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ABSTRACT

Today’s genetic composition is the result of continual refinement processes on primordial
heterocycles present in prebiotic Earth and at least partially regulated by ultraviolet radiation.
Femtosecond transient absorption spectroscopy and state-of-the-art ab initio calculations are
combined to unravel the electronic relaxation mechanism of pyrimidine—the common
chromophore of the nucleobases. Excitation of pyrimidine at 268 nm populates the S;(nm*) state
directly. A fraction of the population intersystem crosses to the triplet manifold within 7.8 ps,
partially decaying within 1.5 ns, while another fraction recovers the ground state in >3 ns. The
pyrimidine chromophore is not responsible for the photostability of the nucleobases. Instead, C2
and C4 amino and/or carbonyl functionalization is essential for shaping the topography of
pyrimidine’s potential energy surfaces, which present accessible conical intersections between the
initially populated electronic excited state and the ground state.
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Investigating the origin of the photostability of the DNA and RNA nucleobases is a
paramount step toward understanding the molecular origin of life on Earth. For decades, an
extraordinary amount of effort has been dedicated to investigate and understand the electronic
relaxation pathways of electronically excited canonical nucleobases responsible for their ultrafast
internal conversion to the ground state and, thus, for their intrinsic photostability.!-® In 2015, it was
demonstrated that the purine chromophore is not responsible for the ultrafast internal conversion of
the excited state population to the ground state in purine nucleobases, but that the amino and
carbonyl groups play important roles in enabling their photostability to ultraviolet radiation.® The
photostability of adenine and guanine was shown to be controlled by the nature of the substituents
and by their specific position on the purine chromophore. However, to date, very little is known
about the electronic relaxation mechanism of the pyrimidine chromophore and about the role the
non-substituted pyrimidine moiety may have played in the selection of the canonical nucleobases as
the building blocks of life during the harsh UV-radiation conditions present in the prebiotic era.
Early efforts focused on the characterization of the electronic states of pyrimidine by means of
theoretical and/or experimental techniques,'%!® and on a comparison of its electronic properties with
other azabenzene derivatives.!%-23

In this Letter, we combine multiconfigurational ab initio modeling of potential energy
surfaces (PES) and femtosecond broadband transient absorption spectroscopy to reveal the
electronic relaxation pathways and dynamics of the pyrimidine chromophore. The combination of
computational and experimental techniques allows for an unprecedented level of detail® 2426 to
ultimately discern the role of the pyrimidine chromophore on the intrinsic photostability of the
canonical nucleobases.

Figure 1 shows the absorption spectrum of pyrimidine in three different solvents
superimposed with the vacuum CASPT2 absorption line spectrum (see also Table 1 and Supporting
Information for computational details). Two primary absorption bands are observed between 225 to

350 nm. The lower-energy absorption band corresponds to the Sy — Si(nm*) transition, and its
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maximum exhibits 18 and 23 nm shift to longer wavelengths in going from phosphate buffered
saline (PBS) solution at pH of 7.4 (270 nm) to acetonitrile (288 nm) and cyclohexane (293 nm),
respectively. This bathochromic effect is further supported by time-dependent density functional
calculations reported in Figure S1, which show a direct correlation of the So — S;(nm*) transition
energy with the dielectric constant of the solvent. The band centered at 243 nm 1is insignificantly
perturbed by the solvent environment and is assigned to the So — S;(nn*) transition. In the gas
phase, the centers of these two bands have been recently located at 287 (nn*) and 240 nm (nn*),?’

in satisfactory agreement with previous measurements'>!7-!% and with our gas phase predictions (see

Table 1).
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Figure 1. Normalized absorption spectra of pyrimidine in different solvents. Blue lines represent

the vertical MS-CASPT2 excitation energies (see Table 1).

Table 1. Vertical excitation energies and oscillator strengths for the three singlet and two triplet
lowest-energy excited states of pyrimidine at the MS-CASPT2/ANO-L level of theory in vacuum

State AE / eV (nm) Osc. Strength
S| (nm*) 4.46 (278) 0.0123
S, (nm*) 4.73 (262) 0.0000
Ss (nm*) 5.41 (229) 0.0549
T, (n*) 4.06 (305) ---
T, (nm*) 4.56 (272) —

Time-resolved transient absorption spectroscopy was used to reveal the excited state
dynamics of pyrimidine. Figure 2 shows the experimental spectra for a pyrimidine concentration of
0.014 M in acetonitrile. Following excitation at 268 nm, two absorption bands are observed with

similar intensity within the instrument response function (IRF = 270 £ 50 fs) of the experimental
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setup (Figure 2a). One of the bands has an absorption maximum at a lower probe wavelength than
350 nm, while the other has a maximum around ca. 650 nm (UV and visible bands, hereafter). For a
time-delay of up to ca. 40 ps, the UV band starts decaying, while the visible band red shifts and its
amplitude increases simultaneously (Figure 2b). An apparent isosbestic point is observed around
605 nm. From ca. 40 ps to 3 ns, both UV and visible bands decay, while the visible band slightly
broadens and red shifts, apparently exhibiting a maximum above 700 nm (Figure 2c¢). The latter
transient species decays at a significantly longer timescale than the 3 ns time window of the
spectrometer used in this work. Similar experiments performed at a pyrimidine concentration of
0.002 M are presented in Figures S15 and S16 in the SI (see also Figure S14 and discussion
therein). The results of these two different concentrations are equal within experimental
uncertainties, suggesting that formation of any putative aggregates in the 0.014 M solution are not

concealing the excited-state dynamics of the pyrimidine monomer.
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Figure 2. Transient absorption spectra for a pyrimidine concentration of 0.014M in acetonitrile
excited at 268 nm.
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Figure 3a shows representative decay traces and best global fit curves, extracted from a
target and global analysis using a three-component sequential kinetic model, where the third kinetic
component required a large lifetime (i.e., tens of ns) to satisfactorily fit the long-lived transient
signal. The same analysis was performed for the data collected using a pyrimidine concentration of
0.002 M (see Figure S16 in the SI). These analyses yielded two set of lifetimes with averaged
values of 1y = 7.8 £ 0.6 ps and 1, = 1.5 £ 0.8 ns. The extracted evolution associated difference

spectra (EADS) are shown in Figures 3b and S16, respectively.
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Figure 3. a) Selected kinetic traces of pyrimidine in acetonitrile excited at 268 nm. The fits
represented are using a sequential kinetic model. b) Evolution associated difference spectra (EADS)
and spectral assignments based on the quantum-chemical calculations: black EADS is assigned to
Inn* state (100%); red EADS is assigned to 40% !'nm* and 60% 3nm* states; and blue EADS is
assigned to 18% 3n7* and 82% 3nr* states. See the main text and the Methods section in the SI for
details.
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In order to gain insight into the specific electronic relaxation pathways of the pyrimidine
chromophore, the minimum energy paths, the singlet and triplet minima, the conical intersections
and singlet-triplet intersystem crossing points (ICPs) of the PES reached upon excitation at 268 nm
were optimized using multiconfigurational approaches (see SI for details). Figure 4 depicts the
topography of the S; and T, PES and identifies key energy points and structures. Following
excitation to the bright S; state, placed 4.43 eV above the ground state minimum,?® the system is
expected to populate the 'nmt* minimum at 3.95 ¢V (labeled as S;A in Figure 4), which preserves
the planar structure of the ground state minimum with a small reduction of the N1-C2-N3 angle
(See Inset of Figure 4 for atom labelling). Two other 'nm* minima are accessible from this
minimum. The minimum at 4.00 eV (S;B) has a planar, non-symmetrical structure (the reflection
plane along the C2-CS5 axis has disappeared), whilst the minimum at 4.04 eV (S,C) shows a C2
puckered structure. The energy of the most stable minimum is consistent with the 0-0 energies
estimated from the emission/excitation spectra (3.78 eV) and emission/absorption spectra (3.86 eV)
in cyclohexane (see Table S2 and Figure S2). For these minima, we have located four different
ground state decay funnels [S;/Sy], which are labeled according to their distinctive geometry
distortion on Figure 4: the affected carbon atom (C2 or C4) and the geometry rearrangement (U: Cx
puckering + C-H bond perpendicular to the molecular plane; D: Cx puckering + C-H bond parallel
to the molecular plane). Importantly, access to these S; — S crossings requires ascending upward
potential energy profiles and/or surmounting energy barriers surpassing the initially available

energy, and thus suggesting inefficient ground state repopulation.
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Figure 4. MS-CASPT2//SA-CASSCF(10,8) landscape of the S; (upper) and T; (lower) potential
energy surfaces obtained from minimum energy path calculations (red lines); energies are given in
eV relative to the ground state minimum. See SI for further information on the geometries.

Hence, we have investigated alternative relaxation pathways along the triplet manifold,
which might be active for pyrimidine. In the vicinity of the S;A minimum, we found a [S;/T]icp
(4.35 eV), which requires almost no structural distortion, as it exhibits a planar structure. At this
crossing point, we calculate a spin-orbit coupling of 8.6 cm™!. This funnel is connected to a T,/T,
degeneracy point that would eventually lead to the population of two minima, T;A and T;B, which
are connected to the T,;C, T;D, TM and T;N minima through relative low energy barriers. The
intersystem crossing funnels that would allow for the leak of population from the triplet manifold to

the ground state coincide in geometry and energy with the S,/S, crossing points defined above, as

they effectively correspond to [S;/S¢/T] triply-degenerate crossing points.
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Among all the [S;/S¢/T;] intersystem crossing points, the most relevant one is the C2U (4.38
eV), as it is located slightly below the FC S; energy (4.43 eV). Hence, considering the calculated
potential energy landscape, we propose that the primary electronic relaxation mechanism of
pyrimidine would involve the following pathway: S;* — S;A (+ S;B, S,C) = [S1/Tz]icr — [T2/Ti]
— T,B (+ T1A, T\D) —» C2U-[S/S¢/T;] — So.

In order to provide further support to the proposed electronic relaxation mechanism, we
have calculated the transient absorption spectra for all the minima shown in Figure 4 that are
expected to be populated following excitation at 268 nm (4.63 eV) and, thus, to contribute to the
transient spectra. The calculated individual spectra (see Figures S3 to S11 in the SI) were linearly
combined to best fit the EADS reported in Figure 3b (Figure S13). Within the IRF of the
experimental setup (Figure 2a), only the singlet minima contribute to the spectrum (see black EADS
in Fig. 3b and Figure S13A), because they are easily accessible from the Franck-Condon region
according to the topography of the PES, and all of them are required to reproduce the band from ca.
550 to 700 nm in terms of both width and intensity. With a lifetime of 7.8 ps (t), intersystem
crossing to the triplet manifold starts to ensue, as the main contribution to the EADS arises from the
most stable 3* minimum (see red spectrum in Fig. 3b and Figure S13B), although the population
of the S; minima is not negligible, which can be attributed to the energy barrier separating the
singlet minima from the singlet-triplet funnel and/or the small spin-orbit coupling calculated at the
Si/T, crossing region. In this case, the S;A and S;C minima are necessary to reproduce the
absorbance around 700 nm, whereas the absorption of TB is necessary to reproduce the signal from
ca. 500 to 650 nm. Finally, the excited-state population partially decays within a lifetime of 1.5 ns
(12), and the EADS depicted in blue in Figure 3b is assigned to a contribution of triplet minima (see
Figure S13C), which eventually decays to the ground state in a nanosecond to microsecond time
scale.!! In aqueous solutions, the long-lived triplet state of pyrimidine has been reported to decay
back to the ground state in 1.4 ps.!' The triplet quantum yield of pyrimidine in water has been

reported to be near unity,!! but it is significantly lower in organic solvents. In fact, a triplet quantum
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yield of 12% has been reported for pyrimidine in n-hexane,? which leaves about 88% of the initial
population available to relax through other competitive pathways.

In this Letter, a comprehensive theoretical and experimental study of the photophysics and
dynamics of pyrimidine chromophore is presented. Upon excitation at 267 or 268 nm, different
minima in the S;(nn*) PES are populated. On the picosecond time scale, a considerable fraction of
the population intersystem crosses to the T(mn*) state, because the S;/T, crossing and T,/T;
internal conversion funnels require negligible rearrangement in geometry from the preceding
minimum, in contrast to the S;/Sy channels. Finally, population at the *an* minimum is able to
survive for more than 3 ns. Excitation of cytosine, thymine, and uracil monomers at 267 nm
primarily decay by ultrafast internal conversion to the ground state in hundreds of femtoseconds.3’-
31 Small yields of long-lived 'nm* and 3rnn* states are also observed in solution,’?37 which decay
back to the ground state in hundreds of picoseconds to few microseconds, respectively.

Collectively, it can be concluded that the pyrimidine core common to cytosine, thymine,
uracil and other non-canonical pyrimidine derivatives is not the responsible for their ultrafast
internal conversion to the ground state. The population of a long-lived triplet state suggests that the
pyrimidine chromophore should have significantly lower photostability than the canonical
nucleobases, which is in line with a recent proposal that photolysis plays an important role in the
removal of pyrimidine from the troposphere.?’” The long-lived triplet species arises from the
inaccessibility of internal conversion funnels, which are governed by distortions at the C2 and
C4/C6 positions, which in pyrimidine happen to be equivalent by symmetry. Therefore, we propose
that different substitution patterns over those atoms are critical to tune both the optical properties
and the deactivation pathways of these nucleobases. In fact, a comparison of the gas phase
absorption spectrum of pyrimidine with those of the canonical pyrimidine nucleobases uracil,
thymine and cytosine, reveals that carbonyl C2 substitution and carbonyl or amino C4 substitution
redshift (ca. 0.2-1 eV) the maximum of the most intense absorption band, being the effect of the

amino group the greatest.3®-#! An intermediate shift (0.7 eV) in the maximum of the most intense
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absorption signal is observed upon the fusion of an imidazole ring to the pyrimidine core at the C4
and C5 positions, i.e., purine heterocycle, whilst the nm* transition decreases its energy by 0.4 eV.
The N-H bonds at the N1 (cytosine) or N1/N3 (uracil/thymine) positions block the dynamics from
the n* state, characteristic of the pyrimidine core. Instead, in the canonical nucleobases, the
lowest-lying mr* state, responsible for the absorption maximum and controlled by barrierless
potential energy profiles connecting the FC region with CI funnels to the ground state, governs their
photophysics. This is in contrast to the potential energy landscape predicted for purine where,
similarly to pyrimidine, the S;(nm*) potential acts as a doorway for the population of the triplet
manifold.’

Supporting Information

The Supporting Information is available free of charge at:

Computational details, Steady-state properties of pyrimidine, Coordinates of relevant geometries of
the potential energy surface, Theoretical transient absorption spectra for the minima, Theoretical
Evolution Associated Difference Spectra and Experimental Methods.
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