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A dynamical signature of localization in quantum systems is the absence of transport which is governed by
the amount of coherence that configuration space states possess with respect to the Hamiltonian eigenbasis. To
make this observation precise, we study the localization transition via quantum coherence measures arising from
the resource theory of coherence. We show that the escape probability, which is known to show distinct behavior
in the ergodic and localized phases, arises naturally as the average of a coherence measure. Moreover, using
the theory of majorization, we argue that broad families of coherence measures can detect the uniformity of
the transition matrix (between the Hamiltonian and configuration bases) and hence act as probes to localization.
We provide supporting numerical evidence for Anderson and many-body localization (MBL). For infinitesimal
perturbations of the Hamiltonian, the differential coherence defines an associated Riemannian metric. We show
that the latter is exactly given by the dynamical conductivity, a quantity of experimental relevance which is
known to have a distinctively different behavior in the ergodic and in the many-body localized phases.
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I. INTRODUCTION

One of the conceptual pillars of quantum theory is the
superposition principle and, directly arising from it, the notion
of quantum coherence [1]. A quantum state is deemed to be
coherent with respect to a complete set of states if it can be
expressed as a nontrivial linear superposition of these states.
Recently, there has been an effort to formulate a resource
theory of quantum coherence [2–4]. The focus of this theory
has been quantum information processing tasks, since gener-
ating and preserving quantum coherence constitutes one of the
essential prerequisites.

In this work, we utilize the powerful tools that arose from
this information-theoretic perspective on coherence to study
phase transitions in quantum one- and many-body systems.
More specifically, we focus on Anderson [5,6] and many-
body localization (MBL) transitions [7–9]. These “infinite
temperature” or “eigenstate” phase transitions are character-
ized by an abrupt change occurring at the level of whole
Hamiltonian eigenstates as opposed, e.g., to the ground state
only.

A connection between quantum coherence and the tran-
sition of a quantum system from an ergodic phase to a
localized one can be conceptually formalized as follows. One
of the signatures of localization is the absence of transport,
with respect to some properly defined positional degree of
freedom. On the other hand, transport properties are governed
by the coherence between the Hamiltonian eigenbasis and the
positional one. Hence one should expect an abrupt change in
the coherence properties of the Hamiltonian eigenvectors at
the transition point.

Here we make the above intuition quantitatively pre-
cise by investigating the amount of coherence that can be
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generated on average by the quantum dynamics starting from
incoherent states, the coherence-generating power (CGP) of
a quantum evolution. Such quantities essentially capture the
difference between two complete orthonormal sets of eigen-
states associated with two hermitian operators [10,11]. We
first show that a well-studied quantity in localization, the
escape probability (or, equivalently, the second participation
ratio) can be expressed as a coherence average. We then argue
that broad families of coherence measures, arising from the
resource-theoretic perspective, can be used to define an “order
parameter” for localization. We provide supporting numerical
evidence for both Anderson and MBL transitions. Moreover,
we show that the differential-geometric version of our average
coherence is exactly given by an infinite temperature dy-
namical conductivity, an experimentally accessible quantity,
which is known to behave differently in the ergodic and MBL
phases [12]. These findings open the possibility of observing
experimentally the coherence-generating power of quantum
dynamics.

This paper is organized as follows. In Sec. II we introduce
measures of coherence for quantum states and explain how
one can average coherence over a complete set of states in
order to obtain the associated CGP. We then investigate gen-
eral mathematical properties of the aforementioned coherence
averages and connect with the theory of matrix majorization
and the escape probability. In Sec. III we examine, both
analytically and numerically, the behavior of two of the in-
troduced measures in the Anderson localization transition and
connect with the associated localization length. In Sec. IV we
numerically study the introduced measures for a many-body
system that exhibits a transition to a MBL phase. In Sec. V
we turn to the Riemannian metric that results from the average
coherence between bases that differ infinitesimally and relate
with the MBL transition. Finally, in Sec. VI we conclude
with a discussion and future work. All proofs can be found
in Appendix A.
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II. QUANTUM COHERENCE OF STATES
AND OPERATIONS

A. Coherence of states

Consider a quantum system, described by a finite dimen-
sional Hilbert space H ∼= Cd . A state |ψ〉 ∈ H is deemed
coherent with respect to a fiducial orthonormal basis {|φi〉}di=1
if the expansion |ψ〉 = ∑

i ai|φi〉 contains more than one non-
vanishing term, otherwise it is called incoherent. This notion
extends straightforwardly to the set of density operators S (H).
Any ρ ∈ S (H) is regarded as coherent with respect to the
preferred basis if the corresponding matrix ρi j has nonzero
off-diagonal elements, otherwise it is termed incoherent.

Quantum coherence is usually defined relative to a ref-
erence basis. In fact, one needs a weaker notion than that
of a basis, since phase degrees of freedom and ordering of
an orthonormal basis {|φi〉}di=1 are physically redundant. In
other terms, bases differing by transformations of the form
|φ j〉 �→ eiθ j |φπ ( j)〉 (π ∈ Sd is a permutation) are equivalent as
far as coherence is concerned. The relevant object, taking into
account this freedom, is a complete set of orthogonal, rank-1
projection operators B = {�i}di=1, where �i := |φi〉〈φi|. In the
rest of this work, we will refer for convenience to the set B
itself as a “basis.”

While all states nondiagonal in B carry coherence, some of
them might resemble incoherent states more than others. This
notion is made precise by the introduction of (B-dependent)
functionals, cB : S (H) → R+

0 that are said to quantify co-
herence [3]. Quantifiers of coherence (also called coherence
monotones) satisfy cB(ρinc) = 0 for all states diagonal in B
and, in addition, are nonincreasing under the free operations
of the resource theory [13]. In this work, we make use of the
2-coherence and the relative entropy of coherence, defined
respectively by

c(2)B (ρ) := ‖(I − DB)ρ‖22 =
∑
i 	= j

|ρi j |2 (1a)

c(rel)B (ρ) := S[DB(ρ)] − S(ρ), (1b)

where we have introduced the B-dephasing superoperator

DB(X ) :=
d∑
i=1

�iX�i ; (2)

S above denotes the usual von-Neumann entropy S(ρ) :=
−Tr (ρ log(ρ)) and the (Schatten) 2-norm of an operator
X is defined as ‖X‖2 :=

√
Tr (X †X ). Relative entropy of

coherence is a central measure in the resource theories of
coherence and admits an operational interpretation, e.g., as
a conversion rate of information-theoretic protocols [14,15].
The 2-coherence admits an interpretation as an escape proba-
bility, as will be shown momentarily [16].

B. Coherence of unitary quantum processes
via probabilistic averages

In this section we discuss how, given a coherence measure
cB and a unitary superoperator U , one can capture the ability of
the unitary U to generate coherence by computing the average
amount of coherence that can be generated starting from

incoherent states. This is the coherence-generating power
(CGP) of the quantum operation U [10,17–19].

Consider a basis B = {�i}di=1 and define a probabilistic en-
semble of incoherent states, i.e., a random variable ρinc(p) =∑

i pi�i, where {pi}i (pi � 0,
∑

i pi = 1) are random and
distributed according to a prescribed measure μ(p). Then, the
corresponding CGP

C(U , cB, μ) :=
∫

dμ(p) cB[U (ρinc(p))] (3)

characterizes the average effectiveness of the quantum process
U to generate coherence out of random incoherent states
in B. Since the unitary U (X ) = UXU † can be thought of
as connecting the bases B and B′ = {U (�i )}i, one can also
interpretC(U , cB, μ) as the average coherence with respect to
B of a random state which is incoherent in B′.

Without any additional structure, it is a natural choice to
consider averaging only over pure states with equal weight
over each of them, i.e., take

μunif (p) := 1

d

∑
i

δ(p− ei ) (4)

where (ei ) j := δi j [20]. This choice directly leads to the
expression

C(U , cB, μunif ) = 1

d

d∑
i=1

cB[U (�i )]. (5)

We now simplify Eq. (5) when the coherence measure is
the 2-coherence or the relative entropy of coherence, namely
for

C(2)
B (U ) := C

(
U , c(2)B , μunif

)
, (6a)

C(rel)
B (U ) := C

(
U , c(rel)B , μunif

)
. (6b)

Proposition 1. Let B = {�i}di=1 be a basis, U a unitary
quantum process, and XU denote the bistochastic matrix with
elements (XU )i j := Tr (�i U (� j )). Then,

C(2)
B (U ) = 1 − 1

d
Tr
(
XT
U XU

)
. (7)

and

C(rel)
B (U ) = H (XU ), (8)

where H (X ) := − 1
d

∑
i, j Xi j log(Xi j ) denotes the generaliza-

tion of the Shannon entropy over bistochastic matrices.
The two CGP quantities are related as

C(rel)
B � − log

(
1 −C(2)

B

)
. (9)

The inequality follows from the above proposition, together
with the concavity of the logarithmic function.

C. General properties of coherence-generating power measures

Both quantities C(2)
B (U ) and C(rel)

B (U ) introduced earlier
can be considered as functions of the (transition) matrix XU ,
instead of U itself. In other words, the phases associated with
Ui j (treated as a matrix in the B basis) are irrelevant. In fact,
as we will show momentarily, this is a general feature of
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any CGP measure C(U , cB, μunif ) arising from a coherence
monotone cB.

Motivated by the above observation, we define as a gen-
eralized CGP measure any function fB mapping bistochastic
matrices to non-negative real numbers such that:

(i) fB(�) = 0 if � ∈ Sd is a permutation.
(ii) fB(�X�′) = fB(X ), where �,�′ ∈ Sd are permuta-

tions.
(iii) fB(MX ) � fB(X ) for any bistochastic matrix M.

Proposition 2. Let cB be a coherence measure. Then,
the corresponding coherence-generating power fB(XU ) :=
C(U , cB, μunif ) satisfies (i)–(iii) above.

On physical grounds, all quantities C(U , cB, μunif ) are ex-
pected to quantify how “uniform” or “spread” is the transition
matrix XU between the bases B and B′ = U (B). This intuition
is reflected in part (iii) of proposition 2: “post-processing” the
transition matrix X �→ MX by any bistochastic matrixM will
certainly increase any CGP measureC(U , cB, μunif ), where cB
can be any coherence monotone.

Generalized CGP measures can be thought of as functions
that characterize the uniformity of a (bistochastic) matrix.
They always achieve their maximum value over the transition
matrix (XV )i j = 1/d , i.e., when V connects two unbiased
bases, as follows by combining properties (ii) and (iii). In a
similar manner, the minimum value is achieved over permu-
tation matrices and is set to zero (as a normalization) by (i).
For instance, any concave function that satisfies properties (i)
and (ii) automatically satisfies (iii), i.e., is a generalized CGP
measure.

Examples of generalized measures arising from previous
works on CGP (see Refs. [10,11,18]) are

f (det)B (XV ) := 1 − |det (XV )| 1
d (10)

f (∞)
B (XV ) :=

∥∥I − XT
V XV

∥∥
∞, (11)

where ‖(·)‖∞ denotes the operator norm. Notice that

f (det)B (XV ) = 1 − (
∏

i si )
1
d and also 0 � f (det)B (XV ) � 1, while

f (∞)
B (XV ) = 1 − s2d (here si are the singular values of XV
sorted in decreasing order).

A systematic way to capture the amount of uniformity of a
matrix is provided by the notion of multivariate majorization
[21]. An example is column majorization, in which a stochas-
tic matrix X column majorizes another stochastic matrix Y ,
denoted as X �c Y , if Xc

i � Y c
i ∀i; here Xc

i andY
c
i stand for the

ith column vector of X and Y , respectively, and “�” denotes
ordinary majorization of probability vectors.

It is then natural to ask whether the CGP quantities
C(U , cB, μunif ) arising from different coherence measures cB
jointly capture some notion of uniformity of the transition
matrix XU , as described by multivariate majorization. We
answer this in the affirmative via the proposition below.

Proposition 3. Let cB be a coherence measure. Then,
the corresponding coherence-generating power fB(XU ) :=
C(U , cB, μunif ) considered over bistochastic matrices is a
monotone of column majorization, i.e., X �c Y ⇒ fB(X ) �
fB(Y ). Conversely, if fB(X ) � fB(Y ) for all fB arising from

continuous coherence monotones over pure states, then
X �c Y .

The last part of the above proposition establishes the fact
that there are enough coherence monotones over pure states
one can consider such that, if all corresponding measures fB
are monotonic, then column majorization is guaranteed. In
other words, these functions form a complete set of mono-
tones. In that sense, the defined family of CGP measures
jointly captures a notion of uniformity for the transition matrix
that is at least as strict as column majorization.

D. Coherence and escape probability

Let us consider a finite-dimensional quantum system
whose dynamics is specified by a Hamiltonian H . Suppose
the system is initialized in a state |ψ〉 and one is interested in
the escape probability

Pψ := 1 − |〈ψ |e−iHt |ψ〉|2, (12)

where the overline denotes the infinite time average

f (t ) := lim
T→∞

1

T

∫ T

0
dt f (t ). (13)

For instance, in the case of a particle hopping on a lattice
which is initialized over a single site j, P j corresponds to the
average probability of the particle escaping the initial site.

At this point, let us note that in finite dimensions observ-
able quantities such as 〈A(t )〉 := Tr[A(t )ρ0] = Tr[Aρ(t )] do
not converge to any limit as t → ∞. Instead they start from
an initial value and then oscillate around a value given by
〈A(t )〉 [22–25]. Since if a function f (t ) has a limit for t → ∞,
this limit must coincide with f (t ), the infinite time average
provides a way to extract the infinite time limit even when the
latter strictly speaking does not exist.

If the Hamiltonian in consideration has nondegenerate
energy gaps [26] (also known as the nonresonance condition),
the effective dimension deff := (1 − Pψ )−1 dictates the equili-
bration properties of the system: the larger deff the smaller are
the temporal fluctuations of the observables around their mean
values [22,23], i.e., equilibration is stronger. Since many-
body localization is a mechanism by which quantum systems
can escape equilibration, it is perhaps no surprise that the
effective dimension is related to the localization transition (see
Appendix C for more details on related quantities).

After introducing the basic framework, we are now ready to
present our first result. The following Proposition establishes
the fact that the 2-coherence of a state, quantified with respect
to the Hamiltonian eigenbasis, is the time-averaged escape
probability of the state.

Proposition 4. Let H = ∑
i Ei|φi〉〈φi| be a nondegenerate

Hamiltonian.
(i) For any state |ψ〉,

Pψ = c(2)B (|ψ〉〈ψ |), (14)

where B = {|φi〉〈φi|}i is the eigenbasis of the Hamiltonian.
(ii) Denote the escape probability averaged over a set of

orthonormal states B′ = {|i〉〈i|}di=1 as

PB′ := 1

d

d∑
i=1

Pi. (15)
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Then,

PB′ = C(2)
B (V ) = C(2)

B′ (V†), (16)

where B = {|φi〉〈φi|}i is the eigenbasis of the Hamiltonian
and V (·) := V (·)V †, where V = ∑

i |i〉〈φi| is the intertwiner
between B and B′.

The last equation above demonstrates that the role of the
bases B and B′ can be interchanged. For instance, one can
equivalently think in terms of the average coherence over
Hamiltonian eigenstates, quantified with respect to the posi-
tion basis.

A physically relevant family of unitary transformations
Ut is the time evolution generated by the Hamiltonian of
a system. One can, for instance, consider the time average
of C(2)

B′ (Ut ). For a Hamiltonian with nondegenerate energy
gaps, the aforementioned quantity admits the closed form
expression

C(2)
B′ (Ut ) = 1 − 2

d

∑
i j

〈
Xc
i ,Xc

j

〉2 + 1

d

∑
i

〈
Xc
i ,Xc

i

〉2
; (17)

here Xc
i stands for the column vector of the transition ma-

trix XV , while V = ∑
i |i〉〈φi| is the intertwiner between the

Hamiltonian eigenbasis B = {|φi〉〈φi|} and B′ = {|i〉〈i|}i. In
fact, the resulting quantity f (time-avg)

B (XV ) := C(2)
B′ (Ut ) fails to

be a generalized CGP measure. The details can be found in
Appendix B.

The identification between escape probability and 2-
coherence gives a physical interpretation to the latter and
its associated CGP. More importantly, the escape probability
(or the return probability, Preturn := 1 − PB′ ) is a well-known
measure in the theory of localization [5,27] and the fact that it
can be thought of as coherence gives rise to the question: Can
other measures arising from the resource theoretic framework
of coherence give rise to probes of localization in a similar
manner?

In view of proposition 2, CGP measures reveal information
regarding the uniformity of the transition matrix X . Hence
when the latter is chosen to be between the Hamiltonian and
position eigenbases, any abrupt change in the overlap of the
two bases, as for instance in the localization transition, is
expected to be detectable via CGP measures. In what follows,
we demonstrate that this is indeed the case, by considering
Anderson and MBL.

III. COHERENCE-GENERATING POWER AND
LOCALIZATION IN THE 1D ANDERSON MODEL

The Anderson model [5] in one dimension is described by
the Hamiltonian

HW = −
L∑
i=1

(|i〉〈i + 1| + |i + 1〉〈i|) +
L∑
i=1

εi|i〉〈i| (18)

over L sites (i.e., d = L) with periodic boundary conditions,
where the on-site energies εi are independent and identically
distributed (i.i.d.) random variables and follow a uniform dis-
tribution of width 2W . It is known that the model is localized
for any degree of disorderW > 0 [28].

Localization can be dynamically characterized by the
absence of transport, a notion referring to the interplay

FIG. 1. (a) Log-log plot of the average return probability 1 −
〈C (2)

B (VW )〉 as a function of the system size L for different values of
the disorder strengthW . The system is in the localized phase for all
W > 0, since the asymptotic escape probability is strictly less that
1 for L → ∞. (b) Log-linear plot of 〈C (rel)

B (VW )〉 as a function of
the system size L for different values of the disorder strength W .
The system is in the localized phase for all W > 0, in which the
asymptotic value is finite. In the ergodic phase (W = 0) 〈C (rel)

B (VW )〉
diverges logarithmically. The number of realizations range from
30000 for small sizes to just 8 for the largest size. Error bars represent
one standard deviation. Entropy has logarithm with base 2.

between the “position” basis B′ = {|i〉〈i|}Li=1 in Eq. (18) and
the Hamiltonian eigenbasis B. Here, we consider coherence
quantified with respect to the latter basis. Let us now ex-
amine the behavior of functionals CB(VW ), where the uni-
tary VW is the intertwiner between Hamiltonian and position
eigenbases. In fact, proposition 4 immediately implies that
〈C(2)

B (VW )〉 is a probe to localization (〈·〉 denotes averaging
over disorder). More specifically, localization implies that
in the thermodynamic limit the return probability (averaged
over disorder) in the localized phase is nonvanishing, i.e.,

limL→∞ 〈|〈 j|e−iHW t | j〉|2〉 > 0 for any W > 0. In turn, this is
equivalent to P j < 1 (in the thermodynamic limit) for all sites
j, hence also

lim
L→∞

〈
C(2)
B (VW )

〉
< 1 (19)

by Eq. (15). Notice that HW for W > 0 is generically non-
degenerate so proposition 4 applies. We verify this claim by
numerical simulations (see Fig. 1).
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The Hamiltonian HW=0 is degenerate in the ergodic phase,
hence the intertwiner VHW=0 is not well defined. Nevertheless,
as we show in Appendix D, for any choice of eigenbasis of
HW it holds that

lim
L→∞

C(2)
B (VW=0) = 1, (20)

hence the average coherence 〈C(2)
B (VW )〉 unambiguously dis-

tinguishes the two behaviors.
The role of the quantity C(2)

B (VW ) might seem special as
a probe to localization due to its interpretation as average
escape probability. In fact, other measures, arising from an
information-theoretic viewpoint of coherence, have analogous
properties. Let’s now consider the relative entropy CGP of the
intertwiner, namely C(rel)

B (VW ). Its value as a function of the
system size L for different values of the disorder strength W
is plotted in Fig. 1. In the ergodic phase W = 0 it diverges
logarithmically

C(rel)
B (VW=0) ∼ log(L). (21)

This can be easily verified analytically for an intertwiner
connecting two mutually unbiased bases, i.e., for |〈i|φ j〉| =
1/

√
L for all i, j. In that case Eq. (21) holds with equality,

as it directly follows from proposition 1. In Appendix D we
show that the result again holds in the thermodynamic limit
independently of the specific choice for the intertwiner.

We now provide a nonrigorous argument to relate the av-
erages 〈C(2)

B (VW>0)〉 and 〈C(rel)
B (VW>0)〉 to the corresponding

localization lengths ξ j . In the localized phase, the eigenvectors
typically decay exponentially, i.e.,

|〈i|φ j〉|2 � c j exp(−|i − α j |/ξ j ), (22)

where α j is the site around which |φ j〉 is localized, while
due to the periodic boundary conditions |i − α j | above should
be understood as min(|i − α j |, |i − α j ± L|)). If one uses the
ansatz (

XVW

)
ji

= |〈i|φ j〉|2 = c j exp(−|i − α j |/ξ j ), (23)

then for L � 1

〈
C(2)
B (VW>0)

〉 ∼= 1 − 1

L

∑
j

tanh2[(2ξ j )−1]

tanh
(
ξ−1
j

) (24a)

and

〈
C(rel)
B (VW>0)

〉 ∼= 1

L

L∑
j=1

([ξ j sinh(1/ξ j )]
−1

− ln(tanh[(2ξ j )
−1])) (24b)

(entropy here has natural logarithm). A detailed derivation can
be found in Appendix E.

The expression (24b) for ξ j � 1 can be expanded
as 〈C(rel)

B (V� )〉 = 1
L

∑L
j=1 (1 + ln (2ξ j ) + O(ξ−2

j )), which is
consistent with the numerically observed behavior that it
remains finite in the localized phase while it diverges loga-
rithmically as a function of L in the ergodic one.

The accuracy of equations (24) can be assessed by com-
paring with cases for which an analytical expression can
be obtained for the localization lengths ξ j as a function of

the disorder strength. We now consider such a case, de-
scribed by a Hamiltonian as in Eq. (18), but with on-site
energies that follow a Cauchy distribution with parameter
� and vanishing mean (also known as Lloyd model [29]).
We focus for concreteness on Eq. (24a) and we denote the
corresponding Hamiltonian and intertwiner as H� and V� ,
respectively. Utilizing a well-known result from Thouless
[30] that connects the localization length with the energy
spectrum, one can express the RHS of Eq. (24a) as a function
of the disorder strength �. This allows for a direct comparison
with numerical evaluations of the mean 〈C(2)

B (V� )〉, yielding a
sound agreement for small disorder (� < 1). We present the
details in Appendix F.

IV. COHERENCE-GENERATING POWER AND
MANY-BODY LOCALIZATION

We now turn to a disordered quantum many-body system
admitting a phase diagram with an ergodic phase at low
enough disorder and anMBL phase at strong disorder. For this
purpose, we consider a transverse-field Heisenberg spin-1/2
chain in a random magnetic field (along the ẑ axis) over L
sites (d = 2L) with periodic boundary conditions, described
by the Hamiltonian

HXXX = 1

2

L∑
i=1

[
σ x
i σ x

i+1 + σ
y
i σ

y
i+1 + σ z

i σ
z
i+1

]

+ hx

L∑
i=1

σ x
i +

L∑
i=1

wiσ
z
i , (25)

where hx is the strength of the transverse field and the local
field strengths are i.i.d. random variables with uniform distri-
bution wi ∈ [−W,W ]. Notice that the transverse field breaks
the rotational symmetry of the Hamiltonian. The model has
been extensively studied numerically and is known to exhibit
a transition from an ergodic to an MBL phase at disorder
strength WC ≈ 3.7 (in the absence of the transverse field
term), see Refs. [27,31] and references therein. We now turn
to numerically verify that the localization transition can be
detected through the scaling of various of the CGP quantities
introduced earlier.

Similar to the Anderson Hamiltonian, we first study the
behavior of the CGP 〈C(2)

B (VW )〉 and 〈C(rel)
B (VW )〉, where VW

is the intertwiner between the Hamiltonian and the config-
uration space basis, which here is taken to be the product⊗

i σ
z
i eigenbasis. We find a distinct behavior of the quantities

〈C(2)
B (VW )〉 and 〈C(rel)

B (VW )〉 between the ergodic and MBL
phases of the model, as also hinted from the numerical results
in Refs. [32–37].

For sizes up to L = 14, none of the studied CGP quantities
seems to reach a constant asymptotic value as in the Anderson
case. Nonetheless, the (average) return probability Preturn as
a function of the number of spins L is consistent with an
exponential decay

Preturn ∝ 2−λ
(2)
W L = d−λ

(2)
W . (26)

The extrapolated rates λ
(2)
W , plotted in Fig. 2, are close to 1

in the ergodic phase, while they drop at the transition point,
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FIG. 2. Asymptotic behavior for the slope of the
quantities: log2 (1 − 〈C (2)

B (VW )〉) = log2 (Preturn ), 〈C (rel)
B (VW )〉,

log2 (1 − 〈 f (det)B (XVW )〉), log2 (1 − 〈 f (time-avg)
B (XVW )〉), and

log2 (1 − 〈 f (∞)
B (XVW )〉) for large L as a function of the disorder

strength W for the Hamiltonian HXXX at hx = 0.3. The slope
was extracted for sizes L = 4, 6, . . . , 14, with sample sizes
20000, 20000, 20000, 8000, 2000, 800; except at W = 3.7, where
the sample sizes were doubled. The error bars represent the standard
error of the linear fit (see Appendix H for more details). Entropy has
logarithm with base 2.

obtaining a significantly reduced value at the MBL phase. On
the other hand, the relative entropy CGP is consistent with a
scaling 〈

C(rel)
B (VW )

〉 = λ
(rel)
W L + const, (27)

with a rate λ
(rel)
W that is close to 1 for small disorder and drops

significantly in the MBL phase.
We now turn to the generalized CGP measures f (det)B and

f (∞)
B , whose behavior is also consistent with a scaling

1 − 〈
f (x)B

(
XVW

)〉 ∝ 2−λ
(x)
W L = d−λ

(x)
W , (28)

and a rate λ
(x)
W showing distinct behavior in the different

phases (x = det or x = ∞). In Appendix G we show that

λ
(det)
W � 1

2λ
(2)
W , (29)

which is saturated for small disorder values and is verified
by the observed numerical simulations. Exponential decay
is also encountered for the time-average 〈 f (time-avg)

B (XVW )〉,
also plotted in Fig. 2. Notice that, although the latter fails
to be a generalized CGP measure, it can still be employed
to detect the transition. For more details about the numerical
simulations see Appendix H.

For what regards 〈C(2)
B (VW )〉, we can obtain its behavior

in the limit of infinite disorder and in the ergodic phase.
First, we write the return probability Preturn := 1 − PB′ = 1 −
〈C(2)

B (VW )〉 as

Preturn = 1

d

d∑
i=1

〈i|E (|i〉〈i|)|i〉, (30)

where E := 〈Ut 〉 is the average of the quantum (superoperator)
evolution Ut (·) = e−itHXXX (·)eitHXXX and |i〉 denotes the product⊗

i σ
z
i (Ising) basis.

In the limit of strong disorder E (|i〉〈i|) = |i〉〈i| so that
Preturn = 1. Instead, in the ergodic phase, or more precisely as-
suming that the operators |i〉〈i| are shell ergodic (see Ref. [38])
one obtains E (|i〉〈i|) = ρeq where ρeq is the (microcanonical)
equilibrium state (see Ref. [38] for more details). This implies
that Preturn = (1/d )Tr(ρeq ) = 1/d thus converging to zero in
the thermodynamic limit. One reaches the same conclusion
(Preturn → 0 albeit possibly with a different speed) if shell
ergodicity holds not for all but for sufficiently many basis
projectors |i〉〈i|.

Finally, we comment on our findings from the typicality
point of view. In Ref. [17] it was shown that if the intertwiner
is chosen at random from the unitary groupV ∈ U (d ) accord-
ing to the Haar measure, then C(2)

B is concentrated near its
mean 〈

C(2)
B (V )

〉
Haar = 1 − 2

d + 1
(31)

(〈·〉Haar denotes the Haar average over the intertwiner), with
overwhelming probability for large Hilbert space dimension
d (here B can be any fixed basis). In other words, the typical
rate for Preturn is λ

(2)
Haar ≈ 1. From that perspective, an ergodic

behavior is the typical one, while the MBL case can be seen
as a highly atypical outlier.

V. DIFFERENTIAL GEOMETRY OF
COHERENCE-GENERATING POWER AND MBL

In this section we study the behavior of the CGP C(2)
B (δV )

when the intertwiner δV connects two bases that are “in-
finitesimally close” to each other. This results in a differential-
geometric construction whose central quantity is a Rieman-
nian metric. As we will show, the resulting metric (i) is
directly connected to the dynamical conductivity, which is a
quantity of experimental relevance and (ii) behaves distinctly
in the MBL and ergodic phases. The detailed mathematical
structure is presented in Appendix I.

Consider a complete orthonormal family of states
{|φi(λ)〉}di=1, parametrized by a set of parameters λ. This
is the relevant case, for instance, when one studies the
eigenvectors associated with a family of Hamiltonians H (λ).
The infinitesimal adiabatic intertwiner δV is a unitary map
defined by

δV (|φi(λ)〉〈φi(λ)|) = |φi(λ + dλ)〉〈φi(λ + dλ)|, (32)

where H (λ)|φi(λ)〉 = Ei(λ)|φi(λ)〉.
It can be shown that the CGP of δV has the form

C(2)
B (δV ) = 2gdλ2, where g is a metric given by

g := 1

d

d∑
i=1

χi, (33a)

χi :=
〈
∂φi

∂λ

∣∣∣∣ ∂φi

∂λ

〉
−
〈
φi

∣∣∣∣ ∂φi

∂λ

〉〈
∂φi

φi

∣∣∣∣φi

〉
, (33b)

i.e., it is itself a mean of the metrics χi which are associated to
the vectors |φi〉. When the latter are Hamiltonian eigenstates,
χi are known as fidelity susceptibilities [39–41] and the ground
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state susceptibility χ0 plays a key role in the differential
geometric approach to quantum phase transitions [42].

In order to connect with quantities of experimental rele-
vance, let us now consider the thermal analog of the metric
g. We denote gT = ∑

i piχi, where pi = exp (−Ei/T )/Z are
the thermal weights and Z denotes the partition function.
The quantity gT , defined in Ref. [43] as a generalization of the
fidelity susceptibility at finite temperature (g = gT=∞), can be
thought of as the metric associated with the thermal analog of
the CGP C(V, c(2)B , μT ), where the measure μT weights the
Hamiltonian eigenstates with the associated Gibbs weights.
The quantity gT can be expressed via the (imaginary part
of the) dynamical susceptibility χVV (ω), where V = ∂λH (λ).
More precisely (see Ref. [43]),

gT =
∫ ∞

0

dω

π

χ ′′
VV (ω)

ω2
coth

( ω

2T

)
. (34)

The above formula is remarkable, as it demonstrates that the,
apparently abstract, quantity C(2)

B (δV ) is simply connected
with a quantity measurable in experimental setups [44–46].
We also note that, although Eq. (34) is not straightforwardly
applicable in the infinite temperature limit, in this limit one
obtains

g = gT=∞ = 1

π

∫ ∞

−∞

σVV (ω)

ω2
dω, (35)

where σVV (ω) is the high-temperature dynamical conductivity
[47] given by

σVV (ω) = 2π

d

∑
n 	=m

|Vn,m|2δ[ω − (Em − En)]. (36)

In this case, the role of g is played by the d.c. dielectric
polarizability [12,48].

The quantities gT and g not only allow us to make contact
with experiments but have also been studied in the context
of thermalization and MBL. In particular, it is believed that
g → ∞ in the thermodynamic limit, both for the ergodic
and the subdiffusive phase. Instead, in the MBL phase g →
constant < ∞ [12]. In the light of Eq. (33), these results
mean that the CGP of the adiabatic intertwiner between
nearby Hamiltonians has distinctively different behaviors in
the ergodic and in the MBL phases.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have brought together ideas from quantum
information and geometry, on one hand, and the physics of
disordered systems on the other. We established a connection
between the quantitative approach to coherence, originating
from the perspective of quantum resource theories [3,4], and
localization [5,7–9].

More specifically, we studied the behavior of the ergodic,
Anderson, and many-body localized phases in terms of the
scaling properties of coherence averages that are associated to
the intertwiner connecting the Hamiltonian eigenvectors with
the configuration space basis. The introduced quantities are
able to detect the uniformity of the transition matrix connect-
ing the two bases, hence they can sense abrupt changes in
the entire set of energy eigenstates, signaling the localization

transition. The latter property is guaranteed by the structure of
coherence monotones.

Furthermore, we built an associated differential-geometric
version for infinitesimal perturbations of the Hamiltonian and
showed that the resulting Riemannian metric can be mapped
onto known physical quantities which have a sharply distinct
behavior in the ergodic and in the MBL phases.

Quantum chaos is often dubbed as the dynamical counter-
part of quantum localization and connections between the two
have been used to elucidate the physics of chaotic systems
[49,50]. Following this correspondence, we conjecture that the
CGP can act as a signature of quantum chaos, for example,
by identifying the so-called “edge of chaos” [51]. Moreover,
dynamical quantities like the survival probability [52] and
entangling power [53] (which is the direct analog of CGP
for entanglement) have been applied to the study of chaotic
systems like the quantum kicked top [50], which can be re-
lated to measures of CGP, as will be explored in a forthcoming
paper [54]. Investigating how different representatives of the
introduced family of measures can extract various physical
features regarding the nature of the localization transition
remains a direction for future research.
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APPENDIX A: PROOFS OF PROPOSITIONS

Proof of Proposition 1. (i) We follow a procedure similar
to the one in Ref. [17]. We make use of the Hilbert-Schmidt
inner product 〈A,B〉 := Tr (A†B) over the space B(H) of
bounded linear operators over H. Starting from Eq. (5) with
cB = c(2)B , we get

C(2)
B (U ) = 1

d

∑
i

‖(I − DB)U�i‖22

= 1

d

∑
i

〈(I − DB)U�i, (I − DB)U�i〉

= 1

d

∑
i

(‖U�i‖22 − ‖DBU�i‖22
)
,
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where we have used the fact that the dephasing superoperator
DB ∈ B(B(H)) is self-adjoint D†

B = DB with respect to the
Hilbert-Schmidt inner product, as well as a projection D2

B =
DB. Unitary invariance of the 2-norm implies ‖U�i‖22 = 1.
Using the definition Eq. (2), a straightforward calculation
gives

C(2)
B (U ) = 1 − 1

d

∑
i j

(XU )
2
ji (A1)

which reduces to the claimed result.
(ii) Let us denote the Shannon entropy of a probability

vector as H (p) := −∑i pi log(pi ). Since S(U�i ) = S(�i ) =
0, Eq. (5) with cB = c(rel)B gives

C(rel)
B (U ) = 1

d

∑
i

S(DBU�i ) = 1

d

∑
i

S

⎛
⎝∑

j

(XU ) ji� j

⎞
⎠

= 1

d

∑
i

H ({(XU ) ji} j ) = H (XU ).

�

Proof of Proposition 2. We first show that, for a fixed co-
herence measure cB, the quantity C(U , cB, μunif ) [explicitly
given in Eq. (5)] can be expressed as a function of XU .
This implies that the phases of U (considered as a matrix in
the B = {�i}i = {|φi〉〈φi|}i basis, where U (X ) = UXU †) are
irrelevant.

Consider a pure state |ψ〉. The value of cB(|ψ〉〈ψ |) can
only depend on the modulus of the coefficients {|〈φi|ψ〉|}di=1.
This follows from the fact that the unitary transformations
V (ρ) = VρV †, such that V |ψ〉 alters the phases or permutes
the coefficients {〈φi|ψ〉}di=1, form a subgroup of the incoherent
operations. Hence all coherence monotones should maintain
a constant value over a group orbit. As a result, cB(U (� j ))
can be expressed as a function of {(XU )i j}di=1 (recall (XU )i j =
|〈φi|U |φ j〉|2). Hence, alsoC(U , cB, μunif ) can be expressed as
a function of the whole matrix XU (in fact, an additive one over
the columns).

Property (i) follows directly from the fact that coherence
measures vanish over incoherent states. For property (ii),
invariance under pre-processing by a permutation �′ holds
since the averaging over the states is uniform. Invariance un-
der post-processing by � holds since unitary transformations
that permute the elements of B belong to incoherent operators.

We now prove property (iii). First notice that, since the
value of cB(|ψ〉〈ψ |) can only depend on the moduli of the
coefficients {|〈φi|ψ〉|}di=1, the function fB(X ) is in fact well de-
fined over all bistochastic matrices (and not just unistochastic
[56] ones).

Consider a collection of pure states {|ψ j〉〈ψ j |}dj=1 such that

|ψ j〉 =
∑
i

√
(MXU )i j |φi〉. (A2)

Then, one has that

Tr(�i|ψ j〉〈ψ j |) =
∑
k

Mik Tr(�k U (� j )) ∀i, j. (A3)

To prove the desired inequality of (iii), we will show that
cB(|ψ j〉〈ψ j |) � cB(U (� j )) ∀ j. Indeed, the previous holds true
for all coherence measures cB if for every j there exists an

incoherent operator E such that E (|ψ j〉〈ψ j |) = U (� j ). The
last is guaranteed (in fact, within strictly incoherent operators)
by the main result of Ref. [57] which can be applied since, by
the bistochasticity of M, Eq. (A3) implies that DB(U (� j )) �
DB(|ψ j〉〈ψ j |). �

Proof of Proposition 3. The first part follows by generaliz-
ing the proof of part (iii) of proposition 2. One can directly
extend the construction by considering two sets of pure states
{|ψ j〉〈ψ j |}dj=1 and {|ψ ′

j〉〈ψ ′
j |}dj=1 such that

|ψ j〉 =
∑
i

√
Yi j |φi〉 (A4a)

|ψ ′
j〉 =

∑
i

√
Xi j |φi〉. (A4b)

Then the convertibility argument |ψ j〉〈ψ j | �→ |ψ ′
j〉〈ψ ′

j | via
strictly incoherent operations applies due to the majorization
condition, giving the desired result.

For the converse, we will first show that the func-
tions over pure states cB(|ψ〉〈ψ |) = ∑

i φ(Tr (�i|ψ〉〈ψ |))
are monotones, where φ is any continuous concave func-
tion. Indeed, from the main result of [57], a conversion
|ψ〉〈ψ | �→ |ψ ′〉〈ψ ′| via strictly incoherent operations is pos-
sible if and only if DB(|ψ ′〉〈ψ ′|) � DB(|ψ〉〈ψ |) [58]. How-
ever, a standard result by Hardy, Littlewood, and Pólya
states that for two probability vectors it holds that p � q if
and only if

∑
i φ(pi ) �

∑
i φ(qi ) for all continuous concave

φ [21]. As a result, DB(|ψ ′〉〈ψ ′|) � DB(|ψ〉〈ψ |) is equiv-
alent to

∑
i φ(Tr (�i|ψ ′〉〈ψ ′|)) �∑

i φ(Tr (�i|ψ〉〈ψ |)), i.e.,
the aforementioned functions cB are monotones over pure
states.

By assumption, the functions fB arise from continuous
coherence monotones over pure states. From the statement in
the previous paragraph it then follows that, in fact, all fB(X ) =∑

i j φ(Xi j ) for continuous concave φ are such functions.
Hence,

∑
i j φ(Xi j ) �

∑
i j φ(Yi j ). Finally, the aforementioned

result by Hardy, Littlewood, and Pólya [21] in the context of
column majorization implies X �c Y . �

Proof of Proposition 4. (i) The key observation is that the
dephasing superoperator DB arises as the (infinite) time aver-
age of the Schrödinger evolution Ut (·) = e−itH (·)eitH , namely
Ut = DB. Using the Hilbert-Schmidt inner product over B(H)
(see proof of proposition 1) and setting �ψ = |ψ〉〈ψ |, we get

Pψ = 1 − Tr(�ψ Ut (�ψ )) = 1 − Tr(�ψ DB(�ψ ))

= 1 − 〈�ψ,DB�ψ 〉 = 1 − 〈DB�ψ,DB�ψ 〉
= 〈(I − DB)�ψ, (I − DB)�ψ 〉
= ‖(I − DB)�ψ‖22 = c(2)B (�ψ ).

(ii) The first equality of Eq. (16) follows by combing part (i)
of the proposition with Eq. (5). For the second equality, from
the unitary invariance of the 2-norm, we have

C(2)
B (V ) = 1

d

∑
i

‖(I − DB)|i〉〈i|‖22

= 1

d

∑
i

‖V†(I − DB′ )V (|i〉〈i|)‖22
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= 1

d

∑
i

‖(I − DB′ )V (|i〉〈i|)‖22

= C(2)
B′ (V ).

However, notice that XV† = XT
V which from Eq. (7) implies

C(2)
B′ (V†) = C(2)

B′ (V ). �

APPENDIX B: TIME-AVERAGED CGP

In this section we study the time average of the CGP

C(2)
B′ (Ut ), where Ut (X ) = exp(−iHt )X exp(iHt ) is the time

evolution operator. For the following, we will assume that
the Hamiltonian H = ∑

i Ei|φi〉〈φi| satisfies the nonresonance
condition, i.e., its energy gaps are nondegenerate. Under this
assumption, we will show that

C(2)
B′ (Ut ) = 1 − 2

d

∑
i j

〈
Xc
i ,Xc

j

〉2 + 1

d

∑
i

〈
Xc
i ,Xc

i

〉2
(B1)

where V = ∑
i |i〉〈φi| is the intertwiner between B = {�i :=

|φi〉〈φi|}i and B′ = {Pi := |i〉〈i|}i.
We have,

C(2)
B′ (Ut ) = 1 − 1

d

∑
i

〈DB′ Ut (Pi ),DB′ Ut (Pi )〉

= 1 − 1

d

∑
i

〈Pi,U†
t DB′ Ut (Pi )〉

= 1 − 1

d

∑
i jkk′ll ′

[exp[i(Ek − Ek′ + El − El ′ )t]

· Tr(Pi�kPj�k′Pi�lPj�l ′ )].

The nonresonance condition implies that

exp[i(Ek −Ek′ +El −El ′ )t]

= δkk′δll ′ + δkl ′δk′l − δkk′δk′lδll ′ .

A straightforward calculation gives

C(2)
B′ (Ut ) = 1 − 1

d

⎛
⎝2∑

i jkl

(XV )ki(XV )k j (XV )li(XV )l j

−
∑
i jk

(XV )
2
ki(XV )

2
k j

⎞
⎠

which reduces to Eq. (B1). An easy calculation for a single
qubit reveals that f (time-avg)

B (X ) is not a generelized CGP
measure, since its maximum value is not attained over the
transition matrix with elements Xi j = 1/2 [59].

APPENDIX C: INVERSE PARTICIPATION RATIO,
EFFECTIVE DIMENSION, AND LOSCHMIDT ECHO

For a nondegenerate Hamiltonian H = ∑
i Ei|φi〉〈φi|, the

escape probability Pψ is directly connected with the second
participation ratio of |ψ〉 over the Hamiltonian eigenbasis
PR2 :=

∑
i |〈φi|ψ〉|4 as Pψ = 1 − PR2. The second partic-

ipation ratio, in turn, is intimately connected to two other
quantities of physical interest in the study of equilibration

and thermalization, namely the effective dimension and the
Loschmidt echo [22,23]. The effective dimension of a quantum
state is defined as its inverse purity,

deff (ρ) = 1

Tr[ρ2]
, (C1)

which intuitively corresponds to the number of pure states
that contribute to the (in general) mixed state ρ. Given a non-
degenerate Hamiltonian, it is easy to show that the effective
dimension of the (infinite) time-averaged state is equal to the
inverse of the second participation ratio, that is,

deff (ρ) = 1

Tr(ρ2)
= 1∑

i |〈φi|ψ〉|4 = 1

PR2
, (C2)

where ρ = |ψ〉〈ψ |.
Recall that the Loschmidt echo is defined as the overlap

between the initial state |ψ〉 and the state after time t ,

Lt := |〈ψ |e−iHt |ψ〉|2, (C3)

the infinite time average of which can be identified with the
return probability of the state |ψ〉. Then, in the nondegenerate
case, the time-averaged Loschmidt echo is related to the
second participation ratio and the effective dimension as

Lt = PR2 = 1

deff (ρ )
. (C4)

We also note that the Loschmidt echo appears naturally in
the study of the work distribution [60], a quantity of ther-
modynamic importance. For a more detailed exposition, see
Ref. [61].

APPENDIX D: CGP IN THE ANDERSON MODEL FOR THE
DEGENERATE CASEW = 0

The spectrum of Anderson Hamiltonian Eq. (18) for the
disorder-free case is degenerate, hence the intertwiner VW=0

between the position and Hamiltonian eigenbases is not
uniquely defined. Nevertheless, we show here that the be-
havior of the quantities C(2)

B (VW=0) and C(rel)
B (VW=0) in the

thermodynamic limit is independent of the specific choice of
the Hamiltonian eigenbasis, namely C(2)

B (VW=0) → 1 while
C(rel)
B (VW=0) ∼ log(L) for L → ∞.

The spectrum of the Hamiltonian is {2 cos ( 2π j
L )}L−1

j=0 , hence
there are nL distinct two-dimensional degenerate subspaces,
where nL = (L − 2)/2 for L even and nL = (L − 1)/2 for L
odd. Invoking the Fourier eigenbasis

|φk〉 = 1√
L

L−1∑
j=0

exp

(
−i

2π jk

L

)
| j〉 (D1)

as reference, the general eigenbasis of HW=0 may differ from
basis (D1) as

|φ′
k〉 = eiγk (eiαk cos(θk )|φk〉 + eiβk sin(θk )|φL−k〉) (D2a)

|φ′
L−k〉 = eiγk (−eiβk sin(θk )|φk〉 + e−iαk cos(θk )|φL−k〉)

(D2b)

for k = 1, . . . , nL, where the angles {αk, βk, γk, θk} specify
the (unitary) transformation within the kth twofold degenerate
subspace.
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A straightforward calculation gives

|〈l|φ′
k〉|2 = |〈l|φ′

L−k〉|2

= 1

L

[
1 + cos

(
2(L − 2k)lπ

L
+ αk − βk

)
sin(2θk )

]
,

(D3)

from which one can directly see that the possible Hamilto-
nian eigenbases differ in the sum

∑
i, j (XU )2ji at most of an

order 1 term. Hence, from Eq. (A1) it follows that any such
contribution vanishes at the thermodynamic limit, yielding
C(2)
B (VW=0) → 1.
For C(rel)

B (VW=0), we first invoke the standard inequal-
ity between the Shannon entropy and the purity H ({pi}) �
− log (

∑
i p

2
i ) (following from the monotonicity of the Rényi

entropies [62]). By the use of Eq. (D3), the purity of the

probability distribution {|〈l|φ′
k〉|2}

L

l=1 is

L∑
l=1

|〈l|φ′
k〉|4 = 2 + sin2(2θk )

2L
,

therefore the previous inequality implies

H ({|〈l|φ′
k〉|2}l ) � logL − log

(
2 + sin2(2θk )

2

)
.

Finally, this implies by Eq. (8) that C(rel)
B (VW=0) diverges

logarithmically with L for any choice of the Hamiltonian
eigenbasis.

APPENDIX E: DERIVATION OF EQS. (24)

In this section we show how using the ansatz (XVW ) ji =
c j exp (−|i − α j |/ξ j ), one can derive Eqs. (24). Assuming
periodic boundary conditions as in the main text, and since∑

i (XVW ) ji = 1, the coefficients c j can be expressed for L �
1 as

(c j )
−1 ≈ 2

∞∑
x=0

e−x/ξ j − 1

therefore

c j = tanh[(2ξ j )
−1]. (E1)

From Eq. (7),

C(2)
B = 1 − 1

L

∑
i j

(
XVW

)2
i j = 1 − 1

L

∑
j

tanh2[(2ξ j )−1]

tanh(ξ−1
j )

,

which is (24a).
Similarly, from Eq. (8) we have

H
(
XVW>0

) = − 1

L

L∑
i, j=1

c je
−|i−α j |/ξ j ln[c je

−|i−α j |/ξ j ]

= − 1

L

∑
j

(
ln c j − c j

∑
i

e−|i−α j |/ξ j
|i − α j |

ξ j

)
.

FIG. 3. Plot of the escape probability 〈C (2)
B (V� )〉 as a function

of the disorder strength � for the Lloyd model Hamiltonian H� ,
as predicted analytically by the heuristic Eq. (24a) (solid line) and
the numerical simulations (points). For the case of the numerical
simulation, L → ∞ is extrapolated by averaging over disorder for
sizes up to L = 212. Standard deviations are within the point radius.

The sum
∑

i for L � 1 is

L∑
i=1

e−|i−α j |/ξ j
|i − α j |

ξ j

≈ 2
∞∑
x=1

e−x/ξ j
x

ξ j

= − 2

ξ j

d

d (ξ j )−1

∞∑
x=1

e−x/ξ j = 2
e1/ξ j

(e1/ξ j − 1)2ξ j
.

Using Eq. (E1) together with the above, we get to the desired
form (24b).

APPENDIX F: EVALUATION OF EQ. (24a) FOR ON-SITE
ENERGIES FOLLOWING CAUCHY DISTRIBUTION

We consider the Hamiltonian (18) with i.i.d. on-site ener-
gies εi, distributed according to the Cauchy distribution

f� (ε) = 1

π�

[
�2

ε2 + �2

]
. (F1)

The localization length ξ (E , �) can be calculated by invoking
the formula due to Thouless [30], which in our notation is

cosh

(
1

2ξ (E , �)

)
=
√
(2 + E )2 + �2 +

√
(2 − E )2 + �2

4
.

(F2)

To evaluate Eq. (24a) for this model in the thermodynamic
limit, we transition to the continuum limit 1

L

∑
j g(Ej ) �→∫

dEρ� (E )g(E ). The density of states ρ� (E ) can be obtained
easily from the corresponding resolvent, calculated for the
Lloyd model in Ref. [29], and Eq. (F2). The resulting integral
is numerically evaluated and yields the data plotted in Fig. 3.
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FIG. 4. Plot of the (a) average escape probability 〈C (2)
B (VW )〉 and

(b) 〈C (rel)
B (VW )〉 as a function of the system size L for different

values of the disorder strength W . The disorder values displayed
areW = 0.4, 1.0, 1.4, 1.8, 2.5, 3.1, 3.7, 5.0, 7.0, 9.0 (monotonically
from the top to bottom in the plots) for L = 4, 6, · · · , 12 with sample
sizes 20000, 20000, 20000, 8000, 2000, except at W = 3.7, where
the sample sizes were doubled. Error bars represent one standard
deviation. Entropy has logarithm with base 2.

APPENDIX G: COMPARISON OFC(2)
B and f (det)B

In this section, we will show that

Preturn = 1 −C(2)
B (V ) �

(
1 − f (det)B (XV )

)2
. (G1)

Indeed,

1 −C(2)
B (V ) = 1

d
‖XV‖22 = 1

d

∑
i

s2i

�
(
1

d

∑
i

si

)2

�

⎡
⎣(∏

i

si

) 1
d

⎤
⎦

2

= (
1 − f (det)B (XV )

)2
,

where si denotes the singular values of XV . The first equality
follows from the convexity of the mean and the second
one from the standard inequality between the arithmetic and
geometric mean. The inequality for the rates Eq. (29) follows
by plugging into the inequality (G1) the forms (26) and (28).

FIG. 5. Plot of the generalized-CGP measures,
(a) 〈 f (time-avg)

B (XVW )〉, (b) 〈 f (det)B (XVW )〉, and (c) 〈 f (∞)
B (XVW )〉

as a function of the system size L for different values of the
disorder strength W . The disorder values displayed are W =
0.4, 1.0, 1.4, 1.8, 2.5, 3.1, 3.7, 5.0, 7.0, 9.0 [monotonically from the
top to bottom for (a) and bottom to top for (b)] for L = 4, 6, · · · , 12
with sample sizes 20000, 20000, 20000, 8000, 2000, except at
W = 3.7, where the sample sizes were doubled. Error bars represent
one standard deviation.
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APPENDIX H: DETAILS OF THE NUMERICAL
CALCULATIONS FOR MBL

In this section, we list further details of the quanti-
ties studied across the ergodic-MBL transition, namely 1 −
〈C(2)

B (VW )〉, 〈C(rel)
B (VW )〉, 〈 f (time-avg)

B (XVW )〉, and 〈 f (det)B (XVW )〉.
In Fig. 2, we plot the extrapolated rates (for large L) as a
function of the disorder strengthW for the Hamiltonian HXXX

at hx = 0.3. For this purpose we consider, e.g., for the return
probability 1 − 〈C(2)

B (VW )〉 an ansatz of the form
g(L) = α + 2−λL, (H1)

where α is the asymptotic value and λ is the rate of decay
with system size L. By performing a nonlinear fit at different
disorder values for the various quantities listed above, we
found that the α ≈ 0 (within the uncertainty of the fitting
parameters), even for the largest disorder that we consider
(W = 9.0). Therefore, we simplify our ansatz to the form
g(L) ∝ 2−λL and extract the asymptotic rates by taking the
logarithm of the desired quantities.

In Figs. 4 and 5 we plot our data for a sample of disorder
values and for system sizes L = 4, . . . , 12. Error bars repre-
sent one standard deviation.

APPENDIX I: COHERENCE-GENERATING POWER
AND DISTANCE IN THE GRASSMANNIAN

Here we present in more detail the underlying differential-
geometric structure that is introduced in Sec. V. Let H
denote the finite dimensional Hilbert space of the quantum
system and B(H) the associate operator algebra. The set B(H)
equipped with the Hilbert-Schmidt scalar product 〈X,Y 〉 :=
Tr (X †Y ) turns into a Hilbert space (the space of Hilbert-
Schmidt operators) that we will denote by HHS. Superoper-
ators O mapping HHS into itself can be then endowed with
the following norm

‖O‖HS :=
√
TrHS(O†O), (I1)

where (a) O† denotes the Hilbert-Schmidt conjugate of O,
i.e., 〈O(X ),Y 〉 = 〈X,O†(Y )〉 ∀X,Y ∈ HHS. (b) If {|i〉}di=1
is any orthonormal basis of H, one defines TrHSO :=∑d

i, j=1 〈|i〉〈 j|,O(|i〉〈 j|)〉.
As we discussed in the main text, instead of invoking

orthonormal sequences of kets {|i〉}di=1, it is more convenient
to work with sets of orthogonal, rank-1 projection operators
B = {Pi := |i〉〈i|}di=1. Let us introduce the space of all such
sets over the Hilbert space, which we denote as M(H). This
is essentially the set of all possible orthonormal bases over
the Hilbert space once the phase degrees of freedom and or-
dering have been modded out [10]. The elements B ∈ M(H)

are in one-to-one correspondence with the set of dephasing
superoperators, i.e., the map B �→ DB [defined in Eq. (2)]
is injective. Given a B ∈ Md , the corresponding set of B-
diagonal operators is

AB := Span {Pi}di=1 ⊂ HHS, (I2)

which is also the range of the B-dephasing superoperator
DB. One can see that Eq. (I2) actually defines a maximally
Abelian subalgebra (MASA) of HHS; moreover it can be
proven that the set of MASAs of HHS can be identified with
M(H) (see Ref. [10] for a proof). In this way, the set M(H)
can be now seen as a subset of the Grassmannian manifold
of d-dimensional subspaces of HHS. The advantage of this
approach is that M(H) directly inherits the natural metric
structure of the Grassmannian

D(AB,AB′ ) := ‖DB − DB′ ‖HS. (I3)

We will now connect these concepts to the 2-CGP of unitary
quantum maps.

From its definition, C(2)
B (U ) seems to capture some no-

tion of separation between the sets B = {Pi}di=1 and B′ =
{U (Pi )}di=1. In fact, the B-coherence generating power of a
unitary map U is proportional to the (square of the) Grass-
mannian distance between the input B-diagonal algebra AB

and its image under U [10]. Formally:

C(2)
B (U ) = 1

2d
D(AB,U (AB))

2, (I4)

where the distance function D is given by (I3). The maximum
of this function i.e., maxU C

(2)
B (U ) = 1 − 1/d is achieved for

unitary operators U that connected mutually unbiased bases,
namely |〈i|U | j〉| = 1/d (∀i, j), and corresponds to a maxi-
mum distance over M(H) given by Dmax = √

2(d − 1). It
is important to stress that, in the light of proposition 4, the
Grassmannian distance between MASAs is endowed with a
physical meaning in the context of quantum mechanics.

We now turn to establish a connection between the differ-
ential structure ofM(H), as induced by the distance function
(I3), and MBL. One has the natural Riemannian metric over
the Grassmannian

ds2 = D(�,� + d�)2 = Tr(d�2) (I5)

(� denote the projectors over the d-dimensional subspaces
comprising the Grassmannian). The latter, in view of Eq. (I4),
has in turn the physical interpretation as the C(2)

B of
the unitary associated with an infinitesimal transformation
{|φi(λ)〉}di=1 �→ {|φi(λ + dλ)〉}di=1. The form of the metric
(33) follows directly by the calculation of proposition 6 in
Ref. [10].
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