MATCHINGS IN k-PARTITE k-UNIFORM HYPERGRAPHS

JIE HAN, CHUANYUN ZANG, AND YI ZHAO

ABSTRACT. For k > 3 and € > 0, let H be a k-partite k-graph with parts Vi, ..., V) each of size n, where n is
sufficiently large. Assume that for each i € [k], every (k—1)-set in JT; ¢\ 47 V5 lies in at least a; edges, and
a1 > a2 > -+ > a,. We show that if a1, a2 > en, then H contains a matching of size min{n — 1, Zie[k] a;}.
In particular, H contains a matching of size n — 1 if each crossing (k — 1)-set lies in at least [n/k] edges, or
each crossing (k — 1)-set lies in at least |[n/k| edges and n = 1 mod k. This special case answers a question
of Rédl and Rucinski and was independently obtained by Lu, Wang, and Yu.

The proof of Lu, Wang, and Yu closely follows the approach of Han [Combin. Probab. Comput. 24
(2015), 723-732] by using the absorbing method and considering an extremal case. In contrast, our result is
more general and its proof is thus more involved: it uses a more complex absorbing method and deals with
two extremal cases.

1. INTRODUCTION

A k-uniform hypergraph (in short, k-graph) consists of a vertex set V and an edge set E C (‘,:), that is,
every edge is a k-element subset of V. A k-graph H is k-partite if V(H) can be partitioned into k parts
Vi,..., Vi such that every edge consists of exactly one vertex from each class, in other words, E(H) C
Vi x---xVi. A matching in H is a collection of vertex-disjoint edges of H. A matching covering all vertices
of H is called perfect.

Given a k-graph H and a set S of d vertices in V/(H), where 1 < d < k—1, a neighbor of S is a (k — d)-set
T C V(H)\ S such that SUT € E(H). Denote by Ny (S) the set of the neighbors of S, and define the
degree of S to be deg (S) = [N (S)|. We omit the subscript H if it is clear from the context. The minimum
d-degree 04(H) of H is the minimum of degy (S) over all d-subsets S of V(H). The minimum (k — 1)-degree
is also called the minimum codegree.

The minimum d-degree thresholds that force a perfect matching in k-graphs have been studied intensively,
see [2, 3, 5, 8, 12, 13, 15, 18, 19, 22, 23, 24, 25, 26] and surveys [20, 29]. In particular, R6dl, Ruciriski and
Szemerédi [23] determined the minimum codegree threshold that guarantees a perfect matching in an n-
vertex k-graph for large n and all k& > 3. The threshold is n/2 — k + C, where C € {3/2,2,5/2,3} depending
on the values of n and k. In contrast, the minimum codegree threshold for a matching of size [n/k] — 1
is much smaller. Ro6dl, Ruciniski and Szemerédi [23] showed that every k-graph H on n vertices satisfying
dk—1(H) > n/k + O(logn) contains a matching of size [n/k] — 1. Han [6] improved this by reducing the
assumption to d,_1(H) > [n/k] — 1, which is best possible.

In this paper we are interested in the corresponding thresholds in k-partite k-graphs. Suppose H is a
k-partite k-graph with parts Vi,...,Vi. A subset S C V(H) is called crossing if |SNV;| <1 for all i. For
any I C [k], let 67(H) be the minimum of degy (S) taken over all crossing |/|-vertex sets S in [[;; Vi. Then
the partite minimum d-degree 6,(H) is defined as the minimum of 6;(H) over all d-element sets I C [k].

Let H be a k-partite k-graph with n vertices in each part. For k£ > 3, Kithn and Osthus [14] proved that if

w1 (H) >n/2++/2nlogn then H has a perfect matching. Later Aharoni, Georgakopoulos and Spriissel [1]
improved this result by requiring only two types of minimum codegree: they showed that H contains a
perfect matching if oy (13 (H) > n/2 and Opg\ (23 (H) > n/2 (in particular, H has a perfect matching if

k—1(H) >n/2).

Similarly to the non-partite case, when targeting almost perfect matchings, the minimum degree threshold
also drops significantly. Kithn and Osthus in [14] proved that ¢;,_,(H) > [n/k] guarantees a matching of size
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n — (k —2). Rodl and Ruciniski [20, Problem 3.14] asked whether 6;,_,(H) > [n/k] guarantees a matching
in H of size n — 1. In this paper, we answer this question in the affirmative and show that the threshold can
be actually weakened to |n/k| if n =1 (mod k). In fact, our result is much more general — it only requires
that the sum of all types of minimum codegree is large and at least two types of minimum codegree are not
small.

Theorem 1.1 (Main Result). For any k > 3 and € > 0, there exists ng such that the following holds for
alln > ng. Let H be a k-partite k-graph with parts of size n and a; := o\ (53 (H) for all i € [k] such that

ay > as > -+ >ayp and ag > en. Then H contains a matching of size at least min{n — 1, Zle a;}.

Our proof, based on the absorbing method, unfortunately fails when a; is close to n and all of as, ..., ax
are small. It is unclear (to us) if the same assertion holds in this case.

The following corollary follows from Theorem 1.1 immediately. It was announced at [28] and appeared in
the dissertation of the second author [27]. The second case of Corollary 1.2 resolves [20, Problem 3.14] and
was independently proven by Lu, Wang and Yu [17].

Corollary 1.2. Given k > 3, there exists ng such that the following holds for all n > ng. Let H be a k-partite
k-graph with parts of size n. Then H contains a matching of size n — 1 if at least one of the following holds.
e n=1modk and 6;,_,(H) > |n/k];
o b, (H) = [n/k].

Let v(H) be the size of a maximum matching in H. The following greedy algorithm, which essentially
comes from [14], gives a simple proof of Theorem 1.1 when Zle a; <n—k+2or when a; +as >n— 1.

Fact 1.3. Let n >k —2. Suppose H is a k-partite k-graph with parts of size at least n. Let a; := S\ i3 (H)
fori € [k]. Then

k
v(H) > min {n —k+2, Zai} and v(H)>min{n —1, a1 + as}.
i=1

Proof. Assume a maximum matching M of H has size |[M| < min{n — k + 1, E?Zl a; — 1}. Since each class
has at least k — 1 vertices unmatched, we can find k disjoint crossing (k — 1)-sets Uy, ..., Uy such that U;
contains exactly one unmatched vertex in Vj for j # 4. Each U; has at least a; neighbors and all of them lie
entirely in V(M). Since Zle a; > |M], there exist distinct indices ¢ # j such that U; and U; have neighbors
on the same edge e € M, say v; € N(U;) Ne and v; € N(U;) Ne. Replacing e by {v;} UU; and {v;} UU;
gives a larger matching, a contradiction. The second inequality can be proved similarly. O

The following construction, sometimes called a space barrier, shows that the degree sum conditions in
Theorem 1.1 and Fact 1.3 are best possible. Let Hy = Hy(aq,...,a) be a k-partite k-graph with n vertices
in each part Vi,...,V;. For each i € [k], fix a set A; C V; of size a;. Let E(Hy) consist of all crossing k-sets
e such that eN A; # 0 for some ¢ € [k]. Suppose Zle a; < n—1. Clearly both v(Hp) and the partite degree
sum of Hy are equal to Zle a; (so we cannot expect a matching larger than Zle a;).

Given a set V, let V3 U---UV} and AU B be two partitions of V. For i € [k] we always write 4; := ANYV;
and B; := BNV;. Aset S CV is even (otherwise odd) if it intersects A in an even number of vertices.
Let Eeyen(A, B) (respectively, Eoqq(A, B)) denote the family of all crossing k-subsets of V' that are even
(respectively, odd).

To see that we cannot always expect a perfect matching when Zle a; > n, consider the following example,
sometimes called a divisibility barrier. Let H; be a k-partite k-graph with n vertices in each of its parts
Vi,...,Vi. Fori € [k], let V; = A;UB; such that Zle |A;| is odd and for each i € [k], n/2—1 < |A;| < n/2+1.
Let E(H1) = Eeyen(A, B). So the partite degree sum of H; is at least k(n/2 — 1). However, H; does not
contain a perfect matching because any matching in H; covers an even number of vertices in Ule A; but
(UL, As] is odd.

When proving Corollary 1.2 directly, the authors of [17, 27] closely followed the approach used by the first
author [6] by separating two cases based on whether H is close to Hy. In contrast, to prove Theorem 1.1,
we have to consider three cases separately: when H is close to Hy, when H is close to (a weaker form of)
Hy, and when H is far from both Hy and H;.
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Now we define two extremal cases formally. Let H be a k-partite k-graph with each part of size n and
let a; := dp\ sy (H) for all i € [k]. We call H e-S-extremal if Zle a; < (1+€)n and V(H) contains an
independent set C such that |[CNV;| > n —a; — en for each ¢ € [k]. We call H e-D-extremal if there is a
partition AU B of V(H) such that

(i) (1/2 —e€)n < ay,a9,|A1],|A2] < (1/2+ €)n, and a; < en for i > 3,

(ii) |Eeven(A, B)\ E(H)| < en® or |E,qq(A, B)\ E(H)| < enk.

Our proof of Theorem 1.1 consists of the following three theorems.

Throughout the paper, we write a < 8 < =y to mean that we can choose the positive constants «, 3, from
right to left. More precisely, there are increasing functions f and g such that, given ~, whenever 8 < f(v)
and « < ¢g(f), the subsequent statement holds. Hierarchies of other lengths are defined similarly. Moreover,
when we use variables of the reciprocal form in the hierarchy, we implicitly assume that the variables are
integers. Throughout this paper, we omit the assumption k& > 3 in the hierarchies.

Theorem 1.4 (Non-extremal case). Let 1/n < v < € < 1/k. Suppose H is a k-partite k-graph with
parts of size n with a; := oy iy (H) for i € [K] such that (1 —e)n > a1 > ag > -+ > ag, az > en, and
Zle a; > (1 —~/5)n. Then one of the following holds:

(i) H contains a matching of size at least n — 1;

(ii) H is y-S-extremal;

(iii) H is 2k2e-D-extremal.

Theorem 1.5 (Extremal case I). Let 1/n < v < e < 1/k. Let H be a k-partite k-graph with parts of size
n and a; := Sy iy (H) for i € [k] such that (1 —€)n > ay > az > -+ > ap and ay > en. Suppose H is
v-S-extremal. Then one of the following holds:

(i) H contains a matching of size at least min{n — 1, Zle a;};
(ii) H is 3e-D-extremal.

Theorem 1.6 (Extremal case II). Let 1/n < € < 1/k. Suppose H is a k-partite k-graph with parts of
size n and a; = Oy (H) fori € [k]. If H is e-D-extremal, then H contains a matching of size at least

min{n — 1, Zle a;}.

Proof of Theorem 1.1. When Ele a; <n—k+2or a; > (1 —¢€)n, Theorem 1.1 follows from Fact 1.3
immediately. When Zle a; >n—k+3and a; < (1 — €)n, it follows from Theorems 1.4-1.6. O

The rest of the paper is organized as follows. In Section 2 we introduce two absorbing lemmas that are
needed for the proof of Theorem 1.4: Lemma 2.1 is a simple k-partite version of [23, Fact 2.3]; Lemma 2.2 is
derived from a more involved approach by considering the lattice generated by the edges of H. In Sections 3—
5, we give the proofs of Theorems 1.4-1.6, respectively. Note that Lemma 2.1, Lemma 3.1, and a portion of
Section 4 suffice for the proof of Corollary 1.2 — this was exactly the approach used in [6, 17]. The rest of
our proof was carried through with new ideas.

Notation: Given integers k' > k > 1, we write [k] := {1,...,k} and [k, k'] := {k,k+1,...,k'}. Throughout
this paper, we denote by H a k-partite k-graph with the vertex partition V(H) = V3 U---U V. A vertex set
S is called balanced if it consists of an equal number of vertices from each part of V(H). Given a k-graph H
and a set W C V(H), let H[W] denote the subgraph of H induced on W and H\ W := H[V(H) \ W].

2. ABSORBING TECHNIQUES IN k-PARTITE k-GRAPHS

The main tool in the proof of Theorem 1.4 is the absorbing method. This technique was initiated by
Rodl, Rucinski and Szemerédi [21] and has proven to be a powerful tool for finding spanning structures in
graphs and hypergraphs. In this section, we prove the absorbing lemmas that will be used in the proof of
Theorem 1.4. In fact, we present two different notions of absorbing sets and use them in two different cases.

Let H be a k-partite k-graph. Given a balanced 2k-set S, an edge e € E(H) disjoint from S is called
S-absorbing if there are two disjoint edges e1,e2 C SU{e} such that |e;NS| =k—1, [e1Ne| =1, [eaN S| = 2,
and |es Ne| = k — 2. Note that S-absorbing works in the following way: assume that M is a matching such
that SNV (M) = @ and M contains an S-absorbing edge e, then we can replace e by e; and e, and get a
matching larger than M. Given a crossing k-set S, a set T C V(H) \ S is called S-perfect-absorbing if T is
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balanced and both H[T] and H[SUT] contain perfect matchings. These two definitions work very differently
— they are needed for the following two different absorbing lemmas.
Our first absorbing lemma is an analog of [23, Fact 2.3] for k-partite k-graphs.

Lemma 2.1 (Absorbing lemma I). Let 1/n € a < e < 1/k. Suppose H is a k-partite k-graph with parts of
size n such that O\ (33 (H) > en for i € [3], then there exists a matching M' in H of size at most \/an such
that for every balanced 2k-set S of H, the number of S-absorbing edges in M' is at least an.

Our second absorbing lemma deals with the case when only two types of minimum codegree are large and
their sum is not significantly smaller than n.

Lemma 2.2 (Absorbing Lemma II). Let 1/n € a < € < 1/t < 1/k. Suppose H is a k-partite k-graph
with parts of size n and a; := O\ iy (H) for each i € [k]. If Zle a; > (1 —€)n, ay > as > en and a; < en
for j > 3, then one of the following holds.
(i) H is 2k%e-D-extremal.
(ii) There exists a family F' of disjoint tk-sets such that |F'| < y/an, each F € F' spans a matching of
size t and for every crossing k-set S of H, the number of S-perfect-absorbing sets in F' is at least
an.

We first prove the following proposition, which is a standard application of Chernoff’s bound. We will
apply it in both proofs of Lemmas 2.1 and 2.2 for randomly sampling the absorbing sets.

Proposition 2.3. Let 1/n < \,1/k,1/ig. Let V be a vertex set with k parts each of size n, and let Fy, ..., F;
be families of balanced igk-sets on V such that | F;| > An'* fori € [t] and t < n?*. Then there exists a family
F' C Uiepy Fi of disjoint balanced iok-sets on' V' such that |F'| < An/(4iok) and |F; N F'| > N2n/(32ipk) for
each i € [t].

Proof. We build 7’ by standard probabilistic arguments. Choose a collection F of balanced igk-sets in H by
selecting each balanced igk-set on V independently and randomly with probability p = €/(2n%*~1), where
€ = \/(4igk). Since t < n?* Chernoff’s bound implies that, with probability 1 — o(1), the family F satisfies
the following properties:

k
) ) 1
|F| < 2p<7_l> <2n'kp=en and |FNF|> g S Anfok = Z)\en for any 7 € [t].
L0

Furthermore, the expected number of intersecting pairs of members in F is at most
p?niok ok - piokTl = e%igkn/4.
By Markov’s inequality, F contains at most e€%igkn/2 intersecting pairs of ipk-sets with probability at least
1/2.
Let F' C F be the subfamily obtained by deleting one igk-set from each intersecting pair and removing
all igk-sets that do not belong to any F;, i € [t]. Therefore, |F’'| < |F| < en and for each i € [t], we have

1, 1 1, A2
|FiNF'| > |F;NF|— 5622()]{371 > Zx\en - §e2zokn = 32i0kn

and we are done. O

Now we prove our first absorbing lemma.

Proof of Lemma 2.1. We claim that for every balanced 2k-set S, there are at least e>n*/2 S-absorbing
edges. Since there are at most n?* balanced 2k-sets, the existence of the desired matching follows from
Proposition 2.3.

Indeed, assume that {w,v} := SN V3 and u € SN V,. We obtain S-absorbing edges e = {vy,vs,...,vr}
as follows. First, for each j € [4,k], we choose a vertex v; € V; \ S — there are n — 2 choices for each v;.
Second, we select v1 € N({u,v,v4,...,v;})\S. Third, we choose vy € N(S’)\ S, where S’ is an arbitrary
crossing (k — 1)-subset of S\ V4 that contains w. Finally, we choose vs € N({v1,v2,v4,...,05}) \ S. There
are at least en — 2 choices for each of vy, vs, and v3. Hence, there are at least

1
(n—2)3(en —2)% > §e3nk > V/32kan®
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S-absorbing edges, since n is sufficiently large and @ < €. Then we get the absorbing matching M’ by
applying Proposition 2.3 with A = v/32ka and g = 1. (|

The proof of Lemma 2.2 is more involved than that of Lemma 2.1 — we need to apply a lattice-based
absorbing method, a variant of the absorbing method developed recently by the first author [9]. Roughly
speaking, the method provides a vertex partition P of H (Lemma 2.6) which refines the original k-partition
so that we can work on the vectors of {0, 1}/PI that represent the edges of H. Using the information obtained
from these vectors, we will show that if Lemma 2.2 (ii) does not hold, then H is close to a divisibility barrier
based on P. The rest of this section is devoted to the proof of Lemma 2.2, for which we need the following
notation and auxiliary results.

The following concepts are introduced by Lo and Markstrém [16]. Let H be a k-partite k-graph with n
vertices in each part. Given 8 > 0, i € N,j € [k] and two vertices u,v € Vj, we say that u,v are (3,1)-
reachable in H if and only if there are at least Sn**~! (ik — 1)-sets W such that both H[{u} U W] and
H[{v} UW] contain perfect matchings. In this case W is called a reachable set for u,v. A set X C Vj is
(8,4)-closed in H if all u,v € X are (8,i)-reachable in H. Denote by Nj;(v) the set of vertices that are
(B,14)-reachable to v in H. Clearly, since H is k-partite, for any j € [k] and v € V}, Nm(v) V.

We need the following simple fact on k-partite k-graphs.

Fact 2.4. Let H be a k-partite k-graph with parts of size n. Let ay := o\ g1} (H).
(i) For anyi € [2,k] and v € V;, we have deg(v) > a;n*~2.
(ii) If a1 > (1/3 + v)n, then for any i € [2,k], any set of three vertices u,v,w € V; contains a pair of
vertices which are (v, 1)-reachable.

Proof. To see (i), note that we can obtain an edge containing v by first choosing a (k—2)-set S € II;1 ;V;, and
then choosing a neighbor of {v}US. To see (ii), by (i) and a; > (1/3+7v)n, we have [N (u)|,|N(v)], |N(w)| >
(1/3 +~)n*~1. Also note that |N(u) U N(v) U N(w)| < n*~! then by the inclusion-exclusion principle, we
have

> N (u)]| + [N ()] + [N (w)| = [N (u) 0 N ()] = [N(u) N N(w)| = [N(@w) 0 N(w)].
So we get |N(u) N N(v)| + |N(u) N N(w)| + |[N(v) N N(w)| > 3ynk~1. Without loss of generality, assume
that |N(u) N N(v)| > yn*~1. This implies that u and v are (v, 1)-reachable. O

The following proposition gives the property of [N, 1 (v)].
Proposition 2.5. Suppose 1/n < € < 1/k and let H be a k-partite k-graph with~n vertices in each part
such that 6[k]\{1}(H)75[k]\{2}(H) > (1/2 — 6)’!7,. Then fOT’ anyj = 1,2 and v € V&, |NE/3,1(’U)‘ > (1/2 - 26)77,.
Moreover, for each j € [3,k], either \N€/371(v)| > en holds for all vertices v € Vj, or there exists a set V] C V;
of size at most en + 1 such that V; \ V] is (€/3,1)-closed in H.

Proof. Fix a vertex v € V; for some j = 1,2, note that for any other vertex u € Vj, u € NE/371(’U) if and only
if [N (u) N N(v)| > en*~1/3. By double counting, we have

Y (deg(S) = 1) <Nz (v)] - IN(v)] +n-en1/3.
SeN(v)

Note that 3" gc v, (deg(S)—1) = ((1/2—€)n—1)|N(v)|. Moreover, by Fact 2.4 (i), [N (v)| > (1/2—e)n*~1 >
2n*=1/5. Putting these together, we conclude that

|N/3.1(v)] > <;—e)n—1—m> <;—e>n—en= (;—2e>n.

Now assume j € [3, k] and assume that |NE/371(U)‘ < en for some v € V;. Let V/ := {v}U N€/371(’U). Thus
|Vi| < en+ 1. For any u,u’ € V; \ V], since u ¢ ]\76/371(11) and v’ ¢ ]\76/371(1})7 by Fact 2.4 (ii), we conclude
that u and v’ are (¢/3,1)-reachable. This implies that V; \ V/ is (¢/3,1)-closed. O

We use the following lemma from [10] to find a partition of each part of H.
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Lemma 2.6. [10, Lemma 6.3] Let 1/m < < v < 1/¢,8',1/k. Suppose that H is an m-vertex k-graph,
and a subset S C V(H) satisfies that |[Ny1(v)| > 0'm for any v € S and every set of ¢ + 1 vertices in S

contains at least two vertices that are (v, 1)-reachable. Then we can find a partition Py of S into W1, ..., Wy
with d < min{[1/6'], ¢} such that for any i € [d], |[W;| > (8’ —v)m and W; is (3,27 1)-closed in H.

The following useful proposition was proved in [16].

Proposition 2.7. [16, Proposition 2.1] Let i > 1, k > 2 and 1/n < ' < €,8,1/i,1/k. Suppose H is a
k-graph of order n > ng and there exists a vertex x € V(H) with |[Ng;(x)| > en. Then Ng;(z) C Ng/ it1(x).

Let H be a k-partite k-graph with parts of size n. Suppose P = {Wy, W1,..., Wy} is a partition of V(H)
for some integer d > k that refines the original k-partition of H. In later applications, Wy will be so small
that we only need to consider the edges not intersecting Wy. The following concepts were introduced by
Keevash and Mycroft [11]. The index vector of a subset S C V(H) with respect to P is the vector

ip(S) = (ISNWi|,...,|SNWy|) € 2%

Given an index vector v, we denote by v|y, its value at the coordinate that corresponds to W;. For p > 0,
define I%,(H) to be the set of all vectors v € Z¢ such that H \ W contains at least un® edges with index
vector v; let L, (H) denote the lattice in Z¢ generated by Is(H). For i € [d], let uw, € Z% be the unit
vector such that uw,|w, =1 and uw,|w, =0 for j # 4.

The following lemma is a variant of [7, Lemma 3.4] and follows from the proof of [7, Lemma 3.4]. The
convenience of the following version is that it allows € < 1/i' while the original statement of [7, Lemma 3.4]
does not allow it.

Lemma 2.8. [7, Lemma 3.4] Suppose 8 < u,8 < € < 1/ig,1/k and 1/i" < 1/ig,1/k, then the following
holds for sufficiently large m. Suppose H is an m-vertex k-graph and P = {Wy, W1,..., Wy} is a partition
with d < 2k such that [Wo| < /em, |W;| > e2m and W; is (B,i0)-closed in H fori > 1. If uw, — uw, €
L% (H), then W; UW; is (B,1')-closed in H.

The following lemma shows that if Vi is closed and 6\ {13 (H) > en, then Lemma 2.2 (ii) holds.

Lemma 2.9. Let 1/n € a < B,¢,1/ig,1/k. Suppose H is a k-partite k-graph with parts each of size n
and o (13 (H) > en. If Vi is (B,10)-closed, then there exists a family F' of disjoint iok-sets in H such that
|F'| < Van, each F € F' spans a matching of size ig, and for every crossing k-set S of H, the number of
S-perfect-absorbing sets in F' is at least an.

Proof. Fix a crossing k-set S = {v1,v2,...,v;} such that v; € V;, we claim there are at least v/32igkani”
S-perfect-absorbing igk-sets. First of all, we find v] € V4 \ {v1} such that {v],va,...,v;} spans an edge.
Since deg(S'\ {v1}) > en, there are at least en — 1 choices for vj. Since V; is (8, ip)-closed, there are at least
BnioF=1 reachable (igk — 1)-sets W for v; and v}. Among them, at least An'*=1 — (k — 1)n¥=2 > Bniok=1/2
reachable (igk — 1)-sets W are disjoint from S. To see that {v]} UW is an S-perfect-absorbing set, note that
H[{v{} UW] has a perfect matching by the definition of W, and H[{v}} UW U S] has a perfect matching
because {v]} U (S \ {v1}) spans an edge and H[{v1}UW] has a perfect matching by the definition of W. In
total, we have at least efn’o¥ /4 > \/32igkani* S-perfect-absorbing sets. So we get the family F’ of absorbing
sets by applying Proposition 2.3 with A = v/32igka. Note that each F' € F’ is an S-perfect-absorbing set
for some crossing k-set S and thus F' spans a matching of size ig. |

Proof of Lemma 2.2. Let k > 3 and tg = 2. We choose constants such that

In<a<Lfr <1 < L1 <, BLe 1/t <1ty < -+ K 1/tg, 1/k.

Set t = ti. Let H be a k-partite k-graph as given by Lemma 2.2. Suppose that (ii) does not hold. In
particular, by Lemma 2.9, we may assume that neither V; nor V5 is (B, t)-closed in H. By Fact 2.4 (i), we
have deg(v) > a;n*~2 for any v ¢ Vi, and deg(v) > aan*~2 for any v € V;.

First note that if a; > (1/2 + €)n, then for any u,v € Vi, we have |N(u) N N(v)| > 2en*~1, and thus V5
is (2¢, 1)-closed. By Proposition 2.7, V5 is (S, t)-closed, a contradiction.

So we may assume that a1 < (1/2 + €)n. Thus, we have

k
as > Zai —a1—(k—=2)en>(1—€e)n—(1/24+e)n — (k — 2)en = (1/2 — ke)n,
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ie, (1/2—ke)n <az <ay < (1/2+¢)n. Let v := (k — 1)e/k. We apply Proposition 2.5 with ke in place of
e and obtain that, using v < e < ke/3,

(1) for any i = 1,2 and v € Vj, [N,1(v)| > (1/2 — 2ke)n,
2) for any i € [3, k], either | N, 1(v)| > ken for all vertices v € V;, or there exists a set V. C V; of size at
g 7
most ken + 1 such that V" = V; \ V/ is (v,1)-closed in H.

Since a1,a2 > (1/2—ke)n > (1/3+~)n, Fact 2.4 (ii) implies that for any i € [k], every set of three vertices
of V; contains two vertices that are (v, 1)-reachable in H. Together with (1), it allows us to apply Lemma 2.6
to Vi, Va separately with ¢ = 2 and ¢’ = 1/(2k) — 2¢ and partition each of V; and V5 into at most two parts
such that each part is (8, 2)-closed. If V] or V5 is (8, 2)-closed, then by Proposition 2.7, it is (B, t)-closed,
a contradiction. Thus we assume that each of V; and V5, is partitioned into two parts V3 = A; U By and
Vo = Ay U By such that A;, B; are (5, 2)-closed, and

|43l |B| > (% — 2e — y)kn > (3 — 3ke)n.

Without loss of generality, assume that |A;| < |Bj| and |Az| < |Bs|.

Let I be the set of i € [3,k] such that |N,1(v)| > ken for all vertices v € V;, and let I’ C I consist of
those i € I such that V; is not (3, 2)-closed. Define a new constant 74/ < v such that § < 7' < e. We now
apply Lemma 2.6 to V; for i € I’ with ¢ = 2, 6’ = € and 7/ in place of ~, and partition V; into at most two
parts such that each part is of size at least (e — 7" )kn > (e —v)kn = en and is (8, 2)-closed. Since V;, i € I,
is not (f,2)-closed, it must be the case that V; is partitioned into two parts, denoted by A; and B;. Let
Wo = Uiep s Vi and note that [Wo| < (k — 2)(ken + 1). Let Py be the partition of V(H) consisting of
Wo, A1,B1, A9, By and V" if i € [3,k]\I, V;if i € I\I', or A;, B; if i € I'. By Proposition 2.7, each part
of Py except Wy is (8, 2)-closed.

For i € [k] for which A; and B; were defined, if ua, —up, € Lj (H), then we merge A; and B; by
replacing A; and B; with V;. By Lemma 2.8, V; = A; U B; is (81, t1)-closed. We inductively merge A;, B;
as long as ua, —up, € L%, (H), where P’ represents the current partition after merging some parts. Since
neither V; nor V5 is (B, t)-closed in H, A; and B (also A; and Bs) cannot be merged. After at most k — 2
merges, we obtain a partition P such that each part except Wy is (S, t)-closed (by Proposition 2.7). Write
P = {Wo,Wi,...,Wy}. Let I C [k] be the set of i such that A;, B; € P (note that ua, —up, ¢ Lis(H)
for i € I). Write T := I’5(H) C {0,1}%. Given i,j € Tandw e T, let w' := w4 uy, — up, (mod 2) and
whl i=w+ua, —up, + uy, —up; (mod 2). We have the following observations.

(t) IweT, thenwigéTforief.~
(t) If w e T, then wil € T for i € I.

Indeed, for (), if w € T, then w' ¢ T because ua, — up, ¢ Lis(H) for i € I. For (1), note that w' has 1
at k coordinates, which correspond to W; C V;, j € [k] of size at least en (where W; is V; or V" or A; or

Bj). The number of the edges in H that contain a crossing (k — 1)-set in J[; 5, Wj is at least (en)k=1ay.

Since w' ¢ T, there are at most un” edges e in H with ip(e) = w'. Consequently, the number of edges e
with ip(e) = wh! is at least (en)*la; — un* > un®, because u < € and a; > n/3. Hence w™! € T and this
proves ().

A vector v € {0,1}? is even (respectively, odd) if there is an even (respectively, odd) number of i € I
such that v|4, = 1. We claim that all the vectors in T have the same parity. Indeed, assume that there is
an even vector v € T. By (1), we know that all even vectors are in T. Together with (}), this implies that
T contains no odd vector.

Assume that T only contains even vectors (the case when T only contains odd vectors is analogous). Let
A:=J,cjAi and B := V' \ A. Recall that an edge e of H is even if |e N A is even. Since 7" only contains
even vectors, E(H \ W) contains at most 2¥un* odd edges. Recall that (1/2 — 3ke)n < |A;|,|A2] < n/2. In
addition, we have shown that deg(v) > (1/2 — ke)n*~! for all v € V/(H) and thus |E(H)| > (1/2 — ke)n*.
Since p < € and |[Wy| < (k — 2)(ken + 1), there are at least

|E(H)| — 2% un® — [Woln*~ > (1/2 — ke)n® — 2% un® — (k — 2)(ken + 1)n*~1 > (1/2 — k2e)n”
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even edges in E(H). Let |A;] = n/2 —y for some 0 < y < 3ken and assume that the number of odd crossing
(k — 1)-sets in V' \ V; is x for some 0 < z < n*~! then we get

| Beven(4, B)| = (n/2 = y)z + (/2 + y)(n* ! — )
=n/2 4 y(nF~! — 22) < n*/2 + 3kent.

Thus we have |E.yen (A, B)\ E(H)| < n*/2+3ken* — (1/2 — k%e)n* < 2k%en®*. Together with (1/2 —3ke)n <
|A1],|A2] < n/2 and (1/2 —ke)n < az < a1 < (1/2+ €)n, and a; < en, 3 < i < k, we conclude that H is
2k?e-D-extremal. This completes our proof. O

3. NONEXTREMAL k-PARTITE k-GRAPHS: PROOF OF THEOREM 1.4

In this section we first show that every k-partite k-graph H contains an almost perfect matching if > a; is
near n and H is not close to Hy. The following lemma is an analog of [6, Lemma 1.7] in k-partite k-graphs.
To make it applicable to other problems, we prove it under a weaker assumption which allows a small fraction
of crossing (k — 1)-sets to have small degree.

Lemma 3.1 (Almost perfect matching). Let 1/n < n < «,~,1/k. Fori € [k], let a; = a;(n) such that
Zle a; > (1 —v)n. Let H be a k-partite k-graph with parts of size n which is not 2-S-extremal. Suppose
for each i € [k], there are at most qn*~! crossing (k —1)-sets S such that SNV; = () and deg(S) < a;. Then
H contains a matching that covers all but at most an vertices in each vertex class.

Proof. Let M be a maximum matching in H and assume m = |[M|. Let V/ = V;NV(M) and U; = V;\V(M).
Suppose to the contrary, that |Uy| = --- = |Uk| > an.

Let t = [k(k—1)/v]. We find a family A of disjoint crossing (k — 1)-subsets Ay, ..., Ag: of V\ V(M) such
that A; NV; = 0 and deg(A;) > a; whenever j = ¢ mod k. This can be done greedily because when selecting
A;, the crossing (k — 1)-sets that cannot be picked are either those that intersect the ones that have been
picked, or those with low degree, whose number is at most

k(k— Dt 2 + k=t < (an)* ' < ] U,
Le[k\{i}
because 1/n < n < a. Note that the neighbors of A; are in V; with j =4 mod k by the maximality of M.
For i € [k], let D; be the set of the vertices of V; that have at least k neighbors in A and let D = J D;.
We claim that |e N D| < 1 for each e € M. Indeed, otherwise assume that =,y € e N D and pick A;, A; for
some i, j € [kt] such that {z} U A;,{y} UA,; € E(H). We obtain a matching of size m + 1 by deleting e and
adding {z} U A; as well as {y} U A; in M, contradicting the maximality of M.
Next we show that |D;| > a; — yn/k for each i € [k]. Since N(A;) NV} =0 for j # i mod k, we get

toa; < Y deg(A) < |Dift +n(k —1).
j=t mod k
Since t > k(k — 1) /7, it follows that
LG S
- k
This implies that |D| = Zle |D;| > Zle a; — yn. Since every edge of M contains at most one vertex of
D, we have |D| < |M| < n and consequently, Zle a; <n+yn=(1+vn.
Define M’ :={e € M : eN D # 0}. Then for each i € [k], we have

[(V(M')\ D)NV;| = Z|Dj| > Z(aj — ) —a; > n—a; —2yn.
J#i JE(k]
Since H is not 2v-S-extremal, H[V (M) \ D] contains at least one edge, denoted by ey. Note that eq & M
because each edge of M’ contains exactly one vertex of D and ey C V(M) \ D. Assume that eq intersects
e1,...,ep in M for some 2 < p < k. Suppose {v;} := e; N D. Note that v; & e for all j € [p]. Since each
v; has at least k neighbors in A, we can greedily pick Ay, ,..., Ay, € A such that {v;} UA,, € E(H) for all
J € [p]. Let M" be the matching obtained from M after replacing e1,..., e, by eg and {v;} U Ay, for j € [p].
Thus, M" has m + 1 edges, contradicting the choice of M. O

|D;| > a; —

Now we are ready to prove Theorem 1.4.
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Proof of Theorem 1.4. Let 1/n < n <K a < v <K € < 1/t < 1/k. Suppose both (ii) and (iii) fail and we will
show that (i) holds.

First assume that a; > as > a3 > en. We first apply Lemma 2.1 to H and find a matching M’ of size
at most y/an such that for every balanced 2k-set S C V(H), the number of S-absorbing edges in M’ is at
least an. Let H' := H\V(M'), n' := [V(H")NV;| > (1 = y/a)n and aj := )\ 53 (H'). Note that Zle a; >

Zil a; — ky/an > (1 — 2v/5)n’. Assume for a moment that H' is (4v/5)-S-extremal, i.e., Zle a, <

n' + (4v/5)n’ and V(H') contains an independent set C such that |C N (V;NV(H'))| > n' — a}, — 4yn'/5 for
each i € [k]. Then as o < v, it follows that Zle a; < E?Zl a; + ky/an < n' + (4v/5)n' + ky/an < n+~n
and

n' —a;,—4yn'/5> (1 —a)n —a; —4yn/5 > n —a; — yn,
This means that H is 7-S-extremal, a contradiction. Thus, H' is not (4v/5)-S-extremal. By applying Lemma
3.1 to H' with parameters 2v/5, @ and 7, we obtain a matching M” in H' that covers all but at most an
vertices in each vertex class.

Since there are at least an S-absorbing edges in M’ for every balanced 2k-set S C V(H), we can repeatedly
absorb the leftover vertices until there is one vertex left in each class. Denote by M the matching obtained
after absorbing the leftover vertices into M’. Therefore M UM is the required matching of size n— 1 in H.

Secondly assume that a; > as > en and a; < en for i € [3,k]. Since (iii) does not hold, by applying
Lemma 2.2, there exists a family F’ of disjoint absorbing tk-sets of size |F’| < y/an such that each F' € F’
spans a matching of size t and for every crossing k-set S of H, the number of S-perfect-absorbing sets in
F'is at least an. Let H := H\ V(M') and n' := [V(H') N Vi| > (1 — ty/a)n and aj := op)\ 153 (H'). Note
that Zle a; > Zle a; — kty/an > (1 —2v/5)n’ as o < v,1/t. As before, we may assume that H’ is not
(4/5)-S-extremal. By applying Lemma 3.1 to H' with parameters 2v/5, a and 7, we obtain a matching
M" in H' that covers all but at most an vertices in each vertex class. Let U be the set of leftover vertices.
Since any crossing k-subset S of U has at least an S-perfect-absorbing tk-sets in F’, we can greedily absorb
all the leftover vertices into F. Denote by M the resulting matching that covers V(F') UU. We obtain a
perfect matching M U M” of H. O

4. PROOF OF THEOREM 1.5

We prove Theorem 1.5 in this section. Following the approach in [6], we use the following weaker version
of a result by Pikhurko [19]. Let H be a k-partite k-graph with parts Vi,...,Vi. Given L C [k], recall that

Sp(H) = min{deg(S) 1S e HVZ}

icL
Lemma 4.1. [19, Theorem 3] Given k > 2 and L C [k], let m be sufficiently large. Let H be a k-partite
k-graph with parts V1, ..., Vi of size m. If

5 (H)ym!H + 5y o (H)ym* =121 > ;mk,
then H contains a perfect matching.

Proof of Theorem 1.5. Let a = /7. Assume that H is y-S-extremal but not 3e-D-extremal. Our goal is to
find a matching in H of size at least min{n — 1, Ele a;}
We may assume that Zle a; > n —k + 3, as otherwise we are done by Fact 1.3. So we have

k
(4.1) n—k+3§2a¢§n—|—7n.
i=1
For each i € [k], let C; := C N'V;. We know that |C;| > n —a; —yn > (¢ — v)n from the assumption that
a; < (1 — e)n. We partition each V; \ C; into A; U B; such that

(4.2) A=z eVi\Ci: [N@)n[][c|=a-a)]]lc ;.
Jj#i j#i
and B; :=V; \ (A; UC;). Moreover, let A := Ulgz’gk A; and B := Ulgigk B;.
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Claim 4.2. For i € [k], we have
(1) a; < |Ail +|Bi| < ai +n,
(2) |B;| < an, and

(3) a; —an < |A;| < a; +yn.

Proof. For i € [k], since |C;| > n — a; — yn, we have |A4;| + |B;| < a; + yn. For any crossing (k — 1)-set
S C C\V;, we have N(S) C A; U B;. By the codegree condition, we have |A;| + |B;| > a;.

Let E; denote the set of the edges that consist of a (k —1)-set in [];,; C; and one vertex in 4; U B;. By
the definition of A;, we have

a; [T165 < 1B <|Bil(1 = o) [TICs1 + 1A TT1C1,
e j#i i
which implies a; < |A4;| 4+ |B;| — «|B;|. It follows that «|B;| < |A;| + |Bi| — a; < yn by Part (1). Since
a = /7, it follows that |B;| < an.
Part (3) follows from Parts (1) and (2) immediately. O

Our procedure towards the desired matching consists of three steps. First, we remove a matching that
covers all the vertices of B. Secondly, we remove another matching in order to have |C}'| — > . |A7] <
max{1,n — Ele a;} for all i € [k], where C! and A denote the set of the remaining vertices in C; and A;,
respectively. Finally, we apply Lemma 4.1 to get a matching that covers all but at most max{1,n— Zle a;}
vertices in each V;.

Step 1. Cover the vertices of B.

For i € [k], define t; := max{0,a; — |A4;|}. By Claim 4.2 (1), we have |B;| > a; — |A4;|. Together with the
definition of ¢; and Claim 4.2 (2), we have

First we build a matching M? of size t; for each i € [k] and let M; be the union of them. If ¢; = 0, then
M} = (). Otherwise, since a; = O\ iy (H) and C'is independent, every (k — 1)-set in H#i Cj; has at least
a; — |A4;] = t; neighbors in B;. We greedily pick ¢; disjoint edges each of which consists of a (k — 1)-set in
[1;4; Cj and one vertex in B;.

Next for each i, we greedily build a matching M4 that covers all the remaining vertices in B; and let
My be the union of them. Indeed, for each of the remaining vertices v € B; with ¢ # 1, we pick one
uncovered (k — 2)-set S’ in [],; , Cj, and one uncovered vertex in N({v} U S’) C Vi. For each of the
remaining vertices in v € By, we pick one uncovered (k —2)-set S in ], , , C;, and one uncovered vertex
in N({v} US") C V. Since the number of vertices in V; covered by the existing matchings is at most
|My U M| < |B| < kan < en < as < aj, we can always find an uncovered vertex from N({v} U S’).

For i € [k], let

A; = Az \ V(Ml U MQ), Cl, = 01 \ V(Ml U MQ) and VZ = V; \ V(M1 U MQ)

Step 2. Adjust the sizes of Al and C!.
In this step, we will build a small matching Ms in order to adjust the sizes of A} and C/.
Claim 4.3. There exists a matching Mz of size at most 2kyn in H[Uf=1 V!] such that for any i € [k],
|CI\NV(M3)| — 32,2 |A; \ V(Ms)| are all equal. Denote this quantity by r, and we have 0 < r < max{1l,n —
k
Dim1 @i}
Proof. Let n' := |V/| = [A{| +[C]|. Let so := [Cj| = >, ; |A}| =n' — Z§:1 | A, which is independent of i.
We claim that —2kyn < sp < n — Zle a;. Indeed,

. k
Claim 4.2 (4.1)
s02 (n— (M| +[Ma])) = [A| Zn— B = |A] = 0= (ai+yn) = —2kyn.

i=1
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On the other hand, since V(M) N A =0 and |M;| = Z?Zl tj, we have
k 43) k
s0 < (| M| +|Mo)) ZIA BT T S RALY | R it
j=1 j=1

If sg > 0, then set M3 = () and we are done. Otherwise, we build M3 by adding edges that contain two or
three vertices of A one by one until s € {0,1}, where s := (n' — [M3|) — >_|A} \ V/(M3)|. This will be done
in the next few paragraphs. Note that since sg > —2kyn and adding an edge to M3 increases s by one or
two, we will have |M3| < 2kvyn.

Now we show how to build M3. First assume that ag > 2kan. In this case we greedily choose the edges of
Ms until s € {0, 1} by picking two uncovered vertices, one from A} and one from A%, an uncovered (k—3)-set
in [], Jela k] C and one uncovered vertex in V{ by the degree condition. To see why we can find these edges,
first, we can always pick two uncovered vertices, one from A} and one from A, because by Claim 4.2 (3),

(4.4) |AL| > |Ai] — |Ma| > a; — an — kan > 2kyn
for ¢ = 2,3. Secondly, we can find an uncovered (k — 3)-set in ;¢ 4 Cj because
(4.5) |C}| > |Cj| = |[My U Ma| > en — yn — kan > 2kyn.
Thirdly, we can find the desired vertex in V; because the number of covered vertices in V; is at most
|B| + 2kyn < 2kan < a.
Next assume that |A1] > (1/2 + €)n. In this case we greedily choose the edges of M3 until s € {0,1}

by picking an uncovered vertex in Aj, an uncovered (k — 2)-set in [];¢(5 ;) €}, and by the degree condition,

one uncovered vertex in A). To see why we can find these edges, first, we can plck an uncovered (k — 1)-set
S € Ay x [1;e3,5 Cf because of (4.4) and (4.5). Secondly, note that ay > [A| —yn = (1/2+ € —y)n and

|AY| > |A1| — |Ma| > (3 + e)n — kan = (1 + e — ka)n.
Thus, S has at least a; — (n — |A]|) > 2kyn neighbors in A} so we can find an uncovered neighbor of S.
Now we assume that |A;| < (1/24¢)n and ag < 2kan < en. In this case we show that (ii) holds, i.e., H is
3e-D-extremal. First, a; < |A1|+an < (1/2+ e+ a)n. Since a; < ag for i € [3, k] and Zle a; >n—k+3,
we have
k
ax>)» a;—a;—(k—2)az>n—k+3— (3 +e+a)n—2k(k—2)an > (1 — 2¢)n,
i=1

e, (1/2=2¢e)n < az < a3 < (1/2 4 2¢)n. By Claim 4.2 (3), |Az| < (1/2+ 2e)n +yn < (1/2 + 3e)n and
|A;| < a; +vn < 3kan for ¢ € [3,k]. The lower bounds on ay,as imply that |A;|,|A2] > (1/2 — 2¢)n —
an > (1/2 — 3e)n. Finally, let = be the number of crossing k-sets in V(H) that intersect A; for some

€ [3,k], then < (k — 2)3kan - n*~! < 3k%2an®. Let y; be the number of crossing k-sets which are not
edges in H[A1,B2 U Cy,..., B UCy] and let yo be the number of crossing k-sets which are not edges in
H[Bl @] Cl, AQ, B3 U 03, ey Bk U Ok] By the definition of A, we have

yi < A4 ~aH |C;| + Z |B;| - n*~t < an® 4 (k — 1)an* = kan®
J#i J#i
for i € {1,2}. Note that |E,qq(A, BUC)\ E(H)| <z +y1 +v2 < 3k%2an® + 2 - kan* < en*. So (ii) holds, a
contradiction. 0

Step 3. Cover the remaining vertices.
Let M3 and 7 be as in Claim 4.3. For each i € [k], let

Al = AL\ V(M3), C! := C{\ V(M3) and V" := V] \ V/(M3).

By the definitions of My, Ma, M3, we have |M; U My U Ms| < kan + 2kyn < (k + 1)an. By Claim 4.2 (3),
for each ¢ € [k], we have

|[AY| > |A;] — |My UMy U Ms| > (a; — an) — (k+ 1)an > a; — 2kan.
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Recall that a7 > as > en, by v < €, we have
(4.6) |AY, |AY| > as — 2kan > en/2.
By Claim 4.3, we have

k
(4.7 0§T=|C£’|—Z|A;{|Smax{l,n—Zai}.

i i=1
Recall that |C;| > en — yn > 2(k + 1)an. Thus,
(4.8) |CY| > |Ci| — |[M1 UMy U Ms| > |Ci| — (k+ 1)an > |Cy|/2.

Now we greedily cover the vertices of Af,..., A} with disjoint edges of H. Indeed, for every 3 < i < k
and every vertex v € A7, we find a neighbor of v from {J,; Ci'. By (4.2) and (4.8), at most

oIL161 < 2T 1Y)
J#i J#i
crossing (k — 1)-sets in [, _; C} are not neighbors of v. Since |C}'| = > . [A]| + 7, at least min{[A7] +
r,|AY| + r} > en/2 vertices of C/ remain at the end of the greedy process. The greedy algorithm works
because (en/2)*~1 > 2¥Lan*~! > 2* o], |CY].

Let My be the resulting matching in this step. Let m; := |AY| for all i = 1, 2. Note that there are mq + r
and my +r remaining vertices in C{’ and C¥, respectively, and mj +mg +r remaining vertices in C{ for i > 3.
Our goal is to cover all the remaining vertices of H. Let C7 be a set of mg vertices in C7 \ V(My) and let
Ci be a set of my vertices in Cy \ V/(My); for i € [3, k], we can partition all but r vertices of C!'\ V(M) into
C} of size my and C? of size ma. Therefore, we get k-partite k-graphs H; := H[A? U Upzi Cy] for i =1,2.
Below we verify the assumptions of Lemma 4.1 for H;.

First, for i € [2] and any (k —1)-set S € [[,, C}, the number of its non-neighbors in 4; U B; is at most

Claim 4.2 (4.6) 2
|Ail + | Bi| — a; < gn < ’y~zmi§ami,

as v < € and a = /7. So we have
5[k]\{i}(Hi) >m; —am; = (1 —a)m,;.
Next, for any v € A, by (4.2) the number of its non-neighbors in ], C} is at most

k—1 (4.6) 2 e k—1

ozH\C'g|<om_ < al=m; <+Vam;™ ",
044 €
which implies that gy (H;) > (1 — Va)ymF=1. Thus, we have
3

(5{1-}(Hi)mi + 5[1@]\{1‘} (Hﬂmfil > (1 — \/&)mf’lmi + (1 — a)mimffl > §mf,
since v is small enough. By Lemma 4.1, we find a perfect matching M{ in H; for each i € [2]. Let
My := M} U M2, then My U My U M3 U M, U Mjs is a matching in H of size at least n —r. If » < 1, then we
obtain a matching of size at least n — 1. Otherwise, since 0 < r <n — Ele a;, we get a matching of size at
least Zle a;. O

5. PROOF OF THEOREM 1.6

We call a binary vector v € {0,1}* even (otherwise odd) if it contains an even number of coordinates that
have value 1. Let EV} denote the set of all even vectors in {0, 1}*. Note that |EV}| = 271, Let H = (V, E)
be a k-partite k-graph with parts Vi,..., Vi. Suppose V also has a partition AU B, and let A; := ANV, and
B;:= BNV, for i € [k]. Recall that a set S C V is even (or odd) if |SN A| is even (or odd) and Eeyen (A, B)
consists all crossing even k-subsets of V. Given a vector v € {0,1}*, we write V¥ = VY U--- U V)Y, where
VYV = A; if vly, =1 and VY := B; otherwise. Let H(v) := H[V"]. For any crossing k-set S € V'V, we say
that v is the location vector of S. For v € V, we define deg (v) := [1;4:1Vj| — degg (v), which is the degree

of v in the complement of H under the same k-partition. Let 0, (H) := maxX,cv (i) deg (v).
The following theorem is a key step in the proof of Theorem 1.6.
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Theorem 5.1. Suppose 1/n < n < €y,1/k and n is an even integer. Let H be a k-partite k-graph with
parts Vi, ..., Vi of size n. Suppose AU B is a partition of V(H) with A; := ANV, and B; := BNV; such
that

(1) |Ar] = [Az| = n/2,

(i1) |A;] =0 or egn < |A;| < (1 —€o)n fori > 3,
(i) for any even vector v, 61 (H(v)) < nnkF=1.

Then H contains a matching of size n — 1. Furthermore, if |A| is even, then H contains a perfect matching.
To prove Theorem 5.1, we need the following simple result.

Lemma 5.2. Given a set V of kn vertices for some even integer n, let Vi U---U Vi and AU B be two
partitions of V. such that V1| = --- = |Vk| =n and |A1| = |As| = n/2, where A; ;== ANV, and B; := BNV,.
Let H = (V, Ecyen(A, B)). If |A] is odd, then H contains a matching of size n — 1; if |A| is even, then H
contains a perfect matching.

Proof. We first prove the case when |A| is even by induction on n. The base case n = 2 is simple: we divide
the 2k — 2 vertices in J,~, Vi arbitrarily into two (kK — 1)-sets and add the vertices of V; to make both sets
even (these two k-sets have the same parity because |A| is even). For the induction step, assume n > 4 (as
n is even). By picking two vertices in each V;, ¢ > 3, with the same parity, we find two disjoint crossing
(k—2)-sets in (J,~5 Vi with the same parity. We next extend them to two even k-sets by adding four vertices,
one from each of A;, Ay, By, Bo. Since both k-sets are even, after deleting them, we can apply the inductive
hypothesis.

For the case when |A| is odd, we apply the previous case after moving one vertex from Uie[& k] A; to B
(note that ;¢ (5 ;) |As] is odd because |A1[+|Az| = n is even). Since exactly one edge has the ‘wrong’ parity,
we obtain a matching of H of size n — 1. O

We also use the following result of Daykin and Haggkvist [4] while proving Theorem 5.1.

Theorem 5.3. [4] Let 1/n < 1/k. If H is a k-partite k-graph with parts of size n such that 6, (H) >
(1 —1/k)(n*=1 = 1), then H contains a perfect matching.

Proof of Theorem 5.1. We first note that for any v € EVj, and for arbitrary subsets U; C V.V, i € [k], such
that |U;| > n/(®*)n, (iii) implies that

(5.1) S (HU, ..., U]) < g™t <2 T U3
2<i<k

We now apply Lemma 5.2 to H' := (V, Eeypen (A, B)) and conclude that H' contains a matching M of size
at least n — 1; moreover, M is perfect if |A| is even. Let S := V' \ V(M). For each v € EVy, let my be the
number of edges in M with location vector v. Then ZveEVk my = |M| as all the edges in M are even.

We will build a matching of H that consists of m, edges with location vector v for each v € EV} such
that my > 0. Let V; consists of all v € EV, with 0 < my < 7@ n; let V5 consist of all v € EVj, with
my > 1Y/ F)n. For any v € Vi U Vy, we have V¥ # () for all i, which further implies that |V,Y| > eon for
all ¢ because of (7) and (ii). For each v € Vi, we greedily find a matching of size m in Hy. To see why
this is possible, note that in total at most 2+~ 15/ (¥)n < n edges of M have their location vectors in V.
Consequently the number of crossing (k — 1)-sets in V3 U--- U V}Y that intersect these edges is at most

en Y. I WiI<tk-ve [T W
2<i<k 2<j<k,ji 2<i<k

By (5.1), for any v € V}Y, we have degyy)(v) > (1 — nl/Q)HggiSk VY] > (b — Deo [Tacicy [Vi¥] — this
guarantees the existence of the desired matchings for all v € V.

Next we arbitrarily divide the remaining vertices of V'\S into balanced vertex partitions U, = UYU- - -UUY,
v € Vy, such that UY C VY and |UY| = --- = |UY| = my — this is possible because }_ .y my = [M].
By (5.1), we know that &; (H[Uy]) > (1 —n*?)mE=1 > (1 — 1/k)m%~1 as 7 is small enough. We thus apply
Theorem 5.3 to each H[Uy] and get a perfect matching of H[Uy]. Putting all the matchings that we obtained
together gives a matching of size | M| in H. O
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Proof of Theorem 1.6. Pick a new constant €y such that e < ¢y < 1/k. We assume that Zle a;>n—k+3
— otherwise we are done by Fact 1.3. Moreover, suppose H has a vertex bipartition AUB =V, U--- UV,
such that

(1) (1/2 =¢e)n < ay,as,|A1],]A2] < (1/24+€)n, and a; < en, 3 < i<k,

(1) |Eeven(A, B) \ E| < en®.
Note that we obtain (i) after switching A; and By if |Eoqq(A, B) \ E| < en*. Furthermore, the above two
properties remain valid if we switch an even number of A; with B;. Thus we may switch A, A; with By, B;
whenever |A4;| > |B;| for some ¢ > 3. This results in |A;| < |B;| for all ¢ > 3 eventually. Moreover, by
Fact 2.4 (i) and (1), we know that &;(H) > (1/2 — e)nF~L.

We now define atypical vertices. Let W be the set of u € V such that there exists an even v € EVj such
that v € VV and T%H(v) (u) > /enk=1/2. Let Wy := W N (V4 U V3). Since each vertex in W contributes at
least \/en*~1/2 k-sets towards |E.yen(A, B) \ E| (and such a k-set can be counted at most &k times), by (1),
we have

(5.2) Wl < W] < \/“

1/ = 2k+/en.
When forming a matching of H, we prefer to use the edges that intersect both A;, As or both By, By —
we will call them horizontal edges. Correspondingly, the edges that intersect both Ai, Bo or both As, By
are diagonal. We distinguish the vertices of W, that lie in fewer horizontal edges from the rest of W;. For
i =1,2, let Wa, be the set of vertices of Wy N A; that lie in less than eon®~1 horizontal edges; similarly let
W, be the set of vertices of Wy N B; that lie in less than egn*~! horizontal edges.

Define B? := (B; \ Wp,) UWy, for i = 1,2 and BY := B, for i > 3. Let A? := V; \ BY for all i. Let
AV = Uiem A9 and B := V \ A°. Finally, let

= B3| = |BY| = [Ba| = |Ba| + [Wa, | + W, | = [Wa,| = [Wh,|.

By (1) and (5.2), |g| < 2en + 2k+/en < 3k+/en. By relabelling V7 and V5 if necessary, we may assume that
g > 0. Note that we still have |4;| < |B;| for all ¢ > 3.

Our goal is to remove a small matching and possibly some crossing k-sets (non-edges) from H such that
we can apply Theorem 5.1 to the remaining subgraph of H. To achieve the goal, we conduct the following
five steps: we remove disjoint matchings M, ..., My in the first four steps and a balanced vertex set Sj in
the fifth step. For 1 < j <4, we define 47 := A7~ \ V(M;), BY := BI=' \ V(M;), and V7 := A7 U B. Let
A% = A*\ S5, B5 :== B*\ S5 and V5 := A>UB®. For 1 <j<5and 1 <i <k, define A{ = AT NV,
B/ := BNV, and V/ := A7 UBJ.

Step 1. Reducing the gap between |BY| and |BS|. Our first matching M; is crucial for balancing the sizes of
BY and BY, and this is the only place that we need the exact codegree condition. Let Hy := H[AY U B U
V3 U---U V] and note that

S g1y (H1) > ax — [BY, Oy g2y (H1) > ag — (n — | BY))
and Oy (H1) > a; for 3 <i < k. So we have

Zé[k]\{i}(Hl) > Zai+|320| — |B10| —nzq—n—l—Zai.
=1 =1 =1

By (), we have Zle a; <n+ ken. Thus,
k
—n—i—Zaz < q+ken < 4kyen < mln\V(Hl)ﬂV|

=1
Ifg—n+ Zle a; > 0, then Fact 1.3 provides a matching M’ of size ¢ — n + Zle a; in Hy. Let My := M’
if Zle a; <n and let M; C M’ be a (sub)matching of size q if Zle a; > n. Otherwise let M; := (). So we
have |M;| < g < 3k+/en in all cases.
Step 2. Cleaning Vi and V. In this step we find a matching My of size at most |W| that covers all the

remaining vertices of Wy and uses the same amount of vertices from A} and AY. Let W/ := (Wa, UWa, U
Wp, UWpg,) \ V(M) and W[ := Wy \ (Wi UV (M;)). We cover the vertices of W' and W as follows.
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(1) By definition, each vertex u € W{' lies in at least egn*~! horizontal edges, i.e., those that intersect
both A; and As, or intersect both By and By. By (5.2), among these edges, at least egn®=1/2
horizontal edges do not intersect W \ {u}, so they intersect both AY and A9, or intersect both BY
and BS. We greedily cover the vertices of W{ by disjoint horizontal edges of this form not intersecting
V(My).

(2) Since 61 (H) > (1/2—€)n*~1, by definition, every vertex u € W lies in at least (1/2—e)nk~! —egnh~1
diagonal edges. By the definitions of A%, A9, BY, B and € < €g, each u € W{ lies in at least
(1/2 — e)nk=1 — egn*=1 — |Wy|n*~2 > ¢ynF~1 edges that intersect both A} and AY, or both BY and
BY. We greedily cover the vertices of W/, by such edges.

To see why the above process is possible, we note that when finding an edge for a vertex u, the number
of vertices that we need to avoid is at most |V (My)| + k|Wo| < 3k%\/en + 2k?\/en = 5k?\/en by (5.2) and
|M;| < 3k+/en. Hence these vertices lie in at most 5k2\/en®* =1 < ¢yn*~1/2 crossing (k — 1)-sets, so we can
find an edge that covers u and avoids all previously-chosen edges.

Let us bound |B3| — |B?| = |BS \ V(M; U Ma)| — |BY \ V(M; U M3)|. By the definition of M, we have
|BYNV (M) =0 and |BSNV(M;)| = |[M;|. By the definition of M, we have |B{ NV (Ms)| = |BYNV (Ma)].
Thus,

IB| — |B| = |BY) - |BY| — M| = q — |,

Note that
n—YrF a ifg—n+>F a;>0and 7 a; <n;
q—|Mi|=<0 ifq—n—l—zi?:laiannd Eleai>n;
an—ZfZlai ifq—n+2?:1ai<0.
So we have
k
(5.3) 0<B§|—B%|:q—|M1|<max{0,n—Zai}<k—3.
i=1

Step 3. Cleaning Vs, ..., Vi. Let X consist of all x € A; \ W for some ¢ > 3 such that |A;| < 2¢pn. In this
step we build a matching M3 which covers all the remaining vertices of W and the vertices of X and satisfies
that

(5.4) —1<|BINV(Ms)| - |B2NV(Ms)| <O0.

Let W’ be the set of vertices in (W3 U ---U W) \ V(M) U M,) that are contained in at least 3k2¢gn®~1
horizontal edges. Let W' := (W3 U--- U W) \ (V(M; U My) UW'). Since 6;(H) > (1/2 — e)n*~1, by
definition, each u € W” is contained in at least (1/2 — e)n*~1 — 3k%eon*~! diagonal edges. Note that by (1),
we have |B||A2| < (1/4 + 3¢)n?. Then since u lies in at most |By||Az|n*~2 < (1/4 + 3¢)n*~! edges that
intersect both By and As, there are at least 3k%eyn*~! edges that contain w and intersect both A; and Bs.
Note that by symmetry, the same statement holds for u, A; and B;. Finally, for any vertex « € X, assume
that = € A; for some 3 < i < k. Since the binary vectors v € {0, 1}’“ with exactly two 1’s are even, the fact
that x € W implies that x is contained in at least

1
[ 1Bl = 5vens =
JERN{1,3}
edges in A1 U(Uy<j<p, ji Bj) UAi, and in at least 3k2egn®~1 edges in By U Ay U (Us<j<k jzi Bi) UA;, where
we used |A1||Bs| > n?/8 and |B;| > n/2 for 3 <i < k in the first inequality.
(1) We first greedily find |W’| disjoint horizontal edges such that each of them contains one vertex of
W’ and no other vertices from WU X UV (M; U My).
(2) Next, we split W"”UX arbitrarily to W{" and W4’ of sizes | |[W"UX|/2] and [|[W"UX|/2], respectively.
We greedily find |W/'| disjoint edges such that each of them contains one vertex u € W/’ one vertex
from each of By and As, and no other vertices from WU X UV (M; U Ms); moreover, if u € 4; C X,
then the edge is taken in By U Ao U (Us< <y iz Bj) U Ai.
Finally, we greedily find |W3/| disjoint edges such that each of them contains one vertex u € WY/,

one vertex from each of A; and Bs, but no other vertices from W U X U V(M7 U Ms); moreover, if
u € A; C X, then the edge is taken in A1 U (U< <y iz Bj) U Ai.

nkrfl

2k

1
— §\ﬁnk*1 > 3kZegnt !
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The above process is possible because when considering a vertex u, the number of vertices that we need to
avoid is at most

[V (M)| + [V (M)| 4+ kW | + k| X| < [V(My)] + 2k|W| + k- 2(k — 2)eon < 3k%en

because of (5.2), the facts |Mi| < 3ky/en, and |X| < 2(k — 2)egn. Hence these vertices lie in less than
3k2egn*~! crossing (k — 1)-sets, so we can always find a desired edge that covers u and avoids all previously-
chosen edges. Let M3 be the matching obtained in this step. Note that (5.4) holds by construction.

Step 4. Balancing the sizes of B3 and A3. Let m = |B| — |A3]. We find a matching M, of size |m| as
follows. If m > 0, then My consists of m disjoint edges from H[B3?] that are disjoint from M; U Mo U Ms.
Since (0,...,0) € EVy, this can be done since H[(0,...,0)] is almost complete. Otherwise My consists of
|m| disjoint edges with location vector (1,1,0,...,0) that are disjoint from M; U My U M3 — this is possible
because H[(1,1,0,...,0)] is almost complete.

After removing My, the resulting sets Bf and A3 satisfy |B}| = |Ai]. The definition of M, implies that
|B2 NV (My)| = |B2NV(M,)|. Together with (5.3) and (5.4), this gives

k
(5.5) —1<|Bi —|B} =|B% —|B? +|B2nV(Ms)| — |B2NV(Ms)| < maX{O,n - Zai} <k-—3.

i=1

Step 5. Balancing the sizes of Bf and Bj. Let t := | B3| — |B}|. By (5.5), we have —1 <t <k —3. If t > 0,
let S5 be a kt-set in V* with ¢ vertices from each of A}, B3, and V;* for 3 < < k such that |A*\ S5| is even.
The requirement that |A% \ S| is even can be easily fulfilled if any A}, i > 3, is not empty. On the other

79

hand, if all A3,..., A} are empty, then since | B3 \ S5| = |B{|, we have |A} \ S5| = |A3| and consequently,
| A%\ 85| = AT\ S5| + [ A3] = 2]43|

is even. Note that (5.5) implies that n — Zle a; > t. To complete the proof, it suffices to find a perfect
matching in V5 = V4\ S5. If t = —1, then let S5 be a k-set with one vertex from each of B}, A3 and V;* for
3 < i < k such that |A*\ S| is even — this can be achieved by the same argument as in the ¢ > 0 case. Again
it suffices to find a perfect matching in V5. At last, if ¢ = 0 then set S5 = (). In this case |A5| = |A*\ S5
may be odd; however, it suffices to find a matching of size |V°| -1 in H[V?]. In summary, it remains to find
a perfect matching in H[V?] if |A®| is even and a matching of size |V — 1 otherwise. This will follow from

Theorem 5.1 after we verify its assumptions.
Let n/ := |V?| and H' := H[V?®]. Note that

My U My U M| < |M;| + |W| + |X| < 3kv/en + 2k\/en + 2kegn, and

|My| = ||BY| — |A3]] < |By| — |Az| + [My U My U M3 < 3kegn,

where |B;| — |A2] < 2en by (1). Note that we have V(My) N A; = 0 for 3 < i < k, and when building M3,
we used the vertices of A;, 3 < i < k, of size at least 2¢gn only when we cover the vertices of W. Thus for
3<i<k,if |[A?| # 0, then

[A2| = |As] = [ M| — V(M2 U Ms) 0 Ay| = [S5 0 Ay
> 2¢gn — 3kv/en — 2k\/en — (k — 3) > egn > eon’.
Moreover, by the choice of My and S5, we have |A3| = |B}| = |B3|, and thus |A}| = |A}| = n//2. In
particular, this means that n’ is even. Finally, note that
n' =n— M| —|Ms| — [Ms| — |[My| — |Ss|/k
> n — 3kven — 2ky/en — 2kegn — 3keon — (k — 3) > (1 — 6keg)n,

which also implies |A?| < |4;] < n/2 < (1 —€)n’. So for any v € EVj, and any vertex u € H'(v), since
u ¢ W and n is large enough, we have

deg vy (u) < Ven* ! /2 < e(n' )1
So we are done by Theorem 5.1 with n = /€. O
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