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Abstract

Using a result of Gan—Li on Fl-hyperhomology and a semi-simplicial resolution of configuration
spaces due to Randal-Williams, we establish an improved representation stability stable range for
configuration spaces of distinct ordered points in a manifold. Our bounds on generation degree
improve the best known stability slope by a factor of 5/2 in the most general case. We adapt
this result of Gan-Li to apply beyond stability arguments involving highly-connected simplicial
complexes, and our methods suggest that their result may be widely applicable to improving most
stability ranges for Fl-modules in the current representation stability literature.

1 Introduction

In this paper, we prove a representation stability result for ordered configuration spaces of points in
a manifold. This result improves upon previous results of Church [Chul2], Church-Ellenberg—Farb
[CEF15], Church-Ellenberg-Farb-Nagpal [CEFN14], Miller-Wilson [MW], Church-Miller-Nagpal-
Reinhold [CMNR18] and Bahran [Bah]: it establishes the best currently known stable ranges for
the cohomology of ordered configuration spaces of manifolds with integral coefficients.

Let M be a connected manifold of dimension at least 2. The family of k-point ordered
configuration spaces of M are not cohomologically stable in k; however, their cohomology groups
do stabilize with respect to their natural Sy—actions. The standard way to define and quantify this
stability is through bounds on the generation degree and presentation degree of the corresponding
Fl-module structure on the sequences of cohomology groups, which we recall below. These are
equivariant analogues of the classical homological stability stable ranges in which the stabilization
map is surjective or, is an isomorphism, respectively.

Let FI denote the category of finite sets and injective maps. An Fl-module is a functor from Fl
to the category of abelian groups, an Fl-chain complex is a functor from Fl to chain-complexes over
Z, and so forth. Given an Fl-module V, we denote its value on a finite set S by Vs. Following the
notation of Church—Ellenberg-Farb [CEF15], we let

HE': Fl-Mod — FI-Mod
be the functor given by the formula
H{'(V)s := coker <€B Vi — V5> :
TCS

Here the maps Vi — Vs are induced by the Fl-module structure. Let HI' denote the ith left-derived
functor of Hj'. These functors are known as the Fl-homology functors; see Church-Ellenberg [CE17].
We say that an Fl-module V has generation degree < g if

H{'(V)s 20 for |S]| > g.
We say that V has presentation degree < r if
H{'(V)s = HY'(V)s = for S| > r.
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Presentation degree controls the degree of generation of the terms in a 2-step resolution of V by
“free” Fl-modules; see Church—Ellenberg [CE17, Proposition 4.2]. Let F'(M) be the contravariant
functor from FI to the category of spaces sending a finite set S to the space Fs(M) of embeddings
of §into M. For the set [k] := {1,2,...,k}, the space Fjs)(M) is canonically identified with the
ordered configuration space of M,

Fr(M) = {(mi,ma,...,mi) € M* | m; # m; for all i # j}.

Taking cohomology yields Fl-modules HJ(F(M)) Our main theorem is the following.

Theorem 1.1. Let M be a connected manifold of dimension d = 2. Then H_j (F(M)) has generation
degree < 4j + 1 and presentation degree < 4j + 2. If dim M > 3, then H’ (F(M)) has generation
degree < 2j + 1 and presentation degree < 2j + 2.

Theorem 1.1 implies that, for k& > 45 + 1, the group H? (Fy(M)) is spanned by the Sy—orbit of
the image of H? (Fy;+1(M)) under the map induced by the fibration Fy (M) — Fy;41(M) forgetting
all but the first (4j + 1) points. In other words, every cohomology class in H?(Fy(M)) can be
represented by a sum of classes pulled back along the natural forgetful maps Fj (M) — Fyj41(M).
Moreover, for each j the sequence of cohomology groups { H? (Fj(M))} is completely determined
by the first 45 + 2 groups. When M has dimension at least 3, we obtain the improved result
that the sequence of cohomology groups only depends on the first 25 4+ 2 groups. Concretely,
Church-Ellenberg [CE17, Theorem C] implies the following corollary.

Corollary 1.2. Let M be a connected 2-manifold. Then for each homological degree j > 0,

HI(F,(M)) = ch?lzim k}Hj(Fs(M)).
IS|<4j+2

If M is a connected manifold of dimension d > 3, then for each homological degree 7 > 0,

HI(Fp(M)) = Scf?gm N HY(Fs(M)).
Is|<2j+2

Another consequence is that the sequences of cohomology groups {H? (Fj(M))}x are centrally
stable in the sense of Putman [Putl5]; see also Patzt [Pat]. This implies that, for k > 45 + 2, there
is an explicit presentation for the group H(F)(M)) in terms of the groups H?(Fj_1(M)) and
HI(Fy,_3(M)), and the natural maps between them [CMNR18, Propositions 2.4]. We therefore
obtain recursive descriptions of the cohomology groups H?(Fj(M)) in the stable range k > 45 + 2.

See [CE17, Theorem A] and [CMNR18, Propositions 3.1] for more consequences of bounds for
generation degree and presentation degree.

Another motivation for seeking improved stable ranges is the notion of secondary stability
introduced by Galatius—Kupers—Randal-Williams [GKRWa, GKRWb], which was adapted to the
representation stability context in Miller—Wilson [MW]. Secondary stability is a pattern in the
unstable (co)homology of spaces whose (co)homology exhibits homological or representation stability.
A prerequisite for establishing nontrivial secondary stability is sharp stability bounds for primary
stability.

Remark 1.3. This paper originated as the appendix to Miller-Wilson [MW]. It was later split
from that paper for reasons of length. That appendix proved the first explicit bounds for the
generation and presentation degree of the integral cohomology of ordered configuration spaces of
(possibly closed) manifolds. It was also the first paper to establish stability for configuration spaces
of points in non-orientable manifolds. The appendix relied on algebraic results of Church—Ellenberg
[CE17]. Since its release, Church—Miller-Nagpal-Reinhold [CMNR18] improved on the stable
ranges, using the appendix to address non-orientable manifolds. Bahran [Bah] further improved the
stable ranges for high-dimensional orientable manifolds. This updated version of the appendix now
relies on algebraic results of Gan—Li [GL], which allow us to establish an even better stable range.

Remark 1.4. Church—Miller—Nagpal-Reinhold [CMNR18] described two methods for proving
representation stability, which they called Type A and Type B stability setups. Almost all known
stability results for FI-modules fall into one of those two categories broadly construed or involve
directly calculating the Fl-modules in question. Gan-Li [GL] dramatically improved the stable



ranges arising from Type B setups. The methods of this paper can be used to transform most Type
A setups currently in the literature into Type B setups, and should result in improved ranges in
those situations. In particular, the stable ranges for pure mapping class groups (Jiménez Rolland
[JR]), homotopy groups of configuration space (Kupers—Miller [KM18]), configuration spaces of
non-manifolds (Tosteson [Tos]), and generalized configuration spaces where collisions are allowed
(Petersen [Pet17]) could possibly be improved using the techniques of this paper.

Acknowledgments. We are grateful to Rohit Nagpal for helpful conversations regarding the
hyperhomology of cochain complexes. We are grateful to our anonymous referee for helpful feedback.

2 Configuration spaces of non-compact manifolds

In this section, we prove a stability theorem for the configuration spaces of a manifold M in the
case that M is not compact. We begin by recalling the category FIf which acts up to homotopy on
the configuration spaces of points in a non-compact manifold. The following definition is equivalent
to Church-Ellenberg-Farb [CEF15, Definition 4.1.1].

Definition 2.1. Let Flf denote the category whose objects are based sets and whose morphisms
are based maps such that the preimage of every element but the basepoint has size at most one.

We will view Flf-modules as Fl-modules by restricting to the wide subcategory FI C Flf of
injective morphisms. Note that the opposite category of Flf is again FIf.

When M is a non-compact manifold, its configuration spaces admit maps Fj (M) — Fyy1(M)
by introducing a point “at infinity” (see Church—Ellenberg—Farb [CEF15, Section 6.4]), and these
maps endow the (co)homology groups with Flf-module structures. The following result is due to
Church-Ellenberg-Farb [CEF15, Proposition 6.4.2]. Miller-Wilson [MW, Section 3.1] addresses the
case that the non-compact manifold M is not the interior of a compact manifold with boundary.

Proposition 2.2 (Church—Ellenberg-Farb [CEF15, Proposition 6.4.2]; see also Miller-Wilson [M'W,
Section 3.1]). If M is a non-compact manifold of dimension d > 2, then the assignment S +— Fs(M)
defines a functor from Flf to the homotopy category of spaces. In particular, post-composing with
the jth homology or cohomology group functor gives Fli-modules which we denote by H;(F(M))
and H? (F(M)), respectively.

The following result appears in Miller—-Wilson [MW, Theorem 3.12 and Theorem 3.27]. It
follows easily from Church-Ellenberg-Farb [CEF15, Theorem 6.4.3] if M is orientable and of finite
type.

Theorem 2.3 ([MW, Theorems 3.12 and 3.27], [CEF15, Theorem 6.4.3]). Let M be a non-compact
connected manifold of dimension d. If d = 2, then H;(F(M)) has generation degree < 2j. If d > 3,
then H;(F(M)) has generation degree < j.

Let FB denote the category of finite sets and bijections. Let Modrg denote the category
of functors from FB to abelian groups, so Modrg is equivalent to the category of sequences of
integral Sk—representations. Let Z : Modrg — Modp be the left adjoint of the forgetful functor.
Concretely, for an FB—module U, the Fl-module Z(f) is given by the following formula (see
Church—Ellenberg—Farb [CEF15, Definition 2.2.2]):

IWU)s = @ ur.

TCS

Using this functor, Church—Ellenberg—Farb [CEF15, Lemma 4.1.5] gave another characterization of
Flf-modules.

Theorem 2.4 ([CEF15, Lemma 4.1.5]). The functor I factors through the inclusion Modgy —
Modgf and induces an isomorphism of categories Modrg — ModFys.

Church-Ellenberg—Farb [CEF15, Remark 2.3.8] showed that, if we view Modgg as the codomain
of HI' then H{'is a right inverse to Z.

For an Fl-module or FB-module U, we say degld < d if Uy = 0 for k > d. In particular, the
generation degree of Z(U) is equal to degl.

Given an Flf-module V, we can form Flf-modules Ext}(V, Z) by composing with the Ext functors
pointwise. Since the opposite category of FB is FB, we can also perform this construction with
FB-modules to obtain FB-modules.



Lemma 2.5. Let V be an Flf module with generation degree < g. Then the Fli-modules Ext}(V, Z)
have generation degree < g.

Proof. Since the direct sum of exact chain complexes of free abelian groups is an exact chain complex
of free abelian groups, it follows from the description of Z above (quoting [CEF15, Definition 2.2.2])
that Z takes pointwise free resolutions to pointwise free resolutions. Similarly, since Hom commutes
with finite direct sums, it follows that Z commutes with pointwise Hom functors. Thus Z commutes
with pointwise Ext functors and we have isomorphisms

Extj(V,Z) = Exty(Z(Hg' (V)), Z) = I (Exty(Hg' (V), Z)).
To check that these isomorphisms of abelian groups assemble to form an isomorphism of Flf-
modules, it is helpful to use functorial free resolutions like the bar resolution to compute Ext. This
isomorphism shows that the generation degree of Ext}(V,Z) is bounded by deg H§'(V) which is
the generation degree of V. O

This gives the following corollary.
Corollary 2.6. Let M be a non-compact connected manifold of dimension d. If d = 2, then
H?(F(M)) has generation degree < 2j. If d > 3, then H’ (F(M)) has generation degree < j.
Proof. By the universal coefficient theorem, there is a short exact sequence of Flf-modules
0 — Exty(Hj—1(F(M),Z)) — H’(F(M)) — Exty(H;(F(M)),Z) — 0.
This gives an exact sequence
Hy' (Bxty(H; -1 (F(M),Z)) — Hp' (Hf’(F(M))) — Hp' (Exty(H;(F(M)),Z)) .
The claim now follows by Theorem 2.3 and Lemma 2.5. O

Remark 2.7. We remark that, when M is finite type, then Corollary 2.6 is a consequence of
the result of Church—Ellenberg—Farb [CEF15, proof of Theorem 4.1.7] that an Flf-module V is
finitely generated in degree < g if and only if Vi is generated by O(kY) elements. We can then
use Theorem 2.3 and the universal coefficients theorem to bound the growth in the number of
generators of the abelian group H’ (Fi(M)), and Corollary 2.6 follows.

Higher Fl-homology groups of the cohomology groups of configuration spaces of non-compact
manifolds vanish uniformly by the following theorem.
Theorem 2.8 ([CE17, Lemma 2.3]). Let V be an Flf-module. Then H{'(V) =0 for all i > 0.

3 The puncture resolution

We now recall the puncture resolution from Randal-Williams [RW13], which will allow us to leverage
results for non-compact manifolds to prove results for compact manifolds.

Definition 3.1. Fix a finite set S. We define the puncture resolution of the configuration space
Fs(M) as follows. For p > —1, denote the topological spaces

Pun, (Fs(M)) = | | Fs(M — {0, ..., 2}).
(z0,--»@p)EF[0, ... p} (M)

In particular, Pun_;(Fsg(M)) = Fs(M). See Figure ?? for an illustration. For fixed S, the
spaces Pun,(Fg(M)) assemble to form an augmented semi-simplicial space. The ith face map is
induced by the inclusion

M—{x07...,mp}‘—>M—{mo,.447ii7...,xp}.

Given an injection S — T', composition of embeddings gives a map of augmented semi-simplicial
spaces Pune (Fr(M)) — Pune(Fs(M)). In this way, the puncture resolution assembles to form an
augmented semi-simplicial co-Fl-space Pune(F(M)). Thus the cohomology groups of the space of
p-simplices of the puncture resolution assemble to form an Fl-module and the face maps are maps
of Fl-modules. In particular, the action of the symmetric group Sy on Fj(M) extends to an action
on Pun,(Fi(M)). Randal-Williams proved the following [RW13, Section 9.4].



Figure 1: An element of Puny(F7(M))/S7.

Theorem 3.2 ([RW13, Section 9.4]). Let M be a manifold. The augmentation map
[[Pune (Fy (M)||/ Sk = Fi(M)/ Sk

is a weak equivalence.
We now use Theorem 3.2 to prove the following.
Proposition 3.3. Let M be a manifold. The augmentation map ||Pune(Fi(M))|| = Fr(M) is a

weak equivalence.

Proof. We proceed as in the proof of Miller—Wilson [MW, Proposition 3.8]. It suffices to show that
the homotopy fiber of the map ||Pune(Fx(M))|| — Fi(M) is contractible. If we use the standard
path space construction of homotopy fibers, then this homotopy fiber is homeomorphic to the
homotopy fiber of ||Pune(Fr(M))||/Sk — Fr(M)/Sk, which is contractible by Theorem 3.2. [

4 Proof of Theorem 1.1

In this section, we prove the main theorem. We begin by recalling the definition of FI-hyperhomology.
Definition 4.1. Given an Fl-chain complex V., we denote the ith hyperhomology group associated
to the chain complex V. and the functor Hf' by H'(V.) and refer to it as Fl-hyperhomology.

A key component of our proof is the following result of Gan—Li.

Theorem 4.2 (Gan-Li [GL, Theorem 5]). Let V. be an Fl-chain complex supported in nonnegative
homological degrees. Its ith homology group is an Fl-module H;(V.). Let

t;(V.) = deg H' (V)
denote the degree of the Fl-hyperhomology of V. in homological degree j. Then for each i > 0,
deg HY'(H;(V.)) < 2t:(V) + 1,
deg HY (H: (V) < 2max (6:(V.), ti1(V2)) + 2.

The following result is well-known; see for example Bendersky—Gitler [BG91, Proposition 1.2].

Proposition 4.3 (E.g., Bendersky—Gitler [BG91, Proposition 1.2]). Let X, be a semi-simplicial
space. Let X™* be the double complexr with X?9 = C9(X,) with one differential given by the
differential on singular cochains and the other given by the alternating sum of the facemaps. Let
X* be the total complex of X**. Then H;(X*) = H'(]| X.||).

We now prove the main theorem, an improved stable range for the cohomology of ordered
configuration spaces.

Proof of Theorem 1.1. Gan—Li’s result Theorem 4.2 requires an Fl-chain complex supported in
nonnegative degrees, so we cannot apply the result directly to the cochain complex C™* (Pune (F(M))).
To produce a complex satisfying Gan—Li’s assumptions, we re-index and truncate this cochain
complex. For fixed N € N>, define the homologically-graded Fl-chain complex

c=N =

7

B, —n_; C'(Puny(F(M))), 0<i<N
0, otherwise.



By Proposition 3.3 and Proposition 4.3, we see that H;(C="), = HN~!(F,(M)) for 1 <i < N.

The complex C=N is the total complex of a double complex with vertical chain complexes
CN=5=*(Pun,(F(M))) for each s > 0. So now fix s and consider the Fl-hyperhomology associated
to the chain complex CV ~*~*(Puns(F(M))). One of the two standard spectral sequences converging
to the hyperhomology groups HY', ,(CN™*7*(Pun,(F(M)))) has E* page

Ep o = Hy) (Ho(CV 77" (Puny(F(M)))))
= @ HEEM - e, 2))
(z0,...,zs) in

Fro,...,s3(M)

Observe that punctured manifolds are not compact, so by Proposition 2.2 the cohomology groups
of their configuration spaces form Flf-modules. Then by Church—Ellenberg’s result Theorem 2.8,

®WM%%WMHWM%mm%m%pﬂ
s}

01 p>0

Thus the spectral sequence collapses at EZ and we find

H(CY 7 (Pung(F(M) = @ Hg' (HY*"4(F(M — {0, ..., z:}))).

(zg,...,zs) in
Fro,... sy (M)
By Corollary 2.6,
ty (s) := deg H'(C™ 7" (Puny (F(M))))
=deg HY'(HN"°"9(F(M — {xo,...,z}))) for (zo,...,xs) € Fio

< 2N — 2s — 2q, dim(M) = 2
- N —s—gq, dim(M) > 3.

.....

The complex C=Y is an iterated extension of the complexes CV™*~*(Pun,(F(M))) for 0 < s < N.
Concretely, we can by definition express C=V as

= P VT (Pun(F(M)))).
0<i<N
0<s<N-—i

We can then define a filtration of C=V by an index S, bounding the simplicial variable s,

c=N(8) = b O (Puns (F(M))))
0<i<N
0<s<min(S,N—1i)
= @ VP (FEO)
0<s<S
0<i<N—s

and so for each fixed 0 < S < N we find
cEN(©)/CEN (S -2 P VT (Pung(F(M)))).

0<i<N—S

By (for example) Weibel [Wei95, Lemma 5.7.5], given a short exact sequence 0 — K, — A, —
@« — 0 of bounded-below Fl-chain complexes, there is a long exact sequence of Fl-hyperhomology
groups

R HZ'H(Q*) — HZ'(K*) — HZ'(A*) — HZ'(Q*) — -

Thus by induction on s, the degree t) := deg HZ'(C*SN) is bounded above by maxo<s<n t (s).
Specifically,

2N — 2g, dim(M) = 2

N Fl <N
by = degH, (C7) < { N — g, dim(M) > 3.



"Our goal is to find bounds for the generation and presentation degrees of the Fl-module
H’(F(M)). As noted earlier, H;(C=™ ) =2 HN~(Fy(M)) for 1 < i < N. In particular, we have

H’(F(M)) = Hy(CSUTD),

Using Gan-Li’s result Theorem 4.2, we obtain the following:

deg HY'(H (F(M))) = deg H'(Hy (C=UFY))
<2tiT 1

_ [ 45+1, dim(M) =2
= 2/ +1, dim(M) >3

deg HY'(H’ (F(M))) = deg Hy'(H1(CEVTY))
< 2max(t]T 21! + 2

_ [ 4+2, dim(M) =2
=\ 2j+2, dim(M) > 3.

This concludes the proof. O

In the above proof, we considered H;(C=YtY) =~ HY (Fi(M)) for concreteness. The proof
would have worked equally well by instead studying H;(C:7/1), = H7 (Fj,(M)) for any fixed i > 1.

References

[Bah] Cihan Bahran, An improvement in the linear stable ranges for ordered configuration spaces,
https://arxiv.org/pdf/1801.03302. 1, 2

[BGI1] Martin Bendersky and Sam Gitler, The cohomology of certain function spaces, Transactions of
the American Mathematical Society 326 (1991), no. 1, 423-440. 5

[CE17] Thomas Church and Jordan S. Ellenberg, Homology of FI-modules, Geom. Topol. 21 (2017),
no. 4, 2373-2418. MR 3654111 1, 2, 4

[CEF15] Thomas Church, Jordan S. Ellenberg, and Benson Farb, FI-modules and stability for represen-
tations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833-1910. MR 3357185 1, 3,
4

[CEFN14] Thomas Church, Jordan S. Ellenberg, Benson Farb, and Rohit Nagpal, FI-modules over
Noetherian rings, Geom. Topol. 18 (2014), no. 5, 2951-2984. MR 3285226 1

[Chul2] Thomas Church, Homological stability for configuration spaces of manifolds, Invent. Math. 188
(2012), no. 2, 465-504. MR 2909770 1

[CMNR18] Thomas Church, Jeremy Miller, Rohit Nagpal, and Jens Reinhold, Linear and quadratic ranges
in representation stability, Advances in Mathematics 333 (2018), 1-40. 1, 2

[GKRWa] Sgren Galatius, Alexander Kupers, and Oscar Randal-Williams, Cellular Ej-algebras, https:
//arxiv.org/abs/1805.07184. 2

[GKRWD] , Ea-cells and mapping class groups, https://arxiv.org/abs/1805.07187. 2

[GL] Wee Liang Gan and Liping Li, Linear stable range for homology of congruence subgroups via
Fl-modules, preprint, arXiv:1712.00890v1. 2, 5

[JR] R. Jiménez Rolland, Linear representation stable bounds for the integral cohomology of pure
mapping class groups, preprint, arXiv:1901.02134. 3

[KM18] Alexander Kupers and Jeremy Miller, Representation stability for homotopy groups of configu-
ration spaces, J. Reine Angew. Math. 737 (2018), 217-253. MR 3781336 3

MW] Jeremy Miller and Jennifer C H Wilson, Higher order representation stability and ordered
configuration spaces of manifolds, to appear in Geometry & Topology, arXiv:1611.01920v1. 1,
2,3,5

[Pat] Peter Patzt, Central stability homology, https://arxiv.org/abs/1704.04128. 2

[Pet17] Dan Petersen, A spectral sequence for stratified spaces and configuration spaces of points, Geom.

Topol. 21 (2017), no. 4, 2527-2555. MR 3654116 3


https://arxiv.org/pdf/1801.03302
https://arxiv.org/abs/1805.07184
https://arxiv.org/abs/1805.07184
https://arxiv.org/abs/1805.07187
http://arxiv.org/abs/1712.00890v1
http://arxiv.org/abs/1901.02134
http://arxiv.org/abs/1611.01920v1
https://arxiv.org/abs/1704.04128

[Put15] Andrew Putman, Stability in the homology of congruence subgroups, Invent. Math. 202 (2015),
no. 3, 987-1027. MR 3425385 2

[RW13] Oscar Randal-Williams, Homological stability for unordered configuration spaces, Quarterly
Journal of Mathematics (2013), no. 64 (1), 303-326. 4, 5

[Tos] Philip Tosteson, Lattice spectral sequences and cohomology of configuration spaces, preprint,
arXiv:1612.06034. 3

[Wei95] Charles A Weibel, An introduction to homological algebra, no. 38, Cambridge University Press,
1995. 6


http://arxiv.org/abs/1612.06034

	Introduction
	Configuration spaces of non-compact manifolds
	The puncture resolution
	Proof of Theorem 1.1

