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ABSTRACT
There is growing concern about tacit collusion using algorithmic

pricing, and regulators need tools to help detect the possibility

of such collusion. This paper studies how to design a hypothesis

testing framework in order to decide whether agents are behaving

competitively or not. In our setting, agents are utility-maximizing

and compete over prices of items. A regulator, with no knowledge of

the agent’s utility function, has access only to the agents’ strategies

(i.e., pricing decisions) and external shock values in order to decide if

agents are behaving in competition according to some equilibrium

problem. We leverage the formulation of such a problem as an

inverse variational inequality and design a hypothesis test under

a minimal set of assumptions. We demonstrate our method with

computational experiments of the Bertrand competition game (with

and without collusion) and show how our method performs.
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1 INTRODUCTION
Algorithmic pricing [10, 13] is increasingly used due to the growth

of internet sales channels, but there is concern that these algorithms

will lead to tacit collusion that harms consumers [11, 12, 15, 31].

The current situation is unique in that, though it poses challenges

for regulators because of the difficulty in detecting tacit collusion

by algorithms, there is a large amount of real-time pricing and

purchase data available for analysis by regulators. This paper is

motivated by these pressing issues, and represents an initial step

towards answering the question of how a regulator could detect

algorithmic collusion from a large corpus of financial data.

The most closely related literature looks at collusion in auctions

[6, 7, 26, 27]. Some work [26, 27] conducted a statistical analysis

of bidding data from situations where collusion is known to have

occurred, and found that collusion leads to less aggressive bidding,

higher prices for consumers, and increased correlation in bids. Other

work [6, 7, 27] uses econometrics to detect collusion, and is derived

using analyses that assume (perfect) equilibrium behavior. However,

assuming perfect equilibrium behavior is too stringent because it

requires no model mismatch between the econometrics method

and the bidders, and it requires bidders to be exactly accurate in

the optimality of their bids. So these approaches generally lead to

too many false positives when trying to detect collusion.

This paper proposes a hypothesis testing framework for detect-

ing collusion between agents in competitive environments. The

significant difference in our work is we allow the agents to not be

in perfect equilibrium. Instead, we presuppose that agents typically

choose actions close (but not exactly equal) to equilibrium but that

they will also occasionally choose actions far from equilibrium. This

weaker assumption partially mitigates model mismatch because it

does not require any data without collusion to exactly match the

equilibrium, and it also eliminates the need for agents to be exactly

accurate in the optimality of their strategies. These ideas will be

made more precise when we present our mathematical model.

1.1 Estimation in Equilibrium Models
Many competitive and cooperative environments can be analyzed

using equilibriummodels, where concepts like the Nash equilibrium

are used to study agents’ strategic behavior [17, 25]. Those models

typically contain primitives – such as agents’ private information,

utility functions, and strategy spaces – that often are not known

to an outside regulator or designer who then needs to estimate

those elements in order to, for example, design a mechanism of

interaction in order to induce a particular behavior or outcome. In

this paper we use strategy space and action space interchangeably.
However, the estimation of such primitives in equilibrium prob-

lems is quite challenging. In this work, we consider the case where

the agents’ actions are observed by the regulator and their strategy

spaces are known. Hence the estimation problem lies solely on

the agents’ utility functions and personal information. One line of

work is of structural estimation methods [2, 5, 28], which estimate

parametric utility functions by observing agents acting in equilib-

rium. Those approaches assume a “ground-truth” form of the utility

function, and derive necessary conditions based on constrained op-

timization in order to formally derive estimators of the parameters.

Another related line of work are surrogate methods [16, 21, 34]

that, while not strictly estimation methods, elicit information from

the agents themselves about sensitivities over strategies (i.e., about

derivatives of their utility functions with respect to strategies) by

providing the agents with a common surrogate function. Those

methods can induce the appropriate equilibrium behavior even

though the agents’ utility functions are not known.

Lastly, estimation can be formulated as an inverse variational

inequality [9, 20]. Such methods use the fact that equilibrium prob-

lems are a special case of variational inequalities, in order to pose

an inverse optimization problem [1] where the solutions (i.e., the

equilibrium strategies) are provided via samples, and the goal is

to estimate the problem’s parameters that generate such solutions.

This approach is powerful as it does not require a “ground-truth”

model, and under some conditions can produce good approximate

equilibrium behavior even when the parametric form of the utility

functions is misspecified. However, these methods based on inverse

optimization can encounter difficulties when the data gathered is

noisy [3, 4], which is what happens in most applications.
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In this paper, we build on the framework of [9]. However, we will

not assume that equilibrium actions are provided to the regulator

via samples. Instead, we develop a method that given some arbitrary

samples of actions is able to identify whether these samples came

from agents acting in (approximate) equilibrium or not. Hence our

work is more tied to coalition-detection in equilibrium games, in

the field of economics, and to hypothesis testing in statistics.

1.2 Coalition Detection
It is common to assume agents behave in equilibrium; however

this is not observed in several applications [8]. In fact, agents often

collude, exchange information, and form sub-groups – instead of

cooperating as a whole [19, 33]. This poses a problem for estimation

methods, which often assume the observed strategies come from

an specific type of behavior (e.g., total cooperation or competition).

The work [29, 30] characterizes coalitions in games and provides

conditions where the establishment or not of coalitions can be

tested. However the problem of coalition formation can also appear

where agents play imperfectly and are learning the primitives of the

environment while acting on it. Work done by [22] gives evidence

that when agents employ learning algorithms in a competitive

environment, such algorithms “learn” to implicitly collude, even if

collusion is not part of the agents’ plans.

In this paper, we formulate the problem of identifying whether

or not the observed actions come from agents in total competition

or not. Instead of identifying the coalition itself based on struc-

tural properties of the game, we instead use a data-driven approach

where a Kolmogorov-Smirnov hypothesis test [23, 24] is used in

order to accept or reject the hypothesis that the strategies observed

by the regulator come from agents in equilibrium. This novel ap-

proach is powerful in the sense that is independent of the type of

utility functions considered and makes very mild assumptions on

the a priori behavior of the agents, leveraging both the variational

inequality formulation and the power of hypothesis testing.

1.3 Outline
In Section 2, we describe our (approximate) equilibrium model

and develop the corresponding hypothesis testing framework. In

Section 3, we present computational experiments based on a con-

strained Bertrand-type game to showcase the performance of our

method when agents are acting in competition and in collusion.

Lastly, we conclude in Section 4 with a discussion on the potential

future applications of our model and method. We also discuss open

theoretical questions that are motivated by our work in this paper.

2 PROBLEM SETTING
We describe the agents’ model, the estimation setting the regulator

faces as it observes the actions taken by agents, and present our

hypothesis testing framework for detecting collusion.

2.1 Model Description
Suppose two agents are engaged in a Bertrand-type game, compet-

ing over prices of certain items (e.g., products or airline tickets). Let

pi ∈ R
q
be the price vectors of agent i ∈ {1, 2} over {1, ...,q} items,

and note we use the terms prices and strategies interchangeably,
as the strategy of each agent consists solely on the prices over the

items. We assume the strategy space of agent i is

Pi = {p ∈ Rq : Ap = b,p ∈ K} (1)

where A is am × q matrix, b is am-vector, and K is a closed convex

cone. Hence the strategy space is a cone given in standard form. In

addition, each agent has their own utility function

Ui (p1,p2, µ;θi ) = piDi (p1,p2, µ;θi ) (2)

where Di (p1,p2, µ;θi ) is the agent’s demand function, which de-

pends on both price vectors and is parametrized by the vector

θi ∈ R
d
, which we assume to be the private information of each

agent. Lastly, the demand function also depends on µ, which is a

common shock value disturbance that we assume to be a bounded

disturbance with small magnitude (to be made precise in next sec-

tion). The goal of this shock vector is to represent uncertainties

that may affect the demand and are outside of the agents’ control.

The goal of each agent is to select a feasible price pi ∈ Pi such

that its utility function is maximized. We focus our analysis to the

Nash equilibrium of the resulting game:

Definition 2.1. A strategy profile (p∗
1
,p∗

2
) is a Nash equilibrium if

each agent plays the “best-response” to the other, namely if

p∗i ∈ arg max

pi ∈Pi
Ui (p1,p

∗
2
, µ;θi ), for i ∈ {1, 2} (3)

The (pure-strategy) Nash Equilibrium may not be an adequate

solution concept for this constrained environment of the Bertrand-

type game, as it may not exist [14]. However, we will focus on the

case where each agent plays imperfectly. Namely, we assume that

before playing the game, a gap value ϵ is sampled from a (known

to the agents and regulator) parametric distribution D(ϕ) with (un-

known to the regulator but known to the agents) parameter ϕ. Next,
both agents pick a strategy vector (p1,p2) that is an ϵ-approximate

Nash equilibrium of the Bertrand game. To formalize this notion

of approximate equilibrium, we will use the characterization based

on variational inequalities presented in [9].

Definition 2.2. Given a function f : Rq →: Rq and a non-empty

set F ∈ Rq , the problem of finding the point p∗ such that

f(p∗)⊤(p − p∗) ≥ 0, for p ∈ F (4)

is called the variational inequality problem V I (f, F ).

It turns out that several problems can be formulated as varia-

tional inequalities (We refer to [20] for an in-depth characterization).

In particular, if we let F = P1 × P2 and we let

f(p) =
[
f1(p1,p2)
f2(p1,p2)

]
=

[
−∇1U1(p1,p2, µ;θ1)
−∇2U2(p1,p2, µ;θ2)

]
(5)

where ∇i is the gradient w.r.t. pi , then solving V I (f, F ) from (4) is

equivalent to finding the Nash equilibrium (3). We thus have the

following definition for approximate Nash equilibrium:

Definition 2.3. A strategy profile (p̄1, p̄2) is an ϵ-approximate

Nash equilibrium if and only if

f(p̄)⊤(p − p̄) ≥ −ϵ, for p ∈ F . (6)

It will suit our purposes to formulate the above approximate

variational inequality problem as a (convex) optimization problem.

This can be done under technical regularity conditions that ensure

constraint qualification holds (e.g., Slater’s condition).
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Theorem 2.4. [9] LetF = P1×P2, wherePi is given by (1), for i ∈
{1, 2}. Let f be given by (5). If F satisfies constraint qualification (e.g.,
Slater’s condition), then a strategy profile (p̄1, p̄2) is an ϵ-approximate
Nash equilibrium if and only if

∃y1,y2 ∈ Rm :

{
A⊤
i yi ≤C fi (p̄1, p̄2), for i ∈ {1, 2}∑
2

i=1 fi (p̄1, p̄2)
⊤p̄i − b⊤i yi ≤ ϵ

(7)

where we use the symbol “≤C ” to denote conic inequalities.

Next we assume that given some ϵ ∼ D(ϕ), the agents solve the
above feasibility problem in order to select the prices. In particular,

we assume that the agents solve the above problem where the sec-

ond inequality is replaced by an equality constraint – that is the

selected strategies satisfy condition (6) with equality. We will not

focus on how such prices are achieved, that is, how the agents learn

to play the ϵ-approximate Nash Equilibrium strategies (we refer to

[22] for a discussion about learning in cooperative games). Instead,

we will focus on the following estimation problem faced by an

external regulator: Given a sequence of observed prices and shocks

{(p
j
1
,p

j
2
, µ j )}Nj=1, the regulator would like to ascertain whether or

not agents are playing according to ϵ-approximate Nash Equilib-

rium or not. In this setup, the private information vectors (θ1, θ2)
of each agent are so-called nuisance parameters for the regulator
(i.e., they require estimation even though they are not of primary

interest). To that end, the regulator will construct estimates ( ˆθ1, ˆθ2)
of the private information vectors and residual estimates ϵ̂j for each
observation tuple j ∈ {1, ...,N } by solving the inverse variational

problem given by

min

ˆθ ,y,ϵ̂
L(ϵ̂1, ..., ϵ̂N ) (8)

s.t. A⊤
i y

j
i ≤C fi (p

j
1
,p

j
2
), for i ∈ {1, 2}, j ∈ {1, ...,N } (9)∑

2

i=1 fi (p
j
1
,p

j
2
)⊤p

j
i − b⊤i y

j
i = ϵ̂ j , for j ∈ {1, ...,N } (10)

where L(ϵ̂1, ..., ϵ̂N ) is some loss function over the residual estimates.

We assumed that the regulator knows the distribution D(ϕ), but
does not know ϕ. Hence the loss function can be written, for ex-

ample, as the negative log-likelihood as a function of ϕ [32]. We

note in this optimization problem, the prices are given by our N

samples, and we seek to select a
ˆθ such that the resulting utilities

form an approximate Nash equilibrium for every sample collected,

where the computed ϵ̂j are our residual estimates of ϵ .
Lastly, in order to make a decision as to whether or not the

observed prices are in approximate Nash equilibrium, the regulator

will formulate a hypothesis test over the computed residuals.

2.2 Hypothesis Testing Framework
In order to formalize the hypothesis testing framework, we begin

by describing the temporal sequence of events under consideration:

(1) Both agents and regulator observe µ, the shock variable.

(2) The agents solve the feasibility problem (7) for some ϵ ∼

D(ϕ). The strategies (p1,p2) are selected to exactly be an

ϵ-approximate Nash Equilibrium.

(3) The regulator observes the strategies (p1,p2) and records it.

(4) Steps 1-3 are repeated N times and the regulator collects the

sample tuples {(p
j
1
,p

j
2
, µ j )}Nj=1.

(5) The regulator solves the inverse variational problem (8) for

some parametric utility functions and computes the esti-

mated residuals ϵ̂1, ..., ϵ̂N .

(6) The regulator uses those residuals to perform a Kolmogorov-

Smirnov test (to be defined next).

We note that the regulator does not know the true utility func-

tions of the agents. Importantly, our approach is partially amenable

to parametric form misspecification because non-colluding agents

are not required to be in perfect equilibrium. In other words, some

amount of the ϵ j are meant to capture model misspecification.

Step 6 is conducted as follows: The regulator will use the com-

puted estimated residuals to perform a hypothesis test to determine

if the ϵ̂1, ..., ϵ̂N come from the distribution D(ϕ). However, even
though the regulator knows the distribution’s parametric form,

they do not know the underlying parameter ϕ. Hence, hypothesis
tests such as the standard Kolmogorov-Smirnov test are not appli-

cable since they require knowing the true underlying parameters

of the distribution under the null hypothesis. Therefore, we we will

resort to the Lilliefors variation of the Kolmogorov-Smirnov test

[23]. We first compute the empirical cumulative distribution func-

tion F̂N (d) = 1

N
∑N
j=1 I(ϵ̂j ≤ d), where I(·) is an indicator function.

Then the regulator computes some estimate
ˆϕ = д(ϵ̂1, ..., ϵ̂N ) and

computes the cumulative distribution function F̄N (d) = F
D( ˆϕ)(d),

where F
D( ˆϕ)(d) is the cumulative distribution function of a random

variable of distributionD( ˆϕ). Lastly, the regulator computes the test

statistic D∗ = maxd |F̂N (d) − F̄N (d)|. The null H0 and alternative

H1 hypotheses for our test are

H :


H0 : The agents are behaving in an ϵ-approximate

equilibrium where ϵ ∼ D(ϕ)

H1 : Otherwise

(11)

And the decision of whether to accept or reject the null hypothesis

is made using the decision-rule{
reject H0 : if D∗ ≥ τ (N )

accept H0 : if D∗ < τ (N )
(12)

where τ (N ) is some threshold from the Lilliefors variation of the

Kolmogorov-Smirnov test [23] and which is based on the number

of samples collected and the desired significance level α .

3 COMPUTATIONAL EXPERIMENTS
Here, we analyze the performance of our approach in a Bertrand

competition environment. We first detail the experiment setting

and then proceed to the numerical experiments and analysis.

3.1 Experiment Setting
We showcase our method in a setting where two agents compete

over a single item and need to set their respective prices in the

Bertrand-game environment. Each agent’s true demand function

has the following form:

D̄i (p1,p2, µ; ¯θi ) = ¯θi ,0 +
∑
2

j=1 pj
¯θi , j + ¯θi ,3µ + ηi (13)

where
¯θi is the agent’s private information vector, and we use the

term ηi to encompass unmodeled terms of the dynamics. Further-

more, we assume the set of feasible price vectors belong to the
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polyhedral set

P = {(p1,p2) ∈ R
2
: 0 ≤ p1 ≤ p̄, 0 ≤ p2 ≤ p̄} (14)

where p̄ is an upper-bound on each price. We consider the case

where ϵ is drawn from an exponential distribution ϵ ∼ exp( ¯λ).
We assume that the regulator observes the shock µ but does

not observe ηi . Hence, the regulator forms the following demand

estimate given some estimate
ˆθ :

Di (p1,p2, µ; ˆθ ) = ˆθi ,0 +
∑
2

j=1 pj
ˆθi , j + ˆθi ,3µ (15)

Following the steps described in the previous section, the regula-

tor collects the sample tuples {(p
j
1
,p

j
2
, µ j )}Nj=1 and forms the opti-

mization problem (8) with the loss function L(ϵ̂1, ..., ϵ̂N ) being the

negative log-likelihood of the underlying exponential distribution.

Note that in the negative log-likelihood the λ term is decoupled

from the other terms because of the particular mathematical form

of the density of an exponential distribution. As a result, we do not

need to include λ in the inverse variational problem.

In order to make the presentation of the final optimization prob-

lem clear, we define the marginal utility function for each agent (as

considered by the regulator) to be

mi (p1,p2, µ; ˆθi ) = pi
∂

∂pi
Di (p1,p2, µ;θi ) + Di (p1,p2, µ;θi ) =

pi ˆθi ,i + ˆθi ,0 +
∑
2

j=1 pj
ˆθi , j + ˆθi ,3µ . (16)

In addition, we impose some structure to the fitted utility functions:

(1) we normalize the fitted utility functions; (2) we enforce that

the marginal utilities of each agent decrease as they increase their

own prices (on the observed data); and (3) we enforce an additional

constraint that sets the dual variable y
j
i to zero if the observed price

p
j
i is strictly less than the upper bound p̄. Recalling the definition
of f(p) in (4), the optimization problem becomes

min

ϵ̂ ,y,θ1,θ2

∑N
j=1 ϵ̂j (17)

s.t. y
j
i ≥ mi (p

j
1
,p

j
2
, µ j , θ1), for i ∈ {1, 2}, j ∈ {1, ...,N } (18)

p̄
∑
2

i=1(y
j
i ) −

∑
2

i=1 p
j
imi (p

j
1
,p

j
2
, µ j , θi ) = ϵ̂j , (19)

for j ∈ {1, ...,N }

mi (1, 1, 0, θi ) =mi (1, 1, 0, ¯θi ), for i ∈ {1, 2} (20)

y
j
i = 0, for i ∈ {1, 2}, j ∈ {1, ...,N } s.t. p

j
i < p̄ (21)

θi ,i ≤ 0, for i ∈ {1, 2} (22)

ϵ̂ j ≥ 0, for j ∈ {1, ...,N } (23)

y j = (y
j
1
,y

j
2
) ≥ 0, for ∀j ∈ {1, ...,N } (24)

where (20) are the normalization constraints, in which the marginal

utility of both agents when there is no external shock and the prices

are set to unity is equal to the true marginal at that point. (Note we

could have set these normalization constraints to any other suitable

positive value without affecting the results. Different normalization

may yield different models that can be used to explain the same

observed data. This phenomenon is common in inverse optimization

problems, as discussed in detail in [4, 9].) Equation (22) ensures that

the fitted marginal functions decrease as the agents increase their

own prices. (This constraint is obtained after some arithmetic by

Table 1: Numerical Results for Scenario 1 (Competing)

N D∗ τ (N ) ˆλ Decision

10 0.317 0.325 33.7 Competing

20 0.206 0.234 27.93 Competing

30 0.120 0.192 20.83 Competing

40 0.069 0.168 21.43 Competing

50 0.089 0.150 19.99 Competing

100 0.070 0.106 18.80 Competing

200 0.031 0.075 18.62 Competing

500 0.022 0.047 20.01 Competing

requiring thatm1(p1, ·, ·;θi ) andm2(·,p2, ·;θi ) decrease as p1 and
p2 increase, respectively, on the observed data.) The “dual” vector

y is associated with the constraints (14) and (23) ensures that if

the the observed prices are not on the boundary of the feasible

region P then the associated dual variable is set to zero. We note

that (23) has a very subtle implication in the optimization problem

above: The very natural notion that dual variables are zero once

their associated constraint is non-binding is not enforced at all

by the original formulation in (8). If the prices are sampled in

perfect Nash equilibrium (that is ϵ = 0), then as argued in [9] the

formulation in (8) is able to recover exactly the true parameters

θi and the computed residuals are exactly zero. However, in our

scenario prices are obtained in approximate equilibrium (i.e., ϵ > 0).

Hence if complimentary slackness (23) is not enforced explicitly

then the computed residuals will present bias – namely they will

be “shrunk” since the formulation (8) could achieve smaller values

for the residuals by setting the dual variables to be positive, even

though the sampled prices are in the interior of the feasible region.

Recall that the objective function follows from the negative

log-likelihood of exponential distribution, where we dropped the

term N /λ since it does not impact the optimization. After solv-

ing the problem above, we compute the MLE estimate
ˆλMLE =

( 1

N
∑N
j=1 ϵ̂j )

−1
of λ. Then we let F̄N (d) = F

exp( ˆλMLE )
(d) and con-

duct the Lilliefors hypothesis test (12). To illustrate the performance

of the hypothesis testing we will simulate the process under two

scenarios:

Scenario 1: Agents are competing over prices, i.e.: they

solve the feasibility problem (7) after observing the shock

variable µ and the value of ϵ .

Scenario 2: Agents are colluding, i.e.: instead of solving

the feasibility problem (7), they maximize the sum of both

utility functions up to a ϵ optimality gap.

Hence for Scenario 2, prices are generated by solving

(p
j
1
,p

j
2
) = arg max

(p1,p2)∈P

∑
2

i=1 piDi (p1,p2, θi , µ j ) (25)

for j ∈ {1, ...,N }. In the next subsection, we present numerical

simulations of these two scenarios and show how the regulator

rejects/does not reject the null hypothesis as the agents change

their behavior from competition to collusion.
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Figure 1: Comparing CDF’s of Residuals For Scenario 1

3.2 Computational results
We let

¯λ = 20 and chose
¯θ1 = [10,−1, 0.5, 1] and ¯θ2 = [8, 0.4,−3.0, 1]

to be the agents’ true private information vectors. The shock values

were generated by N(5, 1), and we fix the upper-bound p̄ = 8.0 on

the prices. Furthermore, we fix our significance level α = 0.05. The

threshold τ (N ) for the hypothesis testing is obtained by the table

presented in [23]. Lastly, we let ηj for j = {1, 2} be sampled from

N(0, 1). For the first scenario, the approximate equilibrium prices

need to be generated by solving (7). In our test case, we generate

approximate equilibrium prices via the algorithm described in the

appendix. The results for Scenario 1 are summarized in Table 1.

When agents are competing (i.e., acting under the specifications

of the null hypothesis), a false positive (i.e., decision of collusion

occurring) was not seen in the experiments. This is not surprising

because we set α = 0.05 and each row in the table corresponds to

a single numerical experiment. If we repeated these experiments,

we would expect to see a close to α fraction of them report a false

positive. Also, note we are able to recover the correct estimate of

λ for the underlying distribution generating the residuals. This

is highlighted in Figure 1, where we plot the ϵ ′js samples from

exp(20) and the computed residual estimates ϵ̂ ′js by the regulator

after solving the optimization problem, for sample size equal to 50.

For the second scenario we generate prices by solving an aggre-

gate problem where we sum both agents’ utilities to compute the

prices. In Table 2, we see that the null hypothesis is rejected (i.e.,

decision of collusion occurring) for moderate and large sample sizes.

The MLE estimate of
¯λ is inaccurate as well since the agents are not

behaving in approximate equilibrium. In Figure 2, for N = 50 we

plot the empirical CDF of residual estimates ϵ̂ ′js by the regulator in

this scenario. Observe that when agents are cooperating instead of

competing, the computed residuals are vastly different then their

true values (we omit plotting the true cdf of exp(20) since the com-

puted residuals are very large for this scenario). The null hypothesis

that the agents are competing in equilibrium is rejected for almost

all sample sizes, indicating that our method is able to identify when

agents are not behaving in competition. We stress that rejecting the

null hypothesis is not proof that agents are colluding, but rather

gives some statistical evidence that suggests collusion is occurring.

Table 2: Numerical Results for Scenario 2 (Colluding)

N D∗ τ (N ) ˆλ Decision

10 0.261 0.325 0.12 Competing

20 0.263 0.234 0.11 Colluding

30 0.222 0.192 0.22 Colluding

40 0.300 0.168 0.26 Colluding

50 0.301 0.150 0.22 Colluding

100 0.322 0.106 0.28 Colluding

200 0.301 0.075 0.30 Colluding

500 0.335 0.047 0.30 Colluding
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Figure 2: Comparing CDF’s of Residuals For Scenario 2

4 CONCLUSION AND FUTUREWORK
We proposed a hypothesis testing framework to decide whether

agents are behaving competitively or not. In our setting, a regulator

formulates an inverse variational problem in order to estimate

the unknown private information vectors as well as estimate the

residuals of the approximate equilibrium that arises from the agents’

competition. Our setting is flexible as the regulator only requires

access to prices and shock values. A future direction of work is to

study the theoretical properties of our framework.We demonstrated

our method in a simple two-player game with a polyhedral feasible

action space. We stress our setting is more general and allows for

any number of players with arbitrarily conic-representable sets, as

long as they satisfy some regularity conditions. Another direction

of future research is to apply our testing framework to the setting

in [11, 22], where groups of agents “learn” to collude instead of

competing. This problem is more challenging but can be explored

in the light of inverse variational problems and our framework.
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A ALGORITHM TO GENERATE
APPROXIMATE EQUILIBRIUM PRICES

A key part of our numerical simulations is to generate prices that

are ϵ-approximate equilibrium. In the general case, we need to solve

the variational inequality formulation in (7). That problem is hard

to solve in general, but tailored algorithms do exist [18]. However,

for our setting the feasible region P contains only bounds on the

prices. Hence the problem becomes to find prices (p1,p2) such that

∃y1,y2 ≥ 0 :

{
yi ≥ Di (p1,p2.µ, ¯θi ) + piθi ,i , for i ∈ {1, 2}∑

2

i=1 p̄yi − pi (Di (p1,p2.µ, ¯θi ) + piθi ,i ) = ϵ
(26)

Hence we can generate samples of (p1,p2) by acceptation/rejection

of samples based on the shock values µ and nuisance parameters

(η1,η2). First, we sample µ and η1,η2 according to their specified

distributions. Then we solve the following system of nonlinear

equations (via, for example, Newton’s Method): piDi (p1,p2, µ, ¯θi )+
(pi )

2θi ,i =
−ϵ
2
, for i ∈ {1, 2}. After solving this system, if (p1,p2) ∈

P then it means they are ϵ-approximate solution to the variational

inequality problem (since we can set both y1 and y2 to zero), and
we accept the sample (p1,p2, µ). If p1 < 0 or p2 < 0, then we reject

the sample. Now without loss of generality, suppose that p1 > p̄.
Then we can set p1 = p̄ and let y1 = D1(p̄,p2.µ, ¯θ1)+ p̄θ1,1. Then by

letting y2 = 0 we solve for p2 by p2D2(p̄,p2, µ, ¯θi ) + (p2)
2θ2,2 = −ϵ .

Lastly if p2 ≥ 0 and y1 ≤ 0, then we accept the sample (p1,p2, µ). In
all other cases, we reject the sample. With this simple method, we

can generate sample prices that are ϵ-approximate equilibrium. By

repeating the above N times for each sampled ϵj , we can generate

all the samples necessary for the numerical simulation.
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