

On the Origin of the Photostability of DNA and RNA Monomers: Excited State Relaxation Mechanism of the Pyrimidine Chromophore

Enrique Manuel Arpa, Matthew M Brister, Sean J. Hoehn, Carlos E. Crespo-Hernández, and Ines Corral

J. Phys. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acs.jpclett.0c00935 • Publication Date (Web): 05 Jun 2020

Downloaded from pubs.acs.org on June 11, 2020

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

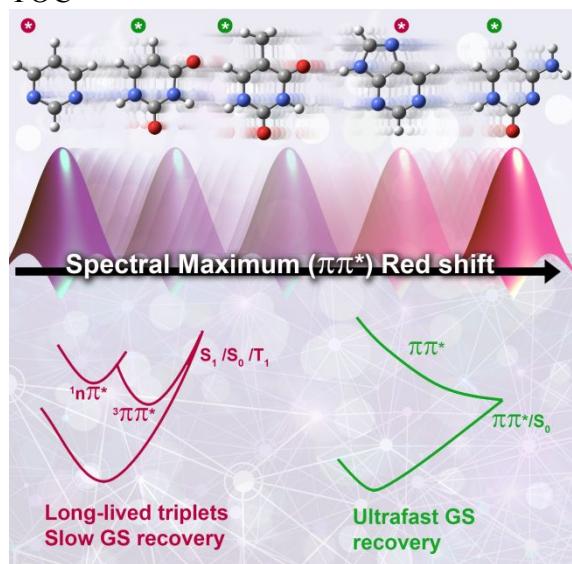
On the Origin of the Photostability of DNA and RNA Monomers: Excited State Relaxation Mechanism of the Pyrimidine Chromophore

Enrique M. Arpa^{1,¶}, Matthew M. Brister^{2,3¶}, Sean J. Hoehn², Carlos E. Crespo-Hernández^{2,*}, Inés Corral^{1,4,*}

¹Departamento de Química. Facultad de Ciencias. Universidad Autónoma de Madrid. C/ Francisco Tomás y Valiente 7, 28049 Madrid, España.

²Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States.

³Current Address: Lawrence Berkeley National Laboratory, Atomic Molecular and Optical Sciences, Chemical Science Division, Berkeley, CA 94720, United States.

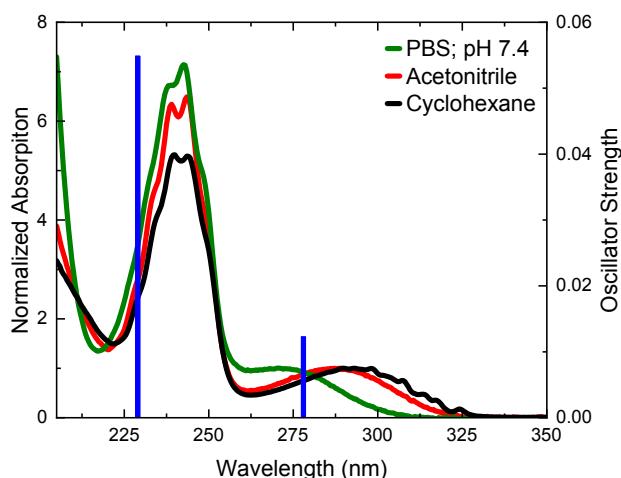

⁴Institute of Advanced Research in Chemical Sciences (IAdChem). Universidad Autónoma de Madrid. C/ Francisco Tomás y Valiente 7, 28049 Madrid, España.

¶ these authors contributed equally to this work; * corresponding authors: carlos.crespo@case.edu; ines.corral@uam.es.

ABSTRACT

Today's genetic composition is the result of continual refinement processes on primordial heterocycles present in prebiotic Earth and at least partially regulated by ultraviolet radiation. Femtosecond transient absorption spectroscopy and state-of-the-art ab initio calculations are combined to unravel the electronic relaxation mechanism of pyrimidine—the common chromophore of the nucleobases. Excitation of pyrimidine at 268 nm populates the $S_1(n\pi^*)$ state directly. A fraction of the population intersystem crosses to the triplet manifold within 7.8 ps, partially decaying within 1.5 ns, while another fraction recovers the ground state in >3 ns. The pyrimidine chromophore is not responsible for the photostability of the nucleobases. Instead, C2 and C4 amino and/or carbonyl functionalization is essential for shaping the topography of pyrimidine's potential energy surfaces, which present accessible conical intersections between the initially populated electronic excited state and the ground state.

TOC


Keywords: chemical origin of life, DNA/RNA nucleobases, photostability, intersystem crossing, ab initio calculations, transient absorption spectroscopy.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Investigating the origin of the photostability of the DNA and RNA nucleobases is a paramount step toward understanding the molecular origin of life on Earth. For decades, an extraordinary amount of effort has been dedicated to investigate and understand the electronic relaxation pathways of electronically excited canonical nucleobases responsible for their ultrafast internal conversion to the ground state and, thus, for their intrinsic photostability.¹⁻⁸ In 2015, it was demonstrated that the purine chromophore is not responsible for the ultrafast internal conversion of the excited state population to the ground state in purine nucleobases, but that the amino and carbonyl groups play important roles in enabling their photostability to ultraviolet radiation.⁹ The photostability of adenine and guanine was shown to be controlled by the nature of the substituents and by their specific position on the purine chromophore. However, to date, very little is known about the electronic relaxation mechanism of the pyrimidine chromophore and about the role the non-substituted pyrimidine moiety may have played in the selection of the canonical nucleobases as the building blocks of life during the harsh UV-radiation conditions present in the prebiotic era. Early efforts focused on the characterization of the electronic states of pyrimidine by means of theoretical and/or experimental techniques,¹⁰⁻¹⁸ and on a comparison of its electronic properties with other azabenzene derivatives.¹⁹⁻²³

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In this Letter, we combine multiconfigurational ab initio modeling of potential energy surfaces (PES) and femtosecond broadband transient absorption spectroscopy to reveal the electronic relaxation pathways and dynamics of the pyrimidine chromophore. The combination of computational and experimental techniques allows for an unprecedented level of detail^{9, 24-26} to ultimately discern the role of the pyrimidine chromophore on the intrinsic photostability of the canonical nucleobases.

52
53
54
55
56
57
58
59
60
Figure 1 shows the absorption spectrum of pyrimidine in three different solvents superimposed with the vacuum CASPT2 absorption line spectrum (see also Table 1 and Supporting Information for computational details). Two primary absorption bands are observed between 225 to 350 nm. The lower-energy absorption band corresponds to the $S_0 \rightarrow S_1(n\pi^*)$ transition, and its

maximum exhibits 18 and 23 nm shift to longer wavelengths in going from phosphate buffered saline (PBS) solution at pH of 7.4 (270 nm) to acetonitrile (288 nm) and cyclohexane (293 nm), respectively. This bathochromic effect is further supported by time-dependent density functional calculations reported in Figure S1, which show a direct correlation of the $S_0 \rightarrow S_1(n\pi^*)$ transition energy with the dielectric constant of the solvent. The band centered at 243 nm is insignificantly perturbed by the solvent environment and is assigned to the $S_0 \rightarrow S_3(\pi\pi^*)$ transition. In the gas phase, the centers of these two bands have been recently located at 287 ($n\pi^*$) and 240 nm ($\pi\pi^*$),²⁷ in satisfactory agreement with previous measurements^{15,17,18} and with our gas phase predictions (see Table 1).

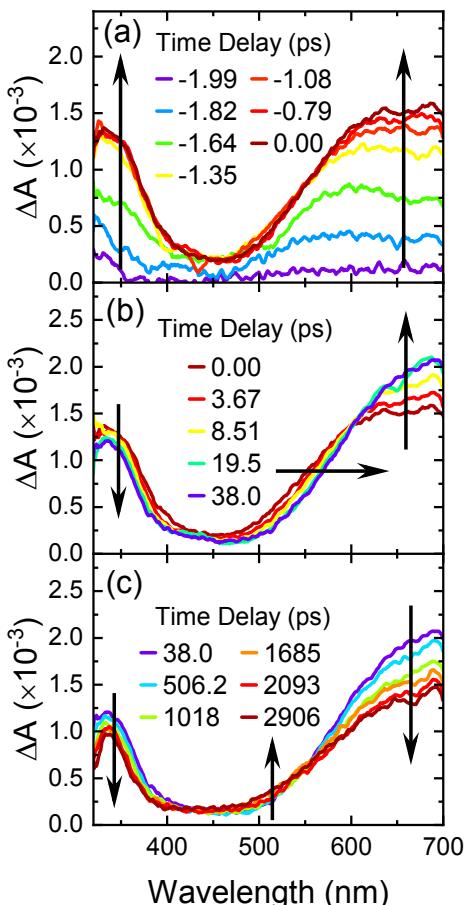
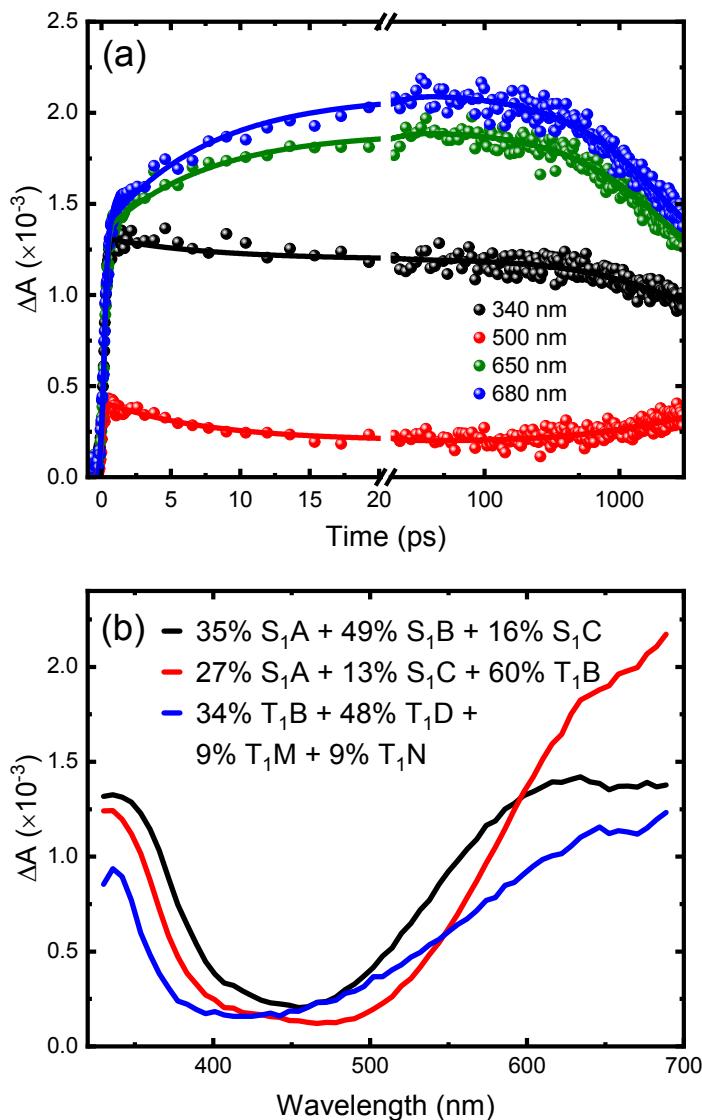

Figure 1. Normalized absorption spectra of pyrimidine in different solvents. Blue lines represent the vertical MS-CASPT2 excitation energies (see Table 1).

Table 1. Vertical excitation energies and oscillator strengths for the three singlet and two triplet lowest-energy excited states of pyrimidine at the MS-CASPT2/ANO-L level of theory in vacuum

State	$\Delta E / \text{eV (nm)}$	Osc. Strength
$S_1(n\pi^*)$	4.46 (278)	0.0123
$S_2(n\pi^*)$	4.73 (262)	0.0000
$S_3(\pi\pi^*)$	5.41 (229)	0.0549
$T_1(n\pi^*)$	4.06 (305)	---
$T_2(\pi\pi^*)$	4.56 (272)	---


Time-resolved transient absorption spectroscopy was used to reveal the excited state dynamics of pyrimidine. Figure 2 shows the experimental spectra for a pyrimidine concentration of 0.014 M in acetonitrile. Following excitation at 268 nm, two absorption bands are observed with similar intensity within the instrument response function (IRF = 270 \pm 50 fs) of the experimental

1 setup (Figure 2a). One of the bands has an absorption maximum at a lower probe wavelength than
2 350 nm, while the other has a maximum around *ca.* 650 nm (UV and visible bands, hereafter). For a
3 time-delay of up to *ca.* 40 ps, the UV band starts decaying, while the visible band red shifts and its
4 amplitude increases simultaneously (Figure 2b). An apparent isosbestic point is observed around
5 605 nm. From *ca.* 40 ps to 3 ns, both UV and visible bands decay, while the visible band slightly
6 broadens and red shifts, apparently exhibiting a maximum above 700 nm (Figure 2c). The latter
7 transient species decays at a significantly longer timescale than the 3 ns time window of the
8 spectrometer used in this work. Similar experiments performed at a pyrimidine concentration of
9 0.002 M are presented in Figures S15 and S16 in the SI (see also Figure S14 and discussion
10 therein). The results of these two different concentrations are equal within experimental
11 uncertainties, suggesting that formation of any putative aggregates in the 0.014 M solution are not
12 concealing the excited-state dynamics of the pyrimidine monomer.

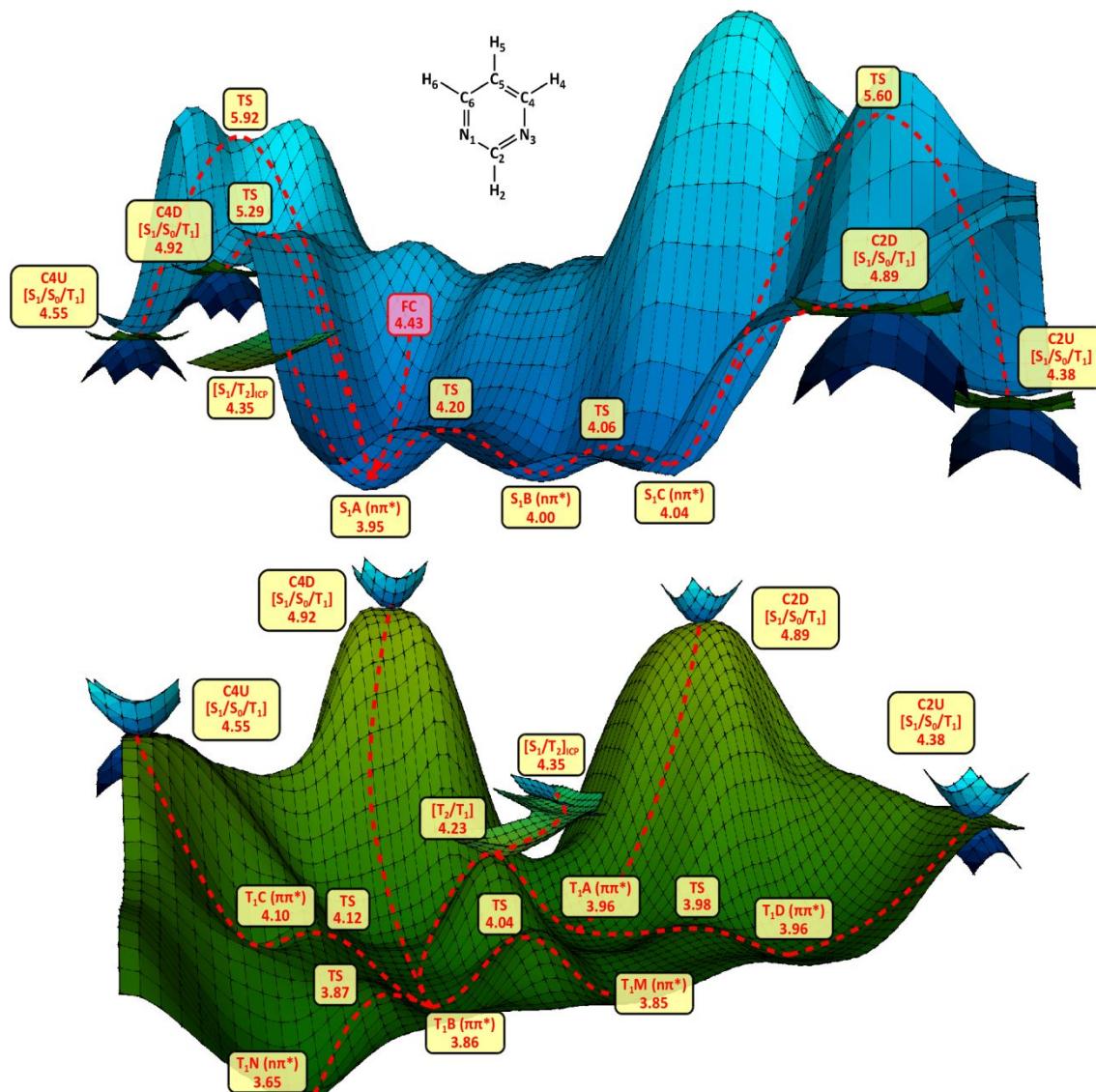

59 **Figure 2.** Transient absorption spectra for a pyrimidine concentration of 0.014M in acetonitrile
60 excited at 268 nm.

Figure 3a shows representative decay traces and best global fit curves, extracted from a target and global analysis using a three-component sequential kinetic model, where the third kinetic component required a large lifetime (i.e., tens of ns) to satisfactorily fit the long-lived transient signal. The same analysis was performed for the data collected using a pyrimidine concentration of 0.002 M (see Figure S16 in the SI). These analyses yielded two set of lifetimes with averaged values of $\tau_1 = 7.8 \pm 0.6$ ps and $\tau_2 = 1.5 \pm 0.8$ ns. The extracted evolution associated difference spectra (EADS) are shown in Figures 3b and S16, respectively.

Figure 3. a) Selected kinetic traces of pyrimidine in acetonitrile excited at 268 nm. The fits represented are using a sequential kinetic model. b) Evolution associated difference spectra (EADS) and spectral assignments based on the quantum-chemical calculations: black EADS is assigned to $^1n\pi^*$ state (100%); red EADS is assigned to 40% $^1n\pi^*$ and 60% $^3\pi\pi^*$ states; and blue EADS is assigned to 18% $^3n\pi^*$ and 82% $^3\pi\pi^*$ states. See the main text and the Methods section in the SI for details.

In order to gain insight into the specific electronic relaxation pathways of the pyrimidine chromophore, the minimum energy paths, the singlet and triplet minima, the conical intersections and singlet-triplet intersystem crossing points (ICPs) of the PES reached upon excitation at 268 nm were optimized using multiconfigurational approaches (see SI for details). Figure 4 depicts the topography of the S_1 and T_1 PES and identifies key energy points and structures. Following excitation to the bright S_1 state, placed 4.43 eV above the ground state minimum,²⁸ the system is expected to populate the $^1n\pi^*$ minimum at 3.95 eV (labeled as S_1A in Figure 4), which preserves the planar structure of the ground state minimum with a small reduction of the N1-C2-N3 angle (See Inset of Figure 4 for atom labelling). Two other $^1n\pi^*$ minima are accessible from this minimum. The minimum at 4.00 eV (S_1B) has a planar, non-symmetrical structure (the reflection plane along the C2-C5 axis has disappeared), whilst the minimum at 4.04 eV (S_1C) shows a C2 puckered structure. The energy of the most stable minimum is consistent with the 0-0 energies estimated from the emission/excitation spectra (3.78 eV) and emission/absorption spectra (3.86 eV) in cyclohexane (see Table S2 and Figure S2). For these minima, we have located four different ground state decay funnels [S_1/S_0], which are labeled according to their distinctive geometry distortion on Figure 4: the affected carbon atom (C2 or C4) and the geometry rearrangement (U: Cx puckering + C-H bond perpendicular to the molecular plane; D: Cx puckering + C-H bond parallel to the molecular plane). Importantly, access to these $S_1 \rightarrow S_0$ crossings requires ascending upward potential energy profiles and/or surmounting energy barriers surpassing the initially available energy, and thus suggesting inefficient ground state repopulation.

Figure 4. MS-CASPT2//SA-CASSCF(10,8) landscape of the S_1 (upper) and T_1 (lower) potential energy surfaces obtained from minimum energy path calculations (red lines); energies are given in eV relative to the ground state minimum. See SI for further information on the geometries.

Hence, we have investigated alternative relaxation pathways along the triplet manifold, which might be active for pyrimidine. In the vicinity of the S_1A minimum, we found a $[S_1/T_2]_{\text{CP}}$ (4.35 eV), which requires almost no structural distortion, as it exhibits a planar structure. At this crossing point, we calculate a spin-orbit coupling of 8.6 cm^{-1} . This funnel is connected to a T_2/T_1 degeneracy point that would eventually lead to the population of two minima, T_1A and T_1B , which are connected to the T_1C , T_1D , T_1M and T_1N minima through relative low energy barriers. The intersystem crossing funnels that would allow for the leak of population from the triplet manifold to the ground state coincide in geometry and energy with the S_1/S_0 crossing points defined above, as they effectively correspond to $[S_1/S_0/T_1]$ triply-degenerate crossing points.

1
2 Among all the $[S_1/S_0/T_1]$ intersystem crossing points, the most relevant one is the C2U (4.38
3 eV), as it is located slightly below the FC S_1 energy (4.43 eV). Hence, considering the calculated
4 potential energy landscape, we propose that the primary electronic relaxation mechanism of
5 pyrimidine would involve the following pathway: $S_1^* \rightarrow S_1A (+ S_1B, S_1C) \rightarrow [S_1/T_2]_{ICP} \rightarrow [T_2/T_1]$
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

→ $T_1B (+ T_1A, T_1D) \rightarrow C2U-[S_1/S_0/T_1] \rightarrow S_0$.

In order to provide further support to the proposed electronic relaxation mechanism, we have calculated the transient absorption spectra for all the minima shown in Figure 4 that are expected to be populated following excitation at 268 nm (4.63 eV) and, thus, to contribute to the transient spectra. The calculated individual spectra (see Figures S3 to S11 in the SI) were linearly combined to best fit the EADS reported in Figure 3b (Figure S13). Within the IRF of the experimental setup (Figure 2a), only the singlet minima contribute to the spectrum (see black EADS in Fig. 3b and Figure S13A), because they are easily accessible from the Franck-Condon region according to the topography of the PES, and all of them are required to reproduce the band from *ca.* 550 to 700 nm in terms of both width and intensity. With a lifetime of 7.8 ps (τ_1), intersystem crossing to the triplet manifold starts to ensue, as the main contribution to the EADS arises from the most stable $^3\pi\pi^*$ minimum (see red spectrum in Fig. 3b and Figure S13B), although the population of the S_1 minima is not negligible, which can be attributed to the energy barrier separating the singlet minima from the singlet-triplet funnel and/or the small spin-orbit coupling calculated at the S_1/T_2 crossing region. In this case, the S_1A and S_1C minima are necessary to reproduce the absorbance around 700 nm, whereas the absorption of T_1B is necessary to reproduce the signal from *ca.* 500 to 650 nm. Finally, the excited-state population partially decays within a lifetime of 1.5 ns (τ_2), and the EADS depicted in blue in Figure 3b is assigned to a contribution of triplet minima (see Figure S13C), which eventually decays to the ground state in a nanosecond to microsecond time scale.¹¹ In aqueous solutions, the long-lived triplet state of pyrimidine has been reported to decay back to the ground state in 1.4 μ s.¹¹ The triplet quantum yield of pyrimidine in water has been reported to be near unity,¹¹ but it is significantly lower in organic solvents. In fact, a triplet quantum

1 yield of 12% has been reported for pyrimidine in *n*-hexane,²⁹ which leaves about 88% of the initial
2 population available to relax through other competitive pathways.
3
4

5 In this Letter, a comprehensive theoretical and experimental study of the photophysics and
6 dynamics of pyrimidine chromophore is presented. Upon excitation at 267 or 268 nm, different
7 minima in the $S_1(n\pi^*)$ PES are populated. On the picosecond time scale, a considerable fraction of
8 the population intersystem crosses to the $T_1(\pi\pi^*)$ state, because the S_1/T_2 crossing and T_2/T_1
9 internal conversion funnels require negligible rearrangement in geometry from the preceding
10 minimum, in contrast to the S_1/S_0 channels. Finally, population at the $^3\pi\pi^*$ minimum is able to
11 survive for more than 3 ns. Excitation of cytosine, thymine, and uracil monomers at 267 nm
12 primarily decay by ultrafast internal conversion to the ground state in hundreds of femtoseconds.³⁰
13
14 ³¹ Small yields of long-lived $^1n\pi^*$ and $^3\pi\pi^*$ states are also observed in solution,³²⁻³⁷ which decay
15 back to the ground state in hundreds of picoseconds to few microseconds, respectively.
16
17

18 Collectively, it can be concluded that the pyrimidine core common to cytosine, thymine,
19 uracil and other non-canonical pyrimidine derivatives is not the responsible for their ultrafast
20 internal conversion to the ground state. The population of a long-lived triplet state suggests that the
21 pyrimidine chromophore should have significantly lower photostability than the canonical
22 nucleobases, which is in line with a recent proposal that photolysis plays an important role in the
23 removal of pyrimidine from the troposphere.²⁷ The long-lived triplet species arises from the
24 inaccessibility of internal conversion funnels, which are governed by distortions at the C2 and
25 C4/C6 positions, which in pyrimidine happen to be equivalent by symmetry. Therefore, we propose
26 that different substitution patterns over those atoms are critical to tune both the optical properties
27 and the deactivation pathways of these nucleobases. In fact, a comparison of the gas phase
28 absorption spectrum of pyrimidine with those of the canonical pyrimidine nucleobases uracil,
29 thymine and cytosine, reveals that carbonyl C2 substitution and carbonyl or amino C4 substitution
30 redshift (*ca.* 0.2-1 eV) the maximum of the most intense absorption band, being the effect of the
31 amino group the greatest.³⁸⁻⁴¹ An intermediate shift (0.7 eV) in the maximum of the most intense
32

1 absorption signal is observed upon the fusion of an imidazole ring to the pyrimidine core at the C4
2 and C5 positions, i.e., purine heterocycle, whilst the $n\pi^*$ transition decreases its energy by 0.4 eV.
3 The N-H bonds at the N1 (cytosine) or N1/N3 (uracil/thymine) positions block the dynamics from
4 the $n\pi^*$ state, characteristic of the pyrimidine core. Instead, in the canonical nucleobases, the
5 lowest-lying $\pi\pi^*$ state, responsible for the absorption maximum and controlled by barrierless
6 potential energy profiles connecting the FC region with CI funnels to the ground state, governs their
7 photophysics. This is in contrast to the potential energy landscape predicted for purine where,
8 similarly to pyrimidine, the $S_1(n\pi^*)$ potential acts as a doorway for the population of the triplet
9 manifold.⁹

23 Supporting Information

24 The Supporting Information is available free of charge at:
25

26 Computational details, Steady-state properties of pyrimidine, Coordinates of relevant geometries of
27 the potential energy surface, Theoretical transient absorption spectra for the minima, Theoretical
28 Evolution Associated Difference Spectra and Experimental Methods.

34 Acknowledgements

35 This work has been supported by the Project PGC2018-094644-B-C21 of the Ministerio de Ciencia,
36 Innovación y Universidades of Spain. I. C. and E. M. A. gratefully acknowledge the Ramón y Cajal
37 program and a Formación de Profesorado Universitario contract from the Ministerio de Economía,
38 Industria y Competitividad of Spain. The authors thankfully acknowledge the computer resources
39 at Finisterrae and the technical support provided by the CESGA Supercomputing Center.
40 Computational time from the Centro de Computación Científica (CCC) of Universidad Autónoma
41 de Madrid and is also gratefully acknowledged. M.M.B., S.J.H., and C.E.C.-H. acknowledge the
42 National Science Foundation (Grant No. CHE-1800052).

59 REFERENCES

1. Schreier, W. J.; Gilch, P.; Zinth, W., Early Events of DNA Photodamage. *Annu. Rev. Phys. Chem.* **2015**, *66*, 497-519.
2. Middleton, C. T.; de La Harpe, K.; Su, C.; Law, Y. K.; Crespo-Hernández, C. E.; Kohler, B., DNA excited-state dynamics: from single bases to the double helix. *Annu. Rev. Phys. Chem.* **2009**, *60*, 217-239.
3. Kleinermanns, K.; Nachtigallová, D.; de Vries, M. S., Excited state dynamics of DNA bases. *Int. Rev. Phys. Chem.* **2013**, *32*, 308-342.
4. de Vries, M. S.; Hobza, P., Gas-phase spectroscopy of biomolecular building blocks. *Annu. Rev. Phys. Chem.* **2007**, *58*, 585-612.
5. Beakstead, A. A.; Zhang, Y.; de Vries, M. S.; Kohler, B., Life in the light: nucleic acid photoproperties as a legacy of chemical evolution. *Phys. Chem. Chem. Phys.* **2016**, *18*, 24228-24238.
6. Stavros, V. G.; Verlet, J. R. R., Gas-phase femtosecond particle spectroscopy: a bottom-up approach to nucleotide dynamics. *Annu. Rev. Phys. Chem.* **2016**, *67*, 211-232.
7. Serrano-Andrés, L.; Merchán, M., Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective. *J. Photochem. Photobiol. C: Photochem. Rev.* **2009**, *10*, 21-32.
8. Callis, P. R., Electronic states and luminescence of nucleic acid systems. *Annu. Rev. Phys. Chem.* **1983**, *34*, 329-357.
9. Crespo-Hernández, C. E.; Martínez-Fernández, L.; Rauer, C.; Reichardt, C.; Mai, S.; Pollum, M.; Marquetand, P.; González, L.; Corral, I., Electronic and Structural Elements That Regulate the Excited-State Dynamics in Purine Nucleobase Derivatives. *J. Am. Chem. Soc.* **2015**, *137*, 4368-4381.
10. Cohen, B. J.; Goodman, L., Radiationless paths in the diazines. *J. Chem. Phys.* **1967**, *46*, 713-721.
11. Bent, D. V.; Hayon, E.; Moorthy, P. N., Chemistry of the triplet state of diazines in solution studied by laser spectroscopy. *J. Am. Chem. Soc.* **1975**, *97*, 5065-5071.
12. Carrabba, M. M.; Kenny, J. E.; Moomaw, W. R.; Cordes, J.; Denton, M., Hydrogen bonding in the lowest singlet n.pi.* excited state of pyrimidine. *J. Phys. Chem.* **1985**, *89*, 674-677.
13. Zeng, J.; Hush, N. S.; Reimers, J. R., Solvent effects on molecular spectra. II. Simulations of hydrated clusters and dilute solutions of pyrimidine in its lowest (n,π*) singlet excited state. *J. Chem. Phys.* **1993**, *99*, 1496-1507.
14. Fischer, G.; Cai, Z.-L.; Reimers, J. R.; Wormell, P., Singlet and triplet valence excited states of pyrimidine. *J. Phys. Chem. A* **2003**, *107*, 3093-3106.
15. Ferreira de Silva, F.; Almeida, D.; Martins, G.; Milosavljević, A. R.; Marinković, B. P.; Hoffmann, S. V.; Mason, N. J.; Nunes, Y.; Garcia, G.; Limão-Vieira, P., The electronic states of pyrimidine studied by VUV photoabsorption and electron energy-loss spectroscopy. *Phys. Chem. Chem. Phys.* **2010**, *12*, 6717-6731.
16. Linert, I.; Zubek, M., A study of the electronic states of pyrimidine by electron energy loss spectroscopy. *Chem. Phys. Lett.* **2015**, *624*, 1-5.
17. Stener, M.; Decleva, P.; Holland, D. M. P.; Shaw, D. A., A study of the valence shell electronic states of pyrimidine and pyrazine by photoabsorption spectroscopy and time-dependent density functional theory calculations. *J. Phys. B: At. Mol. Opt. Phys.* **2011**, *44*, 075203.
18. Bolovinos, A.; Tsekeris, P.; Philis, J.; Pantos, E.; Andritsopoulos, G., Absolute vacuum ultraviolet absorption spectra of some gaseous azobenzenes. *J. Mol. Spectr.* **1984**, *103*, 240-256.
19. Baba, H.; Goodman, L.; Valenti, P. C., Solvent effects on the fluorescence spectra of diazines. Dipole moments in the (n,π*) excited states. *J. Am. Chem. Soc.* **1966**, *88*, 5410-5415.
20. Dietz, T. G.; Duncan, M. A.; Puiu, A. C.; Smalley, R. E., Pyrazine and pyrimidine triplet decay in a supersonic beam. *J. Phys. Chem.* **1982**, *86*, 4026-4029.
21. Zhong, D. P.; Diau, E. W. G.; Bernhardt, T. M.; De Feyter, S.; Roberts, J. D.; Zewail, A. H., Femtosecond dynamics of valence-bond isomers of azines: transition states and conical intersections. *Chem. Phys. Lett.* **1998**, *298* (1-3), 129-140.

1
2 22. Reimers, J. R.; Cai, Z.-L., Hydrogen bonding and reactivity of water to azines in their
3 $S_1(n,\pi^*)$ electronic excited states in the gas phase and in solution. *Phys. Chem. Chem. Phys.* **2012**,
4 14, 8791-8802.

5 23. Chatterjee, S.; Wang, F., How different is pyrimidine as a core component of DNA base
6 from its diazine isomers: A DFT study? *Int. J. Quant. Chem.* **2016**, 116, 1836-1845.

7 24. Mai, S.; Pollum, M.; Martínez-Fernández, L.; Dunn, N.; Marquetand, P.; Corral, I.; Crespo-
8 Hernández, C. E.; González, L., The origin of efficient triplet state population in sulfur-substituted
9 nucleobases. *Nat. Commun.* **2016**, 7, 13077.

10 25. Martínez-Fernández, L.; Granucci, G.; Pollum, M.; Crespo-Hernández, C. E.; Persico, M.;
11 Corral, I., Decoding the molecular basis for the population mechanism of the triplet phototoxic
12 precursors in UVA light-activated pyrimidine anticancer drugs. *Chem. Eur. J.* **2017**, 23, 2619-2627.

13 26. Brister, M. M.; Crespo-Hernández, C. E., Excited-state dynamics in the RNA nucleotide
14 uridine 5'-Monophosphate investigated using femtosecond broadband transient absorption
15 spectroscopy. *J. Phys. Chem. Lett.* **2019**, 10, 2156-2161.

16 27. Samir, B.; Kalalian, C.; Roth, E.; Salghi, R.; Chakir, A., Gas-phase UV absorption spectra of
17 pyrazine, pyrimidine and pyridazine. *Chem. Phys. Lett.* **2020**, 751, 137469.

18 28. Minimal discrepancies with Table 1 arise from the number of roots considered in the SA-
19 CASSCF calculation.

20 29. Hochstrasser, R. M.; Marzzacco, C., Perturbations between electronic states in aromatic and
21 heteroaromatic molecules. *J. Chem. Phys.* **1968**, 49, 971.

22 30. Crespo-Hernández, C. E.; Cohen, B.; Hare, P.M.; Kohler, B. Ultrafast excited-state
23 dynamics in nucleic acids. *Chem. Rev.* **2004**, 104, 1977-2019.

24 31. Middleton, C. T.; de La Harpe, K.; Su, C.; Law, Y. K.; Crespo-Hernández, C. E.; Kohler, B.
25 DNA excited-state dynamics: From single bases to the double helix. *Annu. Rev. Phys. Chem.* **2009**, 60, 217-239.

26 32. Hare, P. M.; Crespo-Hernández, C. E.; Kohler, B. Internal conversion to the electronic
27 ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. *Proc. Natl. Acad. Sci. USA* **2007**, 104, 435-440.

28 33. Hare, P. M.; Crespo-Hernández, C. E.; Kohler, B. Solvent-dependent photophysics of 1-
29 cyclohexyluracil: Ultrafast branching in the initial bright state leads nonradiatively to the electronic ground
30 state and a long-lived $^1n\pi^*$ state. *J. Phys. Chem. B* **2006**, 110, 18641-18650.

31 34. Hare, P. M.; Middleton, C. T.; Mertel, K. I.; Herbert, J. M.; Kohler, B. Time-resolved infrared
32 spectroscopy of the lowest triplet state of thymine and thymidine. *Chem. Phys.* **2008**, 347, 383-392.

33 35. Brister, M. M.; Crespo-Hernández, C. E. Direct observation of triplet-state population dynamics in
34 the RNA uracil derivative 1-cyclohexyluracil. *J. Phys. Chem. Lett.* **2015**, 6, 4404-4409.

35 36. Pilles, B. M.; Maerz, B.; Chen, J.; Bucher, D. B.; Gilch, P.; Kohler, B.; Zinth, W.; Fingerhut, B.P.;
36 Schreier, W.J. Decay pathways of thymine revisited. *J. Phys. Chem. A* **2018**, 122, 4819-4828.

37 37. Brister, M. M.; Crespo-Hernández, C. E. Excited-state dynamics in the RNA nucleotide
38 uridine 5'-Monophosphate investigated using femtosecond broadband transient absorption
39 spectroscopy. *J. Phys. Chem. Lett.* **2019**, 10, 2156-2161.

40 38. Schreiber, M.; Silva-Junior, M. R.; Sauer, S. P. A.; Thiel, W., Benchmarks for electronically
41 excited states: CASPT2, CC2, CCSD, and CC3. *J. Chem. Phys.* **2008**, 128, 134110.

42 39. Serrano-Andrés, L.; Merchán, M. (2008) In: Shukla, M.; Leszczynski, J. (eds) *Radiation*
43 *induced molecular phenomena in nucleic acids*. Springer, The Netherlands, p 435.

44 40. Lorentzon, J.; Fülscher, M. P.; Roos, B. O., Theoretical Study of the Electronic Spectra of
45 Uracil and Thymine. *J. Am. Chem. Soc.* **1995**, 117, 9265-9273.

46 41. Richter, M.; Mai, S.; Marquetand, P.; González, L., Ultrafast intersystem crossing dynamics
47 in uracil unravelled by ab initio molecular dynamics. *Phys. Chem. Chem. Phys.* **2014**, 16, 24423-
48 24436.