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ABSTRACT. We prove a representation stability result for the second homology groups of Torelli
subgroups of mapping class groups and automorphism groups of free groups. This strengthens the
results of Boldsen—Hauge Dollerup and Day—Putman. We also prove a new representation stability
result for the homology of certain congruence subgroups, partially improving upon the work of
Putman—Sam. These results follow from a general theorem on syzygies of certain modules with finite

polynomial degree.
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1. INTRODUCTION

The purpose of this paper is to prove cases of a variant of two conjectures from Church and Farb
[CF13, variations on Conjectures 6.3 and 6.5] as well as to answer a question posed by Putman [Put15,
fifth Remark]. Specifically, we prove a central stability result for the second homology groups of the
Torelli subgroups of mapping class groups and automorphism groups of free groups, and a central
stability result for the homology groups in all degrees of certain congruence subgroups of general linear
groups. We begin by recalling the definition of central stability.

1.1. Central stability. Let

G0—>G1—>G2—>~"

be a sequence of groups and group homomorphisms, and let
Ao 2% Ay 25 4, 22

be a sequence with A, a G,-representations and ¢, a G,—equivariant map. In this paper, the
groups G, will be symmetric groups, general linear groups, subgroups of general linear groups with
restricted determinant, or symplectic groups. Church and Farb [CF13] described a condition they called
representation stability for these types of sequences {A,}. In its original formulation, representation
stability was only defined for semisimple representations A,, and for families of groups admitting natural
identifications between irreducible G,—representations for different n. A much more general and formal
notion of representation stability called central stability was introduced by Putman [Putl5].

For purposes of exposition, we will now specialize to the case that the groups G,, are either the
family of general linear groups GL,(Z) or the family of symmetric groups &,,. Let o,, € G,, be the
transposition (n — 1 n) in the case G,, = &,, and the associated permutation matrix in the case
G, = GL,(Z). We assume that o, fixes the map (¢,_1 0 ¢n_2): An_s — A,. There are two natural

maps

Indg" | Ap—o = Indg"  A,_1,

the first induced by ¢,,_2 and the second by postcomposing this induced map by o,. We say that the
sequence {A,} has central stability degree < d if for all n > d the map

coeq (Indg:;2 An_o =3 Indng An_l) — A,

induced by ¢,,—1 is an isomorphism. We say that {A,,} is centrally stable if it has finite central stability
degree. If {A,} has central stability degree < d, then the entire sequence is determined by the finite
sequence Ag — A; — -+ — Ay. Analogous definitions exist for symplectic groups and subgroups of
the general linear groups with restricted determinant, which we review in Section 3. The main result of
this paper is to prove that certain homology groups of Torelli groups and congruence subgroups are
centrally stable.

A cautionary remark for experts: there are different definitions of central stability in the literature

that are not equivalent in all situations; see Remark 3.11.

1.2. Central stability for Torelli groups and congruence subgroups.
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Automorphisms of free groups. Let F, denote the free group on n letters. A group automorphism
f: F,, = F, induces a linear map f": Z"™ — Z" on the abelianization of F,,. This construction defines
a surjective map

Aut(F,) — GL,(Z).

We write IA,, to denote the kernel of this map, which is often called the Torelli subgroup of Aut(F,).
If we fix an inclusion of Aut(F},,) into Aut(F,,+1) as the stabilizer of a free generator, the Torelli group
IA,, maps into IA, 1. The induced maps H;(IA,) — H;(IA,+1) are equivariant with respect to the
induced actions of the groups GL,,(Z), and so we may ask whether the sequences of homology groups
{H;(IA,,)} exhibit central stability as GL,,(Z)-representations.

The first homology group of TA,, was computed independently in work of Andreadakis [And65, see
Section 6] for n = 2,3, Cohen—Pakianathan (unpublished), Farb (unpublished) and Kawazumi [Kaw06,
Theorem 6.1]. Very little is known about the higher homology groups of IA,,. Bestvina-Bux—Margalit
[BBMO07, Main Theorem, part (2)] proved that Hy(IAj3) is not finitely generated as an abelian group
which implies that A3 is not finitely presented, a result originally due to Krstié-McCool [KM97,
Theorem 1]. However, for n > 3, it is unknown if Hy(IA,,) is finitely generated or if IA,, is finitely
presented.

Church and Farb [CF13, Conjecture 6.3] conjectured “mixed representation stability” for a certain
summand of the rational homology of IA,,. Given Putman’s subsequent work on central stability, it is
natural to modify Church and Farb’s Conjecture 6.3 to also ask if the integral homology groups of 1A,
exhibit central stability as representations of the general linear groups. We prove this result for the

second homology groups.
Theorem A. The sequence Ho(IA,) has central stability degree < 38 as GL,,(Z)-representations.

This theorem partially improves upon a result of Day and Putman [DP17, Theorem B], which

established surjectivity of the maps

coeq (Tndy" %)) Ha(1A, 2) = Indgy @) Ha(1A,-1)) — Ha(IA,)

for n > 6. Our techniques only show these maps surject for n > 18 (Theorem A’), but additionally
prove the maps are injective for n > 38. We note that our method is substantially different from that
of Day and Putman: our proof centers on properties of general linear groups, while their proof focused
on properties of automorphism groups of free groups. Our proof strategy applies to Torelli subgroups of
mapping class groups with little modification. In contrast, Day and Putman [DP17, Remark 1.3] noted
that their techniques for Torelli subgroups of Aut(F},) do not easily generalize to Torelli subgroups
of mapping class groups, and that the techniques used by Boldsen and Hauge Dollerup [BHD12] for
Torelli subgroups of mapping class groups do not easily generalize to prove results about TA,,.

Our proof uses a spectral sequence due to Putman—Sam [PS17], and relies on known computations
of Hy(IA,) (Kawazumi [Kaw06, Theorem 6.1]) and a high-connectivity result of Hatcher—Vogtmann
[HV98, Proposition 6.4].

Mapping class groups. Let ¥, 1 denote an oriented genus-g surface with one boundary component,
and let Mod, denote the group of connected components of the group of orientation-preserving

diffeomorphisms of ¥, ; that fix the boundary pointwise. The induced action of these diffeomorphisms
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on the first homology group of ¥, ; preserves the intersection form, which happens to be symplectic.

This action therefore induces a map
Mod, — SpQQ(Z),

where Sp,,(Z) denotes the group of linear automorphisms of 729 that preserve the standard symplectic
form. This map is well known to be surjective. The kernel Z, of this map is called the Torelli subgroup
of Mod,. Just as with the groups IA,, very little is known about the homology groups H;(Z,) for
i > 1. Church and Farb conjectured a form of representation stability for H;(Z,) [CF13, Conjecture
6.1], motivated by their earlier work [CF12] constructing nontrivial classes in H;(Z,; Q). In this paper

we prove a central stability result for the homology groups H»(Z,) as symplectic group representations.
Theorem B. The sequence Hy(Z,) has central stability degree < 69 as Sp,,(Z)-representations.

This partially improves upon a result of Boldsen and Hauge Dollerup [BHD12, Theorem 1.0.1]
proving that

coeq (Tndgy?* ™) Ha(Z,2:Q) = ndgy ) Ha(Z,1:Q) ) = Ha(Z,5Q)
is surjective for g > 6; our techniques only show the map is surjective for g > 33 (Theorem B’) but also
establish injectivity for g > 69, and our result holds with integral coefficients.

Our proof again uses the spectral sequence from Putman—Sam [PS17], Johnson’s computations
of Hi(Z,) ([Joh85b, Theorem 3]) and a high—connectivity result of Hatcher—Vogtmann [HV17, Main
Theorem].

Prior work had established representation stability results for certain subrepresentations of the
rational cohomology of Torelli groups. Hain [Hai97, Remark 14.2 and Proposition 5.1] computed the

images of the cup product maps
Hl(Ig§ Q) ® Hl(Ig5 Q) — HQ(IsﬁQ)

as SpQQ(Z)—representations, and his results show in particular that the multiplicities stabilize for g > 5.
Church-Ellenberg-Farb [CEF15, proof of Theorem 7.2.2] proved a representation stability result for the
subalgebras of H*(Z,; Q) generated by H 1(Ig; Q), viewed as S,-representations. They also proved the
analogous result for TA,, [CEF15, proof of Theorem 7.2.3]. Kupers—Randal-Williams [KRW19, Theorem
8.1] computed the algebraic part of H*(Z,; Q) for g > 4.

Shortly after this paper was released, Kassabov—Putman [KP18] proved that Hy(Zy;Z) is finitely
generated as an Spy,(Z)-module for g > 3 [KP18, Theorem A], and that Z, has a finite Mod-equivariant
presentation for g > 3 [KP18, Theorem C].

Congruence subgroups of GL,,(R). We also investigate representation stability for congruence subgroups
of general linear groups. Homological and representation stability properties of congruence subgroups
have had applications in homotopy theory — for example, in work of Charney [Cha84] on excision for
algebraic K-theory — and applications in number theory; see Calegari-Emerton [CE16]. Let I be a
two-sided ideal in a ring R, and let GL, (R, I) denote the kernel of the “reduction modulo I” map

GL.(R) — GLn(R/1).

We call GL,, (R, I) the level I congruence subgroup of GL,,(R).
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For R commutative and H a subgroup of the group of units R* of R, let GLnH(R) denote the
subgroup of matrices with determinant in H. Let 4 denote the image of R* in R/I. In many cases,
GLY(R/I) is the image of GL,(R) in GL,(R/I). For example, this is the case when R is the ring
of integers in a number field by strong approximation (see e.g [PR94, Chapter 7]) or when R/I is
Euclidean since then GLY(R/I) will be generated by elementary matrices. In these cases, the homology
groups H;(GL, (R, I)) will have natural linear GL¥(R/I)-actions and there are equivariant maps
H;(GL,(R,I)) = H;(GL,+1(R,I)) induced by the inclusions GL,(R, ) < GL,4+1(R,I) .

When I C R, the symmetric group &,, is naturally a subgroup of GLY(R/I), so we may view
the the groups H;(GL,(R,I)) as representations of the symmetric group. When I = R, we endow
H;(GL, (R, I)) with the trivial symmetric group action. Putman [Put15, Theorem B] proved that when
R has finite stable rank (see Definition 2.18 and Bass [Bas64, Section 4, “Definition”]), these homology
groups have central stability as &,-representations. Putman’s result gave explicit stable ranges for the
homology groups H;(GL, (R, I); K) over certain fields K, and later Church-Ellenberg—Farb—Nagpal
[CEFN14, Theorem D] proved a central stability result for the homology of certain congruence subgroups
with coefficients in a general Noetherian ring K but without explicit bounds. Church and Ellenberg
[CEL7, Theorem D’] generalized both theorems with a result for integral homology with explicit stable
ranges, and Church-Miller-Nagpal-Reinhold [CMNR18, Application B] and Gan-Li [GL17a, Theorem
11] further improved these ranges.

Putman [Put15, fifth Remark] comments that it would be ideal to understand stability properties of
CGL, (R, I) as GLY(R/I)-representations instead of just &, -representations. Using Gan-Li [GL17a,

Theorem 11] (stated in our Theorem 4.3), we provide the following partial solution to this problem.

Theorem C. Let I be a two-sided ideal in a Ting R of stable rank r and let t be the minimal stable
rank of all rings containing I as a two-sided ideal. Let 8 denote the image of R* in R/I. If R/I is a
PID of stable rank s, and the natural map GL,(R) — GLY(R/I) is surjective, then the central stability
degree of the sequence H;(GL, (R, I)) is

<s+1 fori=20
<min(24i + 12t + s + 4, max(5+r,5+s)) fori=1
<2414+ 12t +s+4 fori>1

as Z[GLY(R/I)]-modules.

In particular, Theorem C applies in the case that R is a ring of stable rank ¢t = r, and R/I is a
Euclidean domain. It follows from the work of Putman and Sam [PS17] that H;(GL,(R,I)) has finite
central stability degree when R is the ring of integers in an algebraic number field. However, their
techniques do not give an explicit central stability range or address congruence subgroups with infinite
quotients R/I.

Remark 1.1. Observe that the group GL(R, ) only depends on I as a non-unital ring. The only
assumption we put on the non-unital ring I in Theorem C is that I is a two-sided ideal in a ring
with finite Bass stable rank. We can always find a ring R containing I as a two sided ideal with
CGL,(R) — GLY¥(R/I) surjective. In particular, R can be taken to be the unitalization I, R/I can be
taken to be Z, and I can be taken to be {£1}. The unitalization of I is defined as the image of I under
the left adjoint of the forgetful functor from the category of unital rings to the category of possibly
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non-unital rings. As an abelian group, I, = Z @ I. The unitalization is an important construction
when studying excision for algebraic K-theory (see e.g. Suslin-Wodzicki [SW92]). In particular, for
any non-unital ring I, H;(GL,,(I}+,I)) is a GL,,(Z)-representation.

Because GL(R,I) = GL,(I4,I) for any ring R and ideal I, and because Z has stable rank 2, we

obtain the following corollary of Theorem C.

Corollary 1.2. Let I be a two-sided ideal in a ring R and let t be the minimal stable rank of all
rings containing I as a two-sided ideal. Then, as a sequence of Z|GL,(Z)]-modules, the sequence
H;(GL,(R,I)) has central stability degree

<3 fori=20
<min(24i + 12t +6,7) fori=1
<240+ 12t +6 fori>1.

Remark 1.3. Currently, the representation stability literature has a number of effective tools for
establishing stability results, including central stability, for sequences of symmetric group representations
(see for example Church-Ellenberg [CE17]) but often these tools cannot be applied to sequences of
general linear (or symplectic) group representations. In Corollary 3.34, we prove that if a sequence of
general linear representations happens to be centrally stable with respect to the underlying actions of
the symmetric groups, then it is also centrally stable with respect to the action of the general linear
groups (though the converse does not hold in general). Corollary 3.34 then allows us to use known or
elementary results about central stability for certain sequences of symmetric group representations to
prove our central stability results for general linear group representations, in particular Theorem A and
Theorem C.

We prove Corollary 3.34 by comparing central stability with the notion of polynomial degree (see
Definition 3.24). This polynomial condition and its variants have a long history in the literature; see
e.g. [EML54, Pir88, Pir, BP99, Pir00, BDFP01, HV11, Djal2, DV10, Ves13, DV13a, DV13b, DPV16,
Djal7, Djal6a, RWW17]. The definition used in this paper agrees with that of an arXiv version of
Randal-Williams-Wahl [RWW15, Definition 4.10]. A convenient fact is that the polynomial degree of a
sequence does not depend on the choice of automorphism group, which allows us to leverage results
about symmetric group actions to prove results about general linear group actions. We use a similar
strategy in the symplectic case as well in order to prove Theorem B.

We note that we do not prove that the second homology groups of these Torelli groups satisfy a
polynomial condition. Instead, we use that the zeroth and first homology groups do statisfy a polynomial
condition to prove that the second homology groups are centrally stable. This contrasts with the case

of congruence subgroups where we use that all of the homology groups satisfy a polynomial condition.

1.3. Outline. In Section 2, we prove that some relevant semisimplicial sets are highly connected. We
use these connectivity results in Section 3 to prove that certain modules with finite polynomial degree
exhibit central stability. In Section 4, we apply our results on polynomial degree to prove Theorem A,
Theorem B, and Theorem C.

1.4. Acknowledgments. This collaboration started as a result of the 2016 AIM Workshop on Repre-
sentation Stability. We would like to thank AIM as well as the organizers of the workshop, Andrew

Putman, Steven Sam, Andrew Snowden, and David Speyer. Additionally, we thank Benson Farb,
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Thomas Church, Dick Hain, Alexander Kupers, Andrew Putman, Holger Reich, Steven Sam, and
Graham White for helpful conversations and feedback. We are grateful to the referees of this paper for

their careful reading and detailed feedback.

2. HIGH CONNECTIVITY RESULTS

As is common in stability arguments, our proofs will involve establishing high connectivity for
certain spaces with actions of our families of groups. We start out in Section 2.1 with a review of
simplicial complexes and semisimplicial sets, and an overview of techniques to prove that their geometric
realizations are highly connected. Then in Section 2.2 we review elementary properties of free modules
and symplectic structures over PIDs. In Section 2.3 we prove some new high connectivity results for
spaces relevant to stability for general linear group representations. In Section 2.4, we review results
from the literature concerning high connectivity of spaces relevant to stability for symplectic group

representations.

2.1. Review of simplicial techniques. Recall that the data of a semisimplicial set is the same as
the data of a simplicial set without degeneracy maps; see Weibel [Wei95, Definition 8.1.9]. We will
also consider simplicial complexes in this paper. Simplicial complexes differ from semisimplicial sets in
several ways. For example, each simplex of a semisimplicial set comes equipped with an order on its set
of faces, while the faces of a simplicial complex are not ordered. Further, a collection of vertices can be
the set of vertices of at most one simplex of a simplicial complex, but there are no such restrictions for
semisimplicial sets. See Randal-Williams—Wahl [RWW17, Section 2.1] for a discussion of the differences
between semisimplicial sets and simplicial complexes.

We say that a semisimplicial set or simplicial complex is n—connected if its geometric realization is
n-connected. If o is a simplex of a simplicial complex X,, we write Lk™ (¢) to denote the link of ¢ in
X, or simply Lk(c) when the ambient complex is clear from context. We now recall the definition of

weakly Cohen—Macaulay simplicial complexes.

Definition 2.1. A simplicial complex X, is called weakly Cohen—Macaulay (abbreviated wCM) of
dimension n if it satisfies the following two conditions.
- X, is (n — 1)—connected.

- If o is a p-simplex of X,, then Lk™ (¢) is (n — 2 — p)-connected.

Definition 2.2. If X, is a simplicial complex, let X, = X2 be the associated semisimplicial set

formed by taking all simplices of X, with all choices of orderings on their vertices.

Convention 2.3. We adopt the following convention on subscript notation: we always write X, for a
semisimplicial set and X, for a simplicial complex. If we denote a semisimplicial set and a simplicial
complex by the same letter, then they are related by X' = X,. By X, we will always mean the set of
p—simplices of the semisimplicial set X,, not the set of p—simplices of the simplicial complex X,, which

is then in bijection with X,/&p41.

The following theorem is well known; see for example Kupers—Miller [KM16, Lemma 3.16] and
Randal-Williams-Wahl [RWW17, Proposition 2.14].

Theorem 2.4.
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(a) If Xo = X™ is n—connected, then so is X,.
(b) If X, is weakly Cohen-Macaulay of dimension n, then X, = X' is (n — 1)-connected.

These results will allow us to pass between high connectivity results for semisimplicial sets and
simplicial complexes. The following definition and theorem is a useful tool for proving simplicial

complexes are highly connected.

Definition 2.5. A map of simplicial complexes 7: Y, — X, is said to exhibit Y, as a join complex
over X, if it satisfies all of the following;:
- 7 is surjective
- 7 is simplex-wise injective, that is, the induced map on the geometric realizations is injective
when restricted to a (closed) simplex
- a collection of vertices (yo, . .., ¥p) spans a simplex of Y whenever there exists simplices g, . .., 0,

such that for all 4, y; is a vertex of §; and the simplex 7(6;) has vertices 7(yo), ..., T (yp).
The following result is due to Hatcher—Wahl [HW10].

Theorem 2.6 (Hatcher—Wahl [HW10, Theorem 3.6]). Let m: Yo, — X, be a map of simplicial complexes

exhibiting Yo as a join complex over X,. Assume X, is wCM of dimension n. Further assume that for

all p-simplices T of Yy, the image of the link w(LkY (1)) is wCM of dimension (n —p —2). Then Y, is
-2

Ln 5 J —connected.

Definition 2.7. Let X, be a simplicial complex and X, = Xc‘,’rd. Let 0 € X, and 0 C X, the

corresponding simplex. Then define the link
Lk & = (LkX o)°rd
as a sub-semisimplicial set of X,.

2.2. Algebraic preliminaries. In this subsection, we recall some basic facts and definitions concerning
free modules over PIDs as well as symplectic structures.

Let R be a PID. For S a set, throughout this paper we write R[S] to denote the free R—module with
basis S. Notably, this does not denote the polynomial algebra with variables S.

Given a submodule W of a free R—module V', we say W is splittable or has a complement if there
exists a submodule U with V = W @ U. Given a submodule W of a free module V, let sat(W) denote
the intersection of all splittable submodules of V' which contain W, equivalently, sat(WW) is the preimage
of the torsion submodule of V/W under the quotient map V- — V/W. We call sat(W) the saturation of
W. We write rk(WW) for the rank of a free module. The following proposition collects some elementary

facts concerning free modules over PIDs and their submodules; see for example Kaplansky [Kap5h4].

Proposition 2.8. Let R be a PID and A, B,C submodules of a finitely generated free R—-module V.
i) If A and B have complements in V, then so does AN B.

it) Let B have a complement. Then A has a complement containing B if and only if there is a
submodule D with V. = A& B & D.

i11) tk(A) = rk(sat(A)).

iv) ((A NC)® (BN C’)) C (A+ B)NC but equality does not hold in general.
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v) IfV=A®B and C D A, then C = A& (BNC).
vi) fV=A®B and C C A, then C=AN(Ba ().
vit) A has a complement in 'V if and only if V/A is torsion free.

Again let R be a PID and V' a finitely generated free R—module. Recall that a symplectic form on
V is a perfect bilinear pairing (, }: V x V — R such that (v,v) = 0 for all v € V. For a submodule

W C V, we write W+ to denote its symplectic complement
Wt ={veV|(ww) =0 foralwecW}.

Recall that a submodule W of a symplectic R—module V' is called symplectic if the form restricts to a
symplectic form on W. We note that, when R is not a field, the condition that W is symplectic may
be stronger than the condition that W N W+ = 0.

The following proposition is an elementary fact about free symplectic modules over PIDs and their

submodules (see for example Knus [Knu91, 4.1.2]).

Proposition 2.9. Let R be a PID and V' a finitely generated free symplectic module over R. Then the

rank of V is even and there is a basis vi,w1,..., Uy, wy, of V such that
(vi,v5) = (wi,wj) =0, (v, wj) = d;; foralli,j=1,...,n.

2.3. Generalized partial basis complexes. In this subsection, we recall the definition of several
simplicial complexes and semisimplicial sets involving partial bases and complements. These connectivity
results will imply that VIC(R)-modules satisfying a polynomial condition exhibit central stability.
Throughout the subsection we let R be a PID and V' be a finite-rank free R—module.

Definition 2.10. A partial basis of a free module V is a linearly independent set {vo, ...,v,} C V such
that there is a free (possibly zero) submodule C with span(vo,...,v,)®C = V. Such a set {vg,...,v,}
is also called unimodular, and the submodule C is called a complement for the partial basis. An ordered

partial basis is a partial basis with a choice of bijection with a set of the form {0, ..., p}.

Definition 2.11. For p > 0, let PB,, (V') be the set of ordered partial bases of size p+1. For 0 <14 < p,
there are maps d;: PB,(V) — PB,_1(V) given by forgetting the ith basis element. With these maps,
the sets PB, (V) assemble into a semisimplicial set PBo(V). Let PB,(V) be the unique simplicial
complex with PB4 (V) = PB, (V)

The existence of PB.(V') and all other simplicial complexes considered in this subsection follow
easily from the work of Randal-Williams—Wahl [RWW17, Definition 2.8 and proof of Lemma 5.10].

The link of a simplex ¢ = (vo,v1,...,vp) € PB,(V) is the subcomplex of ordered partial bases
(uo, u1, ..., uq) such that {vg,v1,...,vp, U, u1,...,uq} is a partial basis of V. Notably, this link only
depends on the submodule W = span(vy, ..., v,). By abuse of notation, we will often denote Lk, (o)
by Lke(W). By convention if W = 0, we let Lko (W) be the entire complex of ordered partial bases
PB.(V). If U C V is a splittable submodule, then there is a canonical inclusion of PB4(U) C PB.(V).

Definition 2.12. Let U, W C V be splittable submodules. Define
PBo(U, W) = PB4(U) NLke(WW) C PB4 (V)
and let PB, (U, W) be the unique simplicial complex with PBY(U, W) = PB,(U, W)
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Concretely, PB4 (U, W) is the sub-semisimplicial set of PB4(U) consisting of ordered nonempty
partial bases of U contained in a complement of W. The complex PB4 (U, W) depends only on the
submodule sat(U + W) and not on V. We note that

PB.(U,W) = Lk'BO(w) it w C U,
and in particular that
PB,(V,V) =0 and PB.(V,0) = PB,(V).
More generally, whenever W is contained in any complement of U, then PB(U, W) = PB(U).
Remark 2.13. For vector spaces,
PB.(U,W) = PB(U,W NU) = LKL B (W nU) (R a field).

We caution, however, that this identification does not hold in general. For example, when R = 7Z and

V = Z3, consider the submodules

1 1
U=span| |1 and W =span | |—1
0 0
Since the determinant of the matrix
1 1 a
1 -1 b
0 0 ¢

is a multiple of 2 for any a, b, ¢ € Z, there is no basis for V' that contains both a basis for U and a basis
for W, and PBe (U, W) is empty. In contrast, the complex PBo(U, W NU) = PB4 (U,0) = PB,(U) is

nonempty.

We next define a variation of the semisimplicial set PB4(V') consisting of ordered partial bases with

distinguished choices of complements.

Definition 2.14. Let PBC, (V) be the set of ordered partial bases (vo,...,v,) of V as well as a choice

of complement C' such that
C @ span(vy,...,vp) = V.
Let d;: PBC,(V) — PBC,_1(V) be given by the formula
di(vo,...,vp,C) = (vo,...,@i,...,vp,C@Rvi).

Here the hat indicates omission. These sets assemble to form a semisimplicial set PBCq(V'). Let
PBC, (V) be the unique simplicial complex with PBC2™ (V) = PBC, (V)

Proposition 2.15. Let 9; : PBC,(V) — PBCy(V) be the map induced by {i} — {0,...,p} and let
9 : PBC,(V) — PBCo(V)PT! be the product of these maps. The map O is injective. If R is a PID, then

((’U()7 00)7 ey (’Up, Cp))

is in the image of 0 if and only if v; € C; for all i # j.
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Proof. Consider (vy,...,vp,C) € PBC,(V). We have that
0i(vo, - .., vp,C) = (vj,C @span(vg ..., 0,...,0p)) € PBCy(V).

The “only if” portion of the claim follows from this description.
Conversely, let ((vo, Co), ..., (vp,Cp)) € (PBCo(V))PT! such that v; € C; for i # j. We will prove
that

(vo, ..., vp,C) € PBC,(V), where C= ﬂ C; .
This will imply the “if” portion of the claim as then

8(1)07 .. .,’Up,C) = ((U(),CQ), ey (vp,Cp)).

Define

Df:ﬂch

and we will prove by induction that
span(vo,...,v;) @ D; =V.

The base case is the statement that span(vg) @ Co = V. Since span(vg,...,vj—1) C C; by assumption,
Proposition 2.8 Part v) and the inductive hypothesis imply that

span(vo, . ..,vj—1) ® (Dj_1 N C;) = Cj.

By taking the direct sum of both sides of this equation with span(v;), we conclude the inductive step.

Applying this result when j = p yields the desired decomposition
span(vo, . .., vp) & C = span(voy,...,vp) & Dp =V.

This establishes the “if” portion of the claim.
Injectivity of 9 follows from the fact that if

0(vo, ..., vp, C) = ((vo, Co), ..., (vp, Cp)),
then

c:ﬂQ. O

It will be convenient for us to realize the complexes PBC,(V) and their links as special cases of the
following more general construction. In the following, we will often identify an ordered partial basis
(vo, ..., vp) of V with a split R-linear monomorphism f: RPT! — V.

Definition 2.16. Let U, W C V be splittable submodules. Define the sub-semisimplicial set PBC,4(V,U, W) C
PBC,(V) by
PBC,(V,U,W) = {(f.C) € PBC,(V) | im f C U, W C C}.

Let PBC,(V,U, W) be the unique simplicial complex with PBCgrd(V, U, W) =PB.(V,U W)
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Note that
PBC.(V) = PBC.(V, V,0).
Given a simplex o = (f,C') € PBC,(V), we can identify its link
Lke(c) = PBC,(V, C,im f).

This link is isomorphic to PBC,(C'), which we will see is a special case of Lemma 2.17 below. In general

PBC,(V,U, W) is not isomorphic to PBC4(U), but the following lemma gives a more general picture.

Lemma 2.17. Let R be a PID, U/ W C V be splittable, and A® B =V such that U C A and B C W.
Then

PBC.(V,U, W) = PBC.(A, U, W N A)
(f,C) — (f,CNA)
is an isomorphism. In particular, if U@ W =V, then PBCo(V,U, W) =2 PBC,(U).
Proof. Let (f,C) € PBC4(V,U, W). Proposition 2.8 Part v) implies
mfa(CNA)=A
and so we conclude that (f,C N A) € PBC,(4,U,W N A). If (g,D) € PBCo(A,U,W N A), then
(9,D @ B) € PBC4(V,U,W). These two maps are inverses because
(CNA)eB=C
by Proposition 2.8 Part v), and by Proposition 2.8 Part vi),
(DeB)NA=D. O
The main theorem of this subsection is Theorem 2.19. To state this theorem, we will use Bass’ stable

range condition for rings.

Definition 2.18 (Bass [Bas64, Section 4 “Definition”] and [Bas68, Definition 3.1]). Let s be a positive
integer. A ring R has stable rank s if s is the smallest positive integer m for which the following
Condition (By,) holds: whenever

aoR—l—a1R+~~+amR:R, aigR,
there exist elements x1, s, ...,Z,n € R such that
(a1 + apz1)R+ ... + (am + apxm )R = R.

Note that the indexing in Definition 2.18 differs from Bass’ convention in his work [Bas68]; he called
it the stable range condition SR ;. Bass ([Bas64, Section 4 “Examples”] and [Bas68, Proposition 3.4
(a) and Theorem 3.5]) states that semi-local rings have stable rank 1, and Dedekind domains have
stable rank at most 2. So, for example, R has stable rank 1 if R is a field and R has stable rank at most
2 when R is a PID. Since the next result concerns PIDs, the stable rank s must be equal to 1 or 2.

The remainder of the subsection serves to prove the following theorem.

Theorem 2.19. Let R be a PID. Let s be the stable rank of R. If U and W are splittable submodules

of the finite-rank free R—module V', then PBC4(V,U, W) is erU — rk;/V —so2

J —connected.
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Theorem 2.19 is a partial generalization of the result of [RWW17, Lemma 5.10] of Randal-Williams—

kV —s—2
Wahl that if R has stable rank s then PBC,(V) is %

we will prove Theorem 2.19 by comparing PBC,(V,U, W) with its image in PBo (V). This will let us
use a result of van der Kallen [vdK80, Theorem 2.6 (i)—(ii)]: Assume R is a ring with stable rank s.
Let U and W be splittable subspaces of V. Then PB(U, W) is (tkU —rk W — 1 — s)—connected. In
particular, PB4 (U) is (rkU — 1 — s)—connected.

Note that van der Kallen’s result is stated in terms of the poset whose underlying set is

|_|PBp(U, W)

—connected. Following their proof,

and whose order is induced by the face maps. The geometric realization of this poset is isomorphic
to the barycentric subdivision of the geometric realization of PB4(U, W) (see for example Randal-
Williams-Wahl [RWW17, Proof of Lemma 5.10]) and hence the connectivity results apply. We will use

this same identification in the proof of Proposition 3.35.

Proposition 2.20. Let R be a ring with stable rank s, and let U and W be splittable subspaces of the
finite-rank free R—module V.. The simplicial complex PBo (U, W) is wCM of dimension (tkU —rk W —s).
In particular, PBo(U) is wCM of dimension (tkU — s).

Proof. By [vdK80, Theorem 2.6 (ii)] and Theorem 2.4 (a), the complex PBo (U, W) is (tk U —rk W—1—5)—
connected. The link of {v,...,vp} in PBo(U, W) = PB,(U) N Lko(W) is isomorphic to

PB, (U, W @ span(vy, . .., vp)) = PBo(U) N Lk (W @ span(vo, . .., vp))
and so the links are (tkU — rk W — s — 2 — p)—connected as required. O

To prove PBC,(V, U, W) is highly connected, we will show that PBC,(V, U, W) is wCM. To do this,

we need the following lemma.
Lemma 2.21. Let R be a PID and U, W, XY, Z be splittable submodules of a finite-rank free R—module
V.
i) PBC.(V, X,Y) N PBC.(V, Z,W) = PBC.(V, X N Z,sat(Y + W)).
it) Any simplex 0 = (f,C) € PBCo(V,U, W) has link Lke(c) = PBC4(C,UNC,W).
Proof. i) Both sides of the equation describe the following semisimplicial set:
{(f,C) € PBCy(V) |[im f C X,im f C Z,Y CC,W C C}
={(f,C) e PBC(V) |im f C X N Z, sat(Y + W) C C}
ii) Every simplex in PBC,(V, U, W) contains every simplex in PBC, (V') spanned by vertices in
PBC.(V,U, W) (in other words, the inclusion PBC,(V,U, W) — PBC,(V) is full). Hence, for
o € PBC,(V),
LKVEC(VUW) () — LkPBCV) (5 n PBC, (V, U, W)
=PBC,(V,C,im f) NPBC.(V,U, W)
=PBC,(V,UNC,W & im f).
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The last step uses Part i) and the observation that, since W is contained in the complement C
of im f,
sat(W 4+im f) = W @ im f.
By applying Lemma 2.17 with A = C and B = im f, we find
PBC.(V,U NC, W & im f) :PBC.(C,Uma(W@imf)mo).
Then Proposition 2.8 Part vi) implies that
(Waoim f)nC =W

and the result follows. O

Proposition 2.22. If R is a PID of stable rank s, the complex PBCo(V,U, W) is wCM of dimension
{rk U—rkW — SJ
— |

Proof. We begin by checking that the map
0: PBC,(V,U, W) — PB,(U,W)
{(v0,Co), ..., (vp,Cp)} — {wo, ..., vp}

exhibits PBC,(V, U, W) as a join complex over PB, (U, W). Simplex-wise injectivity is clear. We next
check surjectivity. Let {vg,...,vp} be a p-simplex in PB,(U, W). Because {vy,...,vp} € Lko(W),
there is a submodule of D C V such that

D & span(vy,...,vp) @ W =V.

Then the simplex {(vg, Co), ..., (vp, Cp)} with C; = span(vg, ..., 0, ...,v,) ® DS W in PBC,(V,U, W)
is a preimage of {vo,...,v,} under 6, and 6 is surjective.

It remains to verify the third condition of Definition 2.5. Let (vg,Cp),. .., (vp, Cp) be vertices
of PBC,(V,U, W) and let oy, ...,0, be simplices of PBC,(V,U, W) such that for each ¢ = 0,...,p,
the vertex (v;,C;) is a vertex of o;, and 6(o;) has vertices 0(vg, Cp),. .., 0(v,, Cp), that is, vertices
{vo,...,vp}. We wish to show that the vertices (vo, Cp), ..., (vp, Cp) span a simplex in PBC,(V,U, W).

By Proposition 2.15, it suffices to check that v; € C; for all ¢ # j. By assumption, (v;, D) for some
D C R"™ and (vj, C}) are vertices of o;. So a second application of Proposition 2.15 implies that v; € C;
as required.

We now prove the simplicial complex PBC,(V,U, W) is {Wchonnected. This follows by
applying Theorem 2.6 to the map 6. Since 0 exihibits PBC,(V, U, W) as a join complex over PB, (U, W)
and PB, (U, W) is wCM of dimension (tkU — rk W — s) by Proposition 2.20, it only remains to check
that the images of links of p—simplices are wCM of dimension (rtkU —rkW — s —p — 2).

Let o = {(v0,Cp), ..., (vp,Cp)} be a p-simplex of PBCo(V,U, W) and C = !_, C;. Lemma 2.21
Part ii) implies that

Lko(0) =PBC,(C,UNC,W).
Note that
0(Lko(0)) =PBo(UNC, W) C PB,(U,W).
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Since k(U N C) > rkU — p — 1, Proposition 2.20 implies that 6(Lk.(c)) is wCM of dimension
(tkU —xtkW — (p+ 1) — s), in particular wCM of dimension (tkU — kW — s — p — 2). We conclude
that PBC,(V,U, W) is wCM of dimension L%J O

Proposition 2.22 and Theorem 2.4 (b) together establish Theorem 2.19.

2.4. Symplectic partial bases complexes. In this subsection, we consider the symplectic group
analogues of the complexes from the previous section. Let R be a PID. The high connectivity results
discussed here will later be used to show that SI(R)-modules satisfying a polynomial condition exhibit

central stability.

Definition 2.23. Let W be a free finite-rank R—module equipped with a skew-symmetric bilinear

form (not necessarily alternating or perfect). A symplectic partial basis of W is a set of pairs
{(vo,wo), ..., (vp,wp)} CW x W
such that {vg,wo,...,vp,wp} is a partial basis of W with
(vi,v;) = (ws,w;j) =0 and (v, w;) = 6.

An ordered symplectic partial basis is a symplectic partial basis with a choice of bijection between
{(IUO5 wO)a BERE) (Upva)} and {05 cee 7p}'

When W is a symplectic R—module (that is, the form is alternating and perfect), then any symplectic

partial basis may be extended to a symplectic basis for W. For general W, such a basis may not exist.

Definition 2.24. Let W be a free finite-rank R—module equipped with a skew-symmetric bilinear
form. We call a submodule H of W symplectic if the bilinear form restricts to a perfect alternating
form on H. Define the Witt index g(W) of W to be

g(W) = sup {; rk(H)

there is a submodule P C W and a symplectic
submodule H C W such that W =P ®o H '

Definition 2.25. Let W be a free finite-rank R-module equipped with a skew-symmetric bilinear
form. For p > 0, let SPB, (V') be the set of ordered symplectic partial bases of size p + 1. There are
maps d;: SPB,(V) — SPB,_1(V) given by forgetting the ith pair. With these maps, the sets assemble
into a semisimplicial set SPB4 (V).

In the case that W is a symplectic R—module, these semisimplicial sets (or the corresponding
posets) have been studied, for example, by Charney [Cha87], Panin [Pan87], and Mirzaii—van der
Kallen [MvdKO02]. This generalization to arbitrary W is due to Friedrich [Fril7]. In [MvdK02, Fril7]
more generally unitary groups are considered. In their notation, we are considering the case that the

anti-involution is the identity, e = —1, A = R, p = 0, and A the symplectic form is

R27n % RQm R,
m

(z,y) = Z(fﬂziqym — T2iY2i-1)-
i=1
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Mirzaii-van der Kallen [MvdKO02, Definition 6.3] defined a broad concept of the unitary stable rank of
a ring R, which specializes to apply to the study of symplectic, orthogonal, and unitary groups over
R. Results of Mirzaii—van der Kallen [MvdK02, Remark 6.4] and Magurn—van der Kallen—Vaserstein
[MVAKV88, Theorems 1.3 and 2.4] together imply that semi-local rings (including fields) have symplectic
unitary stable rank 1, and PIDs have symplectic unitary stable rank at most 2. Most relevant to this
paper are the integers R = 7Z, which have symplectic unitary stable rank 2.

Let R be a PID of (symplectic) unitary stable rank s. Mirzaii and van der Kallen [MvdK02, Theorem
7.4] proved that if V = R?" is a symplectic R-module, then SPB4(V) is |1 (n — s — 3) | -connected.
Analogously to the case of partial bases discussed in the previous subsection, Mirzaii and van der Kallen
considered a simplicial complex which is homeomorphic but not isomorphic to the one considered
here. Friedrich [Fril7, Theorem 3.4] proved that for a general finite-rank free R—module W with a
skew-symmetric bilinear form of Witt index g(W), then SPB,(W) is |4 (¢(W) — s — 3)|—connected.

3. MODULES OVER STABILITY CATEGORIES

In Section 3.1, we recall the definition of the categories VICH (R), SI(R), and Fl. Our approach
to these topics uses the formalism of stability categories. We review the notions of central stability
homology, degree of presentation, and polynomial degree for modules over these categories in Sections
3.2, 3.3, and 3.4. The main result of Section 3 is that modules over VIC* (R) and SI(R) with finite
polynomial degree exhibit central stability, and we prove this result in Section 3.5. In Section 3.6, we
describe a spectral sequence introduced by Putman—Sam [PS17], which we use in Section 4 to prove

our representation stability results.

3.1. Preliminaries. In this subsection, we recall the definition of the category Fl of Church—Ellenberg—
Farb [CEF15] and the categories VICY (R) and SI(R) of Putman-Sam [PS17, Section 1.2]. We will view
these constructions as (equivalent to) stability categories (see Definition 3.4), following the second author
[Pat17, Section 3]. Stability categories are homogeneous categories in the sense of Randal-Williams—
Wahl [RWW17, Definition 1.3] and weakly complemented categories in the sense of Putman—Sam [PS17,

Section 1.3]. We will state their definition using a related concept, stability groupoids.

Definition 3.1. Let (G, ®,0) be a monoidal groupoid whose monoid of objects is the natural numbers
Ny. The automorphism group of the object n € Ny is denoted G,, = Aut? (n). Then G is called a
stability groupoid if it satisfies the following properties.

i) The monoidal structure

D: Gm X Gn ‘—>Gm+n

is injective for all m,n € Ng.
ii) The group Gy is trivial.
iil) (Grpm X 1) N (1 X Gran) =1 X Gy X 1 C Grympn for all [;m,n € Ny.

Definition 3.2. A homomorphism G — H of stability groupoids is a strict monoidal functor sending 1
to 1.

The construction used to define stability categories is originally due to Quillen but the notation and
content of the following proposition is adopted from Randal-Williams—Wahl [RWW17, Section 1.1].
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Proposition 3.3 (Randal-Williams-Wahl [RWW17, Remark 1.4, Proposition 1.8]). Let G be a stability
groupoid. If G is braided, there is a monoidal category UG on the same objects, such that

Hom"9 (m,n) = G, /(1 x Gp_m).

as a G, —set.

If a stability groupoid G is symmetric monoidal, then so is UG.

Definition 3.4 (Patzt [Pat17, Definition 3.5]). Let G be a stability groupoid. If G is braided, then
UG is called its stability category.

The following properties of stability categories are implicitly used throughout this section.

Proposition 3.5 (Randal-Williams-Wahl [RWW17, Proposition 1.7, 1.8(i)]). Let G be a braided
stability groupoid and UG its stability category, then:

i) G is the underlying groupoid of UG.

it) The object 0 € UG is initial. We will denote the unique map from 0 to n by iy,.

Example 3.6. The following are examples of stability groupoids G and associated categories equivalent
to UG.

i) Symmetric groups: Let & be the symmetric stability groupoid of symmetric groups. Then
UG is equivalent to the category Fl of finite sets and injection of Church—Ellenberg—Farb
[CEF15].

ii) General linear groups: Let R be a ring. Let GL(R) be the symmetric stability groupoid of
the general linear groups over R. Then U GL(R) is equivalent to the category VIC(R) of Djament
[Djal2] and Putman—Sam [PS17]. The objects of VIC(R) are finite rank free R—modules and
the morphisms from V' to W are given by the set of pairs (f,C') of an injective homomorphism
f:V — W and a free submodule C' C W such that im(f)®C = W and rk(C)+rk(V) = rk(W).
The composition law is defined by

(f,C) e (9, D) = (fog,C@ f(D)).
A VIC(R)-module is a functor from VIC(R) to the category of abelian groups.

iii) General linear groups with restricted determinant: Let R be a commutative ring and
H a subgroup of the group of units R*. Let GL(R) denote the stability groupoid of the
subgroups

GLZ(R)={A € GL,(R) | det A € H}.
GL*(R) is symmetric monoidal if —1 € H. Note that determinant is well defined since the
ring is commutative. Its stability category U GL (R) is equivalent to the category VICY (R),
defined by Putman—Sam [PS17, Section 1.2]. Its objects are finite-rank free R—modules V' with a
choice of generator of a € (/\rk(v) V) /H. The morphisms HomVch(R)((V, a), (W, b)) are split
injective linear maps f: V — W and a choice of complement of the image of f with the added
requirement that f,(a) = bif f is an isomorphism. Here f, : (/\rk(v) V) JH — (/\rk(w) W) /H

is the induced map. In particular,
HomVICH(R)((V, a), (W, b)) = Hom""“®) (v, W), for rk(V') # rk(W), and
Homv'<" B ((V,a),(W,b)) 2 GLF(R)  if V=W =~ R".
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iv) Symplectic groups: Let R be a ring. Let Sp(R) be the symmetric stability groupoid of the
symplectic groups over R. Then U Sp(R) is equivalent to the category SI(R) of free finite-rank
symplectic R—modules and isometric embeddings. Details are given in Putman—Sam [PS17,
Section 1.2].

v) Automorphisms of free groups: Let AutF be the symmetric stability groupoid of the
automorphism groups of free groups of finite rank. Then UAutF is equivalent to the category of

finite-rank free groups and monomorphisms together with a choice of free complement, that is,

Hom(F, G) = {(f, C)

f: F — G an injective group homomorphism,
C C @ a free subgroup with (im f)«C =G

See Randal-Williams-Wahl [RWW17, Section 5.2.1].

vi) Mapping class groups of compact oriented surfaces with one boundary component:
Let Mod be the braided stability groupoid of mapping class groups of compact oriented surfaces
with one boundary component. Its monoidal structure is induced by boundary connect sum.
See Randal-Williams—Wahl [RWW17, Section 5.6.3].

Definition 3.7. We call functors from a category C to the category of abelian groups C—modules and
denote the category of C—modules by Mod¢. If C is a stability category or stability groupoid and A is a
C—module, we let A,, denote the value of A on the object n € Ng.

If a category C is equivalent to the category UG, then the categories of C—modules and UG—modules
are equivalent. We therefore use the terms of UG—module and Fl-module roughly interchangeably, and
similarly for other items in Example 3.6.

If G is a stability groupoid, then the data of G-module is precisely the data of a Z|G,,]-module for
every n. For m fixed, we will often view a Z[G,,]-module W as a G-module by putting W in degree m

and the module 0 in all other degrees. We now define free UG—modules.

Definition 3.8. Let G be a stability groupoid and let M : Modg — Modyg be the left adjoint to the
forgetful functor Modyg — Modg. We say that M (W) is the the free UG-module on W. Concretely,
given a Z[G,,|-module W, the Z[G,]-module M (W), is given by the formula

M(W), 2 Z[Hom" (m, m)] @z, W.
For a general G-module W,
M(W) =P M(W,).
n=0
We abbreviate M (Z[G,,]) by M(m).

3.2. Central stability homology and resolutions. We begin by defining degree of generation and
presentation and discuss how these concepts relate to central stability degree. We then review central

stability homology and how it relates to the degrees of higher syzygies of UG—modules.

Definition 3.9. Let G be a stability groupoid. We say a G—module W has degree < d if W,, = 0 for

n > d. A UG-module A is generated in degrees < d if there is an exact sequence of UG-modules

MW - A -0
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with W° of degree < d. A UG-module A is related in degrees < d if there is an exact sequence of
UG-modules

MW - MW — A -0
with W1 of degree < d. We say A is presented in degrees < d if it is generated and related in degrees
<d.

Definition 3.10. Let G be a braided stability groupoid with braiding b. Let A be a UG-module, and
let ¢pp_o: Ap_o — A,_1 denote the map induced by the morphism

idpo®t1: (n—2)®0—(n—2)D®1
that is the sum of the identity map of n — 2 and the unique morphism 0 — 1. We consider two maps

Ind&r Ap—z = Indg"

n—2X1

A, L.

_1x1

The first is induced by ¢,,—2 and the second is the map induced by ¢,,_o postcomposed with id,,_2®(b1,1).
The UG—module A has central stability degree < d if the map

coeq(IndgL2 Ao Indg:i1 An_q) — A,
induced by ¢, is an isomorphism for all n > d.

Remark 3.11. The definition of central stability used by Putman [Putl5, see paragraph “Central
stability, definition”], the one used by Putman—Sam [PS17, see paragraph “Asymptotic structure”]
and the one we use are all slightly different. These concepts turn out to coincide for the symmetric
groups [PS17, Remark 1.2 & Theorem F]. The work of Djament [Djal6b, Proposition 2.14] implies that
Putman—Sam’s definition agrees with the definition of degree of presentation used in this paper; see also
Gan-Li [GL17b, Theorem 3.2]. It is unclear how to generalize Putman’s definitions to braided stability
categories, but there is a straightforward generalization to symmetric stability categories, which is
equivalent to our definition. See [Patl7, Proposition 6.1 and 6.2] for a comparison of these different

forms of stability.

We now compare the notion of central stability degree to the notion of presentation degree. The
following theorem will allow us to translate results on presentation degree quoted from other papers
into statements about central stability. This theorem also allows us to translate the main theorems of

this paper into results about presentation degree.

Theorem 3.12. Let A be a module over Fl, a module over VICH(R) for a ring R of finite stable rank
and a subgroup H < R* containing —1, or a module over SI(R) for a ring R of finite (symplectic)
unitary stable rank. Then A is presented in finite degrees if and only if it has finite central stability

degree. Specifically, we have the following bounds.

Fl (Patzt [Pat17, Corollary 6.4(a)]; see also Church-Ellenberg [CE17, Proposition 4.2]): Ford >
0, let A be an Fl-module generated in degrees < d. Then A is presented in degrees < (d+ 1) if
and only if A has central stability degree < (d+ 1).

VICH(R) (Patzt [Pat17, Corollary 6.4(b)]): Suppose R is a ring of stable rank s, —1 € H < R,
and let A be a VICH(R) —module generated in degrees < g. If A has central stability degree < d,
then it 1s presented in degrees < max (d,g + s+ 1). If A is related in degrees < d, then it has
central stability degree < max (d, g+s+ 1).
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SI(R) (Patzt [Pat17, Corollary 6.4(c)]): Suppose R is a ring of (symplectic) unitary stable rank s
and let A be a SI(R)-module generated in degrees < g. If A has central stability degree < d,
then it 1s presented in degrees < max (d,g + 5+ 2). If A is related in degrees < d, then it has
central stability degree < max (d, g+s+ 2).

We note that for H # R*, we implicitly assume R is commutative when considering VICH(R) as we
have not defined VICY (R) for noncommutative rings, only VIC(R).

Observe that the central stability degree of a UG—module is always at least its degree of generation.
Thus the central stability degree alone gives a bound on degree of presentation, though this bound may
be improved with the data of both central stability degree and the degree of generation.

In fact, the following lemma states an easy equivalence that has been pointed out in many papers,

for example [Pat17, Proposistion 5.4].
Lemma 3.13. A UG-module A is generated in degrees < d if and only if
Indg" 3 Apo1 — Ay
is surjective for all n > d.
Given a UG-module A, central stability can be rephrased as acyclicity of a chain complex
Indg" | An_p — Indgr  Ap_y — A, — 0.

This chain complex is the tail of a longer chain complex:

Definition 3.14 (Compare [Pat17, Definition 2.4, Proposition 4.3]). Let A be a UG—module, and let
¢n: Ap — Ant1 denote the map induced by the morphism

id,®t1:nd0 —ndl.
Define 5.9 (A) to be the augmented semisimplicial UG—module with p—simplices given by
CF (A = ZIGn) @216, 1y x1] An—(pt1)
and the ¢th face map by
di: ZIGn) ®ziG,_ 41y x1] An—(p+1) — Z[Gn] @zic,_, x1] An—p
g@ar— g-(idp—p ® hi) @ dp—p-1(a)
where the coset h;G1 corresponds to the morphism
id; Bt @idp_i: i ®0®(p—1i) — i®1® (p—14) in Hom"9(p,p+1) =2 Gpi1/Gpr1)—p-

Let C9(A) denote the chain complex associated to CY(A); we will refer to it as the central stability
complex of A. Let H 9(A) denote the homology of this chain complex; we will call it the central stability
homology of A.

The chain complex CY9(A) and groups HY(A) have an Ny-grading coming from the fact that the
set, of objects of a stability groupoid is Ng. We denote the piece in grading n by C9(A),, or HI(A),

respectively. We will drop the superscript G when the groupoid is clear from context.
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Definition 3.15. We say that a UG—module A has higher central stability if EQ(A),L =~ 0 for n

sufficiently large compared to i.

Remark 3.16. Note that in particular H_;(A), = 0 and Hy(A), = 0 is equivalent to the surjectivity
and the injectivity, respectively, of the last map in Definition 3.10.

The central stability complex has appeared in the literature in varying degrees of generality. In the
Fl case, it is closely related to a complex introduced in [Putl5, Section 4] whose homology is called
Fl-homology by Church-Ellenberg [CE17]. Fl-homology has appeared in work of Church, Ellenberg,
Farb, and Nagpal [CEF15, CEFN14, CE17] and Gan and Li [GL17b, GL16, Ganl6, Lil6]. For the
category Fl, the complex C,(A) itself was denoted by B,.1(A) by Church-Ellenberg-Farb-Nagpal
[CEFN14, Definition 2.16], by éf_fl by Church—Ellenberg [CE17, Section 5.1], and by Inj,(A) by the
first and third author [MW16, Section 2.2]. Putman—Sam [PS17, Section 3] defined the complex for
modules A over general “cyclically generated” complemented categories and used the notation X, 41 (A).
In this paper, we adopt notation used by the second author [Pat17].

When A = M(0), the central stability homology is the reduced homology of the following augmented
semisimplicial set that was previously studied by Randal-Williams—-Wahl [RWW17, Definition 2.2,
Theorem 3.1, 4.20].

Definition 3.17. Let K,G be the semisimplicial UG—set with set of p—simplices given by
(KpG)n = Hom"9 (p+1,n) = G /G i1
and the ith face map is induced by precomposition with the morphism
id; @0 @idp_: i DO0D (p—1) — iDL (p—1).

By definition, the reduced chain complex 6’*((K.Q)n) agrees with the central stability complex of
M (0). Here the term reduced chain complex of a semisimplicial set means the chain complex formed
by first augmenting the semisimplicial set by inserting a point in degree —1, then composing with the
free abelian group functor to obtain an augmented semisimplicial abelian group, and then forming a
chain complex by taking the alternating sum of face maps as the differential.

The semisimplicial sets (K¢G), were first introduced by Randal-Williams-Wahl [RWW17] and
are examples of a larger class of semisimplicial sets which they denote by W, (A, X). They describe
these semisimplicial sets explicitly in many examples, often showing they are isomorphic to complexes
previously considered in the literature. In particular, the semisimplicial set (Ko GL(R)),, is isomorphic
to PBC4(R™) [RWW17, Section 5.3], (K¢ Sp(R)),, is isomorphic to SPB4(R") [RWW17, Section 5.4],
and (K,8),, is isomorphic to the complex of injective words [RWW17, Section 5.1}, a complex introduced
by Farmer [Far79]. Randal-Williams—Wahl [RWW17] proved that high connectivity of (K¢G),, implies
homological stability for the groups G,,. The name H3 is related to their [RWW17, Definition 2.2].

Definition 3.18. Let a,k € Ny. Define the following condition for a stability category UG.
H3(k,a): H;(M(0)), =0 foralli>—1andall n>k-i+a.

Remark 3.19. For all stability categories UG, H_1(M(0)),, = 0 for all n > 0.

In the following proposition, we compile information from the literature about this condition for the

stability categories appearing in Example 3.6.
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Proposition 3.20. These stability categories satisfy the condition H3.
i) UG satisfies H3(1, 1).
it) UAutF and U Mod satisfy H3(2, 2).
iii) If R is a ring with stable rank s, then U GL(R) and satisfies H3(2, s+1). If R is a commutative
ring with stable rank s, then U GLY (R) and satisfies H3(2, s + 1).
i) If R is a ring with (symplectic) unitary stable rank s, then U Sp(R) satisfies H3(2, s + 2).

Proof. Since H;((K4G)n) = H;(M(0)),, it suffices to show (K,G), is highly connected. With the

exception of U GL (R), these connectivity results appear in Randal-Williams-Wahl [RWW17].

i) Randal-Williams-Wahl [RWW17, Section 5.1] proved that (K.&),, is isomorphic to complex of
injective words which which was shown to be (n — 2)—connected by Farmer [Far79, Theorem 5].

ii) Hatcher—Vogtmann [HV98, Proposition 6.4] showed a space closely related to K,UAutF is
highly connected. Similarly, Hatcher—Vogtmann [HV17, Main Theorem]| proved that a space
closely related to (KU Mod),, is highly connected. Using these results, Randal-Williams—
Wahl [RWW17, Proposition 5.3 and Lemma 5.25] proved that (K,AutF),, and (K, Mod),, are
| 1(n — 3)]-connected.

iii) Randal-Williams-Wahl [RWW17, Lemma 5.10] proved that (Ko GL(R)), is [3(n —s —2)|-
connected. This builds on the work of van der Kallen [vdK80, Theorem 2.6]. Also see Charney
[Cha84, Theorem 3.5].

iv) From the description of (Ke Sp(R)), in [RWW17, Section 5.4], it follows that it is isomor-
phic to the space appearing in Mirzaii—van der Kallen [MvdK02, Theorem 7.4] and hence is
|2(n — s — 3)|—connected.

We now consider the case G = GL*(R). Because

Hom" GLH(R)(m,n) = Hom" " (m, n) for m <n,
it follows that
O (M (0)n = O M(0) forp<n—2.

We conclude that the map

CE D (1 (0)) — CEHO 1 (0))
induces an isomorphism on homology groups for * < (n — 3). Thus for ¢ > 0,

fI,GLH(R)(M(O))n = H"(M(0), =0  whenn>2i+s+1

(3 (3

since U GL(R) satisfies H3(2, s 4+ 1) and necessarily (n — 3) > 4 in this range. Moreover, as in
Remark 3.19,

A P (M(0), =0  forn >0
and we conclude H3(2, s + 1) for U GL”. O

The following theorem generalizes Theorem 3.12 to general stability categories and higher central

stability homology groups.

Theorem 3.21 (Patzt [Pat17, Theorem 5.7]). Assume H3(k,a). Let A be a UG-module and {d, }nen,

a sequence of integers with d;+1 — d; > max(k,a), then the following statements are equivalent.
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i) There is a resolution
s MW = MW = A= 0

with W a G-module of degree < d;.
it) The homology groups

H;(A), =0 foralli>—1 and alln > d;y1.

3.3. Polynomial degree. To prove that the second homology of Torelli subgroups are centrally stable,
will first prove that the first homology group of these Torelli groups exhibit higher central stability. To
do this, we establish higher central stability for polynomial VIC(Z)— and SI(Z)-modules. We can apply
these results to the Torelli groups because their first homology groups are known to be polynomial.
There are several notions of polynomial functors—as mentioned in the introduction. We use the same
definition as in the arXiv version [RWW15, Definition 4.10]; in the published version the definition was
slightly changed.

Definition 3.22. Let G be a stability groupoid. Define the endofunctor

S: UG —UG
via the formula S=1® —.

We will consider the natural transformation id — S given by
t1 ®id, :0Bn — 1 B n.

By abuse of notation, we denote the endofunctor of UG—modules given by precomposition by S also by
S. Again, there is an induced natural transformation id — S defined by precomposition with the above

natural transformation.

Concretely, if G is braided and A is a module over its stability category UG, then there are

isomorphisms of G, —representations

(SA), = Resf;éln Api1 & Resg:;llAnH.
This last isomorphism uses the braiding.
Definition 3.23. Given a UG-module A, define UG—modules

ker A :=ker(A — SA) and
coker A := coker(4A — SA).

Definition 3.24. We say that A has polynomial degree —oco in ranks > d if A,, =0 for all n > d. We
say A has polynomial degree < 0 in ranks > d if ker A,, = 0 for all n > d and coker A has polynomial
degree —oo in ranks > d. For r > 1, we say A has polynomial degree < r in ranks > d if ker A,, = 0 for
all n > d and coker A has polynomial degree < r — 1 in ranks > d.

We say A has polynomial degree < r if it has polynomial degree < r in all ranks > —1.

Polynomial modules have higher central stability when the category satisfies the following condition.
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Definition 3.25. Let b,/ > 1 be natural numbers. Define the following condition on a stability
category UG:

H4((,b): H;(coker M(m)), =0 for all m >0, all i > —1, and all n. > £- (i +m) + b.
Theorem 3.26 (Patzt [Patl7, Corollary 7.9]). Let a,b,k,£ > 1. Let G be a braided stability groupoid,
and assume its stability category UG satisfies H3(k,a) and H4(L,b) with b > max(k,a). If A is a
UG-module of polynomial degree < 0 in ranks > d for some d > —1, then

Hi(A), =0 forall i>-1 and n>max(d+i+2,ki+a).

If A is a UG—module of polynomial degree < r in ranks > d for some r > 1 and d > —1, then

H;(A), =0 forall i>—-1 and n>0d+r)+ 4+ 4 0+ 1)b+1.

Note that for ¢ = —1, the above sum is an empty sum and hence zero.

Proof of Theorem 3.26. [Pat17, Corollary 7.9] only considers the case r > 1. But the cases r < 0 are
easy to see. First note that if A, = 0 for all n > d, also él(A)n &~ Indg:ﬂ_ A,_;—1 = 0 for all
n>i+1+dand thus H;(A), =0 for all n > i+ 1+ d.

Now let us assume A has polynomial degree < 0 in ranks > d. From the definition of polynomial

—1

degree, it follows that for n > d, the maps A,, — (SA),, are isomorphisms. Thus there is a short exact

sequence of UG-modules

0—B—A—C—0

such that B,, =0 for all n < d, B,, — (SB), is an isomorphism for all n > d, and C,, = 0 for all n > d.
Here B is obtained from A by replacing the groups in ranks < d with 0 and C is the cokernel of the
natural map B — A.

We will show moreover that, for n > d, the group G,, acts trivially on A4,,. Fix n > d. Consider the
map p : A, = Aa, induced by the morphism id,, B¢, : (n®0) — (n®n). The subgroup (1 xG,,) C Gy,
acts trivially on p(A,) = Aa, by functoriality. Now, the category G is braided, and so we have natural
maps from the braid group on 2n strands to Ga,. Then the subgroup (1 x G,,) C Ga, is conjugate to
(G, x 1) via the image of a braid that wraps the first n strands past the second n strands. It follows
that (G, x 1) also acts trivially on As,. Since A,, = Resg:”xlAgn as G,-representations, we conclude
that A,, has trivial G,—action as claimed.

It follows that G,, also acts trivially on B, = A,, for n > d, and so we obtain another short exact

sequence of UG—modules

0— B— M(Bgy1) — D — 0,

where Bgy1 denotes the G—module that is Bgyi1 in degree 0 and zero in all degrees > 0, and D is
defined as the cokernel of B — M (Bg41). Note that D,, =0 for all n > d. Condition H3(k,a) implies
that H;(M(Bgt1))n = 0 for all n > ki + a. The first paragraph implies that H;(C), = H;(D), = 0
for all n > i + 1+ d. Observe that C; is functorial with respect to maps of UG—modules, and it is an
exact functor. Thus short exact sequences of UG-modules give short exact sequences of central stability
chains and hence a long exact sequences of central stability homology groups. Using the long exact
sequences on homology associated to these two short exact sequences, we conclude that ﬁi(A)n =0 for
all n > max(d + 14+ 2, ki + a). O
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By specializing Theorem 3.26 to homological degrees ¢ = —1,0 and invoking Theorem 3.21, we obtain

the following consequences for functors of finite polynomial degree.

Corollary 3.27. Leta,b,k,{ > 1. Let G be a braided stability groupoid, and assume its stability category
UG satisfies H3(k,a) and H4(L,b) with b > max(k,a). Suppose A is a UG—module of polynomial
degree < 0 in ranks > d for some d > —1.

i) Then A has central stability degree < max(a,d + 2).
it) Then A is generated in degrees < max(a—k,d+1) and related in degrees < max(a—k+b,d+1+b).

Suppose A is a UG-module of polynomial degree < r in ranks > d for some r > 1 and d > —1.

i) Then A has central stability degree < £(d+1)+b+ 1.
it) Then A is generated in degrees < d+r+1 and A is related in degrees < (d+ 1)+ b+ 1.

3.4. Fl-modules of finite polynomial degree. It is easy to see that UG is a subcategory of every
symmetric stability category, in particular of U GL(R), U Sp(R), and U GL* (R) for any H containing
—1. Note that the definition of polynomial degree never mentions the groups G, and only involves
vanishing of kernels and cokernels of shift functors. In particular, it follows from the definition of
polynomial degree that the polynomial degree of a UG—module coincides with the polynomial degree of
the underlying Fl-module.

We now compute the polynomial degree of free Fl-modules.
Proposition 3.28. Let W be a Z[S,,]-module, then M (W) has polynomial degree < m.
Proof. We prove the assertion by induction over m. If m = 0, then
M(W) = M(0) @z W

and the map M (W) — SM (W) is an isomorphism. This implies that M (W) has polynomial degree
< 0. Now suppose m > 0. Church-Ellenberg [CE17, Lemma 4.4] showed that

coker M(W) = M(Resg:’;il W).

Thus coker M (W) has polynomial degree < m — 1 by induction. The proof of [CE17, Lemma 4.4] also
shows that ker M (W) = 0. This completes the induction. O

Proposition 3.29. UGS satisfies H4(1,1).
Proof. The isomorphisms
coker M (m) = coker M (Z[S,,]) = M (Resg:_l Z[Gm]) =~ M(m—1)%™

show that we can apply Theorem 3.21, where W?° is of degree m — 1 and W* = 0 for ¢ > 0. Invoking
Proposition 3.20 and choosing d; = m — 1 + ¢ implies that

Hi(coker(M(m))), =0 forn>diyy =m+i>1-(m+1i)+1. O

Theorem 3.30. An Fl-module A is presented in finite degree if and only if it has finite polynomial
degree. Specifically, if A is generated in degrees < r and presented in degrees < d, then A has

polynomial degree < r in ranks > d + min(r,d) — 1.
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If A has polynomial degree < r in ranks > d for some d > —1, it is

generated in degrees < d+r+ 1, and

presented in degrees < d 4+ 1 + 2.

Proof. The first direction is given by Randal-Williams—Wahl [RWW15, Example and Proposition 4.18].
Assume A has polynomial degree < r in ranks > d. Then by Proposition 3.20 and Proposition 3.29 we
may apply Corollary 3.27 with the valuesa=k=0=¢=1. O

3.5. VIC(R)—, VIC¥ (R)—, SI(R)-modules of finite polynomial degree. In this subsection, we use
the connectivity results of Section 2 to prove a vanishing result for the central stability homology of
vicH (R)-modules and SI(R)-modules with finite polynomial degree for a R a PID. More specifically,
we will show that the connectivity results of Section 2 establish the hypotheses of Theorem 3.26. We
use the following criterion for H4(¢,b).

Proposition 3.31 (Patzt [Pat17, Proposition 7.10]). Assume H3(k,a) and let b > max(k,a). Then
the condition H4(¢,b) holds if for every (m — 1)—simplex T € (K;,—1G)n+1, the intersection

Lk{KeDnt1 () N (KaG)p C (KoG)nit

—-b
{(Tlg) —m — IJ —connected, where is (KeG)p — (KoeG)n11 is induced by 0 n — 1 ®n.

Proof. The statement is a reformulation of [Pat17, Proposition 7.10]. As noted in the paragraph
above [Pat17, Proposition 7.10], ﬁ*(coker M(m)), is a quotient of the associated homology of the aug-
mented semisimplicial set (KT Hom(m, —)),. Therefore when (KT Hom(m, —)), is L("T?b) —m—1]-
connected, the central stability homology H;(coker M (m)),, vanishes for all n. > £(i +m) + b. [Pat17,
Proposition 7.10] states that (K7 Hom(m, —)), is the disjoint union of the augmented semisimplicial
sets

Lk 91 (1) N (KuG)s

for 7 € HomY9(m,n + 1) = (K;n_1G)ns1. These augmented semisimplicial sets have singleton sets in

degree —1. O

Proposition 3.32. Let R be a PID of stable rank s and let H < R* contain —1. Then U GL (R)
satisfy H4(2,s + 1).

Proof. By Proposition 3.20, we can use Proposition 3.31 to prove this proposition.
Let us first check this for U GL(R). By Proposition 3.31, we must check that for every (m—1)-simplex
T € (Km—1 GL(R))n+1, the intersection

LkEK’ GL(R))n+1 (1) N (K¢ GL(R)),,

s
is {(n;) —m— 1J —connected. Recall that PBC,(R") = (K¢ GL(R)),,. Lemma 2.21 applied to

Lk« CLE)ns1 (1) — PBC, (R™, C,im(f)) and (K, GL(R)), = PBC.(R"*!, R", R),

where (f,C) =7 € (Kpm—1GL(R))nt1 = HomY L) (m,n+ 1) and R® R" = R"!, shows that the

intersection appearing in Proposition 3.31 is isomorphic to

PBC,(R"™!,C N R™, sat(im f + R)).
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Since
tk(CNR") >n—m
and
rksat(im f + R) < m + 1,

n—m)—(m+1)—s—2
2

Theorem 2.19 implies that the semisimplicial set is { Jconnected. But

—m)— H—s—2 —s—1
om)-man-az2_n-sol

and the result follows.
We will now check the assertion for U GL? (R). We must check that for every m-simplex 7 €
(Kpm—1 GL™(R)),11, the intersection

LkEK’ GL7(R))nt1 (1) N (K, GLH(R))n

—s5—1
is {(71;) —-m — IJ —connected. Because

(K, GLY(R)) i1 = (K, GL(R))nt1 forp<n-—1,
LE{K CL ()i (1) 0 (K, GLH(R)),, — Lk{E* SLEDw1 (1) 0 (K, GL(R))n

induces a bijection of the set of p—simplices for m + p+ 1 < n+ 1. Thus it induces an (n —m — 1)—
connected map on geometric realizations and so the assertion follows from the connectivity of the

codomain which was proved in Proposition 3.32. O

Because U GL (R) satisfies H3(2,5 + 1) and H4(2,5s + 1), Theorem 3.26 implies the following

corollary.

Corollary 3.33. Assume R is a PID of stable rank s and let H < R* contain —1. If A is a
VICH(R)fmodule of polynomial degree < 0 in ranks > d for some d > —1, then

Hi(A), =0 forall i>-1 and n>max(d+i+2,2i+s+1).
If Aisa VICH(R)fmodule of polynomial degree < r in ranks > d for somer > 1 and d > —1, then
Hi(A), =0 forall i>—-1 and n>2"'d+r+s+1)—s.
In particular, A has central stability degree < max(d+ 2,s+ 1,2d + 2r + s+ 2).

Corollary 3.34. Let R be a PID of stable rank s, and let H < R* contain —1. Let A be a VICH (R)-
module such that the underlying Fl-module is generated in degrees < g and related in degrees < r. Then,

as a VICH(R) -module, A is generated in degrees < g and presented in degrees

< max(2s,r + min(g,r) +s+1) ifg=0, and
< 2r+2g+2min(g,r)+ s if g > 0.

In particular, as a vicH (R)-module, A has central stability degree

<max(s+ 1,7+ 1) if g =0, and
<2r+2g+2min(g,7)+s if g >0.
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Proof. Since FI C vicH (R), generation in degree < g over Fl implies generation in degree < g over
the larger category VICH (R). By Theorem 3.30, the sequence A has polynomial degree < g in ranks
> 7+ min(g,r) — 1, viewed either as a module over FI or over VIC? (R). Because VICY (R) satisfies
conditions H3(2,s + 1) and H4(2,s + 1), by Proposition 3.20 and Proposition 3.32, respectively, we

can use Corollary 3.27 to conclude the result. O
Proposition 3.35. Let R be a PID of unitary stable rank s. Then U Sp(R) satisfies H4(2, s + 2).

Proof. We can apply Proposition 3.31 because of Proposition 3.20. We need to check the connectivity

of the intersection
Lke 7N (K4 Sp(R))n

for every (m — 1)-simplex 7 € (Kp—1Sp(R))nt1 = SPB,,_1(R?"*2). Let U be the symplectic
submodule of R?"*2 generated by 7. Then a simplex ¢ is contained in Lke 7 N (K4 Sp(R)),, exactly

when o is an ordered symplectic partial basis for the R—module
ULtNR™ =Utn (Rt = (U+ R**.

Note that here we are viewing R? as the first two coordinates in R?"*2? and R?" as the last 2n
coordinates. We have that Lke 7 N (K,s Sp(R)),, = SPBe (W), where W = U + R2.

We can decompose W as W = U @ U’, where U’ is a submodule of rank at most 2 contained in U-*.
By Mirzaii-van der Kallen [MvdK02, Lemma 6.6], we can embed U’ in a symplectic submodule H of
U of rank 4 as long as 1 rk(U+) = (n+1 —m) is at least (2+s). (If (n+1—m) < (2+ s) then our
conclusion will be vacuous because then (1(n— (s+2)) —m —1) < —1.) So U ® H is a rank-(2m + 4)
symplectic submodule of R?"*2 containing W, hence (U @ H)* is a symplectic submodule of rank

(2n +2) — (2m + 4) contained in W+. This implies that W+ has Witt index
gWH)y>n—m—1.

1
Friedrich [Fri17, Theorem 3.4] then implies that SPB4 (W) is {2 (n—m-1)—s— B)J —connected.

((n—m—Ql)—S—?’) > <"_(*29+2)_m_1),

Proposition 3.31 implies that U Sp(R) satisfies H4(2, s + 2), as claimed. O

Since

Combining this result with Proposition 3.20 and Theorem 3.26 gives the following Corollary.

Corollary 3.36. Assume R is a PID of (symplectic) unitary stable rank s. If A is a SI(R)-module of
polynomial degree < 0 in ranks > d for some d > —1, then

H;(A), =0 forall i>-1 and n>max(d+i+2,2i+ s+ 2).
If A is a SI(R)-module of polynomial degree < r in ranks > d for some r > 1 and d > —1, then
H;(A), =0 forall i>-1 and n>2"'(d+r+s+2)—s—1.

Remark 3.37. All of the results in this section and the previous section apply equally well to orthogonal

groups. We chose not to include these results because we do not know of any applications.
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3.6. A spectral sequence. In this subsection, we summarize results about a spectral sequence
introduced by Putman and Sam. For notation that matches our paper we merge [Pat17, Proposition

8.2, Lemma 8.3] into the next proposition.

Proposition 3.38. Let G, Q be stability groupoids and G — Q a homomorphism such that G, — Q,, is
surjective for every n € Ng. Then there is a unique stability groupoid N and a homomorphism N' — G
such that

N, & ker(G,, — Qn),

where N, = N(n).
Furthermore, for every i > 0 there is a UQ-module that we denote by H;(N') with

H;(N), =2 H;(N,).
The following spectral sequence is central to our proof.

Proposition 3.39 (Putman—Sam [PS17, Theorem 5.9], reformulated by Patzt [Pat17, Corollary 8.5]).
Let G, Q be stability groupoids and G — Q a homomorphism such that G, — @, is surjective for every
n € Ng and N as in Proposition 3.38. Assume that G and Q are braided and that G — Q is a map of

braided monoidal groupoids. For each n, there is a spectral sequence with
E} = HS(Hy(N))n.
Notably, E]%,q vanishes for p < —1 or q < 0. If UG satisfies H3(k,a) then the spectral sequence

n—a—1
converges to zero for p+ q < % )

4. APPLICATIONS

In this section, we prove our central stability results for the second homology groups of Torelli

subgroups and for the homology of congruence subgroups.

4.1. Hs(IA,). We will recall a computation of H;(IA,). Then we will use a spectral sequence argument
and our results about polynomial VIC(R)-modules to prove Theorem A, central stability for Hs(IA,,).

Recall that AutF is the stability groupoid given by AutF, = Aut(F},). Abelianization induces a
monoidal functor

AutF — GL

that is surjective in every degree. By Proposition 3.38, the kernels form a stability groupoid which we
denote by IA.

Reinterpreting the work of Andreadakis [And65, Section 6], Cohen—Pakianathan (unpublished),
Farb (unpublished) and Kawazumi [Kaw06, Theorem 6.1] in the language of Fl-modules, Church,
Ellenberg, and Farb [CEF15, Equation (25) and the proof of Theorem 7.2.3] proved the following. See
also Day—Putman [DP17, Page 5].

Theorem 4.1 (Andreadakis, Farb, Kawazumi, Cohen—Pakianathan, Church-Ellenberg-Farb). Use the
following notation for bases for the Fl-module M (1):

M(]‘)n = Z[el7627 c '7677.]’
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Then

Hy(IA)

1%

2
(/\ M(1)> ® M(1)
= M(Z[€1 Nea ®eyp, e1 Neg ®62]> @M(Z[el Ney®es, e1 Neg R eq, ea Nes ®61])

as an Fl-module.
We are now ready to prove Theorem A and the following variant Theorem A’.
Theorem A’. The VIC(Z)-module Hy(IA) is generated in degrees < 18 and presented in degrees < 38.

Proof of Theorem A and Theorem A’. AutF is symmetric monoidal and thus so is UAut F. This follows
from Proposition 3.3. We can therefore apply the spectral sequences of Proposition 3.39 with N' = IA,
G = AutF, Q = GL(Z). Proposition 3.20 says that UAutF satisfies H3(2,2), hence these spectral
sequences converge to zero for p 4+ g < "ng’

We will show that

E2,,20 forn>18 and  E2,= Hy"®(Hy(1A)), =0 forn > 38
by showing that there are no nontrivial differentials to or from the groups E?, , and Ef, of the
spectral sequence in this range, as in Figure 1. By Proposition 3.20, the central stability homology

3 * * * * *

2 HOY P (Hy(1A)) A5 (Ha(1A))n AP (Ha(1A)) S (Hy(1A)),

1 0 *
0 0 0 0 0 0
-1 0 1 2 3

FIGURE 1. Page Eg’q for n > 39.

of the VIC(Z)-module Hy(TA) = M (0) is zero in degree g for n > 2q + 3. This implies the vanishing
of the groups E3 , = HIY ) (Hy(1A)),, and E3, = HSY P (Hy(IA)),, for n > 9. Theorem 4.1 and
Proposition 3.28 imply that H;(IA) has polynomial degree < 3. Thus, by Corollary 3.33, its central
stability homology as a VIC(Z)-module PNL?L(Z)(Hl (IA)),, vanishes for n > 2971(5) — 2. It follows
that the groups E}; = HY ) (H{(1A)), vanish for n > 21%1(5) — 2 = 18 and that the groups
B2, = HZ"P (H\(1A)),, vanish for n > 2+1(5) — 1 = 38. Thus E2, , =0 for n > 18 and E3, = 0 for
n > 38.

Since E?, 5 = IA{TE"{J(Z)(HQ(IA)),L, Lemma 3.13 implies that H»(IA) is generated in degrees < 18.
Because Ej 5 = I?IOGL(Z)(HQ(IA))n7 we deduce that H5(TA) has centrally stability degree < 38. Using
Theorem 3.12; this implies that Hy(IA) is presented in degrees < 38. g
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4.2. Hy(Z,). Using a similar proof strategy to that of the previous subsection, we will prove Theorem B,
central stability for Hy(Z).

Recall that Mod is the stability groupoid given by the mapping class groups of compact, connected,
oriented surfaces with one boundary component. Its action on the first homology group of the surface

(which preserves the intersection form) gives a monoidal functor
Mod — Sp

that is surjective in every degree. Let Z denote the stability groupoid given by assembling the kernels
of this map using Proposition 3.38.
Similar to Theorem 4.1, we have the following description of H;(Z).

Theorem 4.2 (Johnson [Joh85b, Theorem 3[; see Brendle—Farb [BF07, Sections 1 and 2.2]). As a
module over FI C SI(Z), the first homology groups H1(Z) decompose as follows. Let

Hy:= Hy(S41;Z) = M(1)3?, H, = Z[ay, by, az,bs,...,a4,byl.

Then for all g > 3,
3
Hy(Z,) = /\ Hy ® (SymO(Hg) & Syml (Hg) ® Sme(Hg)/Hq) ®z L[2ZL

and these isomorphisms respect the Fl-module structure. In particular, in the range g > 3, the Fl-module
H1(Z) coincides with Fl-module

M (Z[ai Ab; Aby, ai hag Ab; | {65} = {1,2}])
@M(Z[ai/\aj Nag, a; N\ a; A by, Cl,i/\bj A by, b; /\bj A by | {i,j,k} = {1,2,3}])
o M (Z/QZ[G()]) oM (Z/2Z[a1, by, albl]) oM (Z/QZ[alag, a1bs, ashy, blbg]) .
This description of the abelianization Hi(Z, 1;Z) of the Torelli group Z,, was first computed by
Johnson [Joh85b, Theorem 3] in a series of papers [Joh80, Joh83, Joh85a, Joh85b] building on work of
Birman-Craggs [BC78]. See Brendle-Farb [BF07, Sections 1 and 2.2] or van den Berg [vdB03, Theorem

3.5.6] for a more self-contained statement of the description of Hq(Z,). This isomorphism arises as

follows. The Johnson homomorphism is the map

3
Tg 1 Ly — /\ H,
which admits several algebraic and topological descriptions; see for example Farb—Margalit [FM11,
Section 6.6]. The maps 7, are equivariant with respect to the action of the mapping class group, and
natural with respect to the maps 7, — Z, and H} — H, induced by the embedding of a subsurface
Xk,1 = Xg,1. The torsion subgroup of the abelianization

B2:= (SymO(Hg) @ Sym (H,) & Sym?(H,) /Hg) ® 7)27

is identified with the space of Boolean polynomials of degree at most 2 in the elements @, by, ..., ay, by.
These elements represent functions  — Z/2Z from the space Q of mod-2 self-linking forms on H,

associated to embeddings of ¥, 1 into S®. The map

. 2
Jg.Ig—>->Bg
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is the Johnson—-Birman—Craggs homomorphism (after modding out by Boolean polynomials in homo-
geneous degree 3). The maps o4 are also equivariant with respect to the action of the mapping class
group and natural with respect to embeddings > 1 — ¥41. We caution, however, that the action of
the mapping class group (and induced action of Sp, (Z)) on the elements @, bi,...,ay,b, does not
simply correspond to its action on Hy; see for example Johnson [Joh85b, Section 2] or Brendle-Farb
[BF07, Section 2] for an explicit description of the space B§ and map o4. The action of the symmetric
group &, C Sp,,(Z) on Bg is, however, induced by its standard permutation action on Hg, extended
diagonally to monomials in the elements @;, b;. The Fl action on the torsion subgroup of H;(Z,) for
g > 3 is induced by the usual action on H = M (1)%2.

We can now prove Theorem B and the following variant Theorem B’.
Theorem B’. The SI(Z)-module Ho(Z) is generated in degrees < 33 and is presented in degrees < 69.

Proof of Theorem B and Theorem B’. We can apply Proposition 3.39 with N' = Z, G = Mod, and
Q = Sp(Z).

Proposition 3.20 implies that U Mod satisfies H3(2,2), so the spectral sequence converges to zero
forp+q< ”T*?’ By Theorem 4.2 and Proposition 3.28, H;(Z) has polynomial degree < 3 in ranks
> 2, thus by Corollary 3.36 its central stability homology HgP™ (H{(Z)), vanishes for n > 291 .9 — 3,
Moreover ﬁIqu(Z) (Ho(Z))p = ﬁIqu(Z) (M(0)), vanishes for n > 2¢ + 4. This implies that £?, , = 0 for
n>2"1.9-3=33and Ej, =0 for n > 2*"!.9 — 3 =69. This proves that H(Z) is generated in
degrees < 33 and has central stability degree < 69. The bound on its degree of presentation follows
from Theorem 3.12. O

4.3. Congruence subgroups. Let R be a ring and I C R be a two-sided ideal. Let i denote the

image R* in R/I. The quotient map R —» R/I induces a homomorphisms
GL,(R) — GLY(R/I).

We denote the kernel by GL,, (R, I), which is called the level I congruence subgroup of GLy,(R). These
assemble to form an Fl-module [CEFN14, Application 1]. Building the work of Putman [Putl5,
Theorems B and C], Church—Ellenberg—Farb—Nagpal [CEFN14, Theorem D], Church-Ellenberg [CE17,
Theorem D’], Church-Miller—Nagpal-Reinhold [CMNR18, Application B|, Gan and Li proved the
following representation stability result for congruence subgroups viewed as Fl-modules.

Theorem 4.3 (Gan-Li [GL17a, Theorem 11]). Let R be a ring of stable rank t and let I be a two-sided
ideal of R. Then fori >0, H;(GL(R,I)) is generated in degrees
<4i+2t-1
and presented in degree
<4i+2t+4
when viewed as an Fl-module.
We have three remarks on the statement of Gan-Li [GL17a, Theorem 11]. First note that they use
a different indexing convention for stable rank; their d is our (¢ — 1). Secondly, they use a different

definition of presentation degree than we do here, however, the two definitions are equivalent (see for

example Church—Ellenberg [CE17, Proposition 4.2] for one direction; the other direction follows from
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[CEL7, Lemma 2.3] and a computation of the Fl-homology groups using an acyclic resolution). Third,
note that although [GL17a, Theorem 11] assumes I is proper, their theorem is also true in the case
that I = R. Since GL, (R, R) = GL,(R), van der Kallen’s homological stability result [vdK80] implies
representation stability (see [CMNR18, Proof of Application B]).

We will now restrict attention to the case that the quotient map GL, (R) — GLY¥(R/I) is surjective.

This gives a surjective homomorphism of stability groupoids
CGL(R) —» GL*(R/I).

By Proposition 3.38, these groups assemble to form a stability groupoid which we denote by GL(R, I).
Theorem 4.3 and Corollary 3.34 together imply the following result which in turn implies Theorem C.
Recall that the group GL, (R, ) depends only on I as a nonunital ring, and not on the ambient ring R.

Theorem C’. Let I be a two-sided ideal in a ring R of stable rank r and let t be the minimal stable rank
of all rings containing I as a two-sided ideal. Let $L denote the image of R* in R/I. If R/I is a PID
of stable rank s, and the natural map GL,(R) — GLE(R/I) is surjective, then the VICY(R/I)-module
H;(GL(R,I)) is generated in degrees

<0 fori=0
< min(3 + 2¢, max(3+7,3+s)) fori=1
<4i4+2t—-1 fori>1
and is presented in degrees
<s+1 fori=20
<min(28 + 12t + s, max(b+r,5+3s)) fori=1
<24i+12t+5s+4 fori>1.

Proof of Theorem C' and Theorem C°. Gan and Li’s Theorem 4.3 states bounds on the generation and
presentation degree of underlying Fl-module structure on H;(GL(R, I)), and Corollary 3.34 allows us
to deduce bounds on the generation and relation degree for the VIC* (R/I)-module structure. Then
(because the Fl-module structure on H;(GL(R, I)) does not depend on the choice of the ring R), the
bounds for i > 2 and the first term in the bound on i = 1 follow. For i = 0, the VIC*(R/I)-module
Ho(GL(R, I)) = M(0) is generated in degrees 0. It is presented in degrees < (s+ 1) by Proposition 3.20.
For the second term in the case ¢ = 1, we use the spectral sequence argument of the previous two

subsections. Theorem 3.21 allows us to relate bounds on generation and presentation degree to bounds

on the central stability degree of H;(GL(R,I)). O
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