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Abstract
Given two k-graphs (k-uniform hypergraphs) F and H, a perfect F-tiling (or F-factor) in H is a set of
vertex-disjoint copies of F that together cover the vertex set of H. For all complete k-partite k-graphs
K, Mycroft proved a minimum codegree condition that guarantees a K-factor in an n-vertex k-graph,
which is tight up to an error term o(n). In this paper we improve the error term in Mycroft’s result to
a sublinear term that relates to the Turán number of K when the differences of the sizes of the vertex
classes of K are co-prime. Furthermore, we find a construction which shows that our improved codegree
condition is asymptotically tight in infinitely many cases, thus disproving a conjecture of Mycroft. Finally,
we determine exact minimum codegree conditions for tiling K (k)(1, . . . , 1, 2) and tiling loose cycles, thus
generalizing the results of Czygrinow, DeBiasio and Nagle, and of Czygrinow, respectively.

2010 MSC Codes: Primary 05C70; Secondary 05C65

1. Introduction
Given k� 2, a k-uniform hypergraph (for short, k-graph) is a pair H = (V , E), where V is a finite
vertex set and E is a family of k-element subsets ofV . Given a k-graphH and a set S of d vertices in
V(H), 1� d� k− 1, we let degH (S) denote the number of edges ofH containing S. Theminimum
d-degree δd(H) of H is the minimum of deg (S) over all d-subsets S of V(H). Furthermore, the
minimum 1-degree is usually referred to as the minimum vertex degree and the minimum (k−
1)-degree is referred to as theminimum collective degree (codegree).

As a natural extension of matching problems, (hyper)graph tiling (alternatively called pack-
ing) has received much attention in the past two decades (see [23] for a survey). Given two
(hyper)graphs F and H, a perfect F-tiling, or an F-factor, of H is a spanning subgraph of H that
consists of vertex-disjoint copies of F. Here we are interested in minimum degree thresholds that
force perfect packings in hypergraphs. Given a k-graph F and an integer n divisible by |F|, let
δ(n, F) be the smallest integer t such that every n-vertex k-graph H with δk−1(H)� t contains a
perfect F-tiling.
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Perfect tilings for graphs are well understood. In particular, extending the results of Hajnal and
Szemerédi [10] and Alon and Yuster [1] (see also [21]), Kühn and Osthus [24] determined δ(n, F)
for all graphs F, up to an additive constant, for sufficiently large n.

Over the past few years there has been growing interest in obtaining degree conditions that
force a perfect F-tiling in k-graphs for k� 3. In general, this appears to be much harder than the
graph case (see a recent survey [34]). Let K3

4 be the complete 3-graph on four vertices, and let
K3−
4 be the (unique) 3-graph on four vertices with three edges. Let C3

2 be the unique 3-graph on
four vertices with two edges. Lo and Markström [26] proved that δ(n,K3

4 )= (1+ o(1))3n/4, and
independently Keevash and Mycroft [20] determined the exact value of δ(n,K3

4 ) for sufficiently
large n. In [25] Lo and Markström proved that δ(n,K3−

4 )= (1+ o(1))n/2. Very recently, Han Lo,
Treglown and Zhao [13] determined δ(n,K3−

4 ) exactly for large n. Kühn and Osthus [22] showed
that δ(n, C3

2)= (1+ o(1))n/4, and Czygrinow, DeBiasio and Nagle [5] determined δ(n, C3
2) exactly

for large n. Han and Zhao [16] determined the exact minimum vertex degree threshold for perfect
C3
2-tiling for large n. With more involved arguments, Han, Zang and Zhao [15] determined the

minimum vertex degree threshold for perfect K-tiling asymptotically for all complete 3-partite
3-graphs K.

Mycroft [29] proved a general result on tiling k-partite k-graphs. To state his result, we need
the following definitions. Let F be a k-graph on a vertex set U with at least one edge. A k-partite
realization of F is a partition of U into vertex classes U1, . . . ,Uk so that for any e ∈ E(F) and
1� j� k we have |e∩Uj| = 1. We say that F is k-partite if it admits a k-partite realization. Define

S(F) :=
⋃
χ

{|U1|, . . . , |Uk|} and D(F) :=
⋃
χ

{||Ui| − |Uj|| : i, j ∈ [k]},

where in each case the union is taken over all k-partite realizations χ of F into vertex classes
U1, . . . ,Uk of F. Then gcd (F) is defined to be the greatest common divisor of the set D(F) (if
D(F)= {0} then gcd (F) is undefined). We also define

σ (F) := minS∈S(F) S
|V(F)| ,

and thus in particular, σ (F)� 1/k. Mycroft [29] proved the following:

δ(n, F)�

⎧⎪⎨⎪⎩
n/2+ o(n) if S(F)= {1} or gcd (S(F))> 1,
σ (F)n+ o(n) if gcd (F)= 1,
max{σ (F)n, n/p} + o(n) if gcd (S(F))= 1 and gcd (F)= d > 1,

(1.1)

where p is the smallest prime factor of d. Moreover, Mycroft [29] showed that equality holds
in (1.1) for all complete k-partite k-graphs F, as well as a wide class of other k-partite k-graphs.
Furthermore, he conjectured that the error terms in (1.1) can be replaced with a (sufficiently large)
constant that depends only on F.

Conjecture 1.1 ([29]). Let F be a k-partite k-graph. Then there exists a constant C such that the
error term o(n) in (1.1) can be replaced with C.

Let K(k)(a1, . . . , ak) denote the complete k-partite k-graph with parts of size a1, . . . , ak. In this
paper we always assume that a1 � · · ·� ak. Thus σ (K(k)(a1, . . . , ak))= a1/m, where m := a1 +
· · · + ak. The well-known space barrier (Construction 2.1) shows that

δ(n,K(k)(a1, . . . , ak))�
a1
m
n. (1.2)

This shows that the second line of (1.1) is asymptotically best possible when F =K(k)(a1, . . . , ak)
and gcd (F)= 1.
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We first give a simple construction (Construction 2.2) that strengthens the space barrier.
Applying this construction, we obtain the following proposition, whose part (i) shows that
Conjecture 1.1 is false for all complete k-partite k-graphs K with gcd (K)= 1 and ak−1 � 2. Given
two k-graphs F and H, we call H F-free if H does not contain F as a subgraph. The well-known
Turán number ex(n, F) is the maximum number of edges in an F-free k-graph on n vertices.
Correspondingly, the codegree Turán number coex(n, F) is the maximum of the minimum code-
gree of an F-free k-graph on n vertices. Note that coex(n, F)

( n
k−1

)
/k� ex(n, F) because an n-vertex

k-graph H with δk−1(H)� coex(n, F) has at least coex(n, F)
( n
k−1

)
/k edges.

Proposition 1.2. Let K :=K(k)(a1, . . . , ak) such that a1 � · · ·� ak and m= a1 + · · · + ak.

(i) If ak−1 � 2, then δ(n,K)� a1n/m+ (1− o(1))
√
(m− a1)n/m.

(ii) If a1 = 1, then

δ(n,K)� n
m

+ coex
(
m− 1
m

n+ 1,K
)
.

Our main result sharpens the second case of (1.1) by using the Turán number and the
Frobenius number. Given integers 0� b1 � · · ·� bk such that gcd (b1, . . . , bk)= 1, the Frobenius
number g(b1, . . . , bk) is the largest integer that cannot be expressed as �1b1 + · · · + �kbk for
any non-negative integers �1, . . . , �k.1 By definition, g(b1, . . . , bk)= −1 if some bi = 1; other-
wise g(b1, . . . , bk)> 0. No general formula of g(b1, . . . , bk) is known, but it is known [7, 33] that
g(b1, . . . , bk)� (bk − 1)2.

Theorem 1.3. Let k� 3 and K :=K(k)(a1, . . . , ak) such that a1 � · · ·� ak, m= a1 + · · · + ak and
gcd (K)= 1. Let n ∈mN be sufficiently large. Suppose H is an n-vertex k-graph such that

δk−1(H)� a1
m
n+ f (n)+ C, (1.3)

where

f (n) := max
1−C�i�1

ex
(
m− a1

m
n+ i,K

)
k
(
((m− a1)/m)n+ i

k− 1

)−1

and C = g(a2 − a1, . . . , ak − a1)+ 1. Then H contains a K-factor.

A classical result of Erdős [6] states that, given integers k� 2 and 1� a1 � · · ·� ak, there exists
c such that, for all sufficiently large n,

ex(n,K(k)(a1, . . . , ak))� cnk−1/a1···ak−1 . (1.4)

This implies that f (n) in Theorem 1.3 is at most O(n1−1/a1···ak−1 ), which is smaller than the error
term o(n) in (1.1). Due to Proposition 1.2(ii), the term f (n) in Theorem 1.3 would be asymptoti-
cally tight if a1 = 1 and coex(n,K)= (1− o(1)) ex(n,K)k/

( n
k−1

)
(i.e. the extremal k-graph of K is

almost regular in terms of codegree). Mubayi [28] determined ex(n,K(k)(1, . . . , 1, 2, t)) asymptot-
ically for all t� 2. Since the extremal k-graph in this case is almost regular in terms of codegree, we
obtain a sharpened value of δ(n,K(k)(1, . . . , 1, 2, t)). Moreover, Mubayi [28] also determined the
order of magnitude of ex(n,K(k)(1, . . . , 1, s, t)) for s� 3 and t� (s− 1)! + 1. This gives the cor-
rect order of magnitude of the second term of δ(n,K(k)(1, . . . , 1, s, t)) for s� 3 and t� (s− 1)! + 1
such that gcd (s− 1, t − s)= 1.

1The usual definition of Frobenius numbers requires that all b1, . . . , bk are positive and distinct.
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Corollary 1.4. Let k� 3.

(i) For any t� 2,

δ(n,K(k)(1, . . . , 1, 2, t))= n
k+ t

+ (1+ o(1))

√
(t − 1)(k+ t − 1)

k+ t
n.

(ii) For any s� 3 and t� (s− 1)! + 1 such that gcd (s− 1, t − s)= 1,

δ(n,K(k)(1, . . . , 1, s, t))= n
k+ s+ t − 2

+ �(n1−1/s).

If K :=K(k)(a1, . . . , ak) satisfies gcd (K)= 1 and ak−1 = 1, then ak = 2 and consequently K =
K(k)(1, . . . , 1, 2). In this case ex(n,K)�

( n
k−1

)
/k, because in aK-free k-graph, every (k− 1)-set has

degree at most 1. Moreover, C = g(0, . . . , 0, 1)+ 1= 0 in this case. Theorem 1.3 thus gives that
δ(n,K)� n/(k+ 1)+ 1. By a more careful analysis on the proof of Theorem 1.3, we are able to
determine δ(n,K(k)(1, . . . , 1, 2)) exactly (for sufficiently large n).

Theorem 1.5. Given k� 3, let n ∈ (k+ 1)Z be sufficiently large. Then

δ(n,K(k)(1, . . . , 1, 2))=

⎧⎪⎨⎪⎩
n

k+ 1
+ 1 if k− i | ( n′−i

k−1−i
)
for all 0� i� k− 2,

n
k+ 1

otherwise,

where n′ = (kn/(k+ 1))+ 1.

A Steiner system S(t, k, n) is an n-vertex k-uniform hypergraph in which every set of t vertices
has degree exactly 1. The divisibility conditions in Theorem 1.5 are necessary for the existence
of S(k− 1, k, n′). Our proof of Theorem 1.5 applies a recent breakthrough of Keevash [19], who
showed that these divisibility conditions are also sufficient for the existence of a Steiner system
S(k− 1, k, n′) for sufficiently large n′.

When k= 3, the divisibility conditions in Theorem 1.5 reduce to 8 | n. Since K(3)(1, 1, 2)= C3
2,

Theorem 1.5 gives the aforementioned result of Czygrinow, DeBiasio and Nagle [5]. When k is
even, the divisibility conditions in Theorem 1.5 always fail, and consequently δ(n,K)= n/(k+ 1).
To see this, letting i= k− 2, we have k− i= 2 and(

n′ − i
k− 1− i

)
= n′ − k+ 2= kn

k+ 1
− k+ 3.

When k is even, kn/(k+ 1)− k+ 3 is odd and thus

k− i �
(

n′ − i
k− 1− i

)
.

Our last result is on tiling loose cycles. For k� 3 and s> 1, a loose cycle of length s, denoted Ck
s ,

is a k-graph with s(k− 1) vertices 1, . . . , s(k− 1) and s edges {j(k− 1)+ 1, . . . , j(k− 1)+ k} for
0� j< s, where we regard s(k− 1)+ 1 as 1. It is easy to see that gcd (Ck

s )= 1 unless s= k= 3 (see
Proposition 6.4). Rödl and Ruciński [30, Problem 3.15] asked for the value of δ(n, C3

s ). Mycroft
[29] determined δ(n, Ck

s ) asymptotically for all s� 2 and k� 3. Recently, Gao and Han [9] have
shown that δ(n, C3

3)= n/6 and independently Czygrinow [4] determined δ(n, C3
s ) for all s� 3.

By modifying the proof of Theorem 1.3, we determine the exact value of δ(n, Ck
s ) for k� 4 and

s� 2.
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Theorem1.6. Given k� 4 and s� 2, let n ∈ s(k− 1)N be sufficiently large. Suppose H is an n-vertex
k-graph such that

δk−1(H)� �s/2�
s(k− 1)

n.

Then H contains a Ck
s -factor.

Construction 2.1 shows that the codegree condition in Theorem 1.6 is sharp.
The rest of the paper is organized as follows. We prove Proposition 1.2 and Corollary 1.4

in Section 2. Next we discuss proof ideas and give auxiliary lemmas and use them to prove
Theorems 1.3, 1.5 and 1.6 in Section 3. We prove the auxiliary lemmas in Sections 4–6.

2. Proof of Theorem 1.4
The following well-known construction is often called the space barrier (for tiling problems).
Given a k-graph F, let τ (F) be the smallest size of a vertex cover of F, namely, a set that meets
each edge of F. Trivially τ (K(k)(a1, . . . , ak))= a1. We also have τ (Ck

s )� �s/2� because Ck
s has s

edges and every vertex of Ck
s has degree at most two.2

Construction 2.1. Fix a k-graph F of m vertices. Let H0 = (V , E) be an n-vertex k-graph such that
V =A∪ B with |A| = τ (F)n/m− 1 and |B| = n− |A|, and E consists of all k-sets that intersect A.
We have δk−1(H0)= |A| = τ (F)n/m− 1.

Since each copy of F in H0 contains at least τ (F) vertices in A, H0 does not contain a perfect
F-tiling. We slightly strengthen Construction 2.1 as follows.

Construction 2.2. Let K :=K(k)(a1, . . . , ak) such that a1 � · · ·� ak and m= a1 + · · · + ak. Let
H1 = (V , E) be an n-vertex k-graph as follows. Let V =A∪ B such that |A| = a1n/m− 1 and |B| =
n− |A|. Let G be a k-graph on B which is K(k)(b1, b2, . . . , bk)-free for all 1� b1 � · · ·� bk such that∑

i∈[k] bi =m− a1 + 1 and bi � ai for i ∈ [k]. Let E be the union of E(G) and the set of all k-tuples
that intersect A, and thus δk−1(H0)= |A| + δk−1(G)= a1n/m+ δk−1(G)− 1.

In Construction 2.2, no m-set with at most a1 − 1 vertices in A spans a copy of K. Therefore
each copy of K in H0 contains at least a1 vertices in A and consequently H0 does not contain a
perfect K-tiling.

Now we give a construction of Mubayi [28]. Given t� 2, suppose that q is a prime number
such that q≡ 1 mod t − 1. Let n0 = (q− 1)2/(t − 1). Let F be the q-element finite field, and let S
be a (multiplicative) subgroup of F \ {0} of order t − 1. We define a k-graph G0 whose vertex set
consists of all equivalence classes in (F \ {0})× (F \ {0}), where (a, b)∼ (x, y) if there exists s ∈ S
such that a= sx and b= sy. The class represented by (a, b) is denoted by 〈a, b〉. A set of k distinct
classes 〈ai, bi〉 (1� i� k) forms an edge in G0 if

k∏
i=1

ai +
k∏

i=1
bi ∈ S.

It is easily observed that this relation is well-defined, and δk−1(G0)� q− k. Moreover, as shown
in [28], G0 is K(k)(1, . . . , 1, 2, t)-free.

2We also know τ (Ck
s )� �s/2� from Proposition 6.4.
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To extend this construction, we use the fact that for any ε > 0 and sufficiently large n, there
exists a prime q such that q≡ 1 mod t − 1 and n� (q− 1)2/(t − 1)� (1+ ε/3)n (see [17]). Let
G0 be the k-graph on (q− 1)2/(t − 1) vertices defined above. To obtain aK(k)(1, . . . , 1, 2, t)-free k-
graphG on n vertices, we delete a random set T of order (q− 1)2/(t − 1)− n fromG0 and letG :=
G0 \ T. Since the expected value of the surviving codegree is at least (q− k)/(1+ ε/3), standard
concentration results (e.g. Chernoff ’s bound) show that δk−1(G)� (1− ε)

√
(t − 1)n with positive

probability. We summarize this construction together with the result on ex(n,K(k)(1, . . . , 1, 2, t))
from [28] in the following proposition.

Proposition 2.3 ([28]). For any t� 2, we have

coex(n,K(k)(1, . . . , 1, 2, t))= (1+ o(1))
√
(t − 1)n,

and

ex(n,K(k)(1, . . . , 1, 2, t))= (1+ o(1))
√
t − 1
k! nk−1/2.

For integers s� 3 and t� (s− 1)! + 1, a more involved construction in [28] shows that
there exists a K(k)(1, . . . , 1, s, t)-free k-graph of order qs − qs−1 for some prime number q with
the desired minimum codegree. We omit the details of this construction and note that the
construction can be extended to all sufficiently large n as above.

Proposition 2.4 ([28]). Given s� 3 and t� (s− 1)! + 1, we have coex(n,K(k)(1, . . . , 1, s, t))=
�(n1−1/s) and ex(n,K(k)(1, . . . , 1, s, t))= �(nk−1/s).

Proof of Proposition 1.2. Assume K :=K(k)(a1, . . . , ak) such that a1 � · · ·� ak, m= a1 + · · · +
ak and ak−1 � 2.We will show that for any choice of b1, b2, . . . , bk such that

∑
i∈[k] bi =m− a1 +

1 and bi � ai for i ∈ [k], we have bk−1 � 2 (thus K(k)(b1, b2, . . . , bk) contains K(k)(1, . . . , 1, 2, 2) as
a subgraph). Then Proposition 1.2(i) follows from putting the k-graph G given by Proposition 2.3
with t = 2 into Construction 2.2. To see why bk−1 � 2, first assume that a1 = 1. In this case bi = ai
for all i ∈ [k]. Since ak−1 � 2, we have bk−1 � 2. Second, assume that a1 � 2. If bk−1 = 1, then
b1 = · · · = bk−1 = 1 and consequently∑

i∈[k]
ai −

∑
i∈[k]

bi � (k− 1)(a1 − 1)> a1 − 1,

a contradiction. Thus bk−1 � 2.
Proposition 1.2(ii) follows from Construction 2.2 immediately because a1 = 1 implies that ai =

bi for i ∈ [k].

Proof of Corollary 1.4. The upper bounds in Corollary 1.4(i, ii) follow from Theorem 1.3 and
the results on the Turán numbers from Propositions 2.3 and 2.4. The lower bounds follow from
Proposition 1.2(ii) and the results on the codegree Turán numbers from Propositions 2.3 and 2.4.

3. Proof ideas and lemmas
Mycroft’s proofs [29] use the newly developed hypergraph blow-up lemma by Keevash [18].
Instead, our proofs include several new ingredients, which allow us to obtain a better bound via a
much shorter proof. First, to obtain exact results, we separate the proof into a non-extremal case
and an extremal case and deal with them separately. The proof of the non-extremal case utilizes
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the lattice-based absorbing method developed recently by the second author [12], which builds on
the absorbing method initiated by Rödl, Ruciński and Szemerédi [31]. In order to find an almost
perfect K-tiling, we use the so-called fractional homomorphic tiling, which was used by Buß, Hàn
and Schacht in [2], together with the weak regularity lemma for hypergraphs. Finally, we deal with
the extremal case by careful analysis.

Now we give our lemmas. Throughout the paper, we write α � β � γ to mean that we can
choose the positive constants α, β , γ from right to left. More precisely, there are increasing func-
tions f and g such that, given γ , whenever we choose some β � f (γ ) and α � g(β), the subsequent
statement holds. Hierarchies of other lengths are defined similarly.

Lemma 3.1 (Absorbing Lemma). Let k� 3 and K :=K(k)(a1, . . . , ak) such that a1 � · · ·� ak,
m= a1 + · · · + ak and gcd (K)= 1. Suppose γ ′ � γ � ρ, 1/m and n is sufficiently large. If H is an
n-vertex k-graph such that δk−1(H)� ρn, then there exists a vertex set W ⊆V(H) with |W|� γ n
such that for any vertex set U ⊆V(H) \W with |U|� γ ′n and |U| ∈mZ, both H[W] and
H[U ∪W] contain K-factors.

We sayH is ξ -extremal if there exists a set B⊆V(H) of �(1− σ (K))n� vertices such that e(B)�
ξ
(|B|
k
)
. In the following lemma we do not need the assumption gcd (K)= 1, instead we assume

that a1 < ak (which is necessary for gcd (K)= 1). Note that the a1 = ak (i.e. a1 = · · · = ak) case
has been solved in [9, Lemma 2.4].

Lemma 3.2 (K-tiling Lemma). Let k� 3 and K :=K(k)(a1, . . . , ak) such that a1 � · · ·� ak,
a1 < ak, m= a1 + · · · + ak. For any α, γ , ξ > 0 such that γ � 1/m and ξ � 5bk2γ , there exists
an integer n0 such that the following holds. If H is a k-graph on n> n0 vertices with δk−1(H)�
(a1/m− γ )n, then H has a K-tiling that covers all but at most αn vertices unless H is ξ -extremal.

Finally we give the extremal cases for Theorems 1.3, 1.5 and 1.6, respectively.

Theorem 3.3. Given k� 3, let K :=K(k)(a1, . . . , ak) such that a1 � · · ·� ak, m= a1 + · · · + ak
and gcd (K)= 1. Suppose 1/n� ξ � 1/m and n ∈mN. If H is an n-vertex k-graph which is
ξ -extremal and satisfies (1.3), then H contains a K-factor.

Theorem 3.4. Given k� 3, let 1/n� ξ � 1/k such that n ∈ (k+ 1)N. Suppose H is an n-vertex
k-graph that is ξ -extremal. Then H contains a K(k)(1, . . . , 1, 2)-factor if either of the following holds:

(i) δk−1(H)� n/(k+ 1)+ 1,
(ii) δk−1(H)� n/(k+ 1) and k− i �

( n′−i
k−1−i

)
for some 0� i� k− 2 and n′ = kn/(k+ 1)+ 1.

Theorem 3.5. Given k� 4 and s� 2, let 1/n� ξ � 1/s, 1/k such that n ∈ s(k− 1)N. Suppose H is
an n-vertex k-graph with

δk−1(H)� �s/2�
s(k− 1)

n.

If H is ξ -extremal, then H contains a Ck
s -factor.

Proofs of Theorems 1.3, 1.5 and 1.6. We first prove Theorem 1.3. Let k� 3 and K :=
K(k)(a1, . . . , ak) such that a1 � · · ·� ak,m= a1 + · · · + ak and gcd (K)= 1. Suppose 1/n� γ ′ �
γ � ξ � 1/m and n ∈mN. Suppose H is an n-vertex k-graph satisfying (1.3). If H is ξ -extremal,
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then H contains a K-factor by Theorem 3.3. Otherwise we apply Lemma 3.1 and find an absorb-
ing set W in V(H) of size at most γ n which has the absorbing property. Let H′ :=H \W and
n′ = |V(H′)|� (1− γ )n. Note thatm | n′. IfH′ is (ξ/2)-extremal, then there exists a vertex subset
B′ in V(H′) of order �(1− σ (K))n′� such that

eH′(B′)� ξ

2

(|B′|
k

)
.

Thus by adding to B′ at most n− n′ � γ n vertices, we get a set B of exactly �(1− σ (K))n� vertices
in V(H) with

eH(B)� eH′(B′)+ γ n ·
(
n− 1
k− 1

)
� ξ

2

(|B′|
k

)
+ kγ

(
n
k

)
� ξ

(|B|
k

)
because of the choice of γ . This means thatH is ξ -extremal, a contradiction. We thus assume that
H′ is not (ξ/2)-extremal. By applying Lemma 3.2 onH′ with ξ/2 and α = γ ′, we obtain a K-tiling
M that covers all but a set U of at most γ ′n vertices. By the absorbing property of W, H[W ∪U]
contains a K-factor, and together with the K-tilingM we obtain a K-factor of H.

The proof of Theorem 1.6 is the same except that we replace K with Ck
s and Theorem 3.3 with

Theorem 3.5 (here we apply Lemma 3.2 with the k-partite k-graph given by Proposition 6.4).
Similarly, after replacing Theorem 3.3 with Theorem 3.4, the arguments above prove the
upper bounds in Theorem 1.5. To see the lower bounds, we know δ(n,K(k)(1, . . . , 1, 2))�
n/(k+ 1) from (1.2). Let n′ = kn/(k+ 1)+ 1. If k− i | ( n′−i

k−1−i
)
for all 0� i� k− 2, then the

result of Keevash [19] implies that the Steiner system S(k− 1, k, n′) exists, in other words,
coex(n′,K(k)(1, . . . , 1, 2))= 1. Then the lower bound δ(n,K(k)(1, . . . , 1, 2))� n/(k+ 1)+ 1 fol-
lows from Proposition 1.2(ii).

4. Proof of the absorbing lemma
The following simple proposition will be useful.

Proposition 4.1. Let H be a k-graph. If δk−1(H)� xn for some 0� x� 1, then δ1(H)� x
(n−1
k−1

)
.

The following concepts were introduced by Lo andMarkström [26]. Given a k-graph F of order
m, β > 0, i ∈N, we say that two vertices u, v in a k-graph H on n vertices are (F, β , i)-reachable
(in H) if and only if there are at least βnim−1 (im− 1)-sets W such that both H[{u} ∪W] and
H[{v} ∪W] contain F-factors. A vertex setA is (F, β , i)-closed in H if every pair of vertices inA are
(F, β , i)-reachable inH. For x ∈V(H), let ÑF,β ,i(x) be the set of vertices that are (F, β , i)-reachable
to x in H.

We use the following lemma in [14] which gives us a partition P = {V1, . . . ,Vr} on H such
that, for any i ∈ [r], Vi is (F, β , 2c−1)-closed.

Lemma 4.2 (Lemma 6.3 of [14]). Let c, k,m� 2 be integers and suppose 1/n� β � α �
1/c, δ′, 1/m. Let F be an m-vertex k-graph. Assume an n-vertex k-graph H satisfies |ÑF,α,1(v)|� δ′n
for any v ∈V(H) and every set of c+ 1 vertices in V(H) contains two vertices that are (F, α, 1)-
reachable. Then we can find a partition P of V(H) into V1, . . . ,Vr with r�min{c, 1/δ′} such that,
for any i ∈ [r], |Vi|� (δ′ − α)n and Vi is (F, β , 2c−1)-closed in H.

Let P = {V1, . . . ,Vr} be a vertex partition of H. The index vector iP (S) ∈Zr of a subset S⊂
V with respect to P is the vector whose coordinates are the sizes of the intersections of S with
each part of P , that is, iP (S)Vi = |S∩Vi| for i ∈ [r]. We call a vector i ∈Zr an s-vector if all its
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coordinates are non-negative and their sum is equal to s. Given a k-graph F of orderm and μ > 0,
an m-vector v is called a μ-robust F-vector if there are at least μnm copies C of F in H satisfying
iP (V(C))= v. Let IμP ,F(H) be the set of allμ-robust F-vectors. For j ∈ [r], let uj ∈Zr be the jth unit
vector, namely, uj has 1 on the jth coordinate and 0 on other coordinates. A transferral is a vector
of form ui − uj for some distinct i, j ∈ [r]. Let Lμ

P ,F(H) be the lattice (i.e. the additive subgroup)
generated by IμP ,F(H).

To prove Lemma 3.1, our main tool is Lemma 4.2 together with the following results. The next
proposition is a simple counting result that follows from (1.4).

Proposition 4.3. Given integers k, r0, a1, . . . , ak ∈N, suppose that 1/n� μ � η, 1/k, 1/r0,
1/a1, . . . , 1/ak. Let H be a k-graph on n vertices with a vertex partition V1 ∪ · · · ∪Vr where
r� r0. Suppose i1, . . . , ik ∈ [r] and H contains at least ηnk edges e= {v1, . . . , vk} such that v1 ∈Vi1 ,
. . . , vk ∈Vik . Then H contains at least μna1+···+ak copies of K(k)(a1, . . . , ak) whose jth part is
contained in Vij for all j ∈ [k].

We use the following result in [15], which says that V(H) is closed when all the transferrals of
P are present. We state it in a less general form, namely, we omit the trash set V0 in its original
form.

Lemma 4.4 (Lemma 3.9 of [15]). Let i0, k, r0 > 0 be integers and let F be an m-vertex k-graph.
Suppose 1/n� 1/i′0, β ′ � ε, β ,μ such that i′0 ∈Z. Let H be a k-graph on n vertices with a partition
P = {V1, . . . ,Vr} such that r� r0 and for each j ∈ [r], |Vj|� εn and Vj is (F, β , i0)-closed in H. If
uj − ul ∈ Lμ

P ,F(H) for all 1� j< l� r, then V(H) is (F, β ′, i′0)-closed in H.

The following lemma of Lo and Markström provides the desired absorbing set when V(H) is
closed.

Lemma 4.5 (Lemma 1.1 of [26]). Let m and i be positive integers and let F be an m-vertex k-graph.
Suppose 1/n� γ ′ � β , 1/m, 1/i and H is an (F, β , i)-closed k-graph of order n. Then there exists
a vertex set W ⊆V(H) with |W|� βn such that for any vertex set U ⊆V(H) \W with |U|� γ ′n
and |U| ∈mZ, both H[W] and H[U ∪W] contain F-factors.

We need another lemma from [26].

Lemma 4.6 (Lemma 4.2 of [26]). Let k� 2 be an integer and F be an m-vertex k-partite k-graph.
Suppose 1/n� α � γ . For any k-graph H of order n, two vertices x, y ∈V(H) are (F, α, 1)-
reachable to each other if the number of (k− 1)-sets S ∈N(x)∩N(y) with |N(S)|� γ n is at least
γ 2( n

k−1
)
.

Proof of Lemma 3.1. Let k� 3 and K :=K(k)(a1, . . . , ak) such that a1 � · · ·� ak,m= a1 + · · · +
ak and gcd (K)= 1. Given ρ > 0, we select other parameters as follows.We pick 0< η, γ � ρ such
that (�1/ρ� + 1)ρ > 1+ (�1/ρ� + 1)2γ . When applying Proposition 4.3 with r0 = �1/ρ� and η,
we get 0< μ � η. When applying Lemma 4.6, we get 0< α � γ . When applying Lemma 4.2
with α, c= �1/ρ�, and δ′ = ρ − γ , we get β > 0. When applying Lemma 4.4 with i0 = 2�1/ρ�−1,
r0 = �1/ρ�, ε = ρ − 2γ , β , and μ, we get β ′ and an integer i′0. Finally, when applying Lemma 4.5
with β ′ and i′0, we get γ ′ > 0.

Let n be a sufficiently large integer and letH be a k-graph on n vertices such that δk−1(H)� ρn.
By Proposition 4.1, we have δ1(H)� ρ

(n−1
k−1

)
. First, for every v ∈V(H), let us bound |ÑK,α,1(v)|

from below. Given any (k− 1)-set S, we have |N(S)|� ρn because δk−1(H)� ρn. Then, by
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Lemma 4.6, for any distinct u, v ∈V(H), u ∈ ÑK,α,1(v) if |N(u)∩N(v)|� γ 2( n
k−1

)
. By double-

counting, we have ∑
S∈N(v)

|N(S)| < |ÑK,α,1(v)| · |N(v)| + n · γ 2
(

n
k− 1

)
.

Note that |N(v)|� δ1(H)� ρ
(n−1
k−1

)
. Together with γ � ρ, we get

|ÑK,α,1(v)| > ρn− γ 2nk

|N(v)| � (ρ − γ )n. (4.1)

Next we claim that every set of �1/ρ� + 1 vertices in V(H) contains two vertices that are
(K, α, 1)-reachable. Indeed, since δ1(H)� ρ

(n−1
k−1

)
, the degree sum of any �1/ρ� + 1 vertices is

at least (�1/ρ� + 1)ρ
(n−1
k−1

)
. By the definition of γ , we have

(�1/ρ� + 1)ρ
(
n− 1
k− 1

)
>

(
1+

(�1/ρ� + 1
2

)
γ

)(
n

k− 1

)
.

By the Inclusion–Exclusion Principle, there exist u, v ∈V(H) such that |N(u)∩N(v)|� γ
( n
k−1

)
,

so they are (K, α, 1)-reachable by Lemma 4.6.
By (4.1) and the above claim, we can apply Lemma 4.2 on H with the constants chosen

at the beginning of the proof. So we get a partition P = {V1, . . . ,Vr} of V(H) such that r�
min{�1/ρ�, 1/(ρ − γ )} = �1/ρ� and for any i ∈ [r], |Vi|� (ρ − 2γ )n andVi is (K, β , 2c−1)-closed
in H.

Nowwe show that ui − uj ∈ Lμ

P ,K(H) for all distinct i, j ∈ [r]. Without loss of generality, assume
i= 1 and j= 2. For any u ∈V1 and v ∈V2, since δk−1(H)� ρn, u and v are contained in at least(n−2
k−3

)
ρn/(k− 2) edges. Since there are

(k+r−1
r−1

)
k-vectors, by averaging, there exists a k-vector v

whose first two coordinates are positive and which is the index vector of at least

1(k
2
) · |V1||V2|

(n−2
k−3

)
ρn/(k− 2)(k+r−1

r−1
) > ηnk

edges (we divide by a factor of
(k
2
)
because an edge may be counted at most

(k
2
)
times because

of its intersections with V1 and V2). Note that we can write v= v1 + v2 + · · · + vk such that all
vi ∈ {u1, . . . , ur}. Without loss of generality, assume that v1 = u1 and v2 = u2.

We apply Proposition 4.3 with a1, a2, . . . , ak and conclude that there are at least μnm copies
of K inH with index vector v′ = a1u1 + a2u2 + a3v3 + · · · + akvk. We then apply Proposition 4.3
again with a2, a1, . . . , ak (with a1, a2 exchanged) and conclude that there are at least μnm copies
of K inH with index vector v′′ = a2u1 + a1u2 + a3v3 + · · · + akvk. By definition, we have v′, v′′ ∈
IμP ,K(H) and thus (a1 − a2)u1 + (a2 − a1)u2 = v′ − v′′ ∈ Lμ

P ,K(H). By repeating the arguments for
other permutations of a1, a2, . . . , ak, we get that wi := (ai+1 − ai)u1 + (ai − ai+1)u2 ∈ Lμ

P ,K(H)
for i= 1, 2, . . . , k− 1. Recall that since gcd (K)= 1, there exist �1, �2, . . . , �k−1 ∈Z such that

ell1(a2 − a1)+ �2(a3 − a2)+ · · · + �k−1(ak − ak−1)= 1.

Hence

u1 − u2 = �1w1 + �2w2 + · · · + �k−1wk−1 ∈ Lμ

P ,K(H)

and we are done.
Since ui − uj ∈ Lμ

P ,K(H) for all distinct i, j ∈ [r], by Lemma 4.4, we conclude that V(H) is
(K, β ′, i′0)-closed. Thus the desired absorbing set is provided by Lemma 4.5.
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5. Proof of the almost perfect tiling lemma
For integers k� 2 and 1� a1 � a2 � · · ·� ak with a1 < ak, let K :=K(k)(a1, . . . , ak). Let m=
|V(K)| = a1 + · · · + ak and σ (K)= a1/m. Given an n-vertex k-graph H such that n is sufficiently
large and δk−1(H)� (σ (K)− o(1))n, we will show that either H has an almost perfect K-tiling, or
H is ξ -extremal for some ξ > 0. Note that it suffices to consider the case when a2 = a3 = · · · =
ak. In fact, let K ′ :=K(k)((k− 1)a1,m− a1, . . . ,m− a1) and note that σ (K)= σ (K ′)= a1/m.
Moreover, since K ′ has a perfect K-tiling, it suffices to find an almost perfect K′-tiling in H.

We thus consider K ′ :=K(k)(a, b, . . . , b) with a< b and call the vertex class of size a small, and
those of size b large. Let m= a+ (k− 1)b. An α-deficient K′-tiling of an n-vertex k-graph H is a
K ′-tiling of H that covers at least (1− α)n vertices. The following lemma allows a small number
of (k− 1)-subsets of V(H) to have low degree, and may find applications in other problems (e.g.
in reduced hypergraphs after we apply the regularity lemma).

Lemma 5.1. Fix integers k� 2 and a< b, 0< γ � 1/m and let K ′ :=K(k)(a, b, . . . , b). For any
α > 0 and ξ � 5bk2γ , there exist ε > 0 and an integer n0 such that the following holds. Suppose H is
a k-graph on n> n0 vertices with deg (S)� (σ (K ′)− γ )n for all but at most εnk−1 sets S ∈ (V(H)

k−1
)
,

then H has an α-deficient K′-tiling or H is ξ -extremal.

We will prove Lemma 5.1 by using the Weak Regularity Lemma for hypergraphs and the so-
called fractional homomorphic tilings (introduced by Buß, Hàn and Schacht [2]).

5.1 Weak regularity lemma
Let H = (V , E) be a k-graph and let A1, . . . ,Ak be mutually disjoint non-empty subsets of V . We
define e(A1, . . . ,Ak) to be the number of edges with one vertex in each Ai, i ∈ [k], and the density
of H with respect to (A1, . . . ,Ak) as

d(A1, . . . ,Ak)= e(A1, . . . ,Ak)
|A1| · · · |Ak| .

Given ε > 0 and d� 0, we say a k-tuple (V1, . . . ,Vk) of mutually disjoint subsets V1, . . . ,Vk ⊆V
is (ε, d)-regular if

|d(A1, . . . ,Ak)− d|� ε

for all k-tuples of subsets Ai ⊆Vi, i ∈ [k], satisfying |Ai|� ε|Vi|. We say (V1, . . . ,Vk) is ε-regular
if it is (ε, d)-regular for some d� 0. It is immediate from the definition that in an (ε, d)-regular
k-tuple (V1, . . . ,Vk), if V ′

i ⊂Vi has size |V ′
i |� c|Vi| for some c� ε, then (V ′

1, . . . ,V
′
k) is (ε/c, d)-

regular.
The Weak Regularity Lemma (for hypergraphs) is a straightforward extension of Szemerédi’s

regularity lemma for graphs [32].

Theorem 5.2 (Weak Regularity Lemma). Given t0 � 0 and ε > 0, there exist T0 = T0(t0, ε) and
n0 = n0(t0, ε) such that, for every k-graph H = (V , E) on n> n0 vertices, there exists a partition
V =V0 ∪V1 ∪ · · · ∪Vt such that:

(i) t0 � t� T0,
(ii) |V1| = |V2| = · · · = |Vt| and |V0|� εn,
(iii) for all but at most ε

(t
k
)
k-subsets {i1, . . . , ik} ⊂ [t], the k-tuple (Vi1 , . . . ,Vik) is ε-regular.

The partition given in Theorem 5.2 is called an ε-regular partition of H. Given an ε-regular
partition Q of H and d� 0, we refer to Vi, i ∈ [t] as clusters and define the cluster hypergraph
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R= R(ε, d,Q) with vertex set [t] in which {i1, . . . , ik} ⊂ [t] is an edge if and only if (Vi1 , . . . ,Vik)
is ε-regular and d(Vi1 , . . . ,Vik)� d.

The following corollary shows that the cluster hypergraph inherits the minimum codegree of
the original hypergraph. The proof is standard and very similar to that of [11, Proposition 16], so
we omit the proof.

Corollary 5.3 ([11]). Suppose 1/t0 � ε � c, d, 1/k. Then there exist T and n1 such that the fol-
lowing holds. Let H be a k-graph on n> n1 vertices such that degH (S)� cn for all but at most
εnk−1 (k− 1)-sets S. Then H has an ε-regular partitionQ= {V0,V1, . . . ,Vt} with t0 � t� T such
that in the cluster hypergraph R= R(ε, d,Q), all but at most

√
εtk−1 (k− 1)-subsets S of [t] satisfy

degR (S)� (c− d − 5
√

ε)t.

5.2 Fractional hom(K’)-tiling
Let K ′ :=K(k)(a, b, . . . , b) with a< b. To obtain a large K′-tiling in the hypergraphH, we consider
weighted homomorphisms from K ′ into the cluster hypergraph R. For this purpose, we extend a
definition introduced by Buß, Hàn and Schacht [2] for 3-graphs.3

Definition. Given a k-graph H, a function h :V(H)× E(H)→ [0, 1] is called a fractional
hom (K ′)-tiling of H if

(1) h(v, e)= 0 if v �∈ e,
(2) h(v)= ∑

e∈E(H) h(v, e)� 1,
(3) for each e ∈ E(H) there exists a labelling e= v1 · · · vk such that

h(v1, e)� · · ·� h(vk, e) and
h(v1, e)
a1

� · · ·� h(vk, e)
ak

By hmin we denote the smallest non-zero value of h(v, e) (and set hmin = ∞ if h≡ 0). For e=
v1 · · · vk, we write h(v1, . . . , vk)= (h(v1, e), . . . , h(vk, e)) and h(e)= ∑

i∈[k] h(vi, e). The sum over
all values is the weight w(h) of h :

w(h)=
∑

(v,e)∈V(H)×E(H)
h(v, e).

Assume that V(K ′)=A1 ∪ · · · ∪Ak with |A1| = a and |A2| = · · · = |Ak| = b, and m= a+
(k− 1)b.

Fact 5.4. There is a fractional hom (K′)-tiling of K ′ such that w(h)=m and hmin = b1−k.

Proof. For each edge e= v1 · · · vk of K ′ with vi ∈Ai for i ∈ [k], we assign weight

h(v1, . . . , vk)=
(

1
bk−1 ,

1
abk−2 , . . . ,

1
abk−2

)
.

Then h(e)=m/(abk−1) and consequently w(h)=m.

In the rest of the proof, we will refer to the weight assignment in Fact 5.4 as the standard weights.
Let K̂ ′ be a k-graph obtained from K′ by adding k− 1 new vertices and a new edge that consists

of the k− 1 new vertices and a vertex from a large vertex class of K′.

3As noted by a referee, we could also use Farkas’s lemma here (see [3]).
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Proposition 5.5. There is a fractional hom (K ′)-tiling of K̂′ such that w(h)�m+ 1/(abk−1) and
hmin = b1−k.

Proof. Assume V(K ′)=A1 ∪ · · · ∪Ak with |A1| = a and |Ai| = b for 2� i� k. Let u1, . . . , uk−1
be the vertices of K̂ ′ not inV(K ′) and let e= {v, u1, . . . , uk−1} be the edge of K̂ ′ not in E(K ′), where
v ∈Aj for some j> 1. Fix any edge e1 = x1 · · · xk of K ′ with xi ∈Ai for i ∈ [k] such that xj = v. We
assign the weight

h(v, u1, . . . , uk−1)=
(

1
abk−2 ,

1
a2bk−3 , . . . ,

1
a2bk−3

)
.

to e and the standard weight to all the edges of K ′ except for e1. Moreover, set e1 as unweighted.
Since

∑
e′∈E(K′) h(e′)=m−m/(abk−1) and h(e)=m/(a2bk−2) , we have hmin = b1−k and

w(h)=m− m
abk−1 + m

a2bk−2 =m+ 1
abk−1

m(b− a)
a

�m+ 1
abk−1 .

The following proposition says that a fractional hom (K′)-tiling in the cluster hypergraph can
be converted to an integer K′-tiling in the original hypergraph. It is almost the same as [15,
Proposition 4.4], which covers the k= 3 case, so we omit its proof.

Proposition 5.6. Suppose ε, φ > 0, d� 2ε/φ and t > 0 is an integer, and n is sufficiently large.
Let H be a k-graph on n vertices with an (ε, t)-regular partition Q and a cluster hypergraph R=
R(ε, d,Q). Suppose there is a fractional hom (K′)-tiling h of R with hmin � φ. Then there exists a
K ′-tiling of H that covers at least (1− 2bε/φ)w(h)n/t vertices.

5.3 Proof of the K′-tiling lemma (lemma 5.1)
Proposition 5.7. For all 0< ρ � 1/2 and all ξ , β , δ, ε > 0 the following holds. Suppose there exists
an n0 such that, for every k-graph H on n> n0 vertices satisfying deg (S)� ρn for all but at most
εnk−1 (k− 1)-sets S, either H has a β-deficient K ′-tiling or H is ξ -extremal. Then every k-graph
H′ on n′ > n0 vertices with deg (S)� (ρ − δ)n′ for all but at most ε(n′)k−1 (k− 1)-sets S has a
(β + 2δm)-deficient K ′-tiling or is ξ -extremal.

Proof. Suppose we are given a k-graph H′ on n′ > n0 vertices with deg (S)� (ρ − δ)n′ for all but
at most ε(n′)k−1 (k− 1)-sets S. By adding a set A of 2δn′ new vertices to H′ and adding to E(H)
all k-subsets of V(H′)∪A that intersect A, we obtain a new hypergraph H on n= n′ + 2δn′ ver-
tices. All (k− 1)-subsets of V(H) that intersect A have degree n− k+ 1. All but at most ε(n′)k−1

(k− 1)-subsets S of V(H′) satisfy

deg (S)� (ρ − δ)n′ + 2δn′ = ρn′ + δn′ = ρn− 2ρδn′ + δn′ � ρn

because ρ � 1/2. By assumption, either H has a β-deficient K ′-tiling, or H is ξ -extremal. If H
has a β-deficient K ′-tiling, then by removing all the K′-copies that intersect A, we obtain a
(β + 2δm)-deficient K′-tiling of H′. Otherwise H is ξ -extremal, namely, there exists a set B⊆
V(H) of �(1− σ (K ′))n� vertices such that e(B)� ξ

(|B|
k
)
. We can assume that A∩ B= ∅ – other-

wise we swap the vertices in A∩ B with the same number of vertices in V \ (A∪ B) and e(B) will
not increase. By averaging, there exists a subset B′ ⊆ B⊆V(H′) of order exactly �(1− σ (K ′))n′�
such that e(B′)� ξ

(|B′|
k

)
. Thus, H′ is ξ -extremal.

Now we are ready to prove Lemma 5.1.
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Proof of Lemma 5.1. Fix positive integers a< b and k� 2, and a real number 0< γ � 1/m.
Let m := a+ (k− 1)b and σ := σ (K ′)= a/m. Trivially the lemma works when α � 1 or ξ � 1.
Assume to the contrary that there exist α ∈ (0, 1), ξ ∈ [5bk2γ , 1) such that for all ε0 > 0 and inte-
gers n0, Lemma 5.1 fails, namely, there is a k-graph H on n> n0 vertices which satisfies deg (S)�
(σ − γ )n for all but at most ε0nk−1 (k− 1)-sets S but which does not contain an α-deficient K′-
tiling and is not ξ -extremal. Let � be the set of such pairs (α, ξ ). Define f (α, ξ )= α + γα2ξ , and
let f0 be the supremum of f (α, ξ ) among all (a, ξ ) ∈ �.

Let η = γ 2f 20 /32. By the definition of f0, there exists a pair (α0, ξ0) ∈ � such that f0 −
η � f (α0, ξ0)� f0. Moreover, since 1+ γα0ξ0 � 2, we have that α0 � (f0 − η)/2� f0/4. Let d =
(γα0)2/(4m). Since f (α0, ξ0)� f0 − η, we have

f (α0 + (γα0)2, ξ0 − 5d)> α0 + (γα0)2 + γα2
0(ξ0 − 5d)� f0 − η + γα2

0(γ − 5d)� f0

by d� γ 2 � γ /10 and η = γ 2f 20 /32� γ 2α2
0/2. This means that (α0 + (γα0)2, ξ0 − 5d) /∈ �, that

is, there exist ε∗ > 0 and n∗ ∈N such that, for every k-graph H on n> n∗ vertices satisfying
deg (S)� (σ − γ )n for all but at most ε∗nk−1 (k− 1)-sets S, H has an (α0 + (γα0)2)-deficient K ′-
tiling or is (ξ0 − 5d)-extremal. Since σ < 1/k� 1/2, we can apply Proposition 5.7 with parameters
δ = 2d and

√
ε and derive that

(†) for every k-graph H′ on n> n∗ vertices satisfying deg (S)� (σ − γ − 2d)n for all but at
most ε∗nk−1 (k− 1)-sets S, either H′ has an (α0 + (γα0)2 + 4dm)-deficient K′-tiling, or it
is (ξ0 − 5d)-extremal.

Let ε > 0 be such that ε �min{ε2∗, dk, (1/k− σ )/3, d/(2bk)} and ε � c, d, 1/k as required by
Corollary 5.3. Let n1 and T be the parameters returned by Corollary 5.3 with inputs c= σ − γ ,
ε, d, k and sufficiently large t0 (in particular, t0 > n∗).

Let H be a k-graph on n� n1 vertices which satisfies deg (S)� (σ − γ )n for all but at most
εnk−1 (k− 1)-sets S. Our goal is to show that either H contains an α0-deficient K ′-tiling or H
is ξ0-extremal. This implies that (α0, ξ0) /∈ �, contradicting the definition of (α0, ξ0). Let us apply
Corollary 5.3 toH with the constants chosen above and obtain a cluster hypergraph R= R(ε, d,Q)
on t� t0 vertices such that the number of (k− 1)-subsets S⊆V(R) violating

degR (S)� (σ − γ − d − 5
√

ε)t� (σ − γ − 2d)t

is at most
√

εtk−1 � ε∗tk−1. Let N be the number of vertices in each cluster except V0 and thus
(1− ε)(n/t)�N � n/t.

Note that the reduced k-graph R satisfies the assumption of (†). If R is (ξ0 − 5d)-extremal,
then there exists a vertex set B⊆V(R) of order �(1− σ )t� such that e(B)� (ξ0 − 5d)

(|B|
k
)
. Let

B′ ⊆V(H) be the union of the clusters in B. By regularity, we have

e(B′)� e(B) ·Nk +
(
t
k

)
· d ·Nk + ε

(
t
k

)
·Nk + t

(
N
2

)(
n− 2
k− 2

)
,

where the right-hand side bounds the number of edges from regular k-tuples with high density,
edges from regular k-tuples with low density, edges from irregular k-tuples and edges that lie in at
most k− 1 clusters. Since e(B)� (ξ0 − 5d)

(|B|
k
)
and 1/t� ε, we get

e(B′)� (ξ0 − 5d)
(|B|

k

)
Nk + (d + ε)

(
t
k

)(
n
t

)k
+ t

(
n/t
2

)(
n− 2
k− 2

)
� (ξ0 − 5d)

(|B′|
k

)
+ (d + 2ε)

(
n
k

)
.
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Note that

|B′| = �(1− σ )t�N � (1− σ )(1− ε)n−N � (1− σ − 2ε)n.

On the other hand, |B′|� (1− σ )n implies that |B′|� �(1− σ )n�. By adding at most 2εn vertices
of V \ B′ to B′, we obtain a subset B′′ ⊆V(H) of size exactly �(1− σ )n�, with e(B′′)� e(B′)+
2εn

(n−1
k−1

)
� e(B′)+ 2kε

(n
k
)
. Since σ < 1/k and ε � (1/k− σ )/3, we have(|B′|

k

)
�

(
(1− σ − 2ε)n

k

)
� (1− σ − 2ε)k

(
n
k

)
−O(nk−1)�

(
1− 1

k

)k(n
k

)
.

Since (1− 1/k)k � 1/4 for k� 2, it follows that(|B′|
k

)
� 1

4

(
n
k

)
,

and consequently

e(B′′)� (ξ0 − 5d)
(|B′|

k

)
+ (d + 2ε + 2kε)

(
n
k

)
� (ξ0 − 5d + 4(d + 2ε + 2kε))

(|B′|
k

)
� ξ0

(|B′|
k

)
by ε � dk. Hence H is ξ0-extremal, and we are done.

We thus assume that R is not (ξ0 − 5d)-extremal. By (†), R has an (α0 + (γα0)2 + 4dm)-
deficient K′-tiling. LetK be a largest K′-tiling of R, and letU be the set of vertices in R not covered
by K. Then |U|� (α0 + (γα0)2 + 4dm)t. Let q := |K|.

Now assume that H contains no α0-deficient K ′-tiling. The following proposition shows that
there is no fractional hom (K ′)-tiling of R whose weight is substantially larger than (1− α0)t.

Claim 5.8. If h is a fractional hom (K ′)-tiling of R with hmin � b1−k, then w(h)� (1− α0 +
2bkε)t� qm+ 3(γα0)2t.

Proof. We first observe that H contains an α0-deficient K ′-tiling if there is a fractional
hom (K ′)-tiling h of R with hmin � b1−k and w(h)� (1− α0 + 2bkε)t. This indeed follows from
Proposition 5.6 because 2bkε � d = (γα0)2/(4m)< α0 and(

1− 2bε
b1−k

)
w(h)

n
t
� (1− 2bkε)(1− α0 + 2bkε)t

n
t

> (1− α0)n.

It remains to show that qm+ 3(γα0)2t� (1− α0 + 2bkε)t. Since |U|� (α0 + (γα0)2 + 4dm)t
and |U| + qm= t, we have

qm+ 3(γα0)2t� t − (α0 + (γα0)2 + 4dm)t + 3(γα0)2t� (1− α0 + 2bkε)t

because 4dm= (γα0)2 and 2bkε < (γα0)2.

We claim the following for |U|:

|U|� α0
2
t and e(U)� γ

k

(|U|
k

)
. (5.1)

Indeed, if |U| < α0t/2, then by applying Fact 5.4 to each member of K, we obtain a fractional
hom (K ′)-tiling h of R with hmin = b1−k and weight w(h)= (1− α0/2)t > (1− α0 + 2bkε)t. This
contradicts Claim 5.8. If e(U)� γ

(|U|
k

)
/k, then since |U|� α0t/2 and t is sufficiently large, we can

apply (1.4) to find a copy of K ′ in U, contradicting the maximality of K.
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Let D be the set of vertices v ∈V(R) \U such that∣∣∣∣N(v)∩
(

U
k− 1

)∣∣∣∣� γ

( |U|
k− 1

)
.

LetK1 ⊆K be the set of copies of K′ that contain at least a+ 1 vertices fromD. LetK2 ⊆K be the
set of copies of K ′ that contain exactly a vertices fromD. LetK3 ⊆K be the set of copies of K ′ that
contain at most a− 1 vertices from D.

Claim 5.9.

|K1| < γ

m(k− 1)2
|U| < γ

m(k− 1)2
t.

Proof. Suppose instead that

|K1|� γ

m(k− 1)2
|U|.

Let K1, . . . ,K� be distinct members of K1, where

� =
⌈

γ |U|
m(k− 1)2

⌉
.

For each j� �, since |V(Kj)∩D|� a+ 1, we can find a vertex vj ∈D from a large vertex class of
Kj. Since

γ

( |U|
k− 1

)
>

γ |U|
m(k− 1)

(|U| − 1
k− 2

)
> (� − 1)(k− 1)

(|U| − 1
k− 2

)
,

we can greedily pick disjoint (k− 1)-sets S1, . . . , S� from U such that Sj ∈N(vj). Thus, for each
j� �, by Proposition 5.5, we get a fractional hom (K ′)-tiling hj of R[V(Kj)∪ Sj] such that w(hj)�
m+ 1/(abk−1) and hjmin � b1−k. We assign the standard weight to other members of K and thus
obtain a fractional hom (K′)-tiling h of R with hmin � b1−k and weight

w(h)� qm+ γ |U|
m(k− 1)2

1
abk−1 � qm+ γα0t

2m(k− 1)2abk−1 > qm+ 3(γα0)2t,

where we used (5.1) and that γ is small. This contradicts Claim 5.8.

We now find an upper bound for |K3|. First, by the definitions of K1,K2,K3 and e(U)�
γ
(|U|
k

)
/k, we have∑
S∈( U

k−1)

deg (S)� (m|K1| + a|K2| + (a− 1)|K3|)
( |U|
k− 1

)
+ qmγ

( |U|
k− 1

)
+ γ

(|U|
k

)

� aq
( |U|
k− 1

)
+ ((m− a)|K1| − |K3|)

( |U|
k− 1

)
+ γ

( |U|
k− 1

)
t,

where the second inequality follows from |K1| + |K2| + |K3| = q and qm+ |U| = t. Second, the
degree condition of R implies that∑

S∈( U
k−1)

deg (S)�
(( |U|

k− 1

)
− √

εtk−1
)
(σ − γ − 2d)t.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S096354831900021X
Downloaded from https://www.cambridge.org/core. Emory University, on 11 Jun 2020 at 22:09:02, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S096354831900021X
https://www.cambridge.org/core


856 W. Gao, J. Han and Y. Zhao

Since |U|� α0t/2 and ε � dk � (γα0)2k, we have

√
εtk−1 � (γα0)k

(
2|U|
α0

)k−1
� γ

( |U|
k− 1

)
as γ � 1/(2k) and |U| is sufficiently large. It follows that∑

S∈( U
k−1)

deg (S)�
(( |U|

k− 1

)
− γ

( |U|
k− 1

))(
a
m

− (γ + 2d)
)
t�

( |U|
k− 1

)
aq− 2γ

( |U|
k− 1

)
t,

where the last inequality holds because 2d� γ (m− a)/m and qm� t. Comparing the upper and
lower bounds for

∑
S∈( U

k−1)
deg (S) gives

|K3|� (m− a)|K1| + 3γ t.
By Claim 5.9, it follows that

|K1| + |K3|� |K1| + (m− a)|K1| + 3γ t� 4γ t. (5.2)
Thus we have |K2|� q− 4γ t.

Let A be the union of U and the vertices covered by K2 but not in D. Then

|A|� |U| + (m− a)(q− 4γ t)� (1− σ )t − 4(m− a)γ t�
(
1− 1

k

)
t (5.3)

because γ is small. We claim that we can find a set M of �′ disjoint edges in A, where �′ =
�γ |U|/(km2)�. Indeed, by deleting some vertices or adding at most 4(m− a)γ t vertices from
V(R) \A to A, we can obtain a set A′ of size exactly �(1− σ )t�. Since R is not (ξ0 − 5d)-extremal,
we have that e(A′)� (ξ0 − 5d)

(|A′|
k

)
. If |A| > �(1− σ )t�, then as

e(A′)� (ξ0 − 5d)
(|A′|

k

)
> (�′ − 1)k

(|A′| − 1
k− 1

)
,

we can find the desiredM in A′ ⊆A. Otherwise, for |A|� �(1− σ )t�, by (5.3), it follows that
e(A)� e(A′)− 4(m− a)γ t ·

(|A| − 1
k− 1

)
� (ξ0 − 5d)

(|A′|
k

)
− 4(m− a)γ

|A|
1− 1/k

(|A| − 1
k− 1

)
� (ξ0 − 5d − 4bk2γ )

(|A|
k

)
> γ

(|A|
k

)
> (�′ − 1)k

(|A| − 1
k− 1

)
because ξ0 � 5bk2γ and 5d < γ . Thus we can greedily find the desiredM in A.

Let K1, . . . ,Kp denote the members of K2 that intersect the edges of M, where p� k�′. For
each j ∈ [p], suppose V(Kj)∩D= {vj,1, . . . , vj,a}. For each j ∈ [p] and i ∈ [a], we claim that we
can greedily find disjoint copies K ′

j,i of complete (k− 1)-partite (k− 1)-graphs K(k−1)(b, . . . , b)
in N(vj,i)∩

( U
k−1

)
. Indeed, during the process, at most pa(k− 1)b+ k�′ vertices of U are occupied

and the number of (k− 1)-subsets of U intersecting these vertices is at most

(pa(k− 1)b+ k�′)
(|U| − 1

k− 2

)
� amk�′

(|U| − 1
k− 2

)
� k− 1

k
γ

( |U|
k− 1

)
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because �′ � γ |U|/(km2)+ 1, ak<m, and |U| is sufficiently large. Thus, since∣∣∣∣N(vj,i)∩
(

U
k− 1

)∣∣∣∣ − k− 1
k

γ

( |U|
k− 1

)
� γ

( |U|
k− 1

)
− k− 1

k
γ

( |U|
k− 1

)
= γ

k

( |U|
k− 1

)
,

we can apply (1.4) to find the desired K ′
j,i for all vj,i.

For each j ∈ [p] and i ∈ [a], R[V(K ′
j,i)∪ {vj,i}] spans a copy of K(k)(1, b, . . . , b). We now assign

the weight (1/bk−1, 1/(abk−2), . . . , 1/(abk−2)) to each edge of this K(k)(1, b, . . . , b) such that the
weight of vj,i is 1/bk−1. The total weight of R[V(K ′

j,i)∪ {vj,i}] is thus 1+ b(k− 1)/a=m/a. Next
we assign the standard weight to each member of K \ {K1, . . . ,Kp}. Finally, we assign weight
(1, . . . , 1) to all the edges of M. This gives a fractional hom (K′)-tiling h with hmin = b1−k and
weight

w(h)= pa
m
a

+ (q− p)m+ k�′ � qm+ γ |U|
m2 � qm+ γα0t

2m2 > qm+ 3(γα0)2t,

where we used (5.1) and that the assumption γ is small. This contradicts Claim 5.8 and completes
our proof.

6. The extremal case
In this section we prove Theorems 3.3, 3.4 and 3.5.We first give some notation. Given two disjoint
vertex sets X and Y and two integers i, j� 0, a set S⊂ X ∪ Y is called an XiYj-set if |S∩ X| = i
and |S∩ Y| = j. When X, Y are two disjoint subsets of V(H) and i+ j= k, we let H(XiYj) denote
the family of all edges of H that are XiYj-sets, and let eH(XiYj)= |H(XiYj)| (the subscript may
be omitted if it is clear from the context). We use eH(XiYk−i) to denote the number of non-edges
among XiYk−i-sets. Given a set L⊆ X ∪ Y with |L∩ X| = l1 � i and |L∩ Y| = l2 � k− i, we define
deg (L, XiYk−i) as the number of edges in H(XiYk−i) that contain L, and

deg(L, XiYk−i)=
(|X| − l1

i− l1

)( |Y| − l2
k− i− l2

)
− deg (L, XiYk−i).

Our earlier notation deg (S, R) may be viewed as deg (S, S|S|(R \ S)k−|S|).

6.1 Tools and a general set-up
The following lemma deals with a special (ideal) case of Theorem 3.3. We postpone its proof to
the end of this section.

Lemma 6.1. Let K :=K(k)(a1, . . . , ak) with m := a1 + · · · + ak. Suppose 1/n� ρ � 1/m and n ∈
mZ. Suppose H is a k-graph on n vertices with a partition of V(H)= X ∪ Y such that a1|Y| =
(m− a1)|X|. Furthermore, assume that

• for every vertex v ∈ X, deg(v, Y)� ρ
( |Y|
k−1

)
,

• for every vertex u ∈ Y, deg(u, XYk−1)� ρ
( |Y|
k−1

)
.

Then H contains a K-factor.

We use the following simple fact in the proof.
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Fact 6.2. Let t,m, n ∈N and F be anm-vertex k-partite k-graph. LetH be an n-vertex k-graph with
maximum vertex degree � and e(H)> (t − 1)m� + ex(n′, F), where n′ = n− (t − 1)m. Then H
contains an F-tiling of size t.

Proof. Assume to the contrary that the largest F-tilingM in H has size at most t − 1. Let V ′ be a
set of (t − 1)m vertices containing V(M). Therefore, V(H) \V ′ spans no copy of F and thus spans
at most ex(n′, F) edges. So we have e(H)� (t − 1)m� + ex(n′, F), a contradiction.

Now we start with a general set-up and prove some estimates. Assume that k� 3, a1 � · · ·� ak
andm= a1 + · · · + ak. Suppose 1/n� ξ � 1/m such that n ∈mN. Let H be a k-graph on V of n
vertices such that δk−1(H)� a1n/m. Furthermore, assume that there is a set B⊆V(H), such that
|B| = (m− a1)n/m and e(B)� ξ

(|B|
k
)
. LetA=V \ B. Then |A| = a1n/m. Note that we only require

δk−1(H)� a1n/m, so we can use the estimates in all proofs.
Let ε1 = ξ 1/7, ε2 = ξ 1/3 and ε3 = 2ξ 2/3. We now define

A′ :=
{
v ∈V : deg(v, B)� ε2

( |B|
k− 1

)}
,

B′ :=
{
v ∈V : deg (v, B)� ε1

( |B|
k− 1

)}
, V0 :=V \ (A′ ∪ B′).

Claim 6.3. {|A \A′|, |B \ B′|, |A′ \A|, |B′ \ B|}� ε3|B| and |V0|� 2ε3|B|.

Proof. First assume that |B \ B′| > ε3|B|. By the definition of B′, we get that

e(B)>
1
k
ε1

( |B|
k− 1

)
· ε3|B| > 2ξ

(|B|
k

)
,

which contradicts e(B)� ξ
(|B|
k
)
.

Second, assume that |A \A′| > ε3|B|. Then by the definition of A′, for any vertex v /∈A′, we
have that deg(v, B)> ε2

( |B|
k−1

)
. So we get

e(ABk−1)> ε3|B| · ε2
( |B|
k− 1

)
= 2ξ |B|

( |B|
k− 1

)
.

Together with e(B)� ξ
(|B|
k
)
, this implies that∑

S∈( B
k−1)

deg(S)= ke(B)+ e(ABk−1)

> k(1− ξ )
(|B|

k

)
+ 2ξ |B|

( |B|
k− 1

)
= ((1− ξ )(|B| − k+ 1)+ 2ξ |B|)

( |B|
k− 1

)
> |B|

( |B|
k− 1

)
.

where the last inequality holds because n is large enough. By the pigeonhole principle, there exists
a set S ∈ ( B

k−1
)
, such that deg(S)> |B| = (m− a1)n/m, contradicting δk−1(H)� a1n/m.
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Consequently

|A′ \A| = |A′ ∩ B|� |B \ B′|� ε3|B|,
|B′ \ B| = |A∩ B′|� |A \A′|� ε3|B|,

|V0|� |A \A′| + |B \ B′|� ε3|B| + ε3|B| = 2ε3|B|.

Note that by |B \ B′|� ε3|B| we have

deg (w, B′)� deg (w, B)− |B \ B′|
( |B|
k− 2

)
� ε1

2

( |B′|
k− 1

)
for any vertex w ∈V0, (6.1)

and by |B′ \ B|� ε3|B| we have

deg(v, B′)� deg(v, B)+ |B′ \ B|
( |B′|
k− 2

)
� 2ε2

( |B′|
k− 1

)
for any vertex v ∈A′ (6.2)

and

deg (v, B′)� deg (v, B)+ |B′ \ B|
( |B′|
k− 2

)
� 2ε1

( |B′|
k− 1

)
for any vertex v ∈ B′. (6.3)

Moreover, for any (k− 1)-set S⊆ B′, by

deg (S,A′)+ deg (S, B′)+ deg (S,V0)� δk−1(H) and deg(S,A′)= |A′| − deg (S,A′),
we have

deg(S,A′)� |A′| − δk−1(H)+ deg (S, B′)+ deg (S,V0)� deg (S, B′)+ 3ε3|B|,
where we used

deg (S,V0)� |V0|� 2ε3|B|, |A′|� a1
m
n+ ε3|B| and δk−1(H)� a1

m
n.

Furthermore, for any v ∈ B′, by (6.3), we have∑
S : v∈S∈( B′

k−1)

deg(S, B′)= (k− 1) deg (v, B′)� 2(k− 1)ε1
( |B′|
k− 1

)
.

Putting these together gives that, for any v ∈ B′,

deg(v,A′B′k−1)=
∑
S

deg(S,A′)�
∑
S

deg(S, B′)+ 3ε3|B|
(|B′| − 1

k− 2

)
� 2kε1

( |B′|
k− 1

)
, (6.4)

where the sums are on S such that v ∈ S ∈ ( B′
k−1

)
. Let B be the set of (k− 1)-sets S⊆ B′ such that

degH(S,A′)>
√
2ε2|A′|. By (6.2), we have that eH(A′B′k−1)� 2ε2|A′|( |B′|

k−1
)
and thus

|B|�√
2ε2

( |B′|
k− 1

)
. (6.5)

In all three proofs we will define ε1, ε2, ε3 and A′, B′,V0 in the same way and thus Claim 6.3
and (6.1)–(6.5) hold.

6.2 Proof of Theorem 3.3
Assume that k� 3, a1 � · · ·� ak and m= a1 + · · · + ak. Let K :=K(k)(a1, . . . , ak) such that
gcd (K)= 1. Suppose 1/n� ξ � 1/m such that n ∈mN. Assume H is a ξ -extremal k-graph on
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n vertices that satisfies (1.3). Let B be a set of (m− a1)n/m vertices such that e(B)� ξ
(|B|
k
)
. Let

A=V \ B. Define ε1, ε2, ε3,A′, B′,V0 as in Section 1.1 and thus Claim 6.3 and (6.1)–(6.5) hold.
In the following proof we will build four vertex-disjoint K-tilings K1,K2,K3,K4, whose union

is a K-factor ofH. The ideal case is when (m− a1)|A′| = a1|B′| and V0 = ∅ – in this case we apply
Lemma 6.1 to obtain a K-factor of H such that each copy of K has a1 vertices in A′ and m− a1
vertices in B′. So the purpose of theK-tilingsK1,K2,K3 is to cover the vertices ofV0 and adjust the
sizes of A′ and B′ so that we can apply Lemma 6.1 (and obtain K4) after K1,K2,K3 are removed.
More precisely, we cover the vertices of V0 by K2 and let

q := |B′| − |B| = a1
m
n− |A′| − |V0|

denote the discrepancy between the current and ideal sizes of B′. If q> 0, then we apply the mini-
mum codegree condition to find copies of K from B′. Since removing a copy of K from B′ reduces
the discrepancy by a1, we cannot reduce the discrepancy to zero unless a1 divides q. Therefore
we remove enough copies of K from B′ (denoted by K1) such that the discrepancy is less than or
equal to−C. This allows us to apply the definition of Frobenius numbers and remove more copies
of K (denoted by K3) to ‘increase’ the discrepancy to zero.

The K-tilingsK1,K2. Our goal is to find K-tilings K1,K2 such that V0 ⊆V(K2),

|K1| + |K2|� 4ε3|B|, (6.6)
−2a1ε3|B|� q1 �−C, (6.7)

where

q1 := a1
m

|V \V(K1 ∪K2)| − |A′ \V(K1 ∪K2)|.
When q�−C, let K1 = ∅. When q� 1− C, K1 consists of q+ C copies of K obtained from

H[B′] as follows.4 Note that

δk−1(H[B′])� δk−1(H)− |A′| − |V0|� q+ C + f (n)

by (1.3) and the definition of q. We claim that

f (n)
k

( |B′|
k− 1

)
� ex(|B′| − (q+ C − 1)m,K). (6.8)

Indeed, when q� 1, we have

|B′|� |B| + 1 and
( |B′|
k− 1

)
�

(|B| + 1
k− 1

)
.

Since

f (n)� k ex(|B| + 1,K)/
(
B| + 1
k− 1

)
,

it follows that
f (n)
k

( |B′|
k− 1

)
� ex(|B| + 1,K).

Since

|B| + 1= |B′| − q+ 1� |B′| − (q+ C − 1)m,

4It suffices to find �(q+ C)/a1� copies of K, but since Fact 6.2 provides (at least) q+ C copies, we choose to use all of them
to simplify later calculations.
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(6.8) follows from the monotonicity of the Turán number. When q� 0, we have |B| − C < |B′|�
|B|. The definition of f (n) implies that

f (n)
k

( |B′|
k− 1

)
� ex(|B′|,K).

Again, (6.8) follows from the monotonicity of the Turán number.
By (6.8), we have

eH(B′)� δk−1(H[B′])
k

( |B′|
k− 1

)
� q+ C

k

( |B′|
k− 1

)
+ ex(|B′| − (q+ C − 1)m,K)

> (q+ C − 1)m · 2ε1
( |B′|
k− 1

)
+ ex(|B′| − (q+ C − 1)m,K).

By (6.3), we can apply Fact 6.2 to obtain q+ C vertex-disjoint copies of K inH[B′], denoted byK1.
Next we choose aK-tilingK2 such that each copy ofK contains a1 − 1 vertices inA′, one vertex

in V0 andm− a1 vertices in B′. By (6.1) and (6.5) we derive that, for any vertex w ∈V0,

|N(w, B′) \ B|� ε1
2

( |B′|
k− 1

)
− √

2ε2
( |B′|
k− 1

)
� ε1

3

( |B′|
k− 1

)
by the choice of ε1 and ε2. Let V0 = {w1, . . . ,w|V0|}. For each wi, by (1.4) we can find a copy Ti of
K(k−1)(a2, . . . , ak) in (the (k− 1)-graph) N(w, B′) \ B such that these copies are vertex-disjoint,
and are also vertex-disjoint from V(K1). This is possible because the number of vertices in B′ that
we need to avoid is at most

|V(K1)| + (m− a1)|V0|� (ε3|B| + C) ·m+ (m− a1)ε3|B|� 2mε3|B|,
and so we have

|N(w, B′) \ B| − 2mε3|B|
( |B′|
k− 2

)
� ε1

3

( |B′|
k− 1

)
− 2mε3|B|

( |B′|
k− 2

)
� ε1

4

( |B′|
k− 1

)
.

Thus, (1.4) implies the existence of the desired Ti. Note that each {wi} ∪ Ti spans a copy of
K(k)(1, a2, . . . , ak) in H. To obtain copies of K, we extend each of them (one by one) by adding
a1 − 1 vertices from A′. Note that each such vertex from A′ needs to be the common neigh-
bour of a′ := ∏

2�i�k ai (k− 1)-sets, which is possible since by our choice, these (k− 1)-sets
are not in B, and thus they have at least (1− a′√2ε2)|A′| common neighbours in A′. Since
(1− a′√2ε2)|A′| > (a1 − 1)|V0|, we can greedily extend each {wi} ∪ Ti into a copy of K. Denote
the resulting K-tiling by K2.

By definition, we have |K1|� |q| + C and |K2| = |V0|. The result in [7] (see also [33]) men-
tioned in Section 1 implies that C� (ak − a1)2. By Claim 6.3, |K1| + |K2|� ε3|B| + C + 2ε3|B|�
4ε3|B|, i.e. (6.6) holds. Let A1 and B1 be the sets of vertices in A′ and B′ not covered by K1 ∪K2,
respectively, and V1 :=A1 ∪ B1. So q1 = (a1/m)|V1| − |A1|. Note that |A1| = |A′| − (a1 − 1)|V0|
and |V1| = n−m|K1| −m|V0|. So we have

q1 = a1
m
n− a1|K1| − |V0| − |A′| = q− a1|K1|� q− |K1|.

Recall that |K1| = q+ C if q� 1− C and |K1| = 0 if q�−C. So in both cases we get q1 � q−
|K1|�−C. Moreover, by −ε3|B|� q� ε3|B| and the fact that n is sufficiently large, we have q1 =
q− a1|K1|� q− a1|q+ C|�−2a1ε3|B|. So (6.7) holds.
TheK-tilingK3. Next we build ourK-tilingK3. Since−q1 � C > g(a2 − a1, a3 − a1, . . . , ak − a1)
and gcd (a2 − a1, a3 − a1, . . . , ak − a1)= 1, there exist non-negative integers �1, . . . , �k−1 such
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that

�1(a2 − a1)+ �2(a3 − a1)+ · · · + �k−1(ak − a1)= −q1
(here we let �i = 0 if ai − a1 = 0). For each i ∈ [k− 1], we pick �i vertex-disjoint copies of K
each with ai+1 vertices in A1 and m− ai+1 vertices in B1 such that all copies of K are vertex-
disjoint. LetK3 denote the set of copies of K. Note that we can choose these desired copies of K by
Proposition 4.3 and the fact that H(A1Bk−1

1 ) is dense (see (6.9)). By the definition of K3, we have
|K3| = ∑

i∈[k−1] �i and
a1
m

|V1 \V(K3)| − |A1 \V(K3)| = a1
m
(|V1| −m|K3|)− (|A1| − |V(K3)∩A1|)

= q1 + (|V(K3)∩A1| − a1|K3|)
= q1 +

∑
i∈[k−1]

�i(ai+1 − a1)= 0.

Let A2 =A1 \V(K3) and B2 = B1 \V(K3). So we have
a1
m
(|A2| + |B2|)= |A2|,

that is, (m− a1)|A2| = a1|B2|.
Note that |K3| = ∑

i∈[k−1] �i �−q1 � 2a1ε3|B| by (6.7). Together with (6.6) and Claim 6.3, we
have

|B2|� |B′| − |V(K1 ∪K2)| −m|K3|� |B′| − 4mε3|B| − 2a1mε3|B| > (1− ε1)|B′|.
Hence, for every vertex v ∈A2, by (6.2),

deg(v, B2)� deg(v, B′)� 2ε2
( |B′|
k− 1

)
� 2ε2

(
(1/(1− ε1))|B2|

k− 1

)
< ε1

( |B2|
k− 1

)
.

By (6.4) and |B2|� (1− ε1)|B′|, for every v ∈ B2 we have

deg(v,A2Bk−1
2 )� deg(v,A′B′k−1)� 2kε1

( |B′|
k− 1

)
� 3kε1

( |B2|
k− 1

)
. (6.9)

The K-tiling K4. Finally, we apply Lemma 6.1 with X =A2, Y = B2 and ρ = 3kε1 and get a K-
factor K4 on A2 ∪ B2.

So K1 ∪K2 ∪K3 ∪K4 is a K-factor of H. This concludes the proof of Theorem 3.3.

6.3 Proof of Theorem 3.4
As mentioned in Section 1, (1.3) reduces to δk−1(H)� n/(k+ 1)+ 1 when K =K(k)(1, . . . , 1, 2).
Thus Theorem 3.4 follows from Theorem 3.3 if condition (i) holds. Now assume condition (ii),
that is, δk−1(H)� n/(k+ 1) and k− i �

( n′−i
k−1−i

)
for some 0� i� k− 2 and n′ = kn/(k+ 1)+ 1.

The proof closely follows the proof of Theorem 3.3 (withC = 0) and the only difference is the exis-
tence of K1 when q= |B′| − |B|� 1. Note that δk−1(H[B′])� q. Since ex(n,K(k)(1, . . . , 1, 2))�( n
k−1

)
/k, when q� 2 we can find q copies of K(k)(1, . . . , 1, 2) in B′ by Fact 6.2. Otherwise q= 1,

i.e. |B′| = n′. Assume to the contrary that H[B′] is K(k)(1, . . . , 1, 2)-free, that is, any k− 1 vertices
in B′ have degree at most 1 in B′. Then by δk−1(H[B′])� 1 we derive that any k− 1 vertices in B′
have degree exactly 1 in B′. This means that a Steiner system S(k− 1, k, n′) exists, contradicting
the divisibility conditions.
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6.4 Proof of Theorem 3.5
Recall that a loose cycle Ck

s has a vertex set [s(k− 1)] and s edges {{j(k− 1)+ 1, . . . , j(k− 1)+
k} for 0� j< s}, where we treat s(k− 1)+ 1 as 1. When s= 2, 3, Ck

s has a unique k-partite realiza-
tion:Ck

2 ⊂K(k)(1, 1, 2, . . . , 2) andCk
3 ⊂K(k)(2, 2, 2, 3, . . . , 3).When s� 4, we 3-colour the vertices

j(k− 1)+ 1, 0� j< s (these are the vertices of degree two) with �s/2� red vertices, �s/2� − 1
blue vertices and the remaining one or two vertices green. We complete the k-colouring of Ck

s
by colouring the k− 2 uncoloured vertices of each edge of Ck

s with the k− 2 colours not used to
colour the two vertices of degree two. In this colouring, there are �s/2� red vertices, �s/2� + 1
blue vertices, s− 1 or s− 2 green vertices, and s vertices in other colour classes. Furthermore,
since each vertex in Ck

s has degree at most 2, in any k-colouring of Ck
s , each colour class has size at

least �s/2�. Thus,

σ (Ck
s )=

�s/2�
s(k− 1)

.

We summarize the above arguments into a proposition.

Proposition 6.4. For any k� 4 and s� 2 we have

σ (Ck
s )=

�s/2�
s(k− 1)

.

Moreover, there exists a k-partite realization of Ck
s , in which the smallest part is of size �s/2� and

there is a part of size �s/2� + 1. In particular, gcd (Ck
s )= 1.

In order to prove Theorem 3.5, we use upper bounds for ex(n, Pk2) and ex(n, C
k
2) from [8]. Note

that the results in [8] are in the language of extremal set theory, but it is easy to formalize the
results for our purpose: a k-graph is Ck

2-free if and only if the size of the intersection of any two
edges is not 2; a k-graph is Pk2-free if and only if the size of the intersection of any two edges is
not 1.

Theorem 6.5 ([8]). For k� 4, there exists a constant dk such that ex(n, Ck
2)� dknmax{2,k−3} and

ex(n, Pk2)�
(n−2
k−2

)
.

Proof of Theorem3.5. LetK(k)(a1, . . . , ak) be a k-partite realization ofCk
s such that a1 = �s/2� and

ak′ = �s/2� + 1 for some k′ ∈ [k]. Then we have that gcd (K(k)(a1, . . . , ak))= 1 and C = g(a2 −
a1, . . . , ak − a1)+ 1= 0. Let m= s(k− 1). Suppose 1/n� ξ � 1/m. Assume H is an n-vertex k-
graph which is ξ -extremal and δk−1(H)� a1n/m. Define ε1, ε2, ε3,A′, B′,V0 as in Section 1.1 and
thus Claim 6.3 and (6.1)–(6.5) hold.

The proof follows that of Theorem 3.3 by constructing Ck
s -tilings K1, K2, K3 and K4, whose

union forms a perfect Ck
s -tiling of H. We will only show the first step, the existence of K1,K2,

because it is the only part different from that in the proof of Theorem 3.3.
Here we need a stronger control on the ‘good’ (k− 1)-sets in B′, that is, every vertex in B′ is in

many such good (k− 1)-sets (note that this is stronger than B, for which we only have control of
the total number of ‘bad’ sets). Let G be the (k− 1)-graph on B′ whose edges are all (k− 1)-sets
S⊆ B′ such that degH(S,A′)<

√
2kε1|A′|. We claim that

δ1(G)� (1−m
√
2kε1)

(|B′| − 1
k− 2

)
, and thus e(G)�m

√
2kε1

( |B′|
k− 1

)
. (6.10)
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Suppose instead that some vertex v ∈ B′ satisfies degG(v)>m
√
2kε1

(|B′|−1
k−2

)
. Since every non-

neighbour S′ of v in G satisfies degH(S′ ∪ {v},A′)�
√
2kε1|A′|, we have

degH(v,A
′B′k−1)>m

√
2kε1

(|B′| − 1
k− 2

)√
2kε1|A′| > 2kε1

( |B′|
k− 1

)
,

where we usedm|A′| > |B′|. This contradicts (6.4).
The K-tilings K1, K2. Assume that q= |B′| − (m− a1)n/m. As in the proof of Theorem 3.3, our
goal is to find Ck

s -tilings K1,K2 such that V0 ⊆V(K2), and (6.6) and (6.7) hold (with C = 0).
We first construct a Ck

s -tiling K1 such that |K1| =max{q, 0} and each copy of Ck
s in K1 con-

tains exactly m− a1 + 1 vertices in B′. Let K1 = ∅ if q� 0. Then assume q� 1 and note that
δk−1(H[B′])� q. Thus

eH(B′)� 1
k
δk−1(H[B′])

( |B′|
k− 1

)
� q

k

( |B′|
k− 1

)
> (q− 1)m · 2ε1

( |B′|
k− 1

)
+ q

2k

( |B′|
k− 1

)
.

Since k� 4, by Theorem 6.5, we know that

ex(|B′|, Ck
2)�

q
2k

( |B′|
k− 1

)
and ex(|B′|, Pk2)�

q
2k

( |B′|
k− 1

)
.

First, assume s= 2. Note that if s= 2, then a1 = 1, i.e. m− a1 + 1=m. By (6.3) and Fact 6.2,H[B′]
contains a set of q vertex-disjoint copies of Ck

2. Denote it by K1 and we are done. Second, assume
s� 3, and then by (6.3) and Fact 6.2, H[B′] contains a collection of q vertex-disjoint copies of Pk2
denoted by Q1, . . . ,Qq.

For each i ∈ [q], we extend Qi (or only one edge of Qi) to a copy of Ck
s such that all copies of

Ck
s are vertex-disjoint and each copy contains exactlym− a1 + 1 vertices in B′. Indeed, for i ∈ [q],

let E1, Es be the two edges in Qi. If s is even, let Q′
i =Qi and pick u ∈ E1 \ Es, u′ ∈ Es \ E1; if s is

odd, let Q′
i = E1 and let u, u′ be two distinct vertices from Q′

i. Let s′ = 2�s/2�. We pick vertex sets
S2, . . . , Ss′−1 of size k− 2, and vertices u3, u5, . . . , us′−3 from the unused vertices in B′ such that
the (k− 1)-sets

F2 := S2 ∪ {u}, Fs′−1 := Ss′−1 ∪ {u′},
F2j−1 := S2j−1 ∪ {u2j−1}, F2j := S2j ∪ {u2j−1} for 2� j� (s′ − 2)/2

are in E(G). This is possible by (6.10) (we pick an edge that contains u, an edge that contains u′
and then some copies of Pk−1

2 such that all these are vertex-disjoint and vertex-disjoint from other
existing vertices). Then, for each 2� j� s′/2, pick u2j−2 ∈NH(F2j−2)∩NH(F2j−1)∩A′, which
is possible since Fi ∈ E(G) and thus degH(Fi,A′)<

√
2kε1|A′|. Note that Q′

i ∪
⋃

2�j�s′−1 Sj ∪
{u2, . . . , us′−2} spans a loose cycle of length s′ − 1 if s is odd and s′ if s is even, that is, it spans
a copy of Ck

s . Moreover, each such copy contains exactly s′/2− 1= a1 − 1 vertices in A′, and thus
exactlym− a1 + 1 vertices in B′.

Next we choose a K-tiling K2 such that each copy of K contains a1 − 1 vertices in A′, one
vertex in V0 and m− a1 vertices in B′. This can be done by the same argument as in the proof of
Theorem 3.3.

By definition, we have |K1|� |q| and |K2| = |V0|. By Claim 6.3, |K1| + |K2|� |q| + |V0|�
4ε3|B|, i.e. (6.6) holds. Let A1 and B1 be the sets of vertices in A′ and B′ not covered by K1 ∪K2,
respectively. Let V1 :=A1 ∪ B1. Let

q1 = a1
m

|V1| − |A1|.
Recall that if s= 2, then a1 = 1. Therefore for any s� 2, by the definitions ofA1, B1, we have |A1| =
|A′| − (a1 − 1)|K1| − (a1 − 1)|V0| and |V1| = n−m|K1| −m|V0|. Together with q= a1n/m−
(|A′| + |V0|), we get
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q1 = a1
m
n− |K1| − |V0| − |A′| = q− |K1| = q−max{0, q}� 0.

Since −ε3|B|� q� ε3|B|, we get q1 = q−max{0, q}�−|q|�−2a1ε3|B|. Thus (6.7) holds. The
rest of the proof is similar to the above and is omitted.

6.5 Proof of Lemma 6.1
In this subsection we prove Lemma 6.1 by following the proof of [16, Lemma 4.4], which proves
the case when K =K(3)(1, 1, 2).

We need the following result of Lu and Székely [27, Theorem 3].

Theorem 6.6 ([27]). Let F be a k-graph in which each edge intersects at most d other edges. If H is
an n-vertex k-graph such that |V(F)| divides n and

δ1(H)�
(
1− 1

e(d + 1+ xk2)

)(
n− 1
k− 1

)
,

where e= 2.718 . . . and x= |E(F)|/|V(F)|, then H contains an F-factor.

Proof of Lemma 6.1. Let t = |X|/a1. Let G be the (k− 1)-graph on Y whose edges are all
(k− 1)-sets S⊆ Y such that degH(S, X)<

√
ρt. First we claim that

δ1(G)� (1−m
√

ρ)
(|Y| − 1

k− 2

)
, (6.11)

and consequently

e(G)�m
√

ρ

( |Y|
k− 1

)
. (6.12)

Suppose instead that some vertex v ∈ Y satisfies

degG(v)>m
√

ρ

(|Y| − 1
k− 2

)
.

Since every non-neighbour S′ of v in G satisfies degH(S′ ∪ {v}, X)�√
ρt, we have

degH(v, XY
k−1)>m

√
ρ

(|Y| − 1
k− 2

)√
ρt.

Since |Y| = (m− a1)t, we have

degH(v, XY
k−1)>mρ

|Y|
m− a1

(|Y| − 1
k− 2

)
> ρ

( |Y|
k− 1

)
,

contradicting our assumption.
Let Q be an (m− a1)-subset of Y . We call Q good (otherwise bad) if every (k− 1)-subset of Q

is an edge of G, that is, Q spans a clique of size m− a1 in G. Furthermore, we say Q is suitable for
a vertex x ∈ X if x ∪ T ∈ E(H) for every (k− 1)-set T ⊂Q. Note that if an (m− a1)-set is good, by
the definition of G it is suitable for at least (1− (m−a1

k−1
)√

ρ)t vertices of X.

Claim 6.7. For any x ∈ X, at least (1− ρ1/4)
( |Y|
m−a1

)
(m− a1)-subsets of Y are good and suitable

for x.
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Proof. First, by the degree condition of H, i.e. for any x ∈ X, the number of (m− a1)-sets in Y
that are not suitable for x is at most

ρ

( |Y|
k− 1

)( |Y| − k+ 1
m− a1 − k+ 1

)
�√

ρ

( |Y|
m− a1

)
.

Second, by (6.12), at most

e(G)
( |Y| − k+ 1
m− a1 − k+ 1

)
�m

√
ρ

( |Y|
k− 1

)( |Y| − k+ 1
m− a1 − k+ 1

)
� 1

2
ρ1/4

( |Y|
m− a1

)
(m− a1)-subsets of Y contain a non-edge of G. Since ρ1/2 + 1

2ρ
1/4 � ρ1/4, the claim follows.

Let F0 be the set of good (m− a1)-sets in Y . We will pick a family of disjoint good (m− a1)-
sets in Y such that, for any x ∈ X, many members of this family are suitable for x. To achieve this,
we pick a family F by selecting each member of F0 randomly and independently with probability

p= 4
(
m− a1
k− 1

)√
ρ|Y|/

( |Y|
m− a1

)
.

Then |F | follows the binomial distribution B(|F0|, p) with expectation

E(|F |)= p|F0|� p
( |Y|
m− a1

)
.

Furthermore, for every x ∈ X, let f (x) denote the number of members of F that are suitable for
x. Then f (x) follows the binomial distribution B(N, p) with N � (1− ρ1/4)

( |Y|
m−a1

)
by Claim 6.7.

Hence E(f (x))� p(1− ρ1/4)
( |Y|
m−a1

)
. Since there are at most( |Y|

m− a1

)
· (m− a1) ·

( |Y| − 1
m− a1 − 1

)
pairs of intersecting (m− a1)-sets in Y , the expected number of intersecting pairs of (m− a1)-sets
in F is at most

p2
( |Y|
m− a1

)
· (m− a1) ·

( |Y| − 1
m− a1 − 1

)
= 16

(
m− a1
k− 1

)2
(m− a1)2ρ|Y|.

By Chernoff ’s bound (the first two properties) and Markov’s bound (the last one), we can find
a family F of good (m− a1)-subsets of Y that satisfies

•

|F |� 2p
( |Y|
m− a1

)
� 8

(
m− a1
k− 1

)√
ρ|Y|,

• for any vertex x ∈ X, at least
p
2
(1− ρ1/4)

( |Y|
m− a1

)
= 2

(
m− a1
k− 1

)
(1− ρ1/4)

√
ρ|Y|

members of F are suitable for x.
• the number of intersecting pairs of (m− a1)-sets in F is at most

32
(
m− a1
k− 1

)2
(m− a1)2ρ|Y|.

After deleting one (m− a1)-set from each of the intersecting pairs from F , we obtain a family
F ′ ⊆F consisting of at most 8

(m−a1
k−1

)√
ρ|Y| disjoint good (m− a1)-subsets of Y , and for each

x ∈ X, at least
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2
(
m− a1
k− 1

)
(1− ρ1/4)

√
ρ|Y| − 32

(
m− a1
k− 1

)2
(m− a1)2ρ|Y|�

(
m− a1
k− 1

)√
ρ|Y| (6.13)

members of F ′ are suitable for x.
Denote F ′ by {Q1,Q2, . . . ,Qq} for some q� 8

(m−a1
k−1

)√
ρ|Y|. Let Y1 = Y \V(F ′) and G′ =

G[Y1]. Then |Y1| = |Y| − (m− a1)q. Since degG′(v)� degG(v) for every v ∈ Y1, we have, by (6.11),

δ1(G′)�
(|Y1| − 1

k− 2

)
−m

√
ρ

(|Y| − 1
k− 2

)
� (1− 2m

√
ρ)

(|Y1| − 1
k− 2

)
.

By the choice of ρ and Theorem 6.6, G′ contains a perfect tiling {Qq+1, . . . ,Qt} such that each Qi
is a clique onm− a1 vertices for q+ 1� i� t.

Consider the bipartite graph � between X andQ := {Q1,Q2, . . . ,Qt} such that x ∈ X and Qi ∈
Q are adjacent if and only ifQi is suitable for x. For every i ∈ [t], since each Qi is a clique in G, we
have deg� (Qi)� |X| − (m−a1

k−1
)√

ρt by the definition of G. Let Q′ = {Qq+1, . . . ,Qt} and X0 be the
set of x ∈ X such that deg� (x,Q′)� |Q′|/2. Then

|X0| |Q
′|

2
�

∑
x∈X

deg�(x,Q′)�
(
m− a1
k− 1

)√
ρt · |Q′|,

which implies that

|X0|� 2
(
m− a1
k− 1

)√
ρt = 2

(
m− a1
k− 1

)√
ρ

|Y|
m− a1

�
(
m− a1
k− 1

)√
ρ|Y| (sincem− a1 � 2).

We now find a perfect tiling of K(2)(1, a1) in � such that the centre of each K(2)(1, a1) is inQ.

Step 1. Each x ∈ X0 is matched to some Qi, i ∈ [q] that is suitable for x. This is possible because of
(6.13) and |X0|�

(m−a1
k−1

)√
ρ|Y|.

Step 2. Each Qi, i ∈ [q] is matched with a1 − 1 or a1 more vertices in X \ X0. This is possible
because deg� (Qi)� |X| − (m−a1

k−1
)√

ρt� |X0| + a1q. Thus, all Qi, i ∈ [q] are covered by vertex-
disjoint copies of K(2)(1, a1).

Step 3. Let X′ be the set of uncovered vertices in X and note that |X′| = a1t − a1q= a1|Q′|.
Partition X′ arbitrarily into X1, . . . , Xa1 each of size |Q′|. Note that for each i ∈ [a1], we have for
all x ∈ Xi, deg� (x,Q′)> |Q′|/2 and for allQj ∈Q′, deg� (Qj, Xi)� |Xi| −

(m−a1
k−1

)√
ρt� |Xi|/2. So

the Marriage Theorem provides a perfect matching in each �[Xi,Q′], i ∈ [a1] and thus we get a
perfect tiling of K(2)(1, a1) on X′ ∪Q′ in �.

The perfect tiling of K(2)(1, a1) in � gives rise to the desired K-factor in H.

7. Concluding remarks
In this paper we study the minimum codegree threshold δ(n,K) for tiling complete k-partite k-
graphs K perfectly when gcd (K)= 1. By Proposition 1.2,

δ(n,K)� n
m

+ coex
(
m− 1
m

n+ 1,K
)

when a1 = 1.

In view of this and Theorem 1.3, it would be interesting to know if one can replace the second
term in (1.3) with a term similar to coex((m− a1)n/m+ 1,K). Moreover, it would be interesting
to know if ex(n,K)/

( n
k−1

)
(or coex(n,K)) is monotone on n so that themaximization in (1.3) could

be avoided.
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Following the notation in [29], we call k-partite k-graphs satisfying the three lines of (1.1)
type 0, type 1 and type d, respectively. For complete k-partite k-graphs K of type d for an
even d� 0, a simple application of the absorbing method together with Lemma 3.2 implies that
δ(n,K)= n/2+ o(n), which gives a re-proof of the result of Mycroft [29] without using the hyper-
graph blow-up lemma. We think that further sharpening is possible via careful analysis of the
extremal case, to which we shall return in the near future.

Suppose K :=K(k)(a1, . . . , ak). When K is type 1 (namely, gcd (K)= 1), Proposition 1.2 and
Theorem 1.5 settle Conjecture 1.1 (either negatively or positively). Now we give a construction
showing that Conjecture 1.1 is false for many other complete k-partite k-graphs, for which we
need to recall a construction by Mycroft [29]. Fix a prime number p. Let ui ∈Z

p
p be the unit vector

whose ith coordinate is one. For 1� i< p, let vi = ui + (i− 1)up. Let L be the (proper) sub-lattice
of Zp

p generated by v1, . . . , vp−1. The following property was proved in [29, Section 2].

(†) For any vector v ∈Z
p
p, there exists precisely one i ∈ [p] such that v+ ui ∈ L.

Let P = {V1,V2, . . . ,Vp} be a partition of V such that |V1| + |V2| + · · · + |Vp| = n, |Vi| = n/p±
1 for i ∈ [p] and iP (V) /∈ L (mod p) (recall that iP (S) is the vector of Zp whose ith coordinate
is |S∩Vi|). Let Hp be the k-graph on V whose edges are k-sets e such that iP (e) ∈ L (mod p).
Observe that (†) implies that δk−1(Hp)� n/p− k.

Proposition 7.1 ([29]). Suppose that K is a complete k-partite k-graph of type d for some d �= 1. Let
p be the smallest prime factor of d (thus p= 2 when d = 0). Then Hp contains no K-factor.

Using Hp and the construction behind Proposition 2.3, we disprove Conjecture 1.1 for many
complete k-partite k-graphs of type d �= 1.

Proposition 7.2. Let K :=K(k)(a1, . . . , ak) be type d �= 1 and let p be the smallest prime factor of d.
Then Conjecture 1.1 is false for K if ak−2 � p+ 1.

Proof. Let n ∈ (a1 + · · · + ak)Z and let G be an n-vertex K(k)(1, . . . , 1, 2, 2)-free k-graph with
δk−1(G)= (1− o(1))

√
n provided by Proposition 2.3. We first take a copy of the n-vertex k-graph

Hp under a vertex partitionV1,V2, . . . ,Vp. Then we take a random permutation ofV(G) and then
add E(G) on top of Hp. Denote the resulting graph by H. By standard concentration results, we
have δk−1(H)� n/p+ (1− o(1))

√
n/p. We claim that

(‡) every copy of K in H has each of its vertex classes completely in Vi for some i ∈ [p].

Suppose instead that there exist distinct i1, i2 ∈ [p] and a copy of K in H with vertex classes
U1, . . . ,Uk such that Ul ∩Vi1 �= ∅ and Ul ∩Vi2 �= ∅ for some l ∈ [k]. For i ∈ [k] \ {l}, let Ci =
Ui ∩Vj such that |Ui ∩Vj|� |Ui ∩Vj′ | for all j′ ∈ [p] (if more than one j satisfies this, choose
any of them). Since ak � ak−1 � ak−2 � p+ 1, by the pigeonhole principle, we have |Ci|� 2 for
any i ∈ {k− 2, k− 1, k} \ {l}. Thus both (Ul ∩Vi1 )∪

⋃
j�=l Cj and (Ul ∩Vi2 )∪

⋃
j�=l Cj contain

K(k)(1, . . . , 1, 2, 2) as a subgraph such that a vertex class of size one is placed in Ul ∩Vi1 and
Ul ∩Vi2 , respectively. Since G is K(k)(1, . . . , 1, 2, 2)-free, both copies of K(k)(1, . . . , 1, 2, 2) con-
tain an edge in Hp. The index vectors of these two edges can be written as v+ ui1 and v+ ui2 for
some v, contradicting (†).

Since G is K-free, each copy K1 of K inH must contain some edge e inHp. Since K is a blow-up
of e, (‡) implies that iP (e′)= iP (e) ∈ L (mod p) for all e′ ∈ E(K1). Thus, all copies of K in H are
actually in Hp. Therefore, H has no K-factor by Proposition 7.1.
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When K =K(k)(a1, . . . , ak) is type d �= 1, Proposition 7.2 leaves out the following unsettled
cases for complete k-partite k-graphs in Conjecture 1.1: K(k)(2, . . . , 2, 2s, 2t) for t� s� 1 (type 0),
and K(k)(a1, . . . , a1, ak−1, ak) (type d� 2). To see how to derive the second case, we note that if K
is type d� 2 and p is the smallest prime factor of d, then a1 � 1 and ak−2 � p force that a1 = ak−2.
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