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α > 0, there exist ε > 0 and C > 0 such that for sufficiently 
large n ∈ (k − �)N, the union of a k-uniform hypergraph 
with minimum vertex degree αnk−1 and a binomial random 
k-uniform hypergraph G(k)(n, p) with p ≥ n−(k−�)−ε for � ≥ 2
and p ≥ Cn−(k−1) for � = 1 on the same vertex set contains a 
Hamiltonian �-cycle with high probability. Our result is best 
possible up to the values of ε and C and answers a question 
of Krivelevich, Kwan and Sudakov.
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1. Introduction

1.1. Hamiltonian cycles and random graphs

The study of Hamiltonicity (the existence of a spanning cycle) has been a central 
and fruitful area in graph theory. In particular, a celebrated result of Karp [19] states 
that the decision problem for Hamiltonicity in graphs is NP-complete. So it is desirable 
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to study sufficient conditions that guarantees Hamiltonicity. Among a large variety of 
such results, probably the most well-known is a theorem of Dirac from 1952 [11]: every 
n-vertex graph (n ≥ 3) with minimum degree at least n/2 is Hamiltonian.

Another well-studied object in graph theory is the random graph G(n, p), which con-
tains n vertices and each pair of vertices forms an edge with probability p independently 
from other pairs. Pósa [27] and Korshunov [21] independently determined the threshold 
for Hamiltonicity in G(n, p), which is around log n/n. This implies that almost all dense 
graphs are Hamiltonian. Furthermore, Bohman, Frieze and Martin [6] showed that for 
every α > 0 there is c = c(α) such that every n-vertex graph G with minimum degree 
αn becomes Hamiltonian a.a.s. after adding cn random edges (we say that an event hap-
pens asymptotically almost surely, or a.a.s., if it happens with probability 1 −o(1)). This 
result is tight up to the value of c by considering a complete bipartite graph Kαn,(1−α)n. 
A comparison can be drawn to the notion of smoothed analysis of algorithms introduced 
by Spielman and Teng [34], which involves studying the performance of algorithms on 
randomly perturbed inputs.

1.2. Uniform hypergraphs

It is natural to study the Hamiltonicity of uniform hypergraphs. Given k ≥ 2, a 
k-uniform hypergraph (in short, a k-graph) H = (V, E) consists of a vertex set V and 
an edge set E ⊆

(
V
k

)
, where every edge is a k-element subset of V . Given a k-graph H

with a set S of d vertices (where 1 ≤ d ≤ k − 1) we define NH(S) to be the collection 
of (k − d)-sets T such that S ∪ T ∈ E(H), and let degH(S) := |NH(S)|. The minimum 
d-degree δd(H) of H is the minimum of degH(S) over all d-vertex sets S in H.

In the last two decades, there has been a growing interest of extending Dirac’s theorem 
to hypergraphs. Despite other notion of cycles in hypergraphs (e.g., Berge cycles), the 
following definition of cycles has become more popular recently (see surveys [29,35]). For 
integers 1 ≤ � ≤ k−1 and m ≥ 3, a k-graph F with m(k−�) vertices and m edges is called 
an �-cycle if its vertices can be ordered cyclically such that each of its edges consists of k
consecutive vertices and every two consecutive edges (in the natural order of the edges) 
share exactly � vertices. A k-graph is called �-Hamiltonian if it contains an �-cycle as a 
spanning subgraph. Extending Dirac’s theorem, the minimum d-degree conditions that 
force �-Hamiltonicity (for 1 ≤ d, � ≤ k − 1) have been intensively studied [2,3,9,10,14,17,
15,16,20,24,25,30–33]. For example, the minimum 1-degree threshold for 2-Hamiltonicity 
in 3-graphs was determined asymptotically [28].

Let G(k)(n, p) denote the binomial random k-graph on n vertices, where each k-set 
forms an edge independently with probability p. The thresholds for �-Hamiltonicity have 
been studied by Dudek and Frieze [13,12], who proved that the asymptotic threshold is 
1/nk−� for � ≥ 2 and log n/nk−1 for � = 1 (they also gave a sharp threshold for k ≥ 4
and � = k − 1).



JID:YJCTB AID:3287 /FLA [m1L; v1.261; Prn:9/01/2020; 17:10] P.3 (1-18)
J. Han, Y. Zhao / Journal of Combinatorial Theory, Series B ••• (••••) •••–••• 3
It is also natural to consider �-Hamiltonicity in randomly perturbed k-graphs. In fact, 
Krivelevich, Kwan and Sudakov [22] extended the result of Bohman–Frieze–Martin [6]
to hypergraphs.

Theorem 1.1. [22] Let k ∈ N, and let H be a k-graph on n ∈ (k − 1)N vertices with 
δk−1(H) ≥ αn. There exists a function ck = ck(α) such that for p = ck/nk−1, H ∪
G(k)(n, p) a.a.s. is 1-Hamiltonian.

Theorem 1.1 is tight up to the value of ck (see the paragraph after Theorem 1.2). 
Similar results for the powers of Hamiltonian (k − 1)-cycles were obtained by Bennett, 
Dudek and Frieze [5], and recently by Bedenknecht, Han, Kohayakawa and Mota [4]. 
In addition, Böttcher, Montgomery, Parczyk and Person [8] proved embedding results 
for bounded degree subgraphs in randomly perturbed graphs. Other results in randomly 
perturbed graphs can be found in [1,23,7].

Krivelevich, Kwan and Sudakov [22] asked whether Theorem 1.1 can be extended to 
�-Hamiltonicity under minimum d-degree conditions for 1 ≤ d, � ≤ k − 1. McDowell and 
Mycroft [26] found such results for d ≥ max{�, k − �} and reiterated the question for 
arbitrary d and �. In this paper we solve this problem completely. Since the minimum 
1-degree condition is the weakest among d-degree conditions for all d ≥ 1, we only state 
and prove our result with respect to the minimum 1-degree.

Theorem 1.2. For integers k ≥ 3, 1 ≤ � ≤ k − 1 and α > 0 there exist ε > 0 and an 
integer C > 0 such that the following holds for sufficiently large n ∈ (k − �)N. Suppose 
H is a k-graph on n vertices with δ1(H) ≥ αnk−1 and

p = p(n) ≥
{

n−(k−�)−ε if � ≥ 2,

Cn−(k−1) if � = 1.
(1.1)

Then H ∪ G(k)(n, p) a.a.s. is �-Hamiltonian.

Theorem 1.2 is sharp up to the constants ε and C. Indeed, given k and �, let α >

0 be sufficiently small and n ∈ (k − �)N be sufficiently large. Consider a partition 
A ∪ B of a vertex set V such that |A| = αn and |B| = (1 − α)n. Let H0 be the 
k-graph with all k-tuples that intersect both A and B as edges. It is easy to see that 
δ1(H0) = αn

(
n−αn−1

k−2
)
. Suppose H0 ∪ G(k)(n, p) a.a.s. contains a Hamiltonian �-cycle 

C. Since |A| = αn, C contains at least 1/α − 1 consecutive vertices in B. Let a =
�(1/α − 1 − �)/(k − �)�. Since B is an independent set in H0, this implies that G(k)(n, p)
a.a.s. contains an �-path on a edges (a k-graph with vertices v1, v2, . . . , va(k−�)+� and 
edges {vi(k−�)+1, . . . , vi(k−�)+k} for i = 0, . . . , a − 1). When p < (1/2)1/an−(k−�)−�/a, we 
have n�+a(k−�)pa < 1/2. By Markov’s inequality, with probability at least 1/2, G(k)(n, p)
contains no �-path on a edges. When � = 1, if H0 ∪ G(k)(n, p) is a.a.s. �-Hamiltonian, 
then G(k)(n, p) a.a.s. contains n/(k − 1) − 2|A| > n/k edges (because a 1-Hamiltonian 
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cycle contains n/(k − 1) edges and each vertex is contained in at most 2 of them). When 
p < n−(k−1)/(2k), we have nkp < n/(2k). By Markov’s inequality, with probability at 
least 1/2, G(k)(n, p) contains fewer than n/k edges.

1.3. Proof ideas

The proof of Theorem 1.2 follows the absorbing method introduced by Rödl, Ruciński, 
and Szemerédi in [31]. Let us define absorbers for our problem. Given an �-path P , we 
call the first and last � vertices two �-ends of P . Let H be a k-graph and S be a set of 
k − � vertices in V (H). We call an �-path P an S-absorber if V (P ) ∩S = ∅ and V (P ) ∪S

spans an �-path with the same �-ends as P .
Below is a typical procedure for finding a Hamilton �-cycle in H by the absorbing 

method.

(1) We show that every (k − �)-subset of V (H) has many absorbers (of the same fixed 
length). This enables us to obtain a path Pabs of linear length such that every 
(k − �)-set has many absorbers on Pabs.

(2) We cover most vertices of V \V (Pabs) by short paths and then connect them together 
with Pabs into a cycle C.

(3) The vertices not covered by C are arbitrarily partitioned into (k − �)-sets and ab-
sorbed by Pabs greedily.

The proof thus has three main components:

• an absorbing lemma, which provides a family A of vertex-disjoint short paths such 
that every (k − �)-set has many absorbers in A;

• a path cover lemma, which allows us to cover most vertices of V (H) by vertex-disjoint 
paths; and

• a connecting lemma, which allows us to connect A into a single path Pabs and connect 
the paths from the path cover lemma together.

Let G(k)(n, p) ∪ H be the underlying k-graph on the same vertex set V . Using Janson’s 
inequality, one can derive the path cover lemma by using the edges of G(k)(n, p). If we 
have δk−�(H) ≥ α

(
n
�

)
, then every (k − �)-set of V has many neighbors and it is not 

difficult to prove the absorbing lemma. If we have δ�(H) ≥ α
(

n
k−�

)
, then every �-set 

of V has many neighbors and it is easy to prove the connecting lemma. However, our 
Theorem 1.2 only assumes δ1(H) ≥ αnk−1. In order to prove Theorem 1.2, we “shave” 
H by removing all the edges of H that contain an �-set of low degree. This results in a 
k-graph H ′ in which every �-subset of V either has a high degree or a zero degree. Our 
connecting lemma only connects two �-sets with high degree. To overcome the difficulty 
in absorbing, an earlier version of this paper used the hypergraph regularity method. 
Following the suggestion of a referee, we now give a simpler absorbing lemma without 
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the regularity method. Note that the shaving process creates a small number of vertices 
that cannot be absorbed and we will cover these vertices by the path cover lemma.

The rest of the paper is organized as follows. We state and prove our lemmas in 
Sections 2 and 3 and prove Theorem 1.2 in Section 4.

Notation. Given positive integers n ≥ b, let [n] := {1, 2, . . . , n} and (n)b := n(n −
1) · · · (n − b + 1) = n!/(n − b)!. Given a k-graph H, we use vH and eH to denote the 
order and size of H, respectively. For two (hyper)graphs G and H, let G ∩ H (or G ∪ H) 
denote the (hyper)graph with vertex set V (G) ∩ V (H) (or V (G) ∪ V (H)) and edge set 
E(G) ∩E(H) (or E(G) ∪E(H)). Given a set X, 

(
X
k

)
denotes the family of all k-subsets of 

X. A k-graph (V, E) is complete if E =
(

V
k

)
. Given 1 ≤ � ≤ k, the �-shadow of a k-graph 

H, denoted by ∂�H, is the collection of all �-subsets S ⊂ V (H) that are contained in 
some edges of H.

In this paper, unless stated otherwise, we assume that the vertex sets of paths 
and related hypergraphs are ordered. When A and B are ordered sets, let AB denote 
their concatenation. Given positive integers k, �, a such that � < k, let Pa denote a 
k-uniform �-path of length a, that is, a k-graph on vertices v1, v2, . . . , va(k−�)+� with 
edges {vi(k−�)+1, . . . , vi(k−�)+k} for i = 0, . . . , a − 1. In general, given a k-graph F on 
{x1, . . . , xs} and a k-graph H, we say that an ordered subset (v1, . . . , vs) of V (H) spans 
a (labeled) copy of F if {vi1 , . . . , vik

} ∈ E(H) whenever {xi1 , . . . , xik
} ∈ E(F ). Given 

integers a ≥ 1 and x ≥ 0, let Pa,x denote a k-graph on a(k − �) + � + 2x vertices with 
an order such that the first and last x vertices are isolated and the middle a(k − �) + �

vertices span a copy of Pa.
Throughout the rest of the paper, we write α � β � γ to mean that we can choose the 

positive constants α, β, γ from right to left. More precisely, there are increasing functions 
f and g such that, given γ, whenever β ≤ f(γ) and α ≤ g(β), the subsequent statement 
holds. Hierarchies of other lengths are defined similarly.

Throughout the paper we omit floor and ceiling functions when they are not crucial.

2. Subgraphs in random hypergraphs

In this section we introduce some results related to binomial random k-graphs (similar 
ones can be found in [4]). Our main tools are Janson’s inequality (see, e.g., [18, Theorem 
2.14]) and Chebyshev’s inequality.

We first recall Janson’s inequality. Let Γ be a finite set and let Γp be a random subset 
of Γ such that each element of Γ is included independently with probability p. Let S be 
a family of non-empty subsets of Γ and for each S ∈ S, let IS be the indicator random 
variable for the event S ⊆ Γp. Thus each IS is a Bernoulli random variable Be(p|S|). Let 
X :=

∑
S∈S IS and λ = E(X). Let ΔX :=

∑
S∩T �=∅ E(ISIT ), where the sum is over not 

necessarily distinct ordered pairs S, T ∈ S. Then Janson’s inequality says that for any 
0 ≤ t ≤ λ,
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P (X ≤ λ − t) ≤ exp
(

− t2

2ΔX

)
. (2.1)

Next note that Var(X) = E(X2) − E(X)2 ≤ ΔX . Then by Chebyshev’s inequality,

P (X ≥ 2λ) ≤ Var(X)
λ2 ≤ ΔX

λ2 . (2.2)

Consider the random k-graph G(k)(n, p) on an n-vertex set V . Note that we can view 
G(k)(n, p) as Γp with Γ =

(
V
k

)
. Let ΦF = ΦF (n, p) = min{nvH peH : H ⊆ F, eH > 0}. 

The following simple proposition is useful.

Proposition 2.1. Let F be a k-graph with s vertices and f edges and let G := G(k)(n, p)
on V . Given a family A of ordered s-subsets of V , let XA =

∑
A∈A IA, where IA is the 

Bernoulli random variable for the event that A spans a labeled copy of F in G. Then 
ΔXA ≤ 2ss! n2sp2f /ΦF .

Proof. Fix 1 ≤ i ≤ s. There are 
(

s
i

)
(s)i ways that two labeled s-sets share exactly i

vertices. Fixing two such s-sets, there are (n)2s−i ways mapping their 2s − i vertices into 
V . Let fi denote the maximum number of edges of an i-vertex subgraph of F . We have

ΔXA ≤
s∑

i=1

(
s

i

)
(s)i(n)2s−ip

2f−fi ≤
s∑

i=1

(
s

i

)
s! n2s−ip2f−fi ≤ 2ss! n2sp2f /ΦF . �

The next two lemmas gather all the properties of G(k)(n, p) that we will use.

Lemma 2.2. Let k, �, a, x ∈ Z such that k ≥ 3, 1 ≤ � ≤ k −1, a ≥ 1, and 0 ≤ x ≤ k. Write 
b = b(x) = 2x + � + (k − �)a. Suppose 0 < ε ≤ �/(3a) and 1/n � 1/C � γ, 1/a, 1/k. Let 
G = G(k)(n, p) be a random k-graph with vertex set V , where p satisfies (1.1). Then the 
following properties hold.

(1) Let L be a family of �-sets in V (G) and in addition assume a ≥ �/(k − �). Then for 
every R, V ∗ ⊆ V (G) such that |V ∗| ≥ γn and |L ∩

(
R
�

)
| ≥ γn�, with probability at 

least 1 − exp(−3n), G contains a copy of Pa whose �-ends are in L ∩
(

R
�

)
and whose 

other vertices are from V ∗. Moreover, this property holds for all choices of R and 
V ∗ simultaneously with probability 1 − o(1).

(2) With probability at least 1 − o(1), at most 2panb ordered b-subsets of V (G) span 
copies of Pa,x.

(3) With probability at least 1 −o(1), G contains at most 4b2n2b−1p2a pairs of overlapping 
(i.e., not vertex-disjoint) copies of Pa,x.
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Proof. Note that if H is a subgraph of Pa,x, then vH ≥ � + (k − �)eH . Thus,

ΦPa,x
= min

1≤eH ≤a
nvH peH ≥ min

1≤eH ≤a
n�+(k−�)eH peH = n� min

1≤eH ≤a
(nk−�p)eH

≥
{

n�−aε if � ≥ 2,

Cn if � = 1,

(2.3)

where we used (1.1) in the last inequality. Since ε ≤ �/(3a), ΦPa,x
≥ Cn holds for all �.

Given a family A of ordered b-sets of vertices in V , let S consist of the edge sets of 
the labeled copies of Pa,x spanned on A in the complete k-graph on V for all A ∈ A. 
Let XA =

∑
S∈S IS , where IS is the indicator variable for the event S ⊆ E(G) (thus 

XA counts the number of A ∈ A that spans a copy of Pa,x in G). Since ΦPa,x
≥ Cn, 

Proposition 2.1 implies that

ΔXA ≤ 2bb! n2bp2a/ΦPa,x
≤ (2bb!/C)n2b−1p2a ≤ (γ2b/24)n2b−1p2a (2.4)

because 1/C � γ, 1/a, 1/k.
For (1), fix such a choice for R and V ∗ and let x = 0 and b = � + (k − �)a. Let A be 

the family of all ordered (� + (k − �)a)-sets in V (G) whose first and last � vertices are in 
L ∩

(
R
�

)
and all other vertices are from V ∗. Then |A| ≥ (γn�)2(γn)(k−�)a−�/2 ≥ (γn)b/2. 

Recall that XA counts the number of A ∈ A that spans a copy of Pa in G. Then 
(γn)bpa/2 ≤ E(XA) ≤ nbpa. By (2.1) and (2.4), we have

P (XA = 0) ≤ exp
(

−E(XA)2

2ΔXA

)
≤ exp

(
− (γn)2bp2a/4

(γ2b/12)n2b−1p2a

)
= exp(−3n).

The second part of (1) follows from the union bound because there are at most 2n choices 
for each of R and V ∗ and 2n · 2n · exp(−3n) ≤ exp(−n).

For (2), let X2 be the random variable that counts the number of labeled copies of 
Pa,x in G. Then E(X2) = (n)bpa. By (2.2) and (2.4), we have

P (X2 ≥ 2panb) ≤ P (X2 ≥ 2E(X2)) ≤ ΔX2

E(X2)2 ≤ (γ2b/24)n2b−1p2a

((n)b pa)2 = o(1).

For (3), let Q consist of edge sets of all overlapping pairs of Pa,x in the complete 
k-graph on V . Let Y =

∑
Q∈Q IQ, where IQ is the indicator variable for the event 

Q ⊆ E(G). We first estimate E(Y ). For X2 defined above, we have ΔX2 = E(
∑

Q IQ), 
where the sum is over all Q ∈ Q whose two copies of Pa,x share at least one edge. As shown 
in the proof of Proposition 2.1, for 1 ≤ i ≤ b, there are (n)2b−i

(
b
i

)
(b)i members of Q whose 

two copies of Pa,x share exactly i vertices. Hence E(Y ) ≥ (n)2b−1b2 p2a ≥ n2b−1p2ab2/2. 
Since 

∑
2≤i≤b(n)2b−i(b)2

i ≤ n2b−1/2, using (2.4), we derive that

E(Y ) ≤ (n)2b−1b2 p2a + (n2b−1/2) p2a + ΔX2 ≤ 2b2n2b−1p2a.
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We next compute Var(Y ). For each Q ∈ Q, let SQ denote the k-graph induced by Q
(thus SQ is the union of two overlapping copies of Pa,x). Fix two Q, R ∈ Q such that 
Q ∩R 
= ∅. We write SQ = T1∪T2 and SR = T3∪T4, where Ti’s are copies of Pa,x such that 
E(T1) ∩E(T3) 
= ∅. Define H1 := T1∩T2, H2 := (T1∪T2) ∩T3 and H3 := (T1∪T2∪T3) ∩T4. 
Since V (T1) ∩ V (T2) 
= ∅, V (T3) ∩ V (T4) 
= ∅, and E(T1) ∩ E(T3) 
= ∅, it follows that 
vHi

≥ 1 for i = 1, 2, 3. We claim that nvHi peHi ≥ n for i = 1, 2, 3. Indeed, since each 
Hi is a subgraph of Pa,x, if eHi

≥ 1, then by (2.4), nvHi peHi ≥ ΦPa,x
≥ Cn; otherwise 

eHi
= 0 and then we have nvHi peHi = nvHi ≥ n1 = n. Consequently,

nvH1 peH1 · nvH2 peH2 · nvH3 peH3 ≥ n3. (2.5)

Let D = D(b, k) be the number of choices for H1, H2, H3. Fix some H1, H2, H3. Let 
ΔH1,H2,H3 =

∑
Q,R E(IQIR), where the sum is over all Q, R ∈ Q with Q ∩ R 
= ∅ that 

generate the given H1, H2, H3. It is easy to see that the sum contains at most

(
b

vH1

)
(b)vH1

(
b

vH2

)
(2b − vH1)vH2

(
b

vH3

)
(3b − vH1 − vH2)vH3

(n)4b−vH1 −vH2 −vH3

≤ 23b(3b)!n4b−(vH1 +vH2 +vH3 )

terms. Together with (2.5), we obtain that

ΔH1,H2,H3 =
∑
Q,R

E(IQIR) ≤ 23b(3b)!n4b−(vH1 +vH2 +vH3 )p4a−(eH1 +eH2 +eH3 )

≤ 23b(3b)!n4b−3p4a.

Consequently,

ΔY =
∑

H1,H2,H3

ΔH1,H2,H3 ≤ D23b(3b)!n4b−3p4a.

By (2.2), we derive that

P
(
Y ≥ 4b2n2b−1p2a) ≤ ΔY

E(Y )2 ≤ D23b(3b)!n4b−3p4a

(n2b−1p2ab/2)2 = o(1).

This confirms (3). �
In Lemma 2.2 we assume that p satisfies (1.1) and obtain that ΦPa,x

≥ Cn. This is 
necessary for Part (1), in which we use the union bound on 2n events. When there are 
only polynomially many events, it suffices to have ΦPa,x

≥ nc for some 0 < c < 1, which 
occurs when p ≥ n−(k−�)−ε (for all � ≥ 1) and ε < �/a. We use this weaker condition on 
p in the following lemma because we only have this condition in the proof of Lemma 3.5.
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Lemma 2.3. Let k, �, a, x ∈ Z such that k ≥ 3, 1 ≤ � ≤ k −1, a ≥ 1, and 0 ≤ x ≤ k. Write 
b = b(x) = 2x + � + (k − �)a. Suppose 0 < ε ≤ �/(2a) and 1/n � γ, 1/a, 1/k. Let V be an 
n-vertex set, and let F1, . . . , Ft be t ≤ n2k families of γnb ordered b-sets on V . Suppose 
G = G(k)(n, p) with p ≥ n−(k−�)−ε, then with probability at least 1 − exp(−n1/3), for all 
i ∈ [t], at least (γ/2)panb members of Fi span copies of Pa,x.

Proof. By (2.3) and ε ≤ �/(2a), we have ΦPa,x
≥ n�−aε ≥ √

n. Fix i ∈ [t] and let XFi
be 

the random variable that counts the number of the members of Fi that span copies of 
Pa,x. By (2.4), we have ΔXFi

≤ 2bb! n2bp2a/
√

n and note that E(XFi
) = γnbpa. By (2.1), 

we have

P
(
XFi

≤ (γ/2)nbpa
)

≤ exp
(

− (E(XFi
)/2)2

2ΔXFi

)
≤ exp

(
− (γ/2)2n2bp2a

2bb! n2bp2a/
√

n

)

≤ exp(−2n1/3).

Since n2k exp(−2n1/3) ≤ exp(−n1/3), the result follows from the union bound. �
3. Lemmas

In this section we prove all the lemmas that are needed for the proof of Theorem 1.2.
Since we assume δ1(H) ≥ αnk−1, unless � = 1, the k-graph H may contain some 

�-sets S whose degree is too low to be used for connection. To overcome this, we simply 
delete all edges that contain S. The following lemma reflects this “shaving” process.

Lemma 3.1. Let 0 < η ≤ α, 1/k. Let H be an n-vertex k-graph with δ1(H) ≥ αnk−1. 
Then there exists a spanning subgraph H ′ of H, satisfying the following properties.

(1) e(H ′) ≥ αnk/(2k).
(2) degH′(v) ≥ 2αnk−1/3 for all but at most 3kη2n/α vertices of H.
(3) For every �-set S of V (H), either degH′(S) = 0 or degH′(S) ≥ η2nk−�.

Proof. Starting from H, we iteratively do the following. If the current k-graph contains 
an �-set S whose degree is less than η2nk−�, then we delete all the edges containing S. 
Clearly the iteration lasts at most 

(
n
�

)
steps. Let H ′ be the resulting k-graph, then (3) 

holds. Since we deleted at most η2nk−� edges in each step, we have e(H) − e(H ′) ≤(
n
�

)
η2nk−� ≤ αnk/(2k). Together with e(H) ≥ (n/k)αnk−1, (1) follows. For (2), let V0

be the set of vertices v in H ′ such that degH′(v) ≤ 2αnk−1/3, then since δ1(H) ≥ αnk−1, 
we have

|V0| · 1
3αnk−1 ≤ k(e(H) − e(H ′)) ≤ k

(
n

�

)
η2nk−� ≤ kη2nk.

Thus |V0| ≤ 3kη2n/α and (2) holds. �
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We recall the following Chernoff’s inequality (see, e.g., [18]). For x > 0 and a binomial 
random variable X = Bin(n, ζ), it holds that

P (X ≥ nζ + x) < e−x2/(2nζ+x/3) and P (X ≤ nζ − x) < e−x2/(2nζ). (3.1)

The following lemma helps us to build connectors and absorbers.

Lemma 3.2. Let k, �, a, x, b, ε be as in Lemma 2.2. Suppose 1/n � 1/C � β, 1/b. Let 
V be an n-vertex set, and let F1, . . . , Ft be t ≤ n2k families of 24βnb ordered b-sets on 
V . Suppose G = G(k)(n, p) on V and p satisfies (1.1). Then a.a.s. there exists a family 
F ⊆

⋃
i∈[t] Fi of at most βn disjoint ordered b-sets such that |Fi ∩ F| ≥ β2n/b2 for each 

i ∈ [t], and each member of F spans a labeled copy of Pa,x in G.

Proof. In G = G(k)(n, p), let T be the set of all ordered b-sets on V that span copies of 
Pa,x. By Lemma 2.2 (2) and (3), Lemma 2.3 and the union bound, a.a.s. the following 
properties hold simultaneously.

• |Fi ∩ T | ≥ 12βpanb for all i ∈ [t];
• |T | ≤ 2panb;
• there are at most 4b2p2an2b−1 pairs of overlapping members of T .

Next we select a random set F ′ ⊂ T by including each member of T indepen-
dently with probability q := β/(2b2nb−1pa). Because of (3.1) (for (i) and (ii) below) 
and Markov’s inequality (for (iii)), there exists such a family F ′ satisfying the following 
properties:

(i) |Fi ∩ F ′| ≥ 12β(q/2)panb = 3β2n/b2 for all i ∈ [t];
(ii) |F ′| ≤ 2q|T | ≤ βn;

(iii) there are at most 8b2q2n2b−1p2a = 2β2n/b2 pairs of overlapping members of F ′.

By deleting one ordered b-set from each overlapping pair and all ordered b-sets not in ⋃
i∈[t] Fi, we obtain a collection F of disjoint ordered b-sets such that |F| ≤ βn, and for 

every i ∈ [t], |Fi ∩ F| ≥ 3β2n/b2 − 2β2n/b2 = β2n/b2. Moreover, since F ⊆ T , each 
member of F ′ spans a labeled copy of Pa,x in G. �

We now prove a connecting lemma that provides connectors for any two �-sets with 
large degree. Throughout the rest of the paper, let

t1 := ��/(k − �)�, t2 := t1(k − �) − �, and t3 := 3t1(k − �) − �.

Given a k-graph H, we say that an ordered t3-set C connects two ordered �-sets A and 
B if C ∩ A = C ∩ B = ∅ and the concatenation ACB spans an �-path. Note that in this 
case, C spans a copy of Pt1,t2 in H.
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Lemma 3.3. Suppose 1 ≤ � < k and 1/n � 1/C � β � η � 1/k and 0 < ε ≤ �/(3t1). 
Let H ′ and G be two n-vertex k-graphs on the same vertex set V such that for any �-set 
S ⊆ V , either degH′(S) = 0 or degH′(S) ≥ ηnk−� and G := G(k)(n, p) satisfies (1.1). 
Then for any set W ⊆ V of size at most ηn/3, a.a.s. H ′ ∪ G contains a set C of disjoint 
t3-sets such that V (C) ∩ W = ∅, |C| ≤ βn, and for every two disjoint ordered �-sets 
S, S′ in V with degH′(S), degH′(S′) ≥ ηnk−�, there are at least 3β3n members of C that 
connect them.

Proof. Fix two disjoint ordered �-sets S := (v1, . . . , v�) and S′ := (w�, . . . , w1) such 
that degH′(S), degH′(S′) ≥ ηnk−�. We first claim that we can greedily extend S to an 
�-path v1, . . . , v�+t1(k−�) of length t1 in H ′ such that the new vertices are disjoint from 
S′ ∪ W and there are at least (η/2)t1nt1(k−�) choices for them. Indeed, we iteratively 
extend the path from the current �-end T by adding k − � new vertices. By the degree 
assumption, we know that degH′(T ) ≥ ηnk−� (in the first step T = S). Since the number 
of (k − �)-sets that intersect the existing vertices or W is ηnk−�/3 + O(nk−�−1), there 
are at least ηnk−�/2 choices for the new k − � vertices.

Similarly, we can greedily extend (w1, . . . , w�) to an �-path w1, . . . , w�+t1(k−�) of length 
t1 in H ′ such that new vertices are disjoint with {v1, . . . , v�+t1(k−�)} ∪ W and there are 
at least (η/2)t1nt1(k−�) choices for them. At last, if t2 > 0, then we pick t2 arbitrary 
vertices {u1, . . . , ut2} that are disjoint from the existing vertices and W , and there are 
at least nt2/2 choices for them. Note that t3 = 2t1(k − �) + t2. So there are at least 
(η/2)2t1nt3/2 ≥ 24βnt3 choices for the ordered t3-sets

(v�+1, . . . , v�+t1(k−�), u1, . . . , ut2 , w�+t1(k−�), . . . , w�+1).

Let CS,S′ be a collection of exactly 24βnt3 such ordered t3-sets. By this definition, if 
some C ∈ CS,S′ spans a labeled copy of Pt1,t2 , then C connects S and S′. We apply 
Lemma 3.2 to CS,S′ for all pairs of S, S′ such that degH′(S), degH′(S′) ≥ ηnk−� and 
G = G(k)(n, p), and conclude that a.a.s. there exists a family C of disjoint t3-sets such 
that |C| ≤ βn, and for ordered �-sets S, S′ with degH′(S), degH′(S′) ≥ ηnk−�, there are 
at least β2n/t2

3 ≥ 3β3n t3-sets that connect them. In particular, V (C) ∩ W = ∅ by our 
construction. �

Given a k-graph H, let W = {w1, . . . , wk−�} ⊆ V (H). The W -absorber is defined as 
follows. Let

t4 := �(3k − � − 2)/(k − �)� and t5 := t4(k − �) (thus 3k − � − 2 ≤ t5 ≤ 4k).

Suppose Xi, Yi, Zi, i ∈ [k − �], and T are pairwise disjoint ordered sets from V (H) \ W

satisfying the following properties:

(i) |Xi| = k − 1, |Yi| = t5 − k − i + 1, and |Zi| = i − 1 for every i ∈ [k − �] and |T | = �;
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(ii) Q := X1Z2Y1 X2Z3Y2 · · · Xk−�−1Zk−�Yk−�−1 Xk−�Z1Yk−�T spans a copy of Pt5−1;
(iii) Q′ := X1w1Z1Y1 X2w2Z2Y2 · · · Xk−�wk−�Zk−�Yk−�T spans a copy of Pt5 .

By definition, Q is a W -absorber. Note that |Yi| ≥ k − 1 for i ∈ [k − �] by the definition 
of t5. Let Bi be the ordered set XiwiZiYi. Since |Xi|, |Yi| ≥ k − 1, all the edges of Q′

that intersect {wi} ∪ Zi are completely in Bi. Furthermore, when counting from the left 
end, all Xi and Yi are placed at the same location in Q as in Q′, except that Yk−� is 
shifted k − � vertices to the right in Q′ (thus Z2, . . . , Zk−� are simply place-holders). 
Consequently, if H[Bi] ⊇ Q′[Bi] for i ∈ [k − �] and Q is a path, then Q′ is a path.

The following is our absorbing lemma.

Lemma 3.4. Let 1 ≤ � < k be integers and suppose 0 < ε ≤ �/(3t5) and 1/n � β �
η, α, 1/k, 1/t5. Let V be a set of n vertices and let V ′, U be two (not necessarily disjoint) 
subsets of V such that |U | ≤ ηn/3. Let H be a k-graph on V such that degH(v) ≥ αnk−1

for all v ∈ V ′, and for all �-sets S ⊆ V , either degH(S) = 0 or degH(S) ≥ ηnk−�. 
Suppose G := G(k)(n, p) has vertex set V and satisfies (1.1). Then H ∪ G a.a.s. contains 
a family A of at most βn vertex-disjoint copies of Pt5−1 with ends in ∂�H such that 
V (A) ⊆ V \ U , and every (k − �)-set W ⊆ V ′ has at least β3n W -absorbers in A.

Proof. For each W = {w1, . . . , wk−�} ⊆ V ′, we will find W -absorbers from V \ U sat-
isfying (i) – (iii). We achieve this in two steps. In the first step, for each i ∈ [k − �], 
we will find a path Qi of length t4 with V (Qi) = {v1, . . . , vt5+�} ⊆ V \ U such that 
vk = wi, and there are at least α

2 (η
2 )t4−1nt5+�−1 choices for V (Qi). Indeed, we first 

choose an unordered set {v1, . . . , vk−1} ∈ NH(wi). Since degH(wi) ≥ αnk−1 and at 
most |U | + � + t5(k − �) ≤ ηn/2 vertices are either in U or used in this step, there 
are at least α

2 nk−1 choices for {v1, . . . , vk−1}. Next, let S = {vk−�+1, . . . , vk}. Since 
degH(S) > 0, we have degH(S) ≥ ηnk−�. Hence we can choose an unordered set 
{vk+1, . . . , v2k−�} ∈ NH(S) while avoiding U and the vertices already used in this step. 
There are at least η

2 nk−� choices. We repeat this to obtain the desired path Qi and 
there are at least α

2 (η
2 )t4−1nt5+�−1 choices for V (Qi) as an ordered set. Let Bi be the 

ordered set {v1, . . . , vt5}. It follows that there are at least α
2 (η

2 )t4−1nt5−1 choices for Bi. 
Now let A = B1 · · · Bk−�−1V (Qk−�). We have at least ((α

2 )(η
2 )t4−1)k−�n�+(t5−1)(k−�) ≥

24βn�+(t5−1)(k−�) choices for A.
Now we proceed to the second step. For each i ∈ [k − �], recall that V (Qi) =

{v1, . . . , vt5+�}. Define (ordered) sets

Xi = {v1, . . . , vk−1}, Zi = {vk+1, . . . , vk+i−1}, and Yi = {vk+i, . . . , vt5}.

In addition, let T = {vt5+1, . . . , vt5+�} from Qk−�. It is clear that Xi, Yi, Zi and T

satisfy (i). Recall that Bi = XiwiZiYi. For Q′ defined in (iii), our first step already 
provides the edges of Q′[Bi] for i ≤ k − � − 1 and the edges of Q′[Bk−� ∪ T ]. Following 
the discussion right after (iii), we achieve both (ii) and (iii) if Q is a path. To this 
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end, we use the edges of G. Let FW be the family of 24βn�+(t5−1)(k−�) copies of A, each 
re-ordered as in Q. We apply Lemma 3.2 to G with x = 0, families FW for all ordered 
(k − �)-sets W ⊆ V ′, and conclude that a.a.s. there exists a collection A of at most 
βn vertex-disjoint copies of Pt5−1 such that for every (k − �)-set W ⊆ V ′, at least β3n

members of A are from FW , and thus are W -absorbers. At last, because of the first step, 
both �-ends of these paths are in ∂�H. �

In the proof of Theorem 1.2 we need a lemma to cover most of the vertices with 
constantly many paths. This is done in the following lemma. In the proofs of the following 
lemma and Theorem 1.2, we use the trick of multi-round exposure, namely, in each of 
the steps later, we expose one or several independent copies of the binomial random 
hypergraph, each of them with edge probability a constant fraction of the original edge 
probability.

Lemma 3.5. Let 1 ≤ � < k, and suppose 1/n � 1/C � ζ � α � 1/k and 0 < ε ≤ ζ3�/6. 
Suppose V is a set of n vertices and V0 ⊆ V with |V0| ≤ αn, and furthermore, when 
� = 1, suppose that V0 = ∅. Suppose G := G(k)(n, p) on V satisfying (1.1). Let L be an 
�-graph on V \ V0 with |E(L)| ≥ αn�. Then a.a.s. G contains a set P of at most 2ζ3n

vertex-disjoint �-paths such that their ends are in L, V0 ⊆ V (P) and |V \ V (P)| ≤ 2ζn.

Proof. Since |L| ≥ αn�, by averaging, there exists a set R ⊆ V \ V0 of size ζn such that 
|L ∩

(
R
�

)
| ≥ α|R|�/2.

We find our path cover in two phases. In the first phase, we use relatively long paths 
with ends from R to cover most of the vertices of V . In the second phase, we greedily 
cover the remaining vertices of V0 \ R with short paths. We therefore expose G in two 
rounds such that G = G1 ∪ G2, where each Gi is G(k)(n, p′) with (1 − p′)2 = 1 − p. Thus 
p′ > p/2 > n−(k−�)−2ε when � ≥ 2.

We start with Phase 1. Let s be the smallest integer such that s ≥ 1/ζ3 and s ≡ �

mod (k − �), and let s1 = (s − �)/(k − �). Since ε ≤ ζ3�/3, we have 2ε ≤ �/(3s1). By 
Lemma 2.2 (1), a.a.s. for all V ∗ ⊆ V \ R, R′ ⊆ R satisfying |V ∗| ≥ ζ3n, |R′| ≥ |R|/2
and |L ∩

(
R′

�

)
| ≥ (α/3)|R|�, G1 = G(k)(n, p′) contains a copy of Ps1 whose �-ends are in 

L ∩
(

R′

�

)
and other vertices are from V ∗. Owing to this property, we repeatedly construct 

copies of Ps1 by letting V ∗ be the set of uncovered vertices of V ′ and letting R′ be the set 
of uncovered vertices of R, as long as |V ∗| ≥ ζ3n. This is possible because we construct 
at most ζ3n vertex-disjoint copies of Ps1 , which consume at most 2�ζ3n vertices from R. 
During the process, at least |R| − 2�ζ3n ≥ |R|/2 vertices of R are available and by our 
assumption, they span at least α|R|�/2 − 2�ζ3n · |R|�−1 ≥ α|R|�/3 edges of L. Let P1
denote the set of the paths obtained in this phase.

Note that when � = 1, since V0 = ∅ and |V \ V (P1)| ≤ |R| + ζ3n ≤ 2ζn, we are done 
by letting P = P1.

Now we proceed to Phase 2 and assume that � ≥ 2. Let V ′′ be the set of uncovered 
vertices in V \R and R′ = R\V (P1). Note that |V ′′| ≤ ζ3n and |R′| ≥ |R| −2�ζ3n ≥ |R|/2, 
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and |L ∩
(

R′

�

)
| ≥ (α/3)|R|�. Using the edges of G2 = G(k)(n, p′), we will greedily put 

vertices v ∈ V ′′ into vertex-disjoint �-paths w1 · · · wk−1vwk · · · wt6(k−�)+�−1 of length 
t6 := �(k − 1)/(k − �)� + 1 such that all the vertices other than v are from R′ and both 
�-ends are in L. Note that v is in every edge of the path but in neither of the �-ends.

For any v ∈ V ′′, let Gv be the edges of G2 that contain v and have their other 
k − 1 vertices from R′. For distinct vertices u, v ∈ V ′′, the possible edges appear in Gu

independently of the possible edges that can appear in Gv. Suppose we consider v ∈ V ′′

after covering some vertices of V ′′ by �-paths. To this end, we expose Gv. Let R′′ be the set 
of unused vertices in R′. We have |R′′| ≥ |R′| −|V ′′|(t6(k −�) +�) ≥ |R′| −2kζ3n ≥ |R|/3
and |L ∩

(
R′′

�

)
| ≥ |L ∩

(
R′

�

)
| −2kζ3n|R′|�−1 ≥ (α/4)|R|�. We choose two disjoint �-sets from 

L ∩
(

R′′

�

)
and t6(k − �) − � − 1 vertices from R′′ forming an ordered (t6(k − �) + � − 1)-set 

(w1, . . . , wt6(k−�)+�−1) – there are

α|R|�
4 ·

(
α|R|�

4 − �|R′′|�−1
)

·
(

ζn

4

)t6(k−�)−�−1

≥ α3(ζn)t6(k−�)+�−1

such sets. We observe that w1 . . . wk−1vwk . . . wt6(k−�)+�−1 spanning a copy of Pt6 in Gv is 
equivalent to w1 . . . wt6(k−�)+�−1 spanning a (k−1)-uniform (� −1)-path in NGv

(v). Since 
p′ ≥ n(k−1)−(�−1)−2ε and 2ε ≤ (� −1)/(3t6), we can apply Lemma 2.3 to α3(ζn)t6(k−�)+�−1

ordered (t6(k − �) + � − 1)-sets, and conclude that Gv contains a desired �-path with 
probability at least 1 − exp(−n1/3). By the union bound, with probability at least 1 −
|V ′′| exp(−n1/3) = 1 − o(1), we can put all the vertices of V ′′ into vertex-disjoint �-paths 
of length t6 by using the vertices of R such that all the �-ends are in L. This finishes 
Phase 2. Let P2 denote the family of the �-paths found in this phase. Let P := P1 ∪ P2
and note that |P| ≤ 2ζ3n. By construction, all the �-ends of the paths in P are in L. 
Since V \ V (P) ⊆ R, we have V0 ⊆ V (P) and |V \ V (P)| ≤ |R| ≤ 2ζn. �
4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. We essentially follow the procedure mentioned in 
Section 1.3 but need additional work. We first apply Lemma 3.1 and obtain a spanning 
subgraph H ′ of H. Let V∗ be the set of vertices of H ′ with high degree. Following 
the procedure outlined in Section 1.3, we obtain an absorbing path Pabs, a set C1 of 
connectors and a set P of paths that cover almost all the vertices. A natural attempt 
is to use the connectors in C1 to connect the paths in P and Pabs to obtain an almost 
spanning cycle and then absorb the remaining vertices of C1 by Pabs. On the other hand, 
when applying Lemma 3.4 to H ′, we can only absorb vertices in V∗. Therefore we need 
to have V (C1) ⊆ V∗. However, we cannot strengthen Lemma 3.3 by asking V (C1) ⊆ V∗
because for a given �-set in V∗, it is possible that all its neighbors intersect V \ V∗ (recall 
that degH′(S) ≥ η2nk−� and |V \ V∗| ≤ ηn). Therefore, this naive attempt fails.

To fix it, we “shave” H ′ again, namely, applying Lemma 3.1 to H ′[V∗], and obtain a 
spanning k-graph H∗ on V∗. We thus apply Lemma 3.3 to H∗ and obtain C1 such that 
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V (C1) ⊆ V∗ and C1 can connect any two �-sets in L := ∂�H∗. In order to obtain Pabs, we 
apply Lemma 3.4 to H ′ obtaining a family A of absorbers and apply Lemma 3.3 to H ′

obtaining another set C2 of connectors. After connecting A into Pabs, unused members of 
C2 will be discarded (and the vertices in these members will be covered in a later step).

Below are the details of our proof. Let 1/n � 1/C � ζ � β � η � α, 1/k and 
0 < ε ≤ ζ3�/12. Write V = V (H). Let 

⋃
i∈[4] Gi = G(k)(n, p) such that each Gi is 

G(k)(n, p′) and (1 − p′)4 = 1 − p. In particular, p′ > p/4 > n−(k−�)−2ε if � ≥ 2, and 
p′ > p/4 ≥ (C/4)n−(k−1) if � = 1. When we apply Lemmas 3.3, 3.4 and 3.5, we apply 
them with p′ in place of p and 2ε in place of ε.

Step 1. Shave H twice. We define two subgraphs H ′ and H∗ of H as follows. If � = 1, let 
H ′ = H∗ = H, V∗ = V , and L = V . If � ≥ 2, then we apply Lemma 3.1 to H and obtain 
a subgraph H ′ with the following properties:

• there exists V0 ⊆ V such that |V0| ≤ 3kη2n/α ≤ ηn and degH′(v) ≥ 2αnk−1/3 for 
all v ∈ V \ V0;

• for every �-set S ⊆ V , either degH′(S) = 0 or degH′(S) ≥ η2nk−�.

Let V∗ = V \V0 and n∗ := |V∗| ≥ (1 −η)n. We have δ1(H ′[V∗]) ≥ 2αnk−1/3 −|V0|nk−2 ≥
αnk−1

∗ /2. Apply Lemma 3.1 again to H ′[V∗] and obtain a subgraph H∗ on V∗ such that

• e(H∗) ≥ αnk
∗/(4k),

• for every �-set S ⊆ V∗, either degH∗(S) = 0 or degH∗(S) ≥ η2nk−�
∗ .

Let L = ∂�H∗. We have

|L| ≥
(

k
�

)
e(H∗)(
n−�
k−�

) ≥
(

k
�

)
α
4k nk

∗

nk−�
∗

≥ α

4 n�
∗. (4.1)

Step 2. Build connectors C1 and C2. We obtain C1 and C2 by applying Lemma 3.3 twice. 
First, we apply Lemma 3.3 to H∗ ∪ G1[V∗] with W = ∅, η2 (in place of η) and ζ (in 
place of β), and conclude that H∗ ∪G1[V∗] a.a.s. contains a set C1 of disjoint t3-sets such 
that V (C1) ⊆ V∗, |C1| ≤ ζn and for any two disjoint ordered �-sets S, S′ in L, there are 
at least 3ζ3n members of C1 connecting them. Second, we apply Lemma 3.3 to H ′ ∪ G2
with W = V (C1), η2 (in place of η) and β, and conclude that H ′ ∪ G2 a.a.s. contains a 
set C2 of disjoint t3-sets such that V (C2) ⊆ V \V (C1), |C2| ≤ βn, and for any two disjoint 
ordered �-sets S, S′ in ∂�H

′, there are at least 3β3n members of C2 connecting them.

Step 3. Build an absorbing path. Note that |V (C1∪C2)| ≤ 2βn ·t3 < 6kβn (as t3 < 3k). We 
apply Lemma 3.4 to H ′ ∪ G3 with V ′ = V∗, U = V (C1 ∪ C2), 2α/3 (in place of α), η2 (in 
place of η) and β3 (in place of β). Then a.a.s. there exists a collection A of at most β3n

vertex-disjoint copies of Pt5−1 such that for every (k − �)-set S ⊆ V∗, there are at least 
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β9n S-absorbers in A. Note that each member of A contains (t5 − 1)(k − �) + � ≤ 4k2

vertices. Moreover, all the members of A have their �-ends in ∂�H
′ and V (A) ⊆ V \

V (C1 ∪ C2). Next, we pick two disjoint �-sets E1, E2 ∈ L, which are also disjoint from 
V (A) ∪V (C1 ∪C2). This is possible because |V (A) ∪V (C1 ∪C2)| ≤ 4k2β3n +6kβn ≤ 7kβn

and |L| ≥ αn�
∗/4. Finally, we use the members of C2 to connect the members of A and 

E1, E2 to an �-path Pabs with ends E1 and E2, which is possible because all the absorbers 
have ends in ∂�H

′ and |A| ≤ β3n.

Step 4. Cover most of the remaining vertices. Let V ′ = V \ (V (Pabs) ∪ V (C1)). Note that 
|V (Pabs) ∪ V (C1)| ≤ 7kβn + 2� ≤ 8kβn. Let L′ := L[V∗ \ (V (Pabs) ∪ V (C1))]. By (4.1), 
we have

|L′| ≥ αn�
∗/4 − |V (Pabs) ∪ V (C1)| · n�−1

∗ ≥ αn�
∗/5 ≥ α|V ′|�/6.

So we can apply Lemma 3.5 with V ′ (in place of V ), V0, L′ (in place of L), α/6 (in 
place of α), G = G4, and a.a.s. obtain a collection P of at most 2ζ3n vertex-disjoint 
paths with ends in L, which leaves a set W of at most 2ζn vertices in V ′ \ V0 ⊆ V∗
uncovered. Next, we connect Pabs and the paths in P by the connectors in C1 and denote 
the resulting �-cycle by Q. This is possible because the ends of these paths are in L, and 
1 + |P| ≤ 1 + 2ζ3n ≤ 3ζ3n.

Step 5. Finish the Hamiltonian �-cycle. Let X = V \V (Q). The construction of Q implies 
that |X| ∈ (k − �)N, X ⊆ W ∪ V (C1) ⊆ V∗ and |X| ≤ 2ζn + t3ζn ≤ 2t3ζn (because 
t3 ≥ 2� ≥ 2). We arbitrarily partition X into disjoint sets of size k − �. By the definition 
of A, every (k − �)-set S ⊆ X has at least β9n S-absorbers in A. Since each member 
of A is a subpath of Q and 2t3ζ ≤ β9, we can absorb all these (k − �)-sets greedily and 
obtain the desired Hamiltonian �-cycle.

Each of Steps 2, 3 and 4 can be done with probability 1 − o(1) (while Steps 1 and 
5 are deterministic). Hence, by the union bound, a.a.s. we complete all the steps and 
obtain a Hamiltonian �-cycle of H.
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