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ABSTRACT

There is growing concern about tacit collusion using algorithmic
pricing, and regulators need tools to help detect the possibility
of such collusion. This paper studies how to design a hypothesis
testing framework in order to decide whether agents are behaving
competitively or not. In our setting, agents are utility-maximizing
and compete over prices of items. A regulator, with no knowledge of
the agent’s utility function, has access only to the agents’ strategies
(i.e., pricing decisions) and external shock values in order to decide if
agents are behaving in competition according to some equilibrium
problem. We leverage the formulation of such a problem as an
inverse variational inequality and design a hypothesis test under
a minimal set of assumptions. We demonstrate our method with
computational experiments of the Bertrand competition game (with
and without collusion) and show how our method performs.
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1 INTRODUCTION

Algorithmic pricing [10, 13] is increasingly used due to the growth
of internet sales channels, but there is concern that these algorithms
will lead to tacit collusion that harms consumers [11, 12, 15, 31].
The current situation is unique in that, though it poses challenges
for regulators because of the difficulty in detecting tacit collusion
by algorithms, there is a large amount of real-time pricing and
purchase data available for analysis by regulators. This paper is
motivated by these pressing issues, and represents an initial step
towards answering the question of how a regulator could detect
algorithmic collusion from a large corpus of financial data.

The most closely related literature looks at collusion in auctions
[6, 7, 26, 27]. Some work [26, 27] conducted a statistical analysis
of bidding data from situations where collusion is known to have
occurred, and found that collusion leads to less aggressive bidding,
higher prices for consumers, and increased correlation in bids. Other
work [6, 7, 27] uses econometrics to detect collusion, and is derived
using analyses that assume (perfect) equilibrium behavior. However,
assuming perfect equilibrium behavior is too stringent because it
requires no model mismatch between the econometrics method
and the bidders, and it requires bidders to be exactly accurate in
the optimality of their bids. So these approaches generally lead to
too many false positives when trying to detect collusion.

This paper proposes a hypothesis testing framework for detect-
ing collusion between agents in competitive environments. The
significant difference in our work is we allow the agents to not be
in perfect equilibrium. Instead, we presuppose that agents typically
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choose actions close (but not exactly equal) to equilibrium but that
they will also occasionally choose actions far from equilibrium. This
weaker assumption partially mitigates model mismatch because it
does not require any data without collusion to exactly match the
equilibrium, and it also eliminates the need for agents to be exactly
accurate in the optimality of their strategies. These ideas will be
made more precise when we present our mathematical model.

1.1 Estimation in Equilibrium Models

Many competitive and cooperative environments can be analyzed
using equilibrium models, where concepts like the Nash equilibrium
are used to study agents’ strategic behavior [17, 25]. Those models
typically contain primitives — such as agents’ private information,
utility functions, and strategy spaces — that often are not known
to an outside regulator or designer who then needs to estimate
those elements in order to, for example, design a mechanism of
interaction in order to induce a particular behavior or outcome. In
this paper we use strategy space and action space interchangeably.

However, the estimation of such primitives in equilibrium prob-
lems is quite challenging. In this work, we consider the case where
the agents’ actions are observed by the regulator and their strategy
spaces are known. Hence the estimation problem lies solely on
the agents’ utility functions and personal information. One line of
work is of structural estimation methods [2, 5, 28], which estimate
parametric utility functions by observing agents acting in equilib-
rium. Those approaches assume a “ground-truth” form of the utility
function, and derive necessary conditions based on constrained op-
timization in order to formally derive estimators of the parameters.
Another related line of work are surrogate methods [16, 21, 34]
that, while not strictly estimation methods, elicit information from
the agents themselves about sensitivities over strategies (i.e., about
derivatives of their utility functions with respect to strategies) by
providing the agents with a common surrogate function. Those
methods can induce the appropriate equilibrium behavior even
though the agents’ utility functions are not known.

Lastly, estimation can be formulated as an inverse variational
inequality [9, 20]. Such methods use the fact that equilibrium prob-
lems are a special case of variational inequalities, in order to pose
an inverse optimization problem [1] where the solutions (i.e., the
equilibrium strategies) are provided via samples, and the goal is
to estimate the problem’s parameters that generate such solutions.
This approach is powerful as it does not require a “ground-truth”
model, and under some conditions can produce good approximate
equilibrium behavior even when the parametric form of the utility
functions is misspecified. However, these methods based on inverse
optimization can encounter difficulties when the data gathered is
noisy [3, 4], which is what happens in most applications.



In this paper, we build on the framework of [9]. However, we will
not assume that equilibrium actions are provided to the regulator
via samples. Instead, we develop a method that given some arbitrary
samples of actions is able to identify whether these samples came
from agents acting in (approximate) equilibrium or not. Hence our
work is more tied to coalition-detection in equilibrium games, in
the field of economics, and to hypothesis testing in statistics.

1.2 Coalition Detection

It is common to assume agents behave in equilibrium; however
this is not observed in several applications [8]. In fact, agents often
collude, exchange information, and form sub-groups - instead of
cooperating as a whole [19, 33]. This poses a problem for estimation
methods, which often assume the observed strategies come from
an specific type of behavior (e.g., total cooperation or competition).
The work [29, 30] characterizes coalitions in games and provides
conditions where the establishment or not of coalitions can be
tested. However the problem of coalition formation can also appear
where agents play imperfectly and are learning the primitives of the
environment while acting on it. Work done by [22] gives evidence
that when agents employ learning algorithms in a competitive
environment, such algorithms “learn” to implicitly collude, even if
collusion is not part of the agents’ plans.

In this paper, we formulate the problem of identifying whether
or not the observed actions come from agents in total competition
or not. Instead of identifying the coalition itself based on struc-
tural properties of the game, we instead use a data-driven approach
where a Kolmogorov-Smirnov hypothesis test [23, 24] is used in
order to accept or reject the hypothesis that the strategies observed
by the regulator come from agents in equilibrium. This novel ap-
proach is powerful in the sense that is independent of the type of
utility functions considered and makes very mild assumptions on
the a priori behavior of the agents, leveraging both the variational
inequality formulation and the power of hypothesis testing.

1.3 Outline

In Section 2, we describe our (approximate) equilibrium model
and develop the corresponding hypothesis testing framework. In
Section 3, we present computational experiments based on a con-
strained Bertrand-type game to showcase the performance of our
method when agents are acting in competition and in collusion.
Lastly, we conclude in Section 4 with a discussion on the potential
future applications of our model and method. We also discuss open
theoretical questions that are motivated by our work in this paper.

2 PROBLEM SETTING

We describe the agents’ model, the estimation setting the regulator
faces as it observes the actions taken by agents, and present our
hypothesis testing framework for detecting collusion.

2.1 Model Description

Suppose two agents are engaged in a Bertrand-type game, compet-
ing over prices of certain items (e.g., products or airline tickets). Let
pi € RY be the price vectors of agent i € {1, 2} over {1, ..., q} items,
and note we use the terms prices and strategies interchangeably,
as the strategy of each agent consists solely on the prices over the
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items. We assume the strategy space of agent i is
Pi={peRI:Ap=0b,peK} (1)

where A is a m X g matrix, b is a m-vector, and K is a closed convex
cone. Hence the strategy space is a cone given in standard form. In
addition, each agent has their own utility function

Ui(p1, pa. p3 i) = piDi(p1, pa, 5 0:) @)
where D;(p1, p2, y; 0;) is the agent’s demand function, which de-
pends on both price vectors and is parametrized by the vector
0; € R?, which we assume to be the private information of each
agent. Lastly, the demand function also depends on p, which is a
common shock value disturbance that we assume to be a bounded
disturbance with small magnitude (to be made precise in next sec-
tion). The goal of this shock vector is to represent uncertainties
that may affect the demand and are outside of the agents’ control.

The goal of each agent is to select a feasible price p; € P; such
that its utility function is maximized. We focus our analysis to the
Nash equilibrium of the resulting game:

Definition 2.1. A strategy profile (p], p;) is a Nash equilibrium if
each agent plays the “best-response” to the other, namely if

p; €arg ma;)( U;(p1, py» p; 0;), for i € {1,2} (3)
Pi€¥i

The (pure-strategy) Nash Equilibrium may not be an adequate
solution concept for this constrained environment of the Bertrand-
type game, as it may not exist [14]. However, we will focus on the
case where each agent plays imperfectly. Namely, we assume that
before playing the game, a gap value € is sampled from a (known
to the agents and regulator) parametric distribution D(¢) with (un-
known to the regulator but known to the agents) parameter ¢. Next,
both agents pick a strategy vector (p1, p2) that is an e-approximate
Nash equilibrium of the Bertrand game. To formalize this notion
of approximate equilibrium, we will use the characterization based
on variational inequalities presented in [9].

Definition 2.2. Given a function f : R? —: R? and a non-empty
set ¥ € R9, the problem of finding the point p* such that

fp") (p-p*) 2 0.forpe F (4)
is called the variational inequality problem VI(f, F).

It turns out that several problems can be formulated as varia-
tional inequalities (We refer to [20] for an in-depth characterization).
In particular, if we let ¥ = P1 X P, and we let

f(p) = [fl(Pl,PZ)] _ [—VlUl(Pl,pz,ﬂ; 01) 5)
f2(p1. p2) =VaoUa(p1, p2. 5 02)

where V; is the gradient w.r.t. p;, then solving VI(f, ) from (4) is

equivalent to finding the Nash equilibrium (3). We thus have the

following definition for approximate Nash equilibrium:

Definition 2.3. A strategy profile (p1, p2) is an e-approximate
Nash equilibrium if and only if

f(p) (p—p) = —e,forp e F. (6)

It will suit our purposes to formulate the above approximate
variational inequality problem as a (convex) optimization problem.
This can be done under technical regularity conditions that ensure
constraint qualification holds (e.g., Slater’s condition).
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THEOREM 2.4. [9]LetF = P1XP2, where P; is given by (1), fori €
{1,2}. Let fbe given by (5). If ¥ satisfies constraint qualification (e.g.,
Slater’s condition), then a strategy profile (p1, p2) is an e-approximate
Nash equilibrium if and only if

Alyi <c fi(p1.p2). for i € {1,2}
Si fipnp)Thi—blyi<e

where we use the symbol “<c” to denote conic inequalities.

Jyi,y2 € R™: { 7)

Next we assume that given some € ~ D(¢), the agents solve the
above feasibility problem in order to select the prices. In particular,
we assume that the agents solve the above problem where the sec-
ond inequality is replaced by an equality constraint — that is the
selected strategies satisfy condition (6) with equality. We will not
focus on how such prices are achieved, that is, how the agents learn
to play the e-approximate Nash Equilibrium strategies (we refer to
[22] for a discussion about learning in cooperative games). Instead,
we will focus on the following estimation problem faced by an
external regulator: Given a sequence of observed prices and shocks
{(p{, pé, pj )}jl\i " the regulator would like to ascertain whether or
not agents are playing according to e-approximate Nash Equilib-
rium or not. In this setup, the private information vectors (61, 62)
of each agent are so-called nuisance parameters for the regulator
(i.e., they require estimation even though they are not of primary
interest). To that end, the regulator will construct estimates (91, éz)
of the private information vectors and residual estimates é; for each
observation tuple j € {1, ..., N} by solving the inverse variational
problem given by

min L(éL, ..., éN) (8)
0,y,é
st ATyl <c fi(pl, p)).fori € {1,2},) € {1,.... N} ©)

2 Eiplp)) TP~ byl = &, forje {1,...N}  (10)

where L(é!, ..., éN) is some loss function over the residual estimates.
We assumed that the regulator knows the distribution D(¢), but
does not know ¢. Hence the loss function can be written, for ex-
ample, as the negative log-likelihood as a function of ¢ [32]. We
note in this optimization problem, the prices are given by our N
samples, and we seek to select a 6 such that the resulting utilities
form an approximate Nash equilibrium for every sample collected,
where the computed é; are our residual estimates of e.

Lastly, in order to make a decision as to whether or not the
observed prices are in approximate Nash equilibrium, the regulator
will formulate a hypothesis test over the computed residuals.

2.2 Hypothesis Testing Framework

In order to formalize the hypothesis testing framework, we begin
by describing the temporal sequence of events under consideration:

(1) Both agents and regulator observe y, the shock variable.

(2) The agents solve the feasibility problem (7) for some € ~
D(¢). The strategies (p1, p2) are selected to exactly be an
e-approximate Nash Equilibrium.

(3) The regulator observes the strategies (p1, p2) and records it.

(4) Steps 1-3 are repeated N times and the regulator collects the

sample tuples {(p{,pé, yj)}j]il.

(5) The regulator solves the inverse variational problem (8) for
some parametric utility functions and computes the esti-
mated residuals €', ..., éN.

(6) The regulator uses those residuals to perform a Kolmogorov-
Smirnov test (to be defined next).

We note that the regulator does not know the true utility func-
tions of the agents. Importantly, our approach is partially amenable
to parametric form misspecification because non-colluding agents
are not required to be in perfect equilibrium. In other words, some
amount of the ¢/ are meant to capture model misspecification.

Step 6 is conducted as follows: The regulator will use the com-
puted estimated residuals to perform a hypothesis test to determine
if the €1, ..., éN come from the distribution D(¢p). However, even
though the regulator knows the distribution’s parametric form,
they do not know the underlying parameter ¢. Hence, hypothesis
tests such as the standard Kolmogorov-Smirnov test are not appli-
cable since they require knowing the true underlying parameters
of the distribution under the null hypothesis. Therefore, we we will
resort to the Lilliefors variation of the Kolmogorov-Smirnov test
[23]. We first compute the empirical cumulative distribution func-
tion ﬁN(d) = ﬁ Zj[\i 1 I(¢; < d), where I(-) is an indicator function.
Then the regulator computes some estimate gz§ =g(',....,éN)and
computes the cumulative distribution function Fy(d) = F D é)(d)’

where F D é)(d) is the cumulative distribution function of a random
variable of distribution D(¢;). Lastly, the regulator computes the test
statistic D* = maxg |Fn(d) — Fn(d)|. The null Hy and alternative
H; hypotheses for our test are
Hp : The agents are behaving in an e-approximate
H equilibrium where € ~ D(¢) (11)
Hi : Otherwise

And the decision of whether to accept or reject the null hypothesis
is made using the decision-rule

{reject Hy: ifD* > 7(N)

. (12)
accept Hy : if D* < 7(N)

where 7(N) is some threshold from the Lilliefors variation of the
Kolmogorov-Smirnov test [23] and which is based on the number
of samples collected and the desired significance level a.

3 COMPUTATIONAL EXPERIMENTS

Here, we analyze the performance of our approach in a Bertrand
competition environment. We first detail the experiment setting
and then proceed to the numerical experiments and analysis.

3.1 Experiment Setting

We showcase our method in a setting where two agents compete
over a single item and need to set their respective prices in the
Bertrand-game environment. Each agent’s true demand function
has the following form:

Di(p1,p2 3 01) = 01,0 + X5y pj0ij + Oisu+mi (13)

where 0; is the agent’s private information vector, and we use the
term 1; to encompass unmodeled terms of the dynamics. Further-
more, we assume the set of feasible price vectors belong to the



polyhedral set
P ={(pr.p2) €R®: 0 <p1 <p,0 < pp <p} (14)

where p is an upper-bound on each price. We consider the case
where € is drawn from an exponential distribution € ~ exp(1).

We assume that the regulator observes the shock p but does
not observe n;. Hence, the regulator forms the following demand
estimate given some estimate 0:

D;(p1, p2. 1:0) = 610 + Z§:1 Pjéi,j +0i 31 (15)

Following the steps described in the previous section, the regula-
tor collects the sample tuples {(p{ pé W )}JJ\i , and forms the opti-

mization problem (8) with the loss function L(é, ..., éN) being the
negative log-likelihood of the underlying exponential distribution.
Note that in the negative log-likelihood the A term is decoupled
from the other terms because of the particular mathematical form
of the density of an exponential distribution. As a result, we do not
need to include A in the inverse variational problem.

In order to make the presentation of the final optimization prob-
lem clear, we define the marginal utility function for each agent (as
considered by the regulator) to be

A 0
mi(p1, p2, 415 0i) = pi _5pADi(p1’p2’“5 0i) + Di(p1, p2, 15 0i) =
1

piei,i + 91',0 + 212.:1 pjei’j + 9,',3[1. (16)
In addition, we impose some structure to the fitted utility functions:
(1) we normalize the fitted utility functions; (2) we enforce that
the marginal utilities of each agent decrease as they increase their
own prices (on the observed data); and (3) we enforce an additional
constraint that sets the dual variable y: to zero if the observed price

p{ is strictly less than the upper bound p. Recalling the definition
of f(p) in (4), the optimization problem becomes

. N -
N e 17
é,;lé?,ez 2is1 € (17)
st.yl = mipl,p) i, 01) fori € {1,2},j € {1,...N} (18)
PE2 ) - XL, plmip].ph i 0) = & (19)

forje{1,..,N}
mi(1,1,0,6;) = mi(1,1,0,8;),fori € {1,2}

yl =0 forie {L,2},j € {L..N}st.p] <p 21)

(20)
(
0;,; <0,forie{1,2} (22)
(
(

& >0, forje{1,.. N} 23)

v = (). y)) > 0,forVj € {1,... N}

where (20) are the normalization constraints, in which the marginal
utility of both agents when there is no external shock and the prices
are set to unity is equal to the true marginal at that point. (Note we
could have set these normalization constraints to any other suitable
positive value without affecting the results. Different normalization
may yield different models that can be used to explain the same
observed data. This phenomenon is common in inverse optimization
problems, as discussed in detail in [4, 9].) Equation (22) ensures that
the fitted marginal functions decrease as the agents increase their
own prices. (This constraint is obtained after some arithmetic by

24)
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Table 1: Numerical Results for Scenario 1 (Competing)

N D* (N) i

10 0317 0325 337 Competing
20 0.206 0.234 27.93 Competing
30 0.120 0.192 20.83 Competing
40  0.069 0.168 21.43 Competing
50 0.089 0.150 19.99 Competing
100 0.070 0.106 18.80 Competing
200 0.031 0.075 18.62 Competing
500 0.022 0.047 20.01 Competing

Decision

requiring that mi(p1, -, -; 0;) and ma(-, p2, -; 0;) decrease as p; and
p2 increase, respectively, on the observed data.) The “dual” vector
y is associated with the constraints (14) and (23) ensures that if
the the observed prices are not on the boundary of the feasible
region P then the associated dual variable is set to zero. We note
that (23) has a very subtle implication in the optimization problem
above: The very natural notion that dual variables are zero once
their associated constraint is non-binding is not enforced at all
by the original formulation in (8). If the prices are sampled in
perfect Nash equilibrium (that is € = 0), then as argued in [9] the
formulation in (8) is able to recover exactly the true parameters
0; and the computed residuals are exactly zero. However, in our
scenario prices are obtained in approximate equilibrium (i.e., € > 0).
Hence if complimentary slackness (23) is not enforced explicitly
then the computed residuals will present bias — namely they will
be “shrunk” since the formulation (8) could achieve smaller values
for the residuals by setting the dual variables to be positive, even
though the sampled prices are in the interior of the feasible region.

Recall that the objective function follows from the negative
log-likelihood of exponential distribution, where we dropped the
term N/A since it does not impact the optimization. After solv-
ing the problem above, we compute the MLE estimate AMLE =
(% Zj[\il éj)_1 of A. Then we let Fn(d) = FexdeLE)(d) and con-
duct the Lilliefors hypothesis test (12). To illustrate the performance
of the hypothesis testing we will simulate the process under two
scenarios:

Scenario 1: Agents are competing over prices, i.e.: they
solve the feasibility problem (7) after observing the shock
variable p and the value of e.

Scenario 2: Agents are colluding, i.e.: instead of solving
the feasibility problem (7), they maximize the sum of both
utility functions up to a € optimality gap.

Hence for Scenario 2, prices are generated by solving
Yy 2
,p,) = arg max °_ piDi(p1, p2, 0i, 11 25
®).p}) g@l’pz)epz,_lpl i(p1. p2. 03, 1) (25)

for j € {1,...,N}. In the next subsection, we present numerical
simulations of these two scenarios and show how the regulator
rejects/does not reject the null hypothesis as the agents change
their behavior from competition to collusion.
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Figure 1: Comparing CDF’s of Residuals For Scenario 1

3.2 Computational results

Welet A = 20 and chose 0; = [10,-1,0.5,1] and 0y = [8,0.4,-3.0,1]
to be the agents’ true private information vectors. The shock values
were generated by N(5, 1), and we fix the upper-bound p = 8.0 on
the prices. Furthermore, we fix our significance level o = 0.05. The
threshold 7(N) for the hypothesis testing is obtained by the table
presented in [23]. Lastly, we let n; for j = {1, 2} be sampled from
N(0, 1). For the first scenario, the approximate equilibrium prices
need to be generated by solving (7). In our test case, we generate
approximate equilibrium prices via the algorithm described in the
appendix. The results for Scenario 1 are summarized in Table 1.
When agents are competing (i.e., acting under the specifications
of the null hypothesis), a false positive (i.e., decision of collusion
occurring) was not seen in the experiments. This is not surprising
because we set @ = 0.05 and each row in the table corresponds to
a single numerical experiment. If we repeated these experiments,
we would expect to see a close to o fraction of them report a false
positive. Also, note we are able to recover the correct estimate of
A for the underlying distribution generating the residuals. This
is highlighted in Figure 1, where we plot the ejfs samples from
exp(20) and the computed residual estimates éjfs by the regulator
after solving the optimization problem, for sample size equal to 50.
For the second scenario we generate prices by solving an aggre-
gate problem where we sum both agents’ utilities to compute the
prices. In Table 2, we see that the null hypothesis is rejected (i.e.,
decision of collusion occurring) for moderate and large sample sizes.
The MLE estimate of 1 is inaccurate as well since the agents are not
behaving in approximate equilibrium. In Figure 2, for N = 50 we
plot the empirical CDF of residual estimates é]fs by the regulator in
this scenario. Observe that when agents are cooperating instead of
competing, the computed residuals are vastly different then their
true values (we omit plotting the true cdf of exp(20) since the com-
puted residuals are very large for this scenario). The null hypothesis
that the agents are competing in equilibrium is rejected for almost
all sample sizes, indicating that our method is able to identify when
agents are not behaving in competition. We stress that rejecting the
null hypothesis is not proof that agents are colluding, but rather
gives some statistical evidence that suggests collusion is occurring.

Table 2: Numerical Results for Scenario 2 (Colluding)

N D ¢(N) i
10 0261 0325 012 Competing

Decision

20 0263 0.234 0.11 Colluding
30 0222 0.192 0.22 Colluding
40 0300 0.168 0.26 Colluding
50 0.301 0.150 0.22 Colluding
100 0322 0.106 0.28 Colluding
200 0.301 0.075 0.30 Colluding
500 0.335 0.047 030 Colluding

Cumulative Distribution Functions
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Figure 2: Comparing CDF’s of Residuals For Scenario 2

4 CONCLUSION AND FUTURE WORK

We proposed a hypothesis testing framework to decide whether
agents are behaving competitively or not. In our setting, a regulator
formulates an inverse variational problem in order to estimate
the unknown private information vectors as well as estimate the
residuals of the approximate equilibrium that arises from the agents’
competition. Our setting is flexible as the regulator only requires
access to prices and shock values. A future direction of work is to
study the theoretical properties of our framework. We demonstrated
our method in a simple two-player game with a polyhedral feasible
action space. We stress our setting is more general and allows for
any number of players with arbitrarily conic-representable sets, as
long as they satisfy some regularity conditions. Another direction
of future research is to apply our testing framework to the setting
in [11, 22], where groups of agents “learn” to collude instead of
competing. This problem is more challenging but can be explored
in the light of inverse variational problems and our framework.
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A ALGORITHM TO GENERATE
APPROXIMATE EQUILIBRIUM PRICES

A key part of our numerical simulations is to generate prices that
are e-approximate equilibrium. In the general case, we need to solve
the variational inequality formulation in (7). That problem is hard
to solve in general, but tailored algorithms do exist [18]. However,
for our setting the feasible region # contains only bounds on the
prices. Hence the problem becomes to find prices (p1, p2) such that

y; = Di(p1,p2.p, 60;) + pifi i, for i € {1,2}
32y pYi — pi(Di(p1, pa.p, 0:) + pibii) = €
Hence we can generate samples of (p1, p2) by acceptation/rejection
of samples based on the shock values y and nuisance parameters
(11, n2). First, we sample p and 51, 2 according to their specified
distributions. Then we solve the following system of nonlinear
equations (via, for example, Newton’s Method): p; D; (p1, pa, i, 0;) +
(pi)?0i,i = =, for i € {1,2}. After solving this system, if (p1,p2) €
P then it means they are e-approximate solution to the variational
inequality problem (since we can set both y; and y3 to zero), and
we accept the sample (p1, p2, p1). If p1 < 0 or py < 0, then we reject
the sample. Now without loss of generality, suppose that p; > p.
Then we can set p; = p and let y; = D1(p, p2.p, 01) + p61.1. Then by
letting y2 = 0 we solve for pa by paDa(p, pa, 1, 0;) + (p2)?0a.2 = —e.
Lastly if py > 0 and y; < 0, then we accept the sample (p1, p2, ). In
all other cases, we reject the sample. With this simple method, we
can generate sample prices that are e-approximate equilibrium. By
repeating the above N times for each sampled €;, we can generate
all the samples necessary for the numerical simulation.

y1,y220: (26)
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