm+1w
−1
m

Iλ,sm (w).

Note that the second summand should be omitted if Iλ(•) is the only fixed point that
goes to Iλ′(•) . This happens preciselywhen λ(n−m+1)\λ(n−m−1) is a pair of horizontally
adjacent cells, i.e. wm = qwm+1. In such situation the factor in front of Iλ,sm (w)

vanishes anyway, so the formula still holds formally even though Iλ,sm (w) does not
correspond to a point in PFHn,n−k .
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We get the following lemma:

Lemma 4.1 Let Tm = π∗π∗ − q. Then

Tm(Iλ,w) = (q − 1)wm+1

wm − wm+1
Iλ,w + wm − qwm+1

wm − wm+1
Iλ,sm (w). (4.2)

The operators zi are given by multiplication by line bundles L j = In− j/In− j+1.
Note that we have

L j Iλ,w = w j Iλ,w. (4.3)

4.3 Creation and annihilation

There are natural projection maps forgetting the first and the last ideal respectively

f : PFHn+1,n−k → PFHn,n−k, g : PFHn,n−k → PFHn,n−k+1 .

Here g is projective. We will denote

d− = g∗, d+ = qk(q − 1) f ∗.

Note that d+ increases k and d− decreases k.

Lemma 4.2 We have

d− Iλ,wx = Iλ,w,

d+ Iλ,w = −qk
∑

x

xdλ+x,λ

k∏

i=1

x − twi

x − qtwi
Iλ+x,xw,

where xw = (x, w1, w2, . . . , wk), and dλ,μ is the Pieri coefficient

dλ,μ(q, t) =
∏

s∈Rλ,μ

qaμ(s) − t lμ(s)+1

qaλ(s) − t lλ(s)+1

∏

s∈Cλ,μ

qaμ(s)+1 − t lμ(s)

qaλ(s)+1 − t lλ(s)

for multiplication by e1 in the modified Macdonald basis e.g. from [9] formula 3.1,
which satisfies

e1 H̃μ =
∑

λ

dλ,μ H̃λ.

Here Rλ,μ is the set of cells in the row of the unique box in λ\μ, and Cλ,μ is the set
of cells in the column.
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Proof The formula for d− is immediate from the definition. For d+ we calculate

ch�λ,w − ch�λ+x,xw

= −x−1 + (t − 1)(q − 1)Bλ(n−k)x−1 − (q − 1)x−1
k∑

i=1

wi − (q − 1)

= −x−1 + (t − 1)(q − 1)Bλx
−1 − (q − 1) − t(q − 1)x−1

k∑

i=1

wi .

Below we will show

dλ+x,λ = x−1�∗(−x−1 + (t − 1)(q − 1)Bλx
−1 + 1). (4.4)

Assuming (4.4) we have

f ∗ Iλ,w =
∑

x

xdλ+x,λ
1

1 − q

k∏

i=1

x − twi

x − qtwi
Iλ+x,xw.

and we are done.
To prove (4.4) we will use the following summation formula for the Pieri coeffi-

cients, see e.g. Theorem 2.4 b) in [9]:

∑

x

dλ+x,λx
i+1 = (−1)i ei [−1 + (q − 1)(t − 1)Bλ] (i ≥ 0).

Let u be a formal variable. Multiplying both sides by uk and summing over k ≥ 0
produces the following identity of rational functions:

∑

x

dλ+x,λ
x

1 − ux
= �∗((−1 + (q − 1)(t − 1)Bλ)u). (4.5)

Note that the left hand side has simple pole at u = x−1 and

xdλ+x,λ = (
(1 − ux)�∗((−1 + (q − 1)(t − 1)Bλ)u)

) ∣
∣
u=x−1 .

Moving 1 − ux inside �∗ we obtain

xdλ+x,λ = �∗((−1 + (q − 1)(t − 1)Bλ)u + ux)
∣
∣
u=x−1 .

Now we can substitute u = x−1 before applying �∗ and arrive at (4.4). ��
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Example 4.3 Let k = 0. We have PFHn,n = Hilbn . Let us identify the fixed point
corresponding to a partition λ with the symmetric function

Iλ = H̃λ

H̃λ[−1] = (−1)|λ|q−n(λ′)t−n(λ) H̃λ = H̃λ

∏

�∈λ

(−χ(�)−1),

where H̃λ is the modified Macdonald polynomial. Then we obtain

d+ H̃λ = −H̃λ[−1]
∑

w1

w1dλ+w1,λ Iλ+w1,w1 ,

and using H̃λ+w1 [−1] = −w1 H̃λ[−1]

d−d+ H̃λ =
∑

w1

dλ+w1,λ H̃λ+w1 ,

therefore d−d+ acts like the operator of multiplication by e1, which matches the action
of Aq,t on V•.

5 Verification of relations

Let

Uk =
⊕

n≥k

K̄ (PFHn,n−k), U• =
⊕

k≥0

Uk .

In this section, we will prove the following theorem:

Theorem 5.1 The geometric operators written as Ti , zi , d+ and d− define a represen-
tation of the algebra Bq,t on U•, and therefore a representation of Aq,t via the map
β : Aq,t → Bq,t .

We split the relations into several groups and prove them in the subsections below.
We will denote Hλ,w = (−1)|λ|qn(λ′)tn(λ) Iλ,w, so that the Hλ,w form a basis of U•.
Note that the formulas for the action of Tm , L j , d− in the H -basis are the same as for
I -basis.

5.1 zi, Ti

The following relations are easy to verify

Proposition 5.2 The operators zi := Li and Ti satisfy relations of the (conjugate)
affine Hecke algebra:
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(Ti − 1)(Ti + q) = 0, Ti Ti+1Ti = Ti+1Ti Ti+1, Ti Tj = Tj Ti (|i − j | > 1),

Ti zi Ti = qzi+1 (1 ≤ i ≤ k − 1),

zi Tj = Tj zi (i /∈ { j, j + 1}), zi z j = z j zi (1 ≤ i, j ≤ k),

In fact, the construction of zi and Ti is very similar to the classical construction of
finite-dimensional representations of the affine Hecke algebra using “multisegments”
(see e.g. [30]). The operators Ti and zi do not change the biggest ideal In and the
smallest ideal In−k . In terms of the fixed point basis, this means that we can fix two
partitions λn−k ⊂ λn such that the skew shape λn\λn−k consists of several horizontal
strips. The choice of λn−k+1, . . . , λn−1 is equivalent to the choice of a standard tableau
of this skew shape. Then (4.2) and (4.3) agree with the action of the affine Hecke
algebra on such standard tableaux [26,30].

5.2 d−, d+, Ti

From Lemma 4.2 we obtain

d+Hλ,w = qk
∑

x

dλ+x,λ

k∏

i=1

x − twi

x − qtwi
Hλ+x,xw,

for wy = (w1, . . . , wk−1, y)

d−d+Hλ,wy = qk
∑

x

dλ+x,λ
x − t y

x − qty

k−1∏

i=1

x − twi

x − qtwi
Hλ+x,xw,

d+d−Hλ,wy = qk−1
∑

x

dλ+x,λ

k−1∏

i=1

x − twi

x − qtwi
Hλ+x,xw,

d+d− − d−d+
q − 1

Hλ,wy = −qk−1
∑

x

dλ+x,λ
x

x − qty

k−1∏

i=1

x − twi

x − qtwi
Hλ+x,xw,

(5.1)

qd+d− − d−d+
q − 1

Hλ,wy = −qkt
∑

x

dλ+x,λ
y

x − qty

k−1∏

i=1

x − twi

x − qtwi
Hλ+x,xw.

(5.2)

We have

Proposition 5.3 The operators d+, d−, Ti extend to a representation of Aq on U•.

Proof The Hecke algebra relations for Ti were verified above. The relations Tid− =
d−Ti , d+Ti = Ti+1d+ are straightforward. Then we need to check that

d2−Tk = d2−, T1d
2+ = d2+.
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The first one is straightforward. To establish the second one write

d2+Hλ,w = q2k+1
∑

x,y

dλ+x,λdλ+x+y,λ+x
y − t x

y − qtx

k−1∏

i=1

(x − twi )(y − twi )

(x − qtwi )(y − qtwi )
Hλ+x+y,yxw.

Note that there are no terms with y = t x . All the terms with y = qx are invariant
under T1. Suppose y �= qx , y �= t x , in other words the cells x, y are non-adjacent.
Using (4.4) we have

dλ+x,λdλ+x+y,λ+x

= (xy)−1�∗ (((q − 1)(t − 1)Bλ − 1)(x−1 + y−1) + (t − 1)(q − 1)xy−1 + 2
)

,

so

dλ+x,λdλ+x+y,λ+x
y − t x

y − qtx

k−1∏

i=1

(x − twi )(y − twi )

(x − qtwi )(y − qtwi )
= Cλ,w(x, y)

y − x

y − qx
,

(5.3)

where the function Cλ,w(x, y) is symmetric in x, y. So we have

(T1 − 1)d2+Hλ,w =
∑

x,y non adjacent

Cλ,w(x, y)(Hλ+x+y,yxw − Hλ+x+y,xyw) = 0.

Denote by ϕ the operator ϕ = d+d−−d−d+
q−1 ,

ϕHλ,wy = −qk−1
∑

x

dλ+x,λ
x

x − qty

k−1∏

i=1

x − twi

x − qtwi
Hλ+x,xw.

By Theorem 2.4 it is enough to show that the following identities hold:

qϕd− = d−ϕTk−1, T1ϕd+ = qd+ϕ.

The first one is easier. Let

Cu = dλ+u,λ

k−2∏

i=1

u − twi

u − qtwi
.
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Then we have

qϕd−Hλ,wxy

= −qk−1
∑

u

u

u − qtx
CuHλ+u,uw, d−ϕTk−1

= −qk−1
∑

u

(
(q − 1)y

x − y

u(u − t x)

(u − qty)(u − qtx)
+ x − qy

x − y

u(u − t y)

(u − qtx)(u − qty)

)

CuHλ+u,uw.

The rational function in parentheses equals u
u−qtx , so the identity holds. Finally we

compare

A = qd+ϕHλ,wu = −qk
∑

x,y

dλ+x,λdλ+x+y,λ+x
x(y − t x)

(x − qtu)(y − qtx)

×
k−1∏

i=1

(x − twi )(y − twi )

(x − qtwi )(y − qtwi )
Hλ+x+y,yxw

and

B = T1ϕd+Hλ,wu = −qkT1
∑

x,y

dλ+x,λdλ+x+y,λ+x
y(y − t x)(x − tu)

(y − qtu)(y − qtx)(x − qtu)

×
k−1∏

i=1

(x − twi )(y − twi )

(x − qtwi )(y − qtwi )
Hλ+x+y,yxw.

Similar to the computations with d2+ we analyze two cases. If y = qx , i.e. x and y
are adjacent, we have T1Hλ+x+y,yxw = Hλ+x+y,yxw and coefficients of these terms
coincide. Suppose x and y are not adjacent. Using (5.3) we write the coefficient of
Hλ+x+y,yxw in A as

x(y − x)

(x − qtu)(y − qx)
Cλ,w(x, y).

Using symmetry of Cλ,w(x, y), we see that the corresponding coefficient in B is

(
(q − 1)xy(y − x)(x − tu)

(y − x)(y − qtu)(y − qx)(x − qtu)
+ (x − qy)x(x − y)(y − tu)

(x − y)(x − qtu)(x − qy)(y − qtu)

)

×Cλ,w(x, y).

Comparing the rational functions we see that the coefficients coincide. ��
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5.3 d−, d+, zi

It remains to check the following relations:

zi d− = di zi , d+zi = zi+1d+,

z1(qd+d− − d−d+) = qt(d+d− − d−d+)zk .

The proof of the first two is straightforward, and the last one immediately follows
from (5.1) and (5.2). The proof of Theorem 5.1 is complete.

5.4 Serre duality

We have two additional involutions on K (PFHn,n−k) and K̄ (PFHn,n−k), given by
Serre duality and dualization of vector bundles, respectively:

SD

⎛

⎝
∑

λ,w

aλ,w(q, t)Iλ,w

⎞

⎠ =
∑

λ,w

aλ,w(q−1, t−1)Iλ,w,

⎛

⎝
∑

λ,w

aλ,w(q, t)I ′
λ,w

⎞

⎠

∗
=
∑

λ,w

aλ,w(q−1, t−1)I ′
λ,w.

Wehave another involutionN = LSDL−1,whereL is the pullback of the determinant
of the tautlogical bundle from Hilbn , satisfying Hμ,w = (−1)|μ|LIμ,w.

N
⎛

⎝
∑

λ,w

aλ,w(q, t)Hλ,w

⎞

⎠ =
∑

λ,w

aλ,w(q−1, t−1)Hλ,w. (5.4)

This operator has the commutation relations agreeing with (2.11), justifying calling
it N :

Proposition 5.4 One has

Nd−N = d−, N TiN = T−1
i , Nd+N = q−k z1d+ = β(d∗+).

Proof The first equation is clear from Lemma 4.2. For the second, observe that the
Hecke relations imply

T−1
m = q−1Tm + q−1(q − 1).

On the other hand, by (4.2) one has

N TmN (Hλ,w) = (q−1 − 1)w−1
m+1

w−1
m − w−1

m+1

Hλ,w + w−1
m − q−1w−1

m+1

w−1
m − w−1

m+1

Hλ,sm (w)
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= q−1
[

(q − 1)wm

wm − wm+1
Hλ,w + wm − qwm+1

wm − wm+1
Hλ,sm (w)

]

= q−1 [(q − 1) + Tm] .

Finally,

Nd+N = q−k
∑

x

dλ+x,λ(q
−1, t−1)

k∏

i=1

x−1 − t−1w−1
i

x−1 − q−1t−1w−1
i

Hλ+x,xw

=
∑

x

xdλ+x,λ

k∏

i=1

x − twi

x − qtwi
Hλ+x,xw = q−k z1d+.

Here we used the fact that dλ+x,λ(q−1, t−1) = xdλ+x,λ(q, t). ��

6 Comparison with the polynomial representation

Theorem 5.1 showed that there is an action ofAq,t onU•, and so in particular an action
of the subalgebra Aq ⊂ Aq,t . It is an immediate consequence of Proposition 2.11 that
there is a unique Aq -equivariant sequence of maps �k : Vk → Uk sending 1 ∈ V0 to
H∅ ∈ K (PFH0,0). We denote by � : V• → U• the resulting map.

In this section, we will prove:

Theorem 6.1 The map �k is an isomorphism. Moreover, we have that

�0(Hμ) = H̃μ,

where H̃μ is the modified Macdonald polynomial, and that �kN = N�k , where the
two operators denoted N are the involutions in Eqs. (2.12) and (5.4).

We now start proving this theorem, beginning with the statement that �k is an
isomorphism.

Let Vn,k denote the degree (n − k) part of Vk . LetUn,k = K̄ (PFHn,n−k). It is clear
that the bi-degrees of Ti , d−, d+ are (0, 0), (0,−1), (1, 1) respectively both in Vn,k

andUn,k , so that � preserves the bi-grading. We begin by showing that Vn,k andUn,k

have the same dimension.
Define two collections of sets by

A(n, k) =
{
(μ, a) ∈ P × Z

k≥0 : |μ| + |a| = n − k
}

,

M(n, k) =
{
λ(n) ⊃ · · · ⊃ λ(n−k) : λ(n−i) ∈ Pn−i , λ(n)\λ(n−k) is a horizontal strip

}
.

Then the elements of M(n, k) are just the indices λ(•) of the basis Hλ(•) of Un,k and
elements of A(n, k) index elements

vμ,a = dl−yak1 . . . ya1k yμl
k+1 . . . yμ1

k+l , (6.1)
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which make up a basis of Vn,k , because the Hall-Littlewood polynomials make up a
basis of symmetric functions. Define a function A(n, k) → M(n, k) by the following
procedure: given μ, a we set

λ(n−i) = sort(μ1, μ2, . . . , μl(μ), a1, . . . , ai , ai+1 + 1, . . . , ak + 1)′ (0 ≤ i ≤ k),

where sort transforms a sequence into a partition by sorting the entries and throwing
away zeros, and ′ takes the conjugate partition. For instance, we would have

[3, 1], [1, 0, 1, 2, 3] �→ [[7, 5, 3, 1], [7, 4, 3, 1], [6, 4, 3, 1], [6, 3, 3, 1], [6, 3, 2, 1], [6, 3, 2]] .

It is straightforward to see that this is a bijection, proving that the two spaces have the
same dimension.

We will prove our theorem by showing that �k has a triangularity property with
respect to a partial order on A(n, k) ↔ M(n, k) that we now define: Given (μ, a) ∈
A(n, k), and some l greater than the length of μ, let

α = (μ; a + 1)revl = (ak + 1, ..., a1 + 1;μl , ..., μ1)

denote the reversed order of the concatenation of μ and (a1 + 1, ..., ak + 1), which
always has at least one leading zeros included in the μ terms. For instance, if we took
(μ, a) = ([2, 1]; (1, 0, 2)), and chose l = 4, we would have

α = (μ; a + 1)rev4 = (3, 1, 2, 0, 0, 1, 2).

Wewill describe the procedure for determining how to compare two elements in terms
of these vectors.

For any (μ, a), we start by asserting the following moves produce an element that
is larger in this order in A(n, k). In our description, the operation “set αi = c and
sort” means to make the desired substitution, then sort the leading “partition terms” if
i ≤ l, so as to obtain something that we may regard as an element of A(n, k). In the
example above, the operation “set α4 = 2 and sort” would yield (3, 1, 2, 0, 1, 2, 2),
corresponding to μ = [2, 2, 1], and a = (1, 0, 2).

(1) If αi > α j for i < j , set (αi , α j ) = (α j , αi ), i.e. switch the labels and sort.
(2) If αi < α j − 1 for any i, j , set (αi , α j ) = (α j − 1, αi + 1) and sort.

We let ≤bru denote the binary relation transitively generated by these moves, which
we can see does not depend on l, provided it is large enough. This is in fact a partial
order, which can be seen using an alternative description in terms of theBruhat order on
affine permutations forGLk+l . To see this, fix some value of l, and let Ŵ = Z

k+l
�W0

denote the affineWeyl group forGLk+l . Now identify compositionsα with sorted final
l coordinates with elements of Sl\Ŵ/Sk+l , by choosing a representative of minimal
length from each coset, of which there is a unique one. Then≤bru is the order induced
by the Bruhat order on Ŵ . Without the sorting condition from the second action of Sl ,
this also appears in [15]. Notice that for k = 0 it becomes the usual dominance order
on partitions.

123



1330 E. Carlsson et al.

Proposition 6.2 We have that

�k(vμ,a) =
∑

(ν,b)≤bru(μ,a)

cν,b(q, t)Hν,b (6.2)

with cμ,a(q, t) �= 0.

Proof Given

f =
∑

(a,μ)

ca,μ(q, t)Hμ,a ∈ Un,k,

let terms( f ) denote the set of those (a, μ) ∈ A(n, k) such that cμ,a(q, t) �= 0. Let us
write Eq. (6.2) as

LT(�k(vμ,a)) = (μ, a),

where the statement LT( f ) = (μ, a) asserts that (μ, a) ∈ terms( f ), and is greater
than all other elements with respect to ≤bru . Note that not every f has a leading term
because ≤bru is only a partial order.

Let b = si (a), the result of switching the labels ai , ai+1. Then we use the following
description of the terms of our operators:

terms(T±1
k−i (Hμ,a)) = {(μ, a), (μ, b)}

terms(ϕ(Hμ,a)) = {(μ ∪ {a1 + 1} − {i}, (a2, ..., ak, i))} .

terms(d−(Hμ,a)) = {(μ ∪ {a1 + 1}, (a2, ..., ak))}.

In the second to last line, ν − {i} means the result of removing one of the occurrences
of i , where i ranges over all possible elements that can be removed. We include the
case where i is zero, and make the sensible convention that 0 ∈ ν for any ν, and that
ν − {0} = ν.

From these statements, we can check that

LT(T±1
k−i (Hμ,a)) = max ((μ, a), (μ, si (a))) ,

LT(ϕ(Hμ,a)) = (μ, (a2, ..., ak, a1 + 1)),

LT(d−(Hμ,a)) = (μ ∪ {a1 + 1}, (a2, ..., ak)).
(6.3)

It follows from the properties of the Bruhat order on Ŵ that if (μ, a) ≤bru (ν, b), then

(μ, si (a)), (μ, a) ≤bru (ν, si (b)), if b ≤bru si (b),

(μ, (a2, ..., ak, a1 + 1) ≤bru (ν, (b2, ..., bk, b1 + 1)),

(μ ∪ {a1 + 1}, (a2, ..., ak)) ≤bru (ν ∪ {b1 + 1}, (b2, ..., bk)).
(6.4)
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The second set of equations gives conditions forwhen A( f ) has a leading termdepend-
ing only on the leading term for f for each operator A, and the first set describes what
that leading term is. These two sets of rules will be enough to prove the result.

By the statements about d− in (6.3) and (6.4), it suffices to prove the proposition
in the case when μ is the empty partition. We will prove this by induction on |a|. If
m = max(a) is zero, then we are done. Otherwise, let i be the smallest index such that
ai = m. Let g ∈ Un,k be any element with a leading term given by LT(g) = (∅, b),
where b is the composition that agrees with a, except that bi = ai−1. It suffices to
show that LT(yk−i g) = (∅, a), where yi is the operator on Un,k defined in terms of
Ti , T

−1
i , ϕ by Eq. (2.7). Note the reversal of the ordering of a in the definition (6.1)

of the basis vμ,a , which is why we use yk−i instead of yi .
Consider the sequences of elements of Un,k given by

gi = g, g j = Tk− j (g
j+1) for 1 ≤ j ≤ i − 1,

f k = ϕ(g1), f j = T−1
k− j ( f

j+1) for i ≤ j ≤ k − 1.

We also define a sequence of compositions by

b j = s j (b
j+1), ak =

(
b12, ..., b

1
k , b

1
1 + 1

)
, a j = s j (a

j+1).

For instance, if a = (2, 0, 3, 1, 3, 0, 3, 0, 1), then we would have i = 3, and

b3, b2, b1, a9, a8, a7, a6, a5, a4, a3 = (2, 0, 2, 1, 3, 0, 3, 0, 1), (2, 2, 0, 1, 3, 0, 3, 0, 1),

(2, 2, 0, 1, 3, 0, 3, 0, 1), (2, 0, 1, 3, 0, 3, 0, 1, 3), (2, 0, 1, 3, 0, 3, 0, 3, 1),

(2, 0, 1, 3, 0, 3, 3, 0, 1), (2, 0, 1, 3, 0, 3, 3, 0, 1), (2, 0, 1, 3, 3, 0, 3, 0, 1),

(2, 0, 1, 3, 3, 0, 3, 0, 1), (2, 0, 3, 1, 3, 0, 3, 0, 1).

By (2.7), we have that f = f i , and we clearly have that a = ai . It therefore suffices
to prove the the more general statement that

(∅, a j ) = LT( f j ), (∅, b j ) = LT(g j )

for all j .
To see this, notice thatwe have a j ≤bru a j−1, and b j ≤bru b j−1. The first statement

follows simply because ai = m is the maximum entry, and so the order can only be
increased by moving it to the left. The second statement follows because i is the
leftmost occurrence of the maximum entry, so bi = m − 1 greater than or equal to
every term to its left. Therefore, the condition in the first part of (6.4) is satisfied, and
the desired statement follows by induction from the first two parts of equations (6.3)
and (6.4). ��

To complete the proof of Theorem 6.1, we first see that �kN = N�k by Proposi-
tion 5.4, so it only remains to show that the fixed pointsmap to themodifiedMacdonald
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polynomials for k = 0. For k = 0, it was proved in [4] that N acts as ∇ composed
with conjugation, i.e.

N
⎛

⎝
∑

λ,w

aλ,w(q, t)H̃λ

⎞

⎠ =
∑

λ,w

aλ,w(q−1, t−1)H̃λ. (6.5)

In [8], it was shown that the ring of symmetric functions are generated by the multipli-
cation operator e1, and ∇e1∇−1, or equivalently,N e1N . It therefore suffices to show
thatN , e1 have the same representation in each basis. The involutionN fixes both sets
of basis by definition. To show that e1 has the same coefficients, it suffices to notice
that e1 = d−d+ when restricted to V0, and recall that the coefficients in Lemma 4.2
are just the coefficients in the Pieri rule for e1. ��

7 Examples

7.1 Simple Nakajima correspondences

An important collection of operators on the K -theory ofHilbert schemes can be defined
as follows. Consider nested Hilbert scheme Hilbn,n+1 = {J ⊂ I ⊂ C[x, y]}, where
J and I are ideals of codimensions (n + 1) and n, respectively. The variety Hilbn,n+1

is well known to be smooth [5] and carries a natural line bundle L := I/J . It has
two projections f : Hilbn,n+1 → Hilbn and g : Hilbn,n+1 → Hilbn+1 which send a
pair (J ⊂ I ) to I and J , respectively. In the constructions of [7,27] a crucial role was
played by the operators

P1,k : K (Hilbn) → K (Hilbn+1), P1,k := g∗(Lk ⊗ f ∗(−)).

Remark that the quotient I/J in the nested Hilbert scheme is supported at one point,
which can be translated to the line {y = 0}. Thus, Hilbn,n+1 = PFHn+1,n ×Ct , and
K (Hilbn,n+1) ⊂ U1. Using the algebra Aq,t , we can realize these operators as a
composition of three:

(q − 1) f ∗ = d+ : U0 → U1, Lk = zk1 : U1 → U1, g∗ = d− : U1 → U0,

so

P1,k = 1

(q − 1)(1 − t)
d−zk1d+.

7.2 Generators of the elliptic Hall algebra

We next describe another proof of the formula from [23] for the generator Pm,n of the
elliptic Hall algebra (for coprime m and n). It was proved in [19] that
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Pm,n = d−(zSn1 y1z
Sn−1
1 y1 . . . zS11 y1)d+, Si =

⌊
mi

n

⌋

−
⌊
m(i − 1)

n

⌋

.

Negut’s formula is equivalent to the following proposition, after substituting these
values of Si into (7.1).

Proposition 7.1 The following identity holds for all Si :

d−(zSn1 y1z
Sn−1
1 y1 . . . zS11 y1)d+ = (−1)n

∑

T

∏

i< j

ω(wi/w j )
w

Si+1
i

wi − qtwi−1
Hλ,

(7.1)

where T is a standard tableaux of shape λ and size n, wi is the q, t-content of the box
labeled by i in T , and

ω(x) = (1 − x)(1 − qtx)

(1 − qx)(1 − t x)
.

Proof First, we need an explicit formula for the action of y1 onU1. Since there are no
T ’s and k = 1, by (5.1) we have

y1(Hλ,y) = 1

q − 1
[d+, d−]Hλ,y = −

∑

x

dλ+x,λ
x

x − qty
Hλ+x,x . (7.2)

Next, it is sufficient to prove by induction that

(zSn1 y1z
Sn−1
1 y1 . . . zS11 y1)d+ = (−1)n

∑

T

∏

i< j

ω(wi/w j )
w

Si+1
i

wi − qtwi−1
Hλ,�n .

If we apply y1 to the right hand side, we need to sum over all possible ways to add a
box wn+1 to a standard Young tableau T , that is, over all standard Young tableaux of
size (n + 1). The additional factor is described by (7.2) with x = wn+1 and y = wn :

−dλ+wn+1,λ

wn+1

wn+1 − qtwn
= −

∏

i≤n

ω(wi/wn+1)
wn+1

wn+1 − qtwn
.

The action of zSn+1
1 on the result just adds a factor w

Sn+1
n+1 . ��

7.3 Complete symmetric functions in yi

We conclude with a result describing the complete symmetric functions in yi in the
fixed point basis.
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Theorem 7.2 Suppose that

hn(y1, . . . , yk) =
∑

μ0,...,μk

aμ0,...,μk (q, t)Hμ0,...,μk .

Then the following identity holds:

aμ0,...,μk (q, t) = (q − 1)qk(k−1)/2

[k − 1]q !
�
(
Bμ0 − 1

)

det(Bμ0)�
(
T ∗

μ̃
PFHn,n−k

)

Proof First we obtain a recursive relation for hn(y1, . . . , yk) in terms of the operators
d+, d− and ϕ. By definition of d+ (see Proposition 2.11):

d+(hn(y1, . . . , yk)) = T1 · · · Tkhn(y1, . . . , yk)
= T1 · · · Tk(hn(y1, . . . , yk+1) − yn+1hn−1(y1, . . . , yk+1))

= hn(y1, . . . , yk+1) − T1 · · · Tk yn+1hn−1(y1, . . . , yk+1)

= hn(y1, . . . , yk+1) − ϕhn−1(y1, . . . , yk+1),

so

hn(y1, . . . , yk+1) = d+(hn(y1, . . . , yk)) + ϕhn−1(y1, . . . , yk+1). (7.3)

It is not hard to see that the right hand side satisfies (7.3) as well. Indeed, the actions
of d+ and ϕ in the fixed point basis are given by (5.1), and summing the terms and
applying an analogue of (4.5) yields the desired equation.

It remains to check the base case n = 0. In this case h0(y1, . . . , yk) = 1 ∈ Vk .
The corresponding moduli space is PFHk,0 = C

k (see Example 3.4), which contains a
unique fixed point corresponding to the partitionμ0 = (k). Now Bμ0 = 1+. . .+qk−1,
so det Bμ0 = qk(k−1)/2 and �

(
Bμ0 − 1

) = [k − 1]q !.
Finally, �

(
T ∗

μ̃
PFHk,0

)
= (1 − q)k . ��

Example 7.3 For k = 1 we get yn1 = ∑
aμ,ν(q, t)Hμ,ν and

aμ,ν(q, t) = (1 − q)λ
(
Bμ − 1

)

det(Bμ)λ
(
T ∗

μ,ν PFHn,n+1
)

Observe that for k = 1 we have y1 = ϕ, so in this case Theorem 7.2 follows from the
explicit formula for the action of ϕ in the Macdonald basis (5.1).

By comparing the numerator in Theorem 7.2 with the numerator in Haiman’s
description of the punctual Hilbert scheme [13], we expect that hn(y1, ..., yk) is the
class of a compactly supported sheaf on PFHn,n−k . Combinatorially, after twisting by
O(1), its contribution to the shuffle formula must consist of those Dyck paths with k
touch points. We expect this to be part of a potential geometric proof of the shuffle
theorem, which we leave for future papers.
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