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Abstract—Recurrent neural networks (RNNs) are becoming
the de facto solution for speech recognition. RNNs exploit long-
term temporal relationships in data by applying repeated, learned
transformations. Unlike fully-connected (FC) layers with single
vector matrix operations, RNN layers consist of hundreds of
such operations chained over time. This poses challenges unique
to RNNs that are not found in convolutional neural networks
(CNNs) or FC models, namely large dynamic activation. In this
paper we present MASR, a principled and modular architecture
that accelerates bidirectional RNNs for on-chip ASR. MASR is
designed to exploit sparsity in both dynamic activations and
static weights. The architecture is enhanced by a series of
dynamic activation optimizations that enable compact storage,
ensure no energy is wasted computing null operations, and
maintain high MAC utilization for highly parallel accelerator
designs. In comparison to current state-of-the-art sparse neural
network accelerators (e.g., EIE), MASR provides 2x area 3x
energy, and 1.6x performance benefits. The modular nature
of MASR enables designs that efficiently scale from resource-
constrained low-power IoT applications to large-scale, highly
parallel datacenter deployments.

I. INTRODUCTION

Automatic speech recognition (ASR) is at the foundation
of many popular services, streamlining the human-machine
interface [1], [2]. Recent advances in ASR have come from
replacing traditional methods based on Gaussian Mixture
Models and Hidden Markov Models with deep learning, namely
recurrent neural networks (RNNs). RNNs learn relationships
in time series data by establishing a temporal context called
the hidden state—partial predictions between time-adjacent
neurons that improve the interpretation of sequential data
(e.g., spoken utterances). Today, RNNs are the state-of-the-
art solution for highly-accurate ASR [3], [4], [5], [6].

The hidden state of RNNs introduces a unique memory
consumption problem that is addressed in this paper. Figure 1
compares the fraction of memory used by activations and
weights across four deep learning models. Well-known, CNN-
based image classification models devote most of their memory
resources to storing weights. In contrast, nearly 60% of
the memory needed for Deep Speech 2 (DS2) —a state-
of-the-art, RNN-based ASR model—is for activations (both
inputs and hidden states), which consumes significant on-
chip storage. This does not preclude the issue of weights
also consuming significant memory (14MB for Deep Speech
2). These memory requirements are a result of ASR RNNs
often using bidirectional layers — inputs to each layer are
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Fig. 1: The memory footprint of activations is higher in
Deep Speech 2 (DS2), an ASR RNN, than in standard CNNs.
Thus, to reduce storage costs of ASR RNNs, memory system
optimizations are needed for both activations and weights.

processed twice (once forwards in time and once backwards)
and work over hundreds to thousands of time steps (i.e., 1 to
30 seconds) [7]. The hidden state size scales with the number
of time steps, and separate weights are maintained for forward
and backward passes.

Aggressive optimizations are needed to reduce the memory
costs of storing both activations and weights, as well as the
heavy processing load. One promising solution is leveraging
sparsity for storage and computational efficiency. However,
while many techniques for weight pruning and compression
have been proposed, relatively little has been done to compress
activations. To improve computational efficiency, inferences
can be computed directly on the sparse encoding. Sparse
processing allows the hardware to elide all null operations
at the expense of introducing irregularity. Irregularity leads
to hardware inefficiency from low utilization, and the optimal
sparse encoding is application dependent. In addition to not
considering activation sparsity, existing, CNN-centric solutions
[8], [9], [10], [11] are either not applicable to RNNs or perform
poorly. Enabling ubiquitous ASR requires accelerating RNNs
with algorithm-architecture co-design for sparse storage and
efficient execution.

This paper presents MASR: A modular accelerator to effi-
ciently process sparse RNNs. Through algorithm-architecture
co-design, MASR achieves high hardware utilization while
never wasting area nor energy on superfluous computation.
To demonstrate the efficacy of the proposed technique, we
start by aggressively optimizing our baseline RNN with
knowledge distillation, language modeling, weight pruning,
and quantization. The key research contributions of MASR
fall into three categories: a hardware accelerator that exploits
sparsity in both weights and activations to skip null values in
execution and storage, a co-designed sparse encoding technique
for both activations and weights that enables highly parallel
architectures, and a mechanism for dynamic load balancing to



TABLE I: Comparing MASR to related work in terms of
support for sparse execution and storage running RNNs.

Sparse Weight Sparse Act. Dyn. Load
Exec. | Storage | Exec. | Storage | Balancing

E-PUR [13]

Minerva [14] X

SparseNN [14] X

Camb-X [10] X X

ESE/EIE [8]

MASR [ x ] x | x [ x ] X

maximize hardware utilization.

Sparse ASR RNN accelerator Algorithmic optimizations
(i.e., knowledge distillation) and MASR’s co-designed micro-
architecture exploit sparsity in weights and activations leading
to improved performance, area, and energy by 14X, 2x, and
15x compared to a dense ASR RNN baseline.

In order to reduce storage and computational burdens of ASR
RNN:g, activations must be sparse. However, unlike CNNs, RNN
activations (inputs and hidden states) are not typically sparse. To
achieve hidden state sparsity we use knowledge distillation [12]
to train RNNs with ReLU, at no loss in accuracy compared
to GRU baselines with tanh. Furthermore, we maintain input
sparsity across layers by refactoring the batch normalization
operation. These modifications expose sufficient sparsity in
RNNSs to co-design our sparse activation-weight encoding.

Sparse encoding MASR’s low-cost and scalable sparse
encoding technique, provides a 2x area, 3X energy, and 1.6x
performance benefit relative to a start-of-the-art sparse DNN
accelerator [8].

MASR’s sparse encoding format is co-designed with the
underlying architecture to address both compute and storage
bottlenecks. Existing sparse encodings, in addition to not
compressing activations, exhibit high meta-data costs stemming
from encoding overheads. MASR proposes a binary-mask
sparse encoding scheme for both weights and activations. In
storing bits rather than pointers, MASR replaces expensive
memory addressing with cheap bit-wise operations.

Dynamic load balancing MASR dynamically balances load
from the irregular distribution of non-zero activations to
improve performance by up to 30% and achieve high MAC-
utilization across a wide range of parallel design points.

Irregularity introduced by sparsity can lead to poor hardware
utilization [10], [15], [16]. MASR is designed to maximize
utilization by, (1) considering both intra- and inter-neuron
parallelism, and (2) employing a decoupled pipeline to separate
the irregularity from sparsity from the computation of partials.
Once work is issued to the backend, the pipeline does not
stall, regardless of the sparsity pattern. The remaining source
of low utilization arises from load imbalance — pipelines with
more sparsity complete before others. To improve hardware
utilization we propose a dynamic load balancing technique to
re-distribute activations at run-time with negligible area and
energy overheads.

II. RELATED WORK

Accelerating ASR RNNs Deep neural networks entail a
general class of machine learning models that have been
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Fig. 2: Compared to compressed sparse row encoding (e.g.,
EIE [8]), MASR’s bit-mask encoding pushes the complexity
in sparse encoding away from storing pointers to logic. While
storage for costly row pointers in EIE scales with the number
of PEs, MASR’s sparse encoding storage overhead is constant
— providing scalability.

deployed across a wide set of applications and platforms [15],
[17], [18], [19]. Given their ability to achieve state-of-the-art
accuracy in a broad range of applications, DNNs have gained
a lot of attention from the architecture community. However,
much of the effort has been devoted to optimizing DNNs with
only FC and CNN layers [8], [9], [10], [11], [13], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34]. RNNs, used widely in ASR and natural language
processing, pose unique challenges. For instance, activations
(inputs and hidden-states) generated at run-time comprise a
higher fraction of the memory consumption in RNNs than in
FC/CNNs (Figure 1).

Beyond accelerators for DNNs and CNNs, other work has
investigated RNNs, and search algorithms for ASR and machine
translation [31], [35], [36], [37], [38], [39], [40]. Shown in
Table I, E-PUR [13] provides a hardware accelerator that
maximizes weight locality in dense RNNs. Similarly, the
authors in [41], [42], [43] leverage the temporal locality of
dense RNNs to accelerate them on FPGAs. In contrast, MASR
exploits sparsity in both weights and activations to further
improve performance, area, and energy efficiency.

To accelerate ASR, the authors of [44] design a memory-
efficient Viterbi search accelerator. This targets language
models that are run after processing all timesteps and layers
in the RNN. However, with even large language models, state-
of-the-art ASR models [3], [45] spend over 90% of their
execution time on the RNNs (Section III-C), making RNNs
the performance bottleneck and the focus of this paper.

Exploiting sparsity for hardware efficiency Table I com-
pares MASR to previous hardware accelerators based on their
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Fig. 3: Bidirectional RNN layer. x', #’, and g' are the input
and hidden states at time step t. W,, W;, V., and V, are the
forward and backward weights.

support for sparsity in weights and activations, and dynamic
load balancing. Typically, previous work either exploits sparsity
in weights or activations, but not both [10], [11], [13], [14],
[22], [46], [47] leaving key performance, area, and energy
savings on the table. DNN accelerators that do exploit sparsity
in both weights and activations use dataflows and sparse
encodings specific to CNNs [9], [23]. Thus, to highlight the
key contributions made in this paper, we provide in depth
comparisons to EIE [8].

While EIE [8] exploits sparsity in both weights and acti-
vations, it does not store activations in a compressed format.
Furthermore, EIE uses compressed-sparse row (CSR) encoding.
As shown in Figure 2, CSR maintains separate row and column
pointers to track non-zero weights. Row-pointer storage scales
with the number of hardware PEs, levying high memory costs
in more parallel architectures. In contrast, MASR uses a simpler
sparse encoding that pushes the complexity of computing
addresses for sparse parameters away from memory and into
low-cost logic. This facilitates scaling the architecture to highly
parallel designs (see Section IV-B for details).

Load balancing for sparse neural networks Exploiting
sparsity in weights and activations comes at the expense of
introducing irregularity into an otherwise regular workload.
Irregularity leads to low hardware utilization from load im-
balance. Prior work considers pruning to statically balance
weight sparsity [47]. However, we find that the main source of
imbalance in RNNs is the distribution of non-zero activations.
Thus, MASR exploits a novel dynamic load balancing technique
that balances non-zero activations at run-time (Section VIII).

III. AUTOMATIC SPEECH RECOGNITION

Automatic speech recognition (ASR) transcribes an input x
into text. The input speech is represented as a discrete time
series of continuous feature vectors x!,....x” derived from a
spectrogram of power normalized audio clips. Current state-
of-the-art models for ASR rely heavily on deep learning for
acoustic modeling [48], [49]. Recently, RNNs have become
the standard end-to-end deep learning approach for ASR [3],
[4]. This section first provides an overview of RNNs and how
they are used in ASR. We then simplify the neural networks
to establish an efficient baseline RNN for ASR.

TABLE II: DS2 [52] model before optimizations (21.9 WER)
| Convolution | Bidirectional GRU | Fully-connected

Layers | 2 | 5 | 1

Parameters | 250K | 38M | 20K

A. Recurrent Neural Networks

Recurrent layers build context in time series data using
hidden states to learn feature patterns in long-term data. There
are three popular recurrent layers: vanilla RNN (hereafter
referred to as RNN), GRU [50], and LSTM [51]. They differ
in how new inputs are used to update hidden state. RNNs use
two sets of weights: one for inputs and one for hidden states.
GRUs and LSTMs expand upon RNNs with additional gated
skip connections. These can improve accuracy by increasing
expressiveness; however, the additional connections increase
model size, where GRUs and LSTMs have 3x and 4x more
weights than RNNs, respectively.

Recurrent layers can either be unidirectional or bidirectional.
Unidirectional layers update hidden states based entirely on
information from previous time steps. Bidirectional layers
maintain two separate hidden states, one based on inputs
from the past and one based on inputs from the future. While
bidirectional layers can achieve higher accuracy, they require
twice the number of parameters and operations.

Figure 3 illustrates a bidirectional RNN layer with ReLU
activation and batch normalization. From the bottom, first a
time-series input X' is transformed by matrices W, and V, to
produce input intermediates (red). Hidden states #'~! and g'*!
are transformed by matrices W}, and V},, respectively, to produce
forward and backward hidden intermediates (blue). New hidden
states i’ and g’ are then computed by passing the sum of the
input and hidden intermediates through ReLU. The sum of
these hidden states is output as y'.

B. Target Model: Deep Speech 2

Deep Speech 2 (DS2) [3] is an industry and academic
standard speech-to-text benchmark [52]. It directly maps input
speech spectrograms to characters. Table II describes the
architecture using an implementation based on GRUs. First,
a pair of CNN layers extract relevant features from the input
spectrogram and reduce the length. Next, bidirectional recurrent
layers, which can either be GRU or RNN layers [3], learn time-
series context. Finally, a FC layer makes output predictions,
a probability distribution over characters at each time step.
This distribution can be combined with a language model to
produce better transcribed text.

Our models for ASR are trained using the open-source
DS2 implementation in PyTorch [53], [54], [55] on the open-
source LibriSpeech corpus [7]. The GRU network (described
in Table II) has a word-error rate (WER) of 21.9, comparable
to DS2 networks with a greedy decoder [3] and the target for
standardized speech-to-text benchmarks [52]. The GRU layers
make up over 99% of the model’s parameters. Thus, this paper
focuses on optimizing the recurrent layers of DS2.
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C. An Efficient RNN Baseline

MASR builds on a very efficient baseline design that includes
several previously-proposed optimization techniques to improve
performance, on-chip area, and energy costs of DNNs. These
techniques—knowledge distillation, language modeling, weight
pruning, and quantization—were adapted for ASR RNNs.

Knowledge Distillation is a technique used to train a
smaller, less complex student network to mimic the predictions
of a large, pre-trained teacher network by penalizing it for
diverging from the teacher’s scores [12]. The teacher network
is the 5-layer bidirectional GRU, shown in Table II, while the
student models are a 4-layer GRU and a 5-layer RNN. Using
distillation alone is insufficient to recover the baseline accuracy
of the teacher network. Instead we start with distillation
and then fine-tune for ASR with CTC [55] for 5 epochs.
This combination yields student networks with the same
accuracy as the teacher (Figure 4). Compared to the 5-layer
teacher GRU and a 7-layer RNN (iso-accuracy using traditional
supervised learning), the distilled 5-layer RNN has 3x and
1.4x fewer parameters, respectively. (All recurrent layers have
800 hidden units, wherein weight matrices are 800x800.)
Knowledge distillation—reducing a dense DNNs to smaller
ones —improves performance and energy significantly and
provides immediate benefits on CPUs, GPUs, and specialized
hardware.

Language Modeling is a post-processing step that reduces
the WER by modifying the output of the RNNs (after all layers

and timesteps) based on language semantics and structure [55].

This can be done greedily or using beam search, which
maintains many likely speech-to-text transcriptions (determined
by the beam-width). Figure 4(right) shows the decrease in
WER as we increase the beam width from 1 (greedy) to 512
in increments of power of two. While the execution time for
previous generations of ASR models has been dominated by
the language model [44], this is not the case for newer ones like
DS2. With a beam width of 128, only 10% of the CPU time
is spent on performing beam search; the rest is spent running
the RNN. Furthermore, previous work has proposed specialize
hardware to accelerate beam search by at least 5x [56]. Thus,
for the purposes of this study, we focus on accelerating the
core RNN layers, the main performance bottleneck.

Weight Pruning eliminates less important weights and
transforms dense matrix-vector multiplications to sparse ones.
Pruning is performed by iteratively zeroing and masking out

parameters, based on absolute value, and then retraining the
network [57], [58], [59]. The number of non-zero parameters
can be reduced to 33% in the already distilled RNNs (iso-
accuracy).

Sparse Linear Quantization reduces the storage overheads
of parameters by transforming them from 32-bit floating
point type to reduced precision. By applying simple linear
quantization [8], [9], [22], [47], the pruned and distilled network
can be represented in fixed-point format with 14 bits. However,
after pruning, the remaining non-zero parameters follow a
skewed distribution with either high-negative or high-positive
magnitude. Thus, before applying quantization, we separately
scale the magnitude of the positive and negative weights to
fit within the range [0, 1]. This enables further reducing the
precision down to 10 bits without sacrificing accuracy.

TABLE III: Efficient RNN baseline after model optimizations.

Layer Type | Activation | Layers | Params | Bitwidth | NZ %
Bi-dir RNN| ReLU | 5 | 13M | 10 [ 33

Together, the above-mentioned optimizations improve per-
formance, area, and energy by 4.2x, 3x, and 8, respectively.
The parameters for the efficient baseline are shown in Table III.

D. Supporting recurrent networks more generally

While the remainder of this paper focuses on accelerating
the ASR RNN baseline, the key contributions of MASR apply
to recurrent neural networks with weight and activation sparsity
more generally. First, RNNs have crafted various speech
recognition networks, notably transducer (e.g., DS2), seq2seq,
and attention based architectures. Previous work has trained
these architectures with ReLU activated RNNs, enabling the
activation sparsity that MASR exploits [60]. Next, the DS2-style
RNN studied in this paper forms the encoder in multi-stage
ASR networks [60], [61]. Finally, the core micro-architectural
contributions also apply to GRU-based networks with pruned
weights and ReL.U non-linearity for sparse activations. Such
ReLU activated GRUs have also been used in transducer,
seq2seq, and attention based speech recognition networks [3],
[60], [62].

In order to optimize this vast design space of recurrent neural
networks, MASR can be configured with a combination of
dynamic and design-time parameters. Dynamic, run-time pa-
rameters include number of hidden-units, number of timesteps,
and whether the RNN is uni-directional or bi-directional (see
Section V for details). Design-time parameters include whether
the network is an RNN or GRU, and the maximum recurrent
network size supported.

IV. OPTIMIZING DYNAMIC ACTIVATIONS

As shown in Figure 1, activations are the primary memory
bottleneck of RNNs. This section presents the methods used to
enforce sparsity in activations and the proposed sparse encoding
algorithm.
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A. Activation sparsification

Sequential processing: The core computation kernels of
RNNSs are the matrix-vector multiplications for the input and
hidden states, i’ = ReLU (W,x' +W,h'~1). These kernels can be
computed either in parallel or sequentially in time. E-PUR [13]
proposes maximizing weight locality by first computing the
input connections, W,.x', for all time steps in parallel, followed
by the recurrent connections. Even with aggressive 10-bit
quantization, this approach requires significant on-chip storage
(1.25MB), outweighing the benefits of reducing on-chip storage
through weight reuse.

MASR computes each time step sequentially. Sequential
processing halves the amount of intermediate values to store.
More importantly, as we use a ReLLU activation function, by
sequentially processing each time step intermediates are sparse
and amenable to compression.

Hidden state sparsity To further reduce on-chip storage
requirements for activations, MASR makes use of the sparsity
in inputs and hidden states. Recall that our efficient baseline
model is a 5-layer RNN with ReLU, i.e., max{0,x}. Training
with ReLLU causes 80% of the hidden state values to be zero.

Input sparsity Input sparsity is lost due to batch normal-
ization, a regularization technique that makes training larger
models easier, between layers. The operation adjusts and
scales activations to have a zero mean and unit variance:
\);% x v+ B. where x,, represents the sparse inputs
and U, o,€, v, and B represent learned parameters. The linear
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activations, and output activations are split across the MASR
architecture. MASR is organized as a 2D-array of horizontal
(output neuron dimension) and vertical (input neuron dimen-
sion) PEs/lanes.

transform employs non-zero shifts (i.e., i, B) that map sparse
inputs to dense ones. However, during inference, the linear
transformation can be statically refactored into the next layer’s
weights at zero cost:

Y Yu
x=Kyxs+Ky Khy=————= K4 =p—————=
Orsp TRL R0 oZ+e ! p oZ+e

To refactor this computation, we multiply the next layer’s
weights and biases by the Ky and K| constants, respectively.
Note that this refactoring is applicable to a broader set of neural
networks that use batch normalization through depth [60], [62].
After refactoring, inputs are on average 60% zeros.

B. Compact activation storage

Operating over compressed weights and activations intro-
duces two challenges: (1) aligning pairs of non-zero weights
and activations, and (2) generating addresses for weights and
activations stored compactly in memory. MASR addresses these
challenges by co-designing a sparse encoding technique for
both activations and weights. As shown in Figure 5a, the sparse
encoding technique uses a combination of bitmasks, a leading
non-zero detects (LNZD), and population counts. We start by
reading the weight and activation bitmasks. The bitmasks track
the sparsity pattern as bit vectors, where non-zero entries are
represented as ones. Next, a bitwise AND between the weight
and activation masks, determines pairs of non-zero weights
and activations and produces the work mask. The ones in the
work mask denote the absolute minimum work to compute. A
LNZD over the work mask determines the index of the next
non-zero weight and activation to fetch from memory. Finally,
population counts of the weight and activation masks, up to
the index specified by the LNZD, evaluates addresses of sparse
weight and activations stored compactly in memory.

Example MASR encoding Figure 5b provides a concrete
example of MASR’s sparse encoding. The logical AND between
the weight (0011) and activation (1110) masks produces the
work mask (0010). The LNZD over the work mask points
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to index 2. Population counts up to index 2 for the weight
(0011) and activation (1110) masks, compute the weight (0)
and activation (2) addresses, respectively.

Comparing MASR to run-length and CSR The optimal
encoding is application specific and depends on sparsity and
matrix size. Previous sparse DNN accelerators typically use
run-length encoding or CSR [8], [9], [10], [47].

Run-length encoding maintains a step index that stores the
distance between non-zero weights [10]. However, it does
not design for sparsity in activations, leaving key storage,
performance, and energy savings on the table.

CSR considers sparsity in both weights and activations. As
shown in Figure 5a, CSR first reads the non-zero activation
address, encoded using a run-length style step index. The
non-zero activation address then indexes separate row pointer
memories to identify the first and last non-zero weights
corresponding to the given input activation. Finally, the row
pointers are used to read column indices, also encoded using
a run-length style step index, which generate the address of
weights stored compactly. While this approach works well for
model with high sparsity, it suffers from two main drawbacks.
First, null activations are skipped in execution not storage.
Second, while column pointers scale with the number of non-
zero weights, each MAC/PE maintains its own set of row
pointers in CSR. As a result, row pointer memory scales
with the number parallel MACs/PEs. Figure 2 shows that as
the hardware scales from 32 to 512 parallel MACs/PEs, row
pointers dominate the memory footprint.

Low overhead and scalable sparse encoding In contrast,
the memory footprint for MASR’s sparse encoding technique
does not scale with the number of parallel MACs/PEs. This
is a result of eliminating the row pointers and identifying
the necessary sparse weights and activations by computing
the alignment in logic. For instance, MASR computes the
address of non-zero weight and activation pairs in logic, as
shown in Figure 5a. The memory overheads for encoding
sparsity in MASR are limited to binary masks, which are
determined by the size neural network model and not the
number of MACs/PEs. Thus, MASR has a significantly lower
memory footprint compared to previous sparse neural network
accelerators (i.e., EIE, ESE [8], [47]); see Section IX for a
detailed quantitative comparison.

V. THE MASR ARCHITECTURE

As shown in Figure 6, MASR is composed of a 2D-array of
processing elements (PEs)/lanes that evenly split each weight
matrix in the horizontal (i.e., output neurons) and vertical
(i.e., input neurons) dimensions. Each PE is a collection of
lanes that share a local activation register file. Each lane has
its own local weight and weight mask SRAMs that store an
equal portion of the matrix. Compact weight matrices (only
non-zero elements) are loaded from off-accelerator memories
directly into local SRAMs. Output neurons are computed
by accumulating the partial products across lanes in vertical
PEs (i.e., lane 0 in PEO and P4 determine yy in Figure 6).
Decoupling the execution across the 32 to 1024 lanes is crucial
for extracting parallelism of the irregular sparse computations
at scale. Figure 7 shows the detailed architecture for MASR,
focusing on RNN computations outlined in Figure 3. The
modular design is centered around the 2D array of PEs and
decoupled, pipelined lanes. In this section, we first explain how
bidirectional RNN computations are mapped to MASR. Then
we show how the underlying lane micro-architecture handles
sparsity in weights and activations.

A. Mapping RNN computations to MASR

To process speech samples, the accelerator runs each layer
of the bidirectional RNN in order. Within each layer, the
accelerator first executes all time steps in the forward direction
and then in the backward direction. Recall that each time step
of the RNN comprises two matrix-vector multiplications, a
vector-vector addition and ReLU: h' = ReLU(W,x' +W,h'~1).
To begin processing a layer, all weights for the forward pass
(W, and W) are loaded from off-accelerator memory into the
compact weight SRAMs within the lanes. Weight SRAMs have
a word width of 10 bits (1 weight each). Likewise, all inputs
(«*) are loaded into compact activation SRAMs, which have a
word width of 60 bits (six activations each).

While MASR processes all time steps in the forward pass,
weights for the backward pass are concurrently loaded into
separate SRAMs. This double buffering of the forward and
backward weights reduces performance penalties from not hav-
ing the entire layer’s weights stored locally on-chip. Similarly,
activations beyond 333 timesteps (the average length of speech
samples in Librispeech) are also double buffered. Section VII-C
discusses the design decisions of double buffering.
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Hidden state computation: For each time step 7, the
accelerator first processes the matrix-vector multiplication
for hidden state, W,i'~!. This computation is initiated by
loading the previous time step’s hidden states from the compact
activation SRAM to compact activation register files within
each PE. The entirety of the matrix-vector multiplication is
parallelized across the 2D array of PEs with multiple decoupled
lanes. Horizontal lanes evenly split columns (output dimension)
of the matrix, while vertical lanes evenly split rows (input
dimension). This enables balancing parallelism across the input
and output dimensions. Each lane is responsible for computing
partial products for a subset of rows and columns in the matrix-
vector product. As lanes finish processing each column, the
partial sum accumulator sums the partial products for each
output. An 800 element register file stores the outputs.

Finishing one time step: The above sequence repeats
to process the matrix-vector multiplication for inputs, Wyx'.
Once both matrix-vector multiplications have been processed,
the vector-vector add unit accumulates the biases, input
intermediates, and hidden intermediates. The resulting output
values are thresholded with ReLLU and compactly written to
the hidden-state SRAM for the subsequent time step. This
completes one time step of the RNN layer.

Hardware implications of parallelism: The number of
parallel lanes determines the degree of parallelism and how
weights are partitioned across SRAMs. With 1024 lanes, each
lane’s weight and weight mask SRAM stores ﬁ of the
parameters. Similarly, number of vertical lanes determines the
size of the compact activation register files. For example, with
32 vertical lanes, each register file only tracks % of the values.
Horizontal lanes in a row process the same portion of the
activation vectors. To reduce the cost of duplicated activations,
horizontal lanes within a PE share a physical activation register

TABLE IV: MASR design parameters

Lanes 32 | 256 | 1024
Weights per lane (KB) 32 4 1
Weight masks per lane (KB) | 10 | 1.25 | 0.3
Total weight (KB) 1280
Total activations (KB) 450
Weight width (bits) 10
Activation width (bits) 10
Technology node 16nm
Frequency (MHz) 1000

file. Given that lanes are decoupled, increasing the number
of lanes per PE requires additional ports to the physical
register file, which increases the register file’s size and cost
per access. Note that MASR’s decoupled PE/lane architecture
does not depend on complex crossbar architectures that can
limit efficiency of highly parallel sparse DNN accelerators.
Section VII explores the design space encompassed by these
parameters. Table IV illustrates the parameters for LANESx32,
LANESx256, and LANESx1024.

Outside of the PEs, the MASR architecture has two additional
parameters: depth of the back end queues and number of
banks for activation SRAMs. The partial sum accumulators
accumulate the output of each column once all lanes in the
given vertical slice finish generating their partial product. Lanes
that finish early are stalled, reducing the performance of the
overall design. Increasing the depth of the back end queues
reduces this back pressure. However, this comes at an area
and energy cost, given each lane pushes partial products to
a separate back end queue. In addition, the vector-vector add
unit can be parallelized. This involves not only duplicating the
number of adders but also partitioning the activation SRAMs
into multiple banks (see Section VIII for details).

B. The MASR Lane

The MASR lane is the main computational workhorse for
sparse vector-matrix multiplication. Each pipelined lane is
organized in two phases, front end and back end. Intuitively,
the front end decodes work from weight and activation masks,
whereas the back end performs MACs after accessing compact
weights and activations. This eliminates wasted work in the
back end, regardless of the distribution of sparse weights,
activations, and outputs.

The front end first reads the binary masks, for both weights
and activations. The binary masks are then ANDED together
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the left summarizes area (top row), energy (middle row), and power (bottom row) tradeoffs for the

fully optimized designs for various MASR design points. On the right we breakdown each optimization and each resource
(weights, activations, sparse encoding masks, registers, and logic). The breakdowns are for the optimized baseline (distilled,
Section III-C), optimized (weight pruning), and Act (sparse activations, fully optimized).

TABLE V: Topology of MASR Pareto front points.

Accel Horiz Lanes | Vert Lanes | Horiz PEs
LANESx32 16 2 2
LANESx64 32 2 2

LANESx128 32 4 2
LANESx256 32 8 2
LANESx512 32 16 1
LANESx1024 32 32 1

and the resulting work mask represents the absolute minimum
non-zero weights and activations to accumulate.

The back end has four pipeline stages. Stage 1 receives the
work mask and uses a single-cycle LNZD to find the next
pair of non-zero weights and activations. Stage 2 computes
the relative addresses using the LNZD output and population
counts of the weight and activation masks. Stage 3 reads the
weights SRAM and activation register file. Stage 4 evaluates
the MAC. Separate accumulators are maintained for the positive
and negative weights as they were quantized separately (see
in Section 2). When the computation for the output neuron
finishes, the partial sum is pushed onto the queue.

VI. EVALUATION METHODOLOGY

The accelerator design space we explore is vast and each
point is evaluated running the entire forward and backward
passes of the bidirectional RNN. We validate a custom cycle-
level C++ simulator of the accelerator with a synthesized
RTL implementation. We annotate the simulator based on PPA
characterizations from synthesized RTL using a commercial
16nm FinFET standard cell library at 1GHz. To model the
SRAM area, energy, and power consumption, we use a
commercial memory compiler in the same process.

We also evaluate the benefits of sparsity on CPUs and GPUs
by profiling GEMM and SPMV kernels on real machines.
For CPU baselines we run the Eigen library on a desktop
Intel Core 17-6700K with SIMD support, using the —03 and
—-ffast-math compiler flags. The GPU baselines run GEMM
and SPMV kernels provided by Deep Bench [63], using
cuBLAS/cuSparse libraries on a NVIDIA GTX 1080 GPU.

VII. PERF., AREA, ENERGY, AND POWER BENEFITS

Optimal configuration of MASR’s modular architecture
depends on the intended use case. This section presents results
of an extensive design space exploration of MASR’s free
parameters that exposes energy-performance tradeoffs. We then
analyze the performance, area, and energy/power breakdowns
for points along the Pareto frontier of the design space in
order to quantify the benefits of each optimization and identify
where resources are being consumed. For all experiments in this
section, we fix the depth of the back end accumulator queue
to a single element and assume one-bank activation SRAMs.
We report the performance, area, and energy consumed for an
accelerator provisioned to run a full seven seconds of speech,
the average sample length in the Librispeech corpus, across
multi-layer bidirectional RNNs. Finally, we discuss how the
design scales when running shorter and longer speech samples.

A. Design Space Exploration

MASR’s modularity enables both high performance and low
power solutions. The tunable microarchitectural parameters
considered in the design space, outlined in Figure 7, include
the number of horizontal lanes, number of vertical lanes, and
number of horizontal PEs. All possible configurations are swept
so that the total number of lanes ranges from 1 to 1024 at
powers of 2, with a maximum of 32 lanes in either dimension.

Sweeping the total number of lanes produces the energy-area-
performance Pareto frontiers illustrated in Figure 8 (left). As
parallelism increases, execution time and energy consumption
decrease while area increases. This is a result of partitioning
SRAMs into smaller arrays in order to support the bandwidth
needed for more parallel datapaths. Figure 9 shows that
partitioning SRAMs decreases the power per read and per-
bit area efficiency. Even in highly parallel architectures such as
LANESx1024, SRAM leakage is a small fraction of the overall
energy due to the highly optimized 16nm FinFET libraries.

In addition to lane count the organization of lanes/PEs
has an impact on accelerator performance. Table V shows
Pareto optimal designs tend to have more horizontal lanes
than vertical ones. Increasing the number of vertical lanes



reduces the number of rows each lane processes, and thus also
reduces the activation register file size. For example, with 8
vertical lanes, the activation register files contain 64 words;
with 32 vertical lanes, they contain 16. Processing a small
number of activations leads to load imbalance across lanes,
degrading performance. A solution to this problem is discussed
in Section VIII. The following sections detail the performance,
area, energy, and power characteristics of the optimal designs.

B. Performance

Figure 8 (center) shows the speedup by running a dense
7-layer bidirectional RNN and the efficient baseline on MASR
and a GPU, normalized to running the dense network on a CPU.
Performance is measured as the execution time to process the
full 7-seconds of speech. While the more programmable GPU
benefits from knowledge distillation (1.4 x) and weight pruning
(3x), it is unable to exploit activation sparsity. The MASR
designs benefit from knowledge distillation, weight pruning,
and sparse activation execution, improving the performance of
the accelerator beyond that of the more programmable systems.

Figure 8 (right) breaks down the performance benefit that
each optimization offers. We find that the overall benefits of
sparse optimizations diminish as parallelism increases. While
each design observes speedup from knowledge distillation
and sparse weight execution, speedup from sparse activation
execution does not scale as gracefully. For example, we
find sparse activations provide up to 3.75x speedup on the
LANESx32 design, while their benefit on LANESx1024 is
reduced to 2.2x due to higher load imbalance in more parallel
accelerator topologies. Section VIII proposes low-cost solutions
to balance dynamic activations at run-time — improving
speedup from sparse execution by 1.7x and allowing even
the most parallel designs to achieve near-linear speedup.

Output sparsity In addition to exploiting input neuron
sparsity, x’ and A’, prior work exploits sparsity in output
neurons [14], [64]. This requires predicting output neurons
that will be masked by ReLU. While the focus of paper is
on exploiting weight and activation sparsity, MASR can also
support output sparsity. In particular, input intermediates, W x',
and hidden-state intermediates, W;A!, follow distinct distribu-
tions. Batch-normalizaton only operates on inputs, x’ (zero
mean) causing hidden-state intermediates to be more negative
than input intermediates. Highly negative hidden intermediates,
computed first, will likely be zeroed out by the ReLU function
even after accumulating with input intermediates. Thus, input
intermediate calculations are skipped if the corresponding
hidden intermediate is sufficiently negative, akin to the output
sparsity predictor in [14]. Figure 8(right) shows that output
predication (OP) improves performance by up to 15%.

C. Area, Energy, and Power

Figure 10 shows the area, energy, and power breakdowns for
each design point along the energy-performance Pareto frontier.
The left column illustrates the overall trends as the accelerator
scales to more parallel design points. The remaining columns
on the right side provide detailed resource breakdowns. To
understand the benefits of each optimization in accelerators
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Fig. 11: Energy breakdown of LANESx256 running speech
of varying length overlaid with the distribution of samples
found in Librispeech. DRAM energy cost, for double buffering
weights and activations, is small.

with varying degrees of parallelism, three sets of resource
breakdown bars correspond to design variants provisioned to
run a dense 7-layer bidirectional RNN (Base), the efficient
baseline that applies knowledge distillation and weight pruning
(Opt), and with sparse activations (AS).

Area: Figure 10 (top row, right) shows the area footprints of
each accelerator design. Partitioning weight and weight mask
SRAMs diminishes the benefits of compactly storing weights
in more parallel designs. For instance, for the LANESx64
architecture, starting from (base), weight sparsity (opt) reduces
area from 5.5mm? down to 4.0mm? (1.5mm? benefit). On the
other hand, weight sparsity reduces LANESx1024 area from
8.3mm? to 7.8mm?* (0.5mm? benefit).

After compressing the weights, quantized activations con-
sume up to 50% of the accelerator area, especially in the
smaller LANESx32-256 designs. Compact activation storage
reduces the memory area consumed by activations by 3x.
This corresponds to reducing the area devoted to activations
alone from 1.7mm? to 0.6mm>. Given MASR’s modular design,
compact activation storage provides the same area benefit to all
design variants; input and hidden-state memories are maintained
outside of the PEs/lanes. This modularity also facilitates scaling
the architecture to domains that may require processing much
larger speech samples [2]. For instance, provisioning MASR to
process up to 15 seconds of speech, compact activation storage
would save 2.2mm?, reducing overall area by 1.8x.

After weights and activations, the remaining area is con-
sumed by registers and logic. The increase in register area
across more parallel designs is dominated tracking more
weights and activation bitmasks per lane. These bitmasks
account for over 90% of the register area. The secondary
consumers (8%) of the register area are the backend queues.

Energy and Power: The energy breakdown across each
accelerator design is shown Figure 10(middle row). The left
column shows that LANESx256 is the energy-optimal design
point even though LANESx1024 uses smaller SRAMs that
dissipate less read power. The reason is two-fold: per-read
energy cost plateaus in the most parallel accelerator designs,
and the proportion of power consumed by registers increases
for larger accelerators. As previously discussed, the first
effect occurs because the smaller memories used in the more
parallel designs (LANESx512 and LANESx1024) do not reduce
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dynamic read power proportionally to capacity reduction. The
second effect comes from more parallel designs requiring the
maintenance of more active states.

Generally, energy savings come from doing less work and
making fewer SRAM accesses. For example, Figure 10 (middle)
shows that compared to the dense RNN (base), the efficient
baseline reduces the energy consumed by 4.2x (i.e., 1.4x
from knowledge distillation, 3x from weight pruning) across
all accelerator designs. Similarly, sparse activation execution
further reduces energy by around 2.5 x.

Because of MASR’s sparse encoding mechanism, sparsity
optimizations impact energy more than power. As long as
work remains, a MAC is issued to the lane on every cycle,
keeping power relatively constant. The 1.4x power reduction
between dense RNN (base) and optimized baseline (opf) comes
from decreasing the size of weight SRAMs by storing fewer
non-zero parameters (Figure 10, middle and bottom rows).

D. Supporting Speech of Arbitrary Length

ASR models comprise millions of parameters which cannot
be realistically stored on-chip. The storage requirements are
further exacerbated when considering activation memory for
longer speech samples. To minimize on-chip SRAM, MASR
double buffers both weights and activations.

Performance and area Using LPDDR4 as off-accelerator
memory, the performance and energy penalty of double
buffering is relatively low. MASR double buffers forwards
and backwards weights in separate SRAMs. LPDDR4 supports
a bandwidth of 25.6GB/s while dissipating 200mW of power
[65]. At this rate it takes 0.019ms to read in a layer’s weights.
This corresponds, roughly, to the time it takes process 250
timesteps of speech. Thus, to avoid memory contention, MASR
stores activations for the first 333 timesteps (the average length
in Librispeech) on-chip. Activations for later timesteps are
double buffered within an 800-element register, which incurs
negligible area overheads. Similarly, there is no performance
penalty since the time to read activations from LPDDR4 is
strictly less than the time to process a single timestep.

Energy Figure 11 illustrates the DRAM energy cost relative
to on-chip SRAM and logic for samples from 50 timesteps
to 1600 timesteps. For samples less than 333 timesteps, the
DRAM energy consists solely of reading weights. This energy
overhead is amortized with longer speech samples. For instance,
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at 333 timesteps, DRAM consumes about 10% of the energy.
Speech samples longer than 333 timesteps, incur an additional
energy penalty for reading activations from DRAM; however,
DRAM energy remains a small fraction compared to SRAM and
logic. Thus, MASR supports arbitrary length speech samples
at negligible performance, area, and energy cost.

VIII. SCALABILITY FOR END-TO-END RNN

As the number of parallel lanes increases, two main
performance bottlenecks emerge: vector-vector add (VVAdd)
operations and load imbalance. We address these bottlenecks
by: (1) parallelizing the VVAdd operations with multi-banked
activation SRAMs; and (2) dynamic load balancing for sparse
activations. These optimizations improve performance by up
to 1.8, allowing highly parallel designs to achieve high MAC
utilization while executing with sparse weights and activations.

Parallelizing VVAdd Each time step in RNNs includes
two matrix-vector multiplications and a VVAdd (i.e., Wx! +
W,,h'~1). Although the matrix-vector multiplications are the
core kernels, Figure 12 (left) shows that with a single activation
SRAM bank, the LANESx1024 design’s MAC utilization is
only 27%, while the largest fraction of cycles (35%) devoted to
VVAdd. This is due to bandwidth limitations of the activation
SRAMs. Recall that the word width of the activation SRAM is
60 bits, limiting VVAdd operations to 6 per cycle. Partitioning
the compact activation memory into smaller banks enables
parallelizing the computation. Partitioning the memory into
8 banks decreases the fraction of cycles spent on VVAdd
operations from 35% to 6%, and increases the MAC utilization
from 27% to 39% at a negligible area penalty.

A. Dynamic Activation Load Balancing

After parallelizing the VVAdd operation, the next bottleneck
to scaling performance is load imbalance, a result of irregular
sparsity. Previous work uses load balance-aware pruning, where
the network is pruned during training such that each MAC gets
the same number of non-zero weights [47]. This static method
does not work for dynamic activation sparsity. Moreover,
the main source of load imbalance in RNNs is the uneven
distribution of non-zero activations across PEs. To address
this dynamic load imbalance, we first trade off stall cycles for
idle cycles by increasing the depth of back end queues. We
then propose a low-cost solution to dynamically redistribute
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work to idle lanes, which improves the MAC utilization and
performance of the LANESx1024 architecture by 1.3x.

Figure 12 (center) illustrates the trade-off between stall and
idle cycles as the back end accumulator queue depth increases.
Stalls are caused by back pressure from the accumulator. Idle
cycles are caused by some lanes computing their partial outputs
faster than others. With a queue depth of one, lanes spend 28%
of their time stalled, and 22% of their time in the idle state.
By increasing the depth of the queues to 8, the fraction of stall
cycles falls to 9% whereas the fraction of idle cycles climbs
to 42%. 0.3mmm?>. This comes at a negligible area penalty of
0.3mm? for the largest LANESx1024 design.

Balancing non-zero activations The high percentage of idle
cycles suggests redistributing work to lanes that finish early,
by balancing load across both horizontal lanes and vertical
lanes. With horizontal load balancing, work is distributed to
lanes within the same PE. Since all lanes within a PE process
the same activations, horizontal load balancing requires storing
additional copies of compact weights for neighboring lanes.
In practice, we only duplicate about 10% of the weights.
Vertical load balancing distributes work to lanes across vertical
PEs. This involves duplicating not only weights but also
activations. Given activations are stored in local registers, the
cost of duplicating them is negligible. Duplicating weights and
activations to enable load balancing also eliminates the need
for complex crossbar inter-connects that often limit efficiency
for sparse DNN accelerators at scale.

Hardware utilization Figure 12 (right) illustrates the impact
of each optimization on the performance of LANESx64,
LANESx256, and LANESx1024. To highlight how well each
design variant parallelizes sparse RNNs, we normalize the
performance of each to its theoretical speedup over serial
execution. Vertical load balancing outperforms horizontal load
balancing, because redistributing work across PEs balances
the number of non-zero activations, the main source of
load imbalance. Moreover, LANESx64, LANESx256, and

LANESx1024 designs achieve 90%, 80%, and 50% utilization.
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797 um

Fig. 14: MASR LANESx32 placed-and-routed layout

B. Scaling RNN Size and Sparsity

Recent advances in the machine learning community allow
training sparser networks without sacrificing accuracy [57],
[66], [67]. This suggests further performance and energy
improvements may be possible with even higher sparsity. To
study the robustness and scalability of MASR, we artificially
scale weight and activation non-zero ratios, using synthetic
RNN benchmarks, for the energy-optimal LANESx256 design.

Figure 13(top, middle) plots the energy savings and con-
sumption as the non-zero ratio in weights and activations scales
from 10% to 50%. As the energy saved from sparse execution
depends on the non-zero ratio (not model size), we consider
RNNs with 3072 hidden states. MASR’s energy efficiency
improves with greater sparsity, a result of fewer memory
accesses. For example, the energy savings at non-zero ratios
of 25% and 10% are 12x and 26x respectively. At lower
non-zero ratios, sparse encoding overheads limit savings as
weight masks dominate energy consumption.

Figure 13(bottom) plots the impact of sparsity on perfor-
mance across a range of network sizes. As expected, speedup
from sparse execution improves with greater sparsity. For
RNNs with 3072 hidden units, sparse execution yields a 14.4x
and 76x speedup with 25% and 10% non-zeros, respectively.
Finally, we find that performance improvements of sparse
execution scale better for larger models. For instance, with
10% non-zeros, the speedup is 49x for the RNNs with 1024
hidden unit. This due to better load balancing in larger models.
Thus, we expect MASR’s architecture to scale well with larger
ASR RNNs and advanced pruning techniques are applied.

C. Hardware Implementation

Results shown thus far are based on cycle-level C++
simulations with power models derived from synthesized RTL.
A PE of a LANESx32 RTL was placed-and-routed, as shown
in Figure 14, using a commercial 16nm FinFET standard cell
library and memory compiler. We validate our simulation results
within 10% power and 12% area and find negligible difference
in performance. A fabricated SoC based on LANESx32 design
has been received from fabrication.

IX. DISCUSSION

This section provides a quantitative comparison between the
MASR accelerator and two other accelerators, shown in Table I,
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for sparse neural networks with different design objectives: ESE
[47] (weight sparsity) and EIE [8] (both weight and activation
sparsity). Based on each accelerator’s memory access patterns,
we accumulate the cost of the weights memory, activations
memory, and sparse indexing. For fair comparison, each design
is implemented as a specialized ASIC with the same 16nm
FinFET process and the same optimized RNN, see Table III.

Performance Assuming the same weight sparsity, activation
sparsity, and number of parallel MACs/PEs, hardware utilization
determines performance differences between the accelerators.
The LANESx256 design for MASR demonstrates an 80%
utilization, compared to 50% in EIE [8]. This is a result
of ensuring no wasted work with the binary mask sparse
encoding and re-distributing sparse activations for dynamic
load balancing in MASR. For instance, CSR adds superfluous
non-zero values (up to 40% wasted work) and does not account
for imbalance in non-zero activations. By exploiting activation
sparsity, MASR has 3x higher performance than ESE.

Area Figure 15 (top) compares the area footprints of MASR,
ESE, and EIE, all normalized to the area of the smallest MASR
design (LANESx32), as the designs scale from 32 to 512
parallel MACs/lanes. The area for ESE and EIE are equivalent,
as both store activations densely and weights compactly, using
CSR. For smaller architectures, such as those with 32 or
64 parallel MACs/lanes, MASR’s area savings come from
compactly storing sparse activations.

Area savings are more pronounced as the accelerators scale
to higher parallelism due to MASR’s lower-overhead sparse
encoding mechanism. Storage for row pointers, used in CSR in
ESE and EIE, scales with the number of MACs and dominates
for accelerators with more than 128 parallel MACs . Instead of
explicitly storing the row pointers in memory, MASR computes
the addresses for sparse weights and activation in logic (see
Section IV-B for details). This consumes a fixed amount of
memory regardless of the number of parallel lanes. As a
result, MASR has at least 2x smaller on-chip area footprint
as accelerators scale beyond 128 MACs/lanes.

Energy Figure 15 (bottom) compares the energy consumed
by MASR, ESE, and EIE, all normalized to the energy of
the energy-optimal design (LANESx256) as the designs scale
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from 32 to 512 parallel MACs/lanes. In addition to the area
benefits, MASR consumes 5x and 3x less energy than ESE
and EIE, respectively, as it scales beyond 128 MACs/lanes.
These energy savings come from MASR’s lower overhead
sparse encoding mechanism. For each row in the matrix, a PE
in ESE and EIE reads two row pointers to determine the first
and last non-zero weights. Row pointer accesses scale with
the number of parallel, and, like the area overheads, energy
consumption is dominated by these row-pointers for more
parallel designs. MASR eliminates the cost of reading row
pointers by computing the sparse indexing in logic.

X. CONCLUSION

We present MASR, a novel bidirectional RNN accelerator
for on-chip ASR that exploits sparsity in both dynamic
activations and static weights, compacts storage of non-zero
parameters, and wastes no energy at all on null computations.
Compared to a state-of-the-art sparse DNN accelerator [8],
MASR improves performance, area, and energy by 1.6x, 3x,
and 2x, respectively. MASR’s modular architecture provides
scalable designs ranging from resource-constrained low-power
IoT applications to highly parallel datacenter deployments.
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