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1. Introduction
1.1. Hamiltonian cycles and random graphs

The study of Hamiltonicity (the existence of a spanning cycle) has been a central
and fruitful area in graph theory. In particular, a celebrated result of Karp [19] states
that the decision problem for Hamiltonicity in graphs is NP-complete. So it is desirable
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to study sufficient conditions that guarantees Hamiltonicity. Among a large variety of
such results, probably the most well-known is a theorem of Dirac from 1952 [11]: every
n-vertex graph (n > 3) with minimum degree at least n/2 is Hamiltonian.

Another well-studied object in graph theory is the random graph G(n, p), which con-
tains n vertices and each pair of vertices forms an edge with probability p independently
from other pairs. Pésa [27] and Korshunov [21] independently determined the threshold
for Hamiltonicity in G(n, p), which is around logn/n. This implies that almost all dense
graphs are Hamiltonian. Furthermore, Bohman, Frieze and Martin [6] showed that for
every a > 0 there is ¢ = ¢(«) such that every n-vertex graph G with minimum degree
an becomes Hamiltonian a.a.s. after adding cn random edges (we say that an event hap-
pens asymptotically almost surely, or a.a.s., if it happens with probability 1—o(1)). This
result is tight up to the value of ¢ by considering a complete bipartite graph Kaup,(1-a)n-
A comparison can be drawn to the notion of smoothed analysis of algorithms introduced
by Spielman and Teng [34], which involves studying the performance of algorithms on
randomly perturbed inputs.

1.2. Uniform hypergraphs

It is natural to study the Hamiltonicity of uniform hypergraphs. Given k > 2, a
k-uniform hypergraph (in short, a k-graph) H = (V, E) consists of a vertex set V and
an edge set F C (‘I:), where every edge is a k-element subset of V. Given a k-graph H
with a set S of d vertices (where 1 < d < k — 1) we define Ny (S) to be the collection
of (k — d)-sets T such that SUT € E(H), and let degy(S) := |[Ng(S)|. The minimum
d-degree 64(H) of H is the minimum of deg (S) over all d-vertex sets S in H.

In the last two decades, there has been a growing interest of extending Dirac’s theorem
to hypergraphs. Despite other notion of cycles in hypergraphs (e.g., Berge cycles), the
following definition of cycles has become more popular recently (see surveys [29,35]). For
integers 1 < ¢ < k—1and m > 3, a k-graph F with m(k—/) vertices and m edges is called
an £-cycle if its vertices can be ordered cyclically such that each of its edges consists of k
consecutive vertices and every two consecutive edges (in the natural order of the edges)
share exactly £ vertices. A k-graph is called ¢-Hamiltonian if it contains an ¢-cycle as a
spanning subgraph. Extending Dirac’s theorem, the minimum d-degree conditions that
force ¢-Hamiltonicity (for 1 < d, ¢ < k — 1) have been intensively studied [2,3,9,10,14,17,
15,16,20,24,25,30-33]. For example, the minimum 1-degree threshold for 2-Hamiltonicity
in 3-graphs was determined asymptotically [28].

Let G (n,p) denote the binomial random k-graph on n vertices, where each k-set
forms an edge independently with probability p. The thresholds for /-Hamiltonicity have
been studied by Dudek and Frieze [13,12], who proved that the asymptotic threshold is
1/nF=t for £ > 2 and logn/n*~! for £ = 1 (they also gave a sharp threshold for k > 4
and £ =k —1).
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It is also natural to consider /-Hamiltonicity in randomly perturbed k-graphs. In fact,
Krivelevich, Kwan and Sudakov [22] extended the result of Bohman—Frieze-Martin [6]
to hypergraphs.

Theorem 1.1. [22] Let k € N, and let H be a k-graph on n € (k — 1)N wvertices with
Sx_1(H) > an. There erists a function c;, = ci(a) such that for p = ¢ /n*~1, H U
G®)(n,p) a.a.s. is 1-Hamiltonian.

Theorem 1.1 is tight up to the value of ¢, (see the paragraph after Theorem 1.2).
Similar results for the powers of Hamiltonian (k — 1)-cycles were obtained by Bennett,
Dudek and Frieze [5], and recently by Bedenknecht, Han, Kohayakawa and Mota [4].
In addition, Bottcher, Montgomery, Parczyk and Person [8] proved embedding results
for bounded degree subgraphs in randomly perturbed graphs. Other results in randomly
perturbed graphs can be found in [1,23,7].

Krivelevich, Kwan and Sudakov [22] asked whether Theorem 1.1 can be extended to
{-Hamiltonicity under minimum d-degree conditions for 1 < d,¢ < k — 1. McDowell and
Myecroft [26] found such results for d > max{¢, k — ¢} and reiterated the question for
arbitrary d and ¢. In this paper we solve this problem completely. Since the minimum
1-degree condition is the weakest among d-degree conditions for all d > 1, we only state
and prove our result with respect to the minimum 1-degree.

Theorem 1.2. For integers k > 3, 1 < ¢ < k —1 and o > 0 there exist € > 0 and an
integer C > 0 such that the following holds for sufficiently large n € (k — ¢)N. Suppose

k—1

H is a k-graph on n vertices with 61(H) > an and

n~F=O=c f1>2
pry > - *
prin = {C’n_(k_l) ife=1. -

Then HUG®) (n,p) a.a.s. is (-Hamiltonian.

Theorem 1.2 is sharp up to the constants € and C. Indeed, given k and ¢, let o >
0 be sufficiently small and n € (k — ¢)N be sufficiently large. Consider a partition
AU B of a vertex set V such that |[A] = an and |B| = (1 — a)n. Let Hy be the
k-graph with all k-tuples that intersect both A and B as edges. It is easy to see that
61(Ho) = an(" 2% 1). Suppose Ho U G®)(n,p) a.a.s. contains a Hamiltonian (-cycle
C'. Since |A| = an, C contains at least 1/a — 1 consecutive vertices in B. Let a =
|(1/a—1—¢)/(k—¢)]. Since B is an independent set in Hy, this implies that G*) (n, p)
a.a.s. contains an £-path on a edges (a k-graph with vertices vy, va, ..., vak—r)+¢ and
edges {Vi(k—0)+1, - s Vi(h—t)+k )y for i =0,...,a —1). When p < (1/2)1an=(k=0=t/a e
have nfte(=0p® < 1/2. By Markov’s inequality, with probability at least 1/2, G*)(n, p)
contains no /-path on a edges. When ¢ = 1, if HyU G®)(n,p) is a.a.s. (~-Hamiltonian,
then G*)(n,p) a.a.s. contains n/(k — 1) — 2|A| > n/k edges (because a 1-Hamiltonian
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cycle contains n/(k — 1) edges and each vertex is contained in at most 2 of them). When
p < n~* =D /(2k), we have n*p < n/(2k). By Markov’s inequality, with probability at
least 1/2, G*)(n, p) contains fewer than n/k edges.

1.8. Proof ideas

The proof of Theorem 1.2 follows the absorbing method introduced by Rodl, Rucinski,
and Szemerédi in [31]. Let us define absorbers for our problem. Given an ¢-path P, we
call the first and last ¢ vertices two £-ends of P. Let H be a k-graph and S be a set of
k — £ vertices in V(H). We call an ¢-path P an S-absorber if V(P)NS =@ and V(P)US
spans an {-path with the same /-ends as P.

Below is a typical procedure for finding a Hamilton ¢-cycle in H by the absorbing
method.

(1) We show that every (k — ¢)-subset of V' (H) has many absorbers (of the same fixed
length). This enables us to obtain a path Pus of linear length such that every
(k — ¢)-set has many absorbers on Pgps.

(2) We cover most vertices of V'\ V(Pgs) by short paths and then connect them together
with P, into a cycle C.

(3) The vertices not covered by C are arbitrarily partitioned into (k — £)-sets and ab-
sorbed by P,ps greedily.

The proof thus has three main components:

e an absorbing lemma, which provides a family A of vertex-disjoint short paths such
that every (k — £)-set has many absorbers in A;

e a path cover lemma, which allows us to cover most vertices of V' (H) by vertex-disjoint
paths; and

e a connecting lemma, which allows us to connect A into a single path P,;s and connect
the paths from the path cover lemma together.

Let G(k)(n, p) U H be the underlying k-graph on the same vertex set V. Using Janson’s
inequality, one can derive the path cover lemma by using the edges of G(k)(n, p). If we
have 6,_¢(H) > (), then every (k — {)-set of V has many neighbors and it is not
difficult to prove the absorbing lemma. If we have §,(H) > a(kfé), then every f-set
of V has many neighbors and it is easy to prove the connecting lemma. However, our
Theorem 1.2 only assumes d;(H) > an*~!. In order to prove Theorem 1.2, we “shave”
H by removing all the edges of H that contain an /-set of low degree. This results in a
k-graph H' in which every f-subset of V either has a high degree or a zero degree. Our
connecting lemma only connects two ¢-sets with high degree. To overcome the difficulty
in absorbing, an earlier version of this paper used the hypergraph regularity method.
Following the suggestion of a referee, we now give a simpler absorbing lemma without
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the regularity method. Note that the shaving process creates a small number of vertices
that cannot be absorbed and we will cover these vertices by the path cover lemma.

The rest of the paper is organized as follows. We state and prove our lemmas in
Sections 2 and 3 and prove Theorem 1.2 in Section 4.

Notation. Given positive integers n > b, let [n] := {1,2,...,n} and (n)y, := n(n —
1)---(n—=0b+4+1) = nl/(n—10b)!. Given a k-graph H, we use vy and ey to denote the
order and size of H, respectively. For two (hyper)graphs G and H, let GNH (or GUH)
denote the (hyper)graph with vertex set V(G) NV (H) (or V(G) UV (H)) and edge set
E(G)NE(H) (or E(G)UE(H)). Given a set X, ()k() denotes the family of all k-subsets of
X. A k-graph (V, E) is complete if E = (Z) Given 1 < /¢ < k, the ¢-shadow of a k-graph
H, denoted by 9pH, is the collection of all ¢-subsets S C V(H) that are contained in
some edges of H.

In this paper, unless stated otherwise, we assume that the vertex sets of paths
and related hypergraphs are ordered. When A and B are ordered sets, let AB denote
their concatenation. Given positive integers k,/,a such that ¢ < k, let P, denote a
k-uniform (-path of length a, that is, a k-graph on vertices vi,va, ..., Vq(—r)4¢ With
edges {vi(k,g)ﬂ,...7vi(k,g)+k} for i = 0,...,a — 1. In general, given a k-graph F on
{z1,...,25} and a k-graph H, we say that an ordered subset (vy,...,vs) of V(H) spans
a (labeled) copy of F if {v;y,...,v;,} € E(H) whenever {z;,,...,z;, } € E(F). Given
integers ¢ > 1 and = > 0, let P, , denote a k-graph on a(k — ¢) 4+ ¢ + 2z vertices with
an order such that the first and last = vertices are isolated and the middle a(k — ¢) 4 ¢
vertices span a copy of P,.

Throughout the rest of the paper, we write a < 8 < 7y to mean that we can choose the
positive constants «, 5,y from right to left. More precisely, there are increasing functions
f and g such that, given v, whenever 8 < f(v) and a < g(8), the subsequent statement
holds. Hierarchies of other lengths are defined similarly.

Throughout the paper we omit floor and ceiling functions when they are not crucial.

2. Subgraphs in random hypergraphs

In this section we introduce some results related to binomial random k-graphs (similar
ones can be found in [4]). Our main tools are Janson’s inequality (see, e.g., [18, Theorem
2.14]) and Chebyshev’s inequality.

We first recall Janson’s inequality. Let I" be a finite set and let I', be a random subset
of T" such that each element of T" is included independently with probability p. Let S be
a family of non-empty subsets of I' and for each S € S, let Ig be the indicator random
variable for the event S C I',. Thus each Ig is a Bernoulli random variable Be(p!®). Let
X =3} gcsls and A = E(X). Let Ax := 3 g7, E(IsIr), where the sum is over not
necessarily distinct ordered pairs S,T € S. Then Janson’s inequality says that for any
0<t<,
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t2
PIX<XA—-t)<e —— . 2.1
x<a-n<ew (-5 ) (2.1)

Next note that Var(X) = E(X?) — E(X)? < Ax. Then by Chebyshev’s inequality,

Var(X) Ax

P(X >2)) < =5 < 53

(2.2)

Consider the random k-graph G(k)(n, p) on an n-vertex set V. Note that we can view
G® (n,p) as T, with T' = (‘;) Let ®p = ®p(n,p) = min{n"4p® : H C F,ey > 0}.
The following simple proposition is useful.

Proposition 2.1. Let F be a k-graph with s vertices and f edges and let G := G*) (n, p)
on V. Given a family A of ordered s-subsets of V, let X4 = 4. 4 1a, where 14 is the
Bernoulli random variable for the event that A spans a labeled copy of F in G. Then
Ax, < 2551n25p%f o p.

Proof. Fix 1 < i < s. There are (9)(s); ways that two labeled s-sets share exactly i
vertices. Fixing two such s-sets, there are (n)gs—; ways mapping their 2s — i vertices into
V. Let f; denote the maximum number of edges of an ¢-vertex subgraph of F'. We have

<Z<) n)as_ip?l = f1<z<> n23-ip2 =i < 9581 22 (G O

The next two lemmas gather all the properties of G(k)(n, p) that we will use.

Lemma 2.2. Let k,{,a,x € Z such thatk > 3,1 </ <k—1,a>1, and0 <z < k. Write
b=0b(zx) =2x+ ¢+ (k—L)a. Suppose 0 < e <{/(3a) and 1/n < 1/C < v,1/a,1/k. Let
G = G™(n,p) be a random k-graph with vertex set V, where p satisfies (1.1). Then the
following properties hold.

(1) Let L be a family of £-sets in V(G) and in addition assume a > ¢/(k —{). Then for
every R,V* C V(G) such that [V*| > yn and |L N (§)| > yn’, with probability at
least 1 — exp(—3n), G contains a copy of P, whose £-ends are in LN (?) and whose
other vertices are from V*. Moreover, this property holds for all choices of R and
V* simultaneously with probability 1 — o(1).

(2) With probability at least 1 — o(1), at most 2p®n® ordered b-subsets of V(G) span
copies of P, 4.

(3) With probability at least 1—o(1), G contains at most 4b°>n**~1p2? pairs of overlapping
(i.e., not vertex-disjoint) copies of Py .
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Proof. Note that if H is a subgraph of P, ;, then vy > ¢+ (k — {)ey. Thus,

d = min n""p" > min npftEDenpen — pl min  (pFlp)en
Pae 1<ep<a P = 1<ey<a p 1§eH§a( p)
nf=ac if 0> 2, (2.3)
>
Cn if =1,

where we used (1.1) in the last inequality. Since € < ¢/(3a), ®p, , > Cn holds for all £.

Given a family A of ordered b-sets of vertices in V, let S consist of the edge sets of
the labeled copies of P, , spanned on A in the complete k-graph on V for all A € A.
Let X4 = > gcs1s, where Ig is the indicator variable for the event S C E(G) (thus
X4 counts the number of A € A that spans a copy of P, , in G). Since ®p, , > Cn,
Proposition 2.1 implies that

AXA < 2bb| n2bp2a/(bpaw < (2bb!/c)n2b71p2a < (72b/24)n2b71p2a (24)

because 1/C < v,1/a,1/k.

For (1), fix such a choice for R and V* and let x = 0 and b = ¢ + (k — £)a. Let A be
the family of all ordered (¢4 (k — £)a)-sets in V(G) whose first and last ¢ vertices are in
Ln (1}) and all other vertices are from V*. Then |A| > (yn®)?(yn)*=92=£/2 > (yn)b /2.
Recall that X4 counts the number of A € A that spans a copy of P, in G. Then
(yn)Pp*/2 < E(X4) < n’p® By (2.1) and (2.4), we have

E(X 2 n 2b,,2a 4
P(X4=0)<exp (—%) < exp (— (72(17/1)2)5%/11)2@) = exp(—3n).

The second part of (1) follows from the union bound because there are at most 2™ choices
for each of R and V* and 2" - 2" - exp(—3n) < exp(—n).

For (2), let X be the random variable that counts the number of labeled copies of
P, . in G. Then E(X3) = (n),p*. By (2.2) and (2.4), we have

Ax, _ (*/24)n* p>

P(Xy 2 2n") < P(Xs 2 2E(Xe) < gty < =08 s

= o(1).

For (3), let Q consist of edge sets of all overlapping pairs of P, , in the complete
k-graph on V. Let Y = ZQGQIQ’ where Ig is the indicator variable for the event
Q@ C E(G). We first estimate E(Y'). For X, defined above, we have Ax, = E(}_, Io),
where the sum is over all ) € Q whose two copies of P, , share at least one edge. As shown
in the proof of Proposition 2.1, for 1 < i < b, there are (n)ap—; (f) (b); members of Q whose
two copies of P, , share exactly i vertices. Hence E(Y) > (n)gp_1b? p?® > n?*~1p22p2 /2.
Since >, icp(n)2p—i(b)? < n~1/2, using (2.4), we derive that

]E(Y) < (n)2b_1b2p2a + (nQb_l/Q) p2a + sz < 2b2n2b—1p2a-
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We next compute Var(Y'). For each Q € Q, let Sg denote the k-graph induced by @
(thus Sgq is the union of two overlapping copies of P, ;). Fix two @, R € Q such that
QNR # 0. We write Sg = Th1UT5 and Si = T5UT}, where T;’s are copies of P, , such that
E(Th)NE(T3) # 0. Define Hy := T1NTy, Hy := (T1UT)NT5 and Hy := (T3 UToUT3)NTy.
Since V(T1) NV (T) # 0, V(T3) N V(Tu) # 0, and E(Ty) N E(T5) # 0, it follows that
vp, > 1 for i = 1,2,3. We claim that n"#ip®#: > n for i = 1,2,3. Indeed, since each
H; is a subgraph of P, ., if ey, > 1, then by (2.4), n"#ip®#i > &p > Cn; otherwise
ex, = 0 and then we have n"#ip¢#: = n#: > nl = n. Consequently,

nUHL pCHL L pVH2 €y L Vs peHs > 3, (2.5)

Let D = D(b, k) be the number of choices for Hy, Hy, H3. Fix some H;, Ho, Hs. Let
Apy iy, 15 = Yo g E(IgIRr), where the sum is over all @, R € Q with @ N R # () that
generate the given Hy, Ho, Hs. It is easy to see that the sum contains at most

b b b
(’U 1) (b)'UHl (UH2> (2b — UH, )'UH2 ('UH3> (Sb —VH, — UHQ)UH3 (n)4b—'UH1 —VHy —VHg

H

< 23b(3b)!n4b—(vH1 +vH, +1}H3)
terms. Together with (2.5), we obtain that

Ay iy, = Y E(IgIg) < 2%(3b)ln 0 (v tomatong)pta(em e teis)
Q,R

S 23b (3b) !n4b73p4a .
Consequently,

AY = Z AH1,H2,H3 S D23b(3b)!n4b_3p4a.
Hq,H>,Hs

By (2.2), we derive that

Ay D23(3b)In*—3pte )
E(Y)2 = (n2-1pap/2)z OV

]P)(Y Z 4b2n2b_1p2a) S

This confirms (3). O

In Lemma 2.2 we assume that p satisfies (1.1) and obtain that ®p, , > Cn. This is
necessary for Part (1), in which we use the union bound on 2" events. When there are
only polynomially many events, it suffices to have ®p, , > n® for some 0 < ¢ < 1, which
occurs when p > n~*=90=¢ (for all £ > 1) and € < £/a. We use this weaker condition on
p in the following lemma because we only have this condition in the proof of Lemma 3.5.
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Lemma 2.3. Let k,¢,a,x € Z such thatk > 3,1 </ <k—-1,a>1,and 0 <z < k. Write
b="0b(x)=2x+{+ (k—{)a. Suppose 0 < ¢ < {/(2a) and 1/n < ~v,1/a,1/k. Let V be an
n-vertex set, and let F1,...,F; be t < n?F families of yn® ordered b-sets on V. Suppose
G = GW(n,p) with p > n~F=O=¢ then with probability at least 1 — exp(—n'/3), for all
i € [t], at least (v/2)p*n® members of F; span copies of Py ..

Proof. By (2.3) and € < £/(2a), we have ®p, . > n*~% > \/n. Fix i € [t] and let X7, be
the random variable that counts the number of the members of F; that span copies of
Py 5. By (2.4), we have Ax, < 2bb! n2bp2e /. /n and note that E(Xx,) = ynbp®. By (2.1),
we have

E(X~)/2)2 9)2p2bp2
P (X7, < (v/2)n"p") < exp (((me)F/)) < exp (21(72'/ngb2a/\r>

< exp(—in/S).
Since n?* exp(—2n'/3) < exp(—n'/?), the result follows from the union bound. O
3. Lemmas

In this section we prove all the lemmas that are needed for the proof of Theorem 1.2.

Since we assume &;(H) > an*~! unless £ = 1, the k-graph H may contain some
l-sets S whose degree is too low to be used for connection. To overcome this, we simply
delete all edges that contain S. The following lemma reflects this “shaving” process.

Lemma 3.1. Let 0 < n < «a,1/k. Let H be an n-vertex k-graph with 6;(H) > anF1.
Then there exists a spanning subgraph H' of H, satisfying the following properties.

(1) e(H") > an®/(2k).
(2) degy (v) > 2ank=1/3 for all but at most 3kn*n/a vertices of H.
(3) For every {-set S of V(H), either degy, (S) =0 or degy/ (S) > n*n*—*.

Proof. Starting from H, we iteratively do the following. If the current k-graph contains
an (-set S whose degree is less than 7?n*~¢, then we delete all the edges containing S.
Clearly the iteration lasts at most (z) steps. Let H' be the resulting k-graph, then (3)
holds. Since we deleted at most 7?n*~* edges in each step, we have e(H) — e(H') <
()n*n*=t < an”/(2k). Together with e(H) > (n/k)an*~!, (1) follows. For (2), let Vg
be the set of vertices v in H' such that degy (v) < 2an*~1/3, then since 6; (H) > an*~1,
we have

1 .
Vol - gank_l <k(e(H)—e(H")) < k<n> Pkt < knPnk.

Thus |Vo| < 3kn?n/a and (2) holds. O
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We recall the following Chernoff’s inequality (see, e.g., [18]). For 2 > 0 and a binomial
random variable X = Bin(n, (), it holds that

P(X >n¢+2x)< e’/ @ndte/3)  apq P(X <n(—2)< e’/ (2nQ), (3.1)
The following lemma helps us to build connectors and absorbers.

Lemma 3.2. Let k,0,a,x,b,e be as in Lemma 2.2. Suppose 1/n <« 1/C <« ,1/b. Let
V be an n-verter set, and let Fy,...,F; be t < n** families of 246n® ordered b-sets on
V. Suppose G = GF)(n,p) on V and p satisfies (1.1). Then a.a.s. there exists a family
FC Uie[t] Fi of at most Bn disjoint ordered b-sets such that | F; N F| > 3°n/b? for each
i € [t], and each member of F spans a labeled copy of P, in G.

Proof. In G = G®)(n,p), let T be the set of all ordered b-sets on V' that span copies of
P, . By Lemma 2.2 (2) and (3), Lemma 2.3 and the union bound, a.a.s. the following
properties hold simultaneously.

o |FiNT| > 128pn® for all i € [t];
o« |T| < 2pn

o there are at most 4b%p?on?0—1

pairs of overlapping members of T .

Next we select a random set F' C 7T by including each member of 7 indepen-
dently with probability ¢ := £/(20?n*~1p®). Because of (3.1) (for (i) and (ii) below)
and Markov’s inequality (for (iii)), there exists such a family F’ satisfying the following
properties:

(1) |FinNF'| > 128(q/2)p*n® = 38%*n/b? for all i € [t];
(i) |F| < 29|T] < Bn;

(iii) there are at most 8b%¢?n?0~1p2a

p?® = 232n/b? pairs of overlapping members of F'.
By deleting one ordered b-set from each overlapping pair and all ordered b-sets not in
Usepy Fi» We obtain a collection F of disjoint ordered b-sets such that |F| < fn, and for
every i € [t], |Fi N F| > 38%n/b* — 28°n/b* = $*n/b%. Moreover, since F C T, each
member of F’ spans a labeled copy of P, , in G. O

We now prove a connecting lemma that provides connectors for any two ¢-sets with
large degree. Throughout the rest of the paper, let

tl = w/(k —Eﬂ, tQ = tl(k —E) —€7 and t3 = 3t1(l€ —E) — /.

Given a k-graph H, we say that an ordered ts-set C' connects two ordered ¢-sets A and
Bif CNA=CnNB =( and the concatenation ACB spans an ¢-path. Note that in this
case, C' spans a copy of P, ¢+, in H.
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Lemma 3.3. Suppose 1 < <k and 1/n < 1/C < < n < 1/k and 0 < e < {/(3ty).
Let H' and G be two n-vertex k-graphs on the same vertex set V' such that for any {-set
S C V, either degy (S) = 0 or degy, (S) > nn*~¢ and G := G®) (n,p) satisfies (1.1).
Then for any set W C V' of size at most nn/3, a.a.s. H UG contains a set C of disjoint
ts-sets such that V(C) N W = 0, |C| < Bn, and for every two disjoint ordered (-sets
S, 8" in V with degy. (S), degy (S7) > nnk=*, there are at least 33°n members of C that
connect them.

Proof. Fix two disjoint ordered f-sets S := (v1,...,vp) and S" := (wg,...,w1) such
that degy (S), degy (S") > nn*~—*. We first claim that we can greedily extend S to an
C-path vi, ..., 044, (k—s) Of length ¢; in H' such that the new vertices are disjoint from
S’ UW and there are at least (17/2)"'nt1(*=9 choices for them. Indeed, we iteratively
extend the path from the current ¢-end T by adding k — ¢ new vertices. By the degree
assumption, we know that degy, (T) > nn*~¢ (in the first step T' = S). Since the number
of (k — £)-sets that intersect the existing vertices or W is nn*=¢/3 + O(n*==1), there
are at least nn*=*/2 choices for the new k — £ vertices.

Similarly, we can greedily extend (wy, ..., wy) to an £-path wi, ..., w4y, (x—¢) of length
ty in H' such that new vertices are disjoint with {v1,...,ve 44, (—g)} UW and there are
at least (1/2)t'n!1(*=9 choices for them. At last, if t, > 0, then we pick t, arbitrary
vertices {u1,...,us, } that are disjoint from the existing vertices and W, and there are
at least n'2/2 choices for them. Note that t3 = 2t;(k — £) + t2. So there are at least
(n/2)?"1nts /2 > 243n!s choices for the ordered t3-sets

(Vet1s - s Vltty (k—0) ULy -+« Uty Wty (k—0)5 - - - ,Wet1)-

Let Cs.s' be a collection of exactly 243n's such ordered ts-sets. By this definition, if
some C' € Cg g spans a labeled copy of P, 4,, then C' connects S and S’. We apply
Lemma 3.2 to Cg g for all pairs of S, S’ such that degy, (S),degy (S") > nn*~f and
G = G®™(n,p), and conclude that a.a.s. there exists a family C of disjoint ¢3-sets such
that |C| < Bn, and for ordered f-sets S, S" with deg (S),degy (S’) > nn*~*, there are
at least 3?n/t3 > 333n t3-sets that connect them. In particular, V(C) "W = ) by our
construction. 0O

Given a k-graph H, let W = {wy,...,wg_¢} C V(H). The W-absorber is defined as
follows. Let

ty:=[(Bk—€—2)/(k—10)] and t5:=t4(k—£) (thus3k—0—2<t5<4k).

Suppose X;,Y;, Z;, i € [k — £], and T are pairwise disjoint ordered sets from V(H) \ W
satisfying the following properties:

(i) | Xs|=k—1,Y;| =ts —k—i+1,and | Z;] =i— 1 for every ¢ € [k —{] and |T| = ¢;
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(it) Q = X122Y1 XoZ3Yo -+ Xp—y-1Z—0Yi—t—1 Xp—¢Z1Yy—T spans a copy of Py, _1;
(iii) Q" = Xq1w1Z1Y1 XowasZoYs -+ Xy pwi—¢Zy—¢Yi—eT spans a copy of P, .

By definition, @ is a W-absorber. Note that |Y;| > k — 1 for ¢ € [k — £] by the definition
of t5. Let B; be the ordered set X,w;Z;Y;. Since |X;|,|Y;| > k — 1, all the edges of @’
that intersect {w;} U Z; are completely in B;. Furthermore, when counting from the left
end, all X; and Y; are placed at the same location in @ as in @Q’, except that Yj_, is
shifted k — ¢ vertices to the right in Q" (thus Zs, ..., Zx_s are simply place-holders).
Consequently, if H[B;] 2 Q'[B;] for i € [k — ¢] and @ is a path, then Q' is a path.

The following is our absorbing lemma.

Lemma 3.4. Let 1 < { < k be integers and suppose 0 < € < £/(3t5) and 1/n € f K
n,o,1/k, 1/ts. Let V be a set of n vertices and let V', U be two (not necessarily disjoint)
subsets of V such that |U| < nn/3. Let H be a k-graph on V such that deg (v) > an*~!
for all v € V', and for all {-sets S C V, either degy(S) = 0 or degy(S) > nnF=*.
Suppose G := G¥)(n,p) has vertex set V and satisfies (1.1). Then HUG a.a.s. contains
a family A of at most fn vertez-disjoint copies of Pi,_1 with ends in OpH such that
V(A) CV\U, and every (k — £)-set W C V' has at least 33n W -absorbers in A.

Proof. For each W = {wy,...,wg_¢} C V', we will find W-absorbers from V \ U sat-
isfying (i) — (i44). We achieve this in two steps. In the first step, for each i € [k — ],
we will find a path @; of length ¢4 with V(Q;) = {v1,...,ve,4¢} € V \ U such that
v = w;, and there are at least & (%) !n's+=1 choices for V(Q;). Indeed, we first
choose an unordered set {vi,...,vr_1} € Ng(w;). Since degy(w;) > an*~! and at
most |U| + € + ts(k — £) < nn/2 vertices are either in U or used in this step, there
are at least %nk’l choices for {vy,...,vk_1}. Next, let S = {vg_¢41,...,vk}. Since
deg;;(S) > 0, we have degy(S) > nn*~*. Hence we can choose an unordered set
{Vk+1,--,V2k—¢} € N (S) while avoiding U and the vertices already used in this step.
There are at least gnk_é choices. We repeat this to obtain the desired path @; and
there are at least $(2)%~In’T*=1 choices for V(Q;) as an ordered set. Let B; be the
ordered set {vy, ..., vy, }. It follows that there are at least (%)~ 'n’>~! choices for B;.
Now let A = By -+ Br_¢—1V(Qk—¢). We have at least ((%)(g)t“_l)k_en“‘(tS_l)(k_@ >
248nttts—1(k=0 choices for A.

Now we proceed to the second step. For each i € [k — /], recall that V(Q;) =
{v1,...,v;4¢}. Define (ordered) sets

Xi=A{v1,..,vk-1},  Zi=A{vkg1,- - Vkgio1), and Y= {vpgi, .., v )

In addition, let T = {vy41,...,V54+¢) from Qp_p. It is clear that X;,Y;, Z; and T
satisfy (i). Recall that B, = X;w;Z,;Y;. For Q' defined in (ii7), our first step already
provides the edges of Q'[B;] for i < k — ¢ — 1 and the edges of Q'[By—_¢ U T]. Following
the discussion right after (iii), we achieve both (i7) and (i) if Q is a path. To this
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end, we use the edges of G. Let Fy be the family of 248n‘*(¢ts=1DF=0 copies of A, each
re-ordered as in Q). We apply Lemma 3.2 to G with = 0, families Fy for all ordered
(k — £)-sets W C V' and conclude that a.a.s. there exists a collection A of at most
Bn vertex-disjoint copies of P;._1 such that for every (k — £)-set W C V', at least 3°n
members of A are from Fy, and thus are W-absorbers. At last, because of the first step,
both f-ends of these paths are in 9pH. 0O

In the proof of Theorem 1.2 we need a lemma to cover most of the vertices with
constantly many paths. This is done in the following lemma. In the proofs of the following
lemma and Theorem 1.2, we use the trick of multi-round exposure, namely, in each of
the steps later, we expose one or several independent copies of the binomial random
hypergraph, each of them with edge probability a constant fraction of the original edge
probability.

Lemma 3.5. Let 1 < ¢ < k, and suppose 1/n < 1/C < ( < a < 1/k and 0 < e < (3(/6.
Suppose V' is a set of n vertices and Vo C V with |[Vo| < an, and furthermore, when
¢ =1, suppose that Vo = 0. Suppose G := G¥)(n,p) on V satisfying (1.1). Let L be an
{-graph on V \ Vy with |E(L)| > an®. Then a.a.s. G contains a set P of at most 2¢*n
vertez-disjoint £-paths such that their ends are in L, Vo C V(P) and |V \ V(P)| < 2(n.

Proof. Since |L| > an’, by averaging, there exists a set R C V' \ V; of size (n such that
L0 (§)] = alRI/2.

We find our path cover in two phases. In the first phase, we use relatively long paths
with ends from R to cover most of the vertices of V. In the second phase, we greedily
cover the remaining vertices of V; \ R with short paths. We therefore expose G in two
rounds such that G = G UGy, where each G; is G (n, p’) with (1 —p')?> = 1 — p. Thus
p' > p/2>n"F0-2¢ when £ > 2.

We start with Phase 1. Let s be the smallest integer such that s > 1/¢® and s = /¢
mod (k — /), and let s; = (s — £)/(k — £). Since € < (3¢/3, we have 2¢ < {/(3s1). By
Lemma 2.2 (1), a.a.s. for all V* C V' \ R, R’ C R satisfying |[V*| > (3n, |R'| > |R|/2
and |L N (7)\ > (a/3)|R|¢, G1 = G®¥)(n,p’) contains a copy of Ps, whose f-ends are in
LN (1?) and other vertices are from V*. Owing to this property, we repeatedly construct
copies of Ps, by letting V* be the set of uncovered vertices of V' and letting R’ be the set
of uncovered vertices of R, as long as |V*| > ¢3n. This is possible because we construct
at most (3n vertex-disjoint copies of Ps,, which consume at most 2¢¢3n vertices from R.
During the process, at least |R| — 2¢¢3n > |R|/2 vertices of R are available and by our
assumption, they span at least o|R[*/2 — 2¢¢3n - |R|*~! > «a|R|*/3 edges of L. Let P,
denote the set of the paths obtained in this phase.

Note that when ¢ = 1, since Vo = 0 and |V \ V(P1)| < |R| + ¢(3n < 2(n, we are done
by letting P = P;.

Now we proceed to Phase 2 and assume that £ > 2. Let V" be the set of uncovered
vertices in V\R and R’ = R\V(P;). Note that |[V"| < (3n and |R'| > |R|-20¢3n > |R|/2,
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and |L N (1}/)| > (a/3)|R|*. Using the edges of Gy = G*)(n,p), we will greedily put
vertices v € V" into vertex-disjoint (-paths wy -+ wr_1vWg - - - Wyg(k—p)4¢—1 of length
te := [(k—1)/(k — £)] + 1 such that all the vertices other than v are from R’ and both
l-ends are in L. Note that v is in every edge of the path but in neither of the ¢-ends.

For any v € V", let G, be the edges of G2 that contain v and have their other
k — 1 vertices from R’. For distinct vertices u,v € V", the possible edges appear in G,
independently of the possible edges that can appear in G,,. Suppose we consider v € V"
after covering some vertices of V' by ¢-paths. To this end, we expose G,,. Let R” be the set
of unused vertices in R'. We have |R"| > |R'| - |V"|(te(k—{)+£) > |R'| —2k(3n > |R|/3
and |LN (RZ”)| > |LN (1}/) | —2kC3n|R'[*"1 > (a/4)|R|*. We choose two disjoint /-sets from
Ln (Ré//) and ¢g(k — ¢) — £ — 1 vertices from R” forming an ordered (tg(k —¢) + £ — 1)-set
(W1, .+, Weg(k—p)+0—1) — there are

k—£)—£—1
a|4R|£ ' (Mf'e e|R”£1> | (Cf)ta( e o (¢nyrett- Ot

such sets. We observe that wy ... wg_1vWy . . . Wyg(k—g)4¢—1 SPaAnning a copy of P, in G, is
equivalent to wy ... Wy, (k—r)+¢—1 Spanning a (k—1)-uniform (£—1)-path in Ng, (v). Since
p' > D=1 =2¢ and 2¢ < (—1)/(3t6), we can apply Lemma 2.3 to o ((n)te (k=0 +(=1
ordered (tg(k — ¢) + £ — 1)-sets, and conclude that G, contains a desired ¢-path with
probability at least 1 — exp(fnl/ 3). By the union bound, with probability at least 1 —
[V"|exp(—n'/3) = 1—0(1), we can put all the vertices of V" into vertex-disjoint /-paths
of length tg by using the vertices of R such that all the ¢-ends are in L. This finishes
Phase 2. Let P, denote the family of the /-paths found in this phase. Let P := P; U Ps
and note that |P| < 2¢3n. By construction, all the f-ends of the paths in P are in L.
Since V' \ V(P) C R, we have V; CV(P) and [V\V(P)|<|R|<2¢(n. O

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. We essentially follow the procedure mentioned in
Section 1.3 but need additional work. We first apply Lemma 3.1 and obtain a spanning
subgraph H' of H. Let Vi be the set of vertices of H’ with high degree. Following
the procedure outlined in Section 1.3, we obtain an absorbing path P, a set C; of
connectors and a set P of paths that cover almost all the vertices. A natural attempt
is to use the connectors in C; to connect the paths in P and Pg,s to obtain an almost
spanning cycle and then absorb the remaining vertices of C; by Pyps. On the other hand,
when applying Lemma 3.4 to H’, we can only absorb vertices in V.. Therefore we need
to have V(Cy1) C V.. However, we cannot strengthen Lemma 3.3 by asking V(Cy) C V,
because for a given (-set in Vi, it is possible that all its neighbors intersect V' \ V, (recall
that degyy (S) > n?n*~% and |V \ V.| < nn). Therefore, this naive attempt fails.

To fix it, we “shave” H’ again, namely, applying Lemma 3.1 to H'[V,], and obtain a
spanning k-graph H, on V,. We thus apply Lemma 3.3 to H, and obtain C; such that
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V(Cy) C Vi and C; can connect any two £-sets in L := 9pH,. In order to obtain P, we
apply Lemma 3.4 to H' obtaining a family A of absorbers and apply Lemma 3.3 to H’
obtaining another set Cy of connectors. After connecting A into P,ps, unused members of
Co will be discarded (and the vertices in these members will be covered in a later step).

Below are the details of our proof. Let 1/n € 1/C <« ( € 8 < n < «,1/k and
0 < e < ¢3/12. Write V. = V(H). Let Uie Gi = G (n,p) such that each G; is
G®(n,p’) and (1 — p’)* = 1 — p. In particular, p’ > p/4 > n=F=O=2¢if { > 2 and
p > p/4 > (C/4)n~ =D if ¢ = 1. When we apply Lemmas 3.3, 3.4 and 3.5, we apply
them with p’ in place of p and 2¢ in place of e.

Step 1. Shave H twice. We define two subgraphs H' and H, of H as follows. If £ = 1, let
H=H,=H,V,=V,and L =V.If £ > 2, then we apply Lemma 3.1 to H and obtain
a subgraph H’ with the following properties:

o there exists Vo C V such that |Vy| < 3kn?n/a < nn and degy, (v) > 2an*~1/3 for
all v e V' \ Vp;
o for every f-set S C V, either degy/ (S) = 0 or degyy, (S) > n?nF—.

Let Vi, = V\Vp and n, := |Vi| > (1—n)n. We have &, (H'[V.]) > 2an*=1/3 —|Vy|nF—2 >
an®=1/2. Apply Lemma 3.1 again to H'[V,] and obtain a subgraph H, on V, such that

o e(H.) > ant/(4k),
o for every l-set S C Vi, either degy (S) = 0 or degy (S) > n’*nk=t.

Let L = 9,H,. We have

k K\ a k
|uz(f§Z”z(”ﬁﬁ*z%ﬁ. (1)
k—¢ T

Step 2. Build connectors C1 and Co. We obtain C; and Cy by applying Lemma 3.3 twice.
First, we apply Lemma 3.3 to H, U G1[Vi] with W = 0, n? (in place of ) and ¢ (in
place of 3), and conclude that H,UG1[V,] a.a.s. contains a set C; of disjoint ¢3-sets such
that V(C1) C Vi, |C1| < ¢n and for any two disjoint ordered ¢-sets S,S" in L, there are
at least 3¢3n members of C; connecting them. Second, we apply Lemma 3.3 to H' U Gy
with W = V(Cy), n? (in place of 1) and 3, and conclude that H' U Gy a.a.s. contains a
set Cq of disjoint t3-sets such that V(C2) C V' \ V(Cy1), |C2| < fn, and for any two disjoint
ordered f-sets S, S in Oy H', there are at least 333n members of Cy connecting them.

Step 3. Build an absorbing path. Note that |V (C1UCs)| < 28n-t3 < 6kpn (asts < 3k). We
apply Lemma 3.4 to H' UG3 with V/ = V,, U = V(C; UC), 2a/3 (in place of a), n? (in
place of 1) and 32 (in place of 3). Then a.a.s. there exists a collection A of at most 53n
vertex-disjoint copies of P;,_1 such that for every (k — £)-set S C V,, there are at least
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$3%n S-absorbers in A. Note that each member of A contains (t5 — 1)(k — £) + £ < 4k>
vertices. Moreover, all the members of A have their ¢-ends in 9,H" and V(A4) C V' \
V(C1 UCs). Next, we pick two disjoint ¢-sets E1, Es € L, which are also disjoint from
V(A)UV(C1UCs). This is possible because |V (A)UV (C1UCs)| < 4k?B3n+6kBn < TkfBn
and |L| > an’ /4. Finally, we use the members of Cy to connect the members of A and
E4, E5 to an £-path P, with ends E7 and E5, which is possible because all the absorbers
have ends in 9;H' and |A| < 83n.

Step 4. Cover most of the remaining vertices. Let V' = V' \ (V(Pyps) UV (C1)). Note that
[V (Paps) UV (C1)| < TkPBn +2¢ < 8kPn. Let L' := L[V, \ (V(Paps) UV (C1))]. By (4.1),

we have
|L'| > an’ /4 — |V (Paus) UV (C1)| - nt~t > ant/5 > a|V'[*/6.

So we can apply Lemma 3.5 with V’ (in place of V), Vy, L’ (in place of L), a/6 (in
place of o), G = G4, and a.a.s. obtain a collection P of at most 2¢3n vertex-disjoint
paths with ends in L, which leaves a set W of at most 2{n vertices in V' \ Vj C Vi,
uncovered. Next, we connect P, and the paths in P by the connectors in C; and denote
the resulting ¢-cycle by @. This is possible because the ends of these paths are in L, and
1+|P] <1+ 2¢3n < 3¢n.

Step 5. Finish the Hamiltonian (-cycle. Let X = V\V(Q). The construction of @) implies
that | X| € (k— 4N, X C WUV(C) C Vi and |X| < 2¢n + t3¢n < 2t3¢n (because
t3 > 2¢ > 2). We arbitrarily partition X into disjoint sets of size k — £. By the definition
of A, every (k — f)-set S C X has at least 3%n S-absorbers in A. Since each member
of A is a subpath of Q and 2t3¢ < 3%, we can absorb all these (k — ¢)-sets greedily and
obtain the desired Hamiltonian ¢-cycle.

Each of Steps 2, 3 and 4 can be done with probability 1 — o(1) (while Steps 1 and
5 are deterministic). Hence, by the union bound, a.a.s. we complete all the steps and
obtain a Hamiltonian ¢-cycle of H.
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