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Abstract: The invention of new design techniques for unobscured reflective systems using
freeform surfaces has expanded the optical design space for these system types. We illustrate
how the use of freeform surfaces can expand the design space of the Three Mirror Compact
design type to allow both better performance at a given system volume and smaller volumes
for a given performance target. By evolving designs using conventional off-axis asphere type
surfaces to ever smaller volumes and then converting these off-axis asphere descriptions to
centered Zernike descriptions, we show that the wavefront error improves by up to 69% in this
case by allowing the surfaces to break rotational symmetry. In addition, we show that evolving
designs from the same starting point as the off-axis asphere designs but instead using a centered
Zernike description can produce a design with a 39% smaller volume in this case while
maintaining the same diffraction-limited performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

One of the advantages often ascribed to freeform optical surfaces is their ability to reduce the
mass or volume of rotationally non-symmetric optical systems while maintaining (and in some
cases, exceeding) optical performance [1-4]. To investigate this volume reduction capability
of freeform surfaces, we focus on the design of unobscured three mirror imagers. There are
many traditional forms of such optical systems, including the three-mirror anastigmat (TMA)
and the reflective triplet. Also known as the three-mirror compact (TMC), the unobscured
reflective triplet is often touted as the most compact (in terms of overall length and volume)
form of unobscured three mirror imager design [5—7]. The TMC and TMA have been popular
design forms for improvement using freeform surfaces [4,8—10].

The present work compares the effectiveness of two surface types in reducing the volume
of unobscured TMC designs. One is a traditional surface type, the off-axis section of a
rotationally symmetric aspheric parent. The second surface type is a field-centered FRINGE
Zernike freeform surface. We will use the FRINGE ordering of terms as specified in the CODE
V manual throughout this work, so “FRINGE Zernike” will be shortened to simply “Zernike”
or interchangeably “freeform” throughout [11]. We used Zernike polynomial surfaces in this
study for a number of reasons. First, they are a complete polynomial set and they are orthogonal.
Second, they are the basis set used in the aberration theory of freeform surfaces (ATFS) [12].
Additionally, Zernikes are well understood, simple to implement, and typically provide the
required degrees of freedom according to the ATFS. Prior work has shown that Zernikes are
equally capable for freeform design as other orthogonal polynomials [13], and there are many
examples of effective reflective systems using Zernike polynomial surface descriptions
[2,12,14,15].

The designs using sections of rotationally symmetric parent surfaces will be referred to as
three-mirror compact asphere (TMCA) designs and the designs using Zernike surfaces will be
referred to as three-mirror compact freeform (TMCF) designs in this work.
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In systems using off-axis sections of rotationally symmetric surfaces, field-bias and aperture
offset are used to unobscure the system. The field bias and aperture offset are akin to a tilt
and/or decenter of the surface with respect to the local object and image and the local entrance
and exit pupils for that surface. Because the field bias and aperture offset remove any rotational
symmetry in the field-dependence of the aberrations, the parent surfaces of the TMCA designs
should not be restricted to sharing an axis of rotational symmetry, as this restriction would
impose an added constraint on the TMCA designs not present in the TMCF designs. This is
analogous to the TMCF, which uses tilted surfaces to avoid obscuration rather than field-bias
and aperture offset. Thus, the only difference from an aberration standpoint between a non-
coaxial TMCA and a TMCEF are the restrictions on the surface shape that can be used to correct
the optical aberrations. Freeform surfaces allow more degrees of freedom than rotationally
symmetric surfaces do because their aberration contributions can be decoupled from each other,
as shown by Fuerschbach et al. [16].

The basic thesis of this work is that non-coaxial TMCAs have fewer layout options than
TMCFs. The way we exemplify this property is by starting with plane-symmetric, unobscured
non-coaxial TMCA designs from the literature and showing that, by adding freeform terms to
the surfaces, more plane-symmetric aberrations can be corrected; thus, allowing more layout
options for a given performance level, or better performance for a given first-order layout.

First, we describe the design process for the TMCA and a process to progressively reduce
the volume target. Next, we show that these TMCA designs can be converted to TMCF designs
with the same surface shapes but described using centered Zernike polynomials, which we term
the TMCF Converted designs. We then show that, without changing the first-order layout, the
Zernike polynomials can further correct aberrations that were not possible with the off-axis
asphere descriptions of the TMCA. These designs will be termed TMCF Frozen-Geometry
designs. Next, we use the same volume reduction algorithm on the TMCF designs to
progressively reduce the volume to determine the volume-performance relationship for
comparison to the TMCA-based designs. These designs are termed TMCF Volume-Optimized
designs. Finally, we summarize and discuss the results by looking at the aberration full-field
displays (FFDs) and the surface departures. For readability, the acronyms and descriptions for
each design completed in this work are summarized in Table 1.

Table 1. Naming convention and descriptions for the designs completed in this work

Design TMCA TMCF Converted TMCEF Frozen- TMCF'Vf)lume-
Name Geometry Optimized
Surface . Centered Fringe Centered Fringe Centered Fringe
Type Off-axis Qcox Zernike Zernike Zernike
Offanis g ertd o
asp_here centered Zernike TMC.F Converted TMCEF designs
designs, designs whose

surface types
(Identical in
performance and

optimized for a given
volume from 110 L to
S0L

Description | optimized for a
given volume

surface shapes are
optimized for

from 110 L to aberration correction
70L first-order layout to
TMCA designs)
Layout
optlml‘zed Yes No No Yes
for a given
volume?
Surface
coefficients Yes No Yes Yes
optimized?

2. Traditional TMC design — the TMCA

The TMC uses a positive-negative-positive power distribution without an internal image,
similar to the (refractive) Cooke triplet. Traditionally, TMCs are effective with the aperture
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stop at the primary or at the secondary [7], both having certain advantages depending on the
use case. The aperture stop at the secondary is best for controlling aberrations (similar to the
Cooke triplet) and allows for telecentricity in image space if needed. This work will focus on
TMC configurations with the aperture stop at the secondary.

Traditional design techniques for unobscured three mirror imagers using rotationally
symmetric surfaces typically start with a co-axial, rotationally symmetric, third-order
aberration corrected design, which can be obtained using myriad methods [17-19]. These co-
axial designs then use field-bias or aperture offset to remove the obscuration. Many designs
restrict the parent surfaces to remain co-axial, while others allow the parent surfaces to tilt and
decenter relative to one another after they are unobscured. Other approaches do not start from
rotationally symmetric designs, but instead consider tilted components with rotationally
symmetric parent surfaces (usually beginning with off-axis conics) [20—24]. These techniques
may start with given airspaces and radii, but do not allow specification of volume as a parameter
to constrain the solution. One difficulty with specifying the volume as a constraint on the first-
or third-order solution from these techniques is that there may be many first- or third-order
layouts that lead to a given volume from these techniques. In this study, since we are primarily
concerned with the relationship between volume and performance, we started from a well-
corrected non-coaxial TMCA design example and evolved it to meet our performance goals.
The alternative would have been to create a new first- or third-order starting point at each
volume target.

Fig. 1. The layout of the threemrc.len example lens in CODE V, a TMCA type design.

The reference design is the threemrc.len file included with the CODE V optical design
software shown in Fig. 1. The reference design uses a conic primary, a conic secondary, and a
10th order aspheric tertiary. This design was adapted to first fit the system specifications used
in this work, as reported in Table 2. Specifically, the system was scaled up by 2.5x to increase
the entrance pupil diameter (EPD) from 100 mm to 250 mm. Next, all three surfaces were
converted to Qcon surface types, which allow up to 30th radial order aspheric surface sag to be
added to a base conic [25]. Using aspheres with higher-order polynomial terms allows for more
aberration correction when the design is re-configured for a smaller volume than a simple conic
surface might allow. Qcon surfaces are normalized and orthogonal, which helps with
convergence, as shown by Forbes [25].
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Table 2. System specifications for the TMCA and TMCF designs

Parameter TMCA Specification =~ TMCF Specification
Entrance pupil diameter (mm) 250 Same

F-Number F/3.0 Same

Number of mirrors 3 Same

Distortion <5% Same

Square field-of-view (degrees) 3.75x3.75 Same

Surface type Off-axis Qcon Centered FRINGE Zernike
Wavelength for evaluation 587 Same

(nm)

Volume (L) 110 to 70 110 to 50

To reduce the volume, the airspaces and radii were allowed to vary so that a volume
reduction constraint could be applied. The Qcon surface terms up to 22nd order were allowed
to vary. In preliminary studies, terms higher than 22nd order did not have a beneficial effect on
aberration correction and tended to slow down the optimization. The surface y-decenters and
tilts about the x-axis were also allowed to vary. It was important to vary the surface decenters
as it allowed different portions of the aspheric surface to be used for aberration control and was
key to volume minimization. Clearance constraints were used to maintain the unobscured form.
To maintain clearance, the clear-aperture of each surface is constrained to be greater than 5 mm
from the closest ray.

The volume was determined by a simple algorithm calculating the smallest rectangular box
that bounds all the surface-ray intersections. The surface-ray intersections were calculated in
global coordinates relative to a given surface’s coordinate axes orientation. To compute the
volume of the bounding box, the maximum and minimum coordinate along each (x,y,z) axis is
computed and the difference is taken to give an extent along each axis (Lx, Ly, Lz). The volume
of the bounding box is then the product of the lengths. To find the minimum bounding box, this
procedure is repeated while rotating the coordinate frame, as illustrated in Fig. 2, and the
minimum volume is taken to give the smallest bounding rectangular box’s volume. This was
repeated relative to each surface and the smallest volume was chosen. This simple volume
algorithm allows us to quickly compute the volume and constrain the layout to The full Zernike
coefficients are listea given volume target. It is important to note, however, that this volume
may not be the as-built volume, for which other parameters must be considered, such as the
thickness of the mirror substrates, the mirror mounting hardware, the detector housing size, etc.
Even so, the optical ray-based volume we are using in this study and the as-built volume that
considers these parameters are likely closely related by a multiplicative factor, ceteris paribus.

Fig. 2. Diagram of surface-ray intersection coordinates (black dots) in the Y-Z plane at x =0 and
three bounding boxes in different coordinate frames (red, blue and green).

By using this volume algorithm as a constraint in optimization, the radii and airspaces were
able to change to fit the volume target. The volume was optimized to reduce the volume to a
target of 100 L, which was chosen based on previous studies to achieve a compact, diffraction-
limited design. To ascertain the performance at increasingly smaller volumes, the volume
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constraint target was progressively reduced in 0.1 L increments from 100 L down to 70 L to
obtain TMCA designs of varying performance and volume. The volume target was also
increased from 100 L up to 110 L, using the same procedure, to see the trend. This iterative
approach allowed the surface coefficients to re-optimize for each slightly smaller volume. At
each volume increment, first STEP optimization was used and then damped least squares
optimization was used in succession to minimize the wavefront error while maintaining the
volume target (see Chapter 3 in the CODE V Optimization Reference Manual [26]). One
advantage of this optimization approach is that it is able to find well-optimized designs for a
given volume for both TMCA and TMCF type designs by using small volume increments and
taking advantage of standard optimization routines in CODE V. One disadvantage is that this
process is lengthy due to the small volume increments. It is possible that local minima are found
(as with any complex optical design problem) but using STEP optimization and small
increments help to avoid local minima.

The resulting wavefront error (WFE) performance ranges from a field-averaged 0.062 A
RMS WFE at 110 L up to 0.31 A RMS WFE at 70 L. The full volume data are shown in Fig. 3.
The smallest volume for which the TMCA design has average RMS WFE at or below the
diffraction limit (i.e. 0.07 1) is 96.9 L.

Volume vs. RMS WFE performance ) Volume vs. RMS WFE performance
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Fig. 3. (a) Field-averaged RMS WFE performance versus volume for each design type. The
original TMCA design optimized for volume (blue line) crosses the 0.07 waves line at 96.9 L.
The TMCF Frozen-Geometry design (red line) crosses the 0.07 waves line at 72.6 L. The TMCF
Volume-Optimized design (yellow line) crosses the 0.07 wave line at 59.0 L. The reverse
optimization from 59 L to 110 L of the TMCF Volume-Optimized design (dashed green line)
avoids the local minimum of the TMCF Volume-Optimized forward optimization. (b) The same
data as the chart in (a), showing more detail in the 0.0 to 0.1 waves range.

3. Conversion of TMCA designs to centered Zernike surfaces

To determine the amount of improvement afforded by freeform surfaces for a given first-order
geometry, each TMCA design was converted from the off-axis asphere geometry to the
centered Zernike geometry. An algorithm was devised and implemented in a CODE V script to
convert the TMCA designs to the equivalent centered Zernike designs. The algorithm captures
a 3D surface profile of the effective aperture of each surface to produce a point cloud and the
coordinates are transformed such that the chief ray of the central field point defines the origin
of each surface. The coordinates are then tilted about the local x-axis such that the surface
normal is perpendicular to the local X-Y plane. This configuration is conducive to using a
decenter-and-bend (BEN) surface type in CODE V because there will be zero tilt at the center
of the surface, and as such the tilt about the x-axis (alpha tilt in CODE V) is equal to the angle
of incidence of the optical axis ray. The point cloud data for each surface is then fitted with a
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best fit sphere (BFS), and the residual sag after subtraction of the BFS is fitted with Zernike
terms up to Z37. For each TMCA design, the decenter-and-return (DAR) surface decenters are
converted to centered decenter-and-bend (BEN) surface decenters with only a tilt about the x-
axis. The surfaces are converted to Zernike FRINGE (ZFR) surface types and the computed
coefficients are entered. The RMS WFE of the converted designs differ by less than 1% from
110 L to 80 L, by less than 3.5% from 80 L to 70 L, and by 0.7% on average to the original
TMCA designs. These designs, referred to as “TMCF Converted” designs, as reported in Table
1, each have the same first-order geometry as the TMCA designs of the same volume, but are
simply represented by centered Zernike surface types instead of off-axis aspheres.

4. Additional WFE correction for the TMCF Converted designs using freeform
surfaces

To determine the amount of improvement afforded by freeform surfaces, the surface shapes of
the TMCF Converted designs were optimized. Specifically, the Y-Z plane symmetric surface
terms up to Z25 were allowed to vary. In these designs, referred to as TMCF Frozen-Geometry
as reported in Table 1, the first-order geometry, as their name indicate, was kept frozen (air-
spaces, radii, and surface tilt angles) to facilitate a comparison to the originating TMCA design
of the same volume.

As seen in Fig. 3, the TMCF Frozen-Geometry designs significantly improved upon the
average RMS WFE of the designs.

The improvement in RMS WFE compared to the TMCA designs at each volume ranges
from 0.031 waves at a volume of 110 L (a 50.4% improvement) up to 0.22 waves at a volume
of 70 L (a 69.2% improvement). The average percent RMS WFE improvement over the range
of volumes from 110 L to 70 L is 57.4%.

This analysis shows that, for a TMCA geometry optimized for a given volume, the
performance can typically be significantly improved by allowing the surface to depart from
rotational symmetry by adding freeform terms to the surface. Said another way, the optimal
surfaces for an unobscured TMC with a given volume are not, in general, sections of surfaces
with rotationally symmetric parents.

5. Additional volume reduction using freeform surfaces

We have seen that a given TMCA first-order layout can achieve a lower RMS WFE by allowing
the surfaces to break rotational symmetry. However, for a given volume target, we hypothesize
that the optimal TMCEF first-order geometry may be different than the optimal TMCA layout,
since the freeform surfaces of the TMCF can better correct the plane-symmetric aberrations.
To test this hypothesis, we used the same volume reduction algorithm as the TMCA designs to
create TMCF designs for each volume, starting with the 110 L TMCF Frozen-Geometry, and
progressively reducing the volume target down to 50 L.

Like the TMCA volume reduction, the TMCF airspaces and radii were allowed to vary. The
plane-symmetric Zernike terms up to Z25 (12 terms in total) were also allowed to vary. The
magnitude of the Zernike power term and the magnitude of the linear tilt terms were constrained
such that there is no Zernike power, tilt, or piston at the center of the surface. The resulting
volume vs. average RMS WFE performance is shown in Fig. 3. The resulting design with the
smallest volume having an average RMS WFE close to 0.07 waves has a volume of 59 L, a
39% reduction in volume compared to the diffraction-limited TMCA design.

In addition to the volume reduction curve for the TMCF Volume-Optimized designs shown
in Fig. 3, the optimization procedure was repeated in reverse starting from 59 L up to 110 L.
As we can see, this reverse optimization produces a smoothly varying line from 80 L down to
65 L and avoids the local minimum in the forward curve.
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6. Discussion

The above results illustrate that rotationally symmetric surfaces do not typically produce the
optimal surface shapes for a given first-order geometry when used in the context of a system
that inherently lacks rotational symmetry such as the unobscured TMC design form. To
understand why this is the case, we compare the three design types, TMCA, TMCF Frozen-
Geometry, and TMCF Volume-Optimized across similar volumes (iso-volume) and across
similar performance levels (iso-performance).

6.1 Iso-volume comparison

It is instructive to compare the three designs types at the same volume. A volume of 72.5 L is
the volume at which the TMCF Frozen-Geometry design is just below 0.07 waves average
RMS WFE. At this volume, Fig. 4 shows the layouts for each of the three design types. The
layouts for both the TMCA and the TMCF Frozen-Geometry designs are different from the
TMCF Volume-Optimized design. The centered Zernike surfaces are able to correct plane-
symmetric aberrations according to the ATFS [12], and therefore, the TMCF Volume-
Optimized design can take advantage of a first-order geometry that the TMCA cannot
adequately correct, and therefore achieves a lower RMS WFE. The optimal first-order layout
when using freeform surfaces is different than the optimal layout using rotationally symmetric
surfaces, as seen by comparing the two layouts in Fig. 4(a) and 4(b) with the layout in Fig. 4(c).

TMCA TMCF Frozen-Geometry TMCF Volume-Optimized

Fig. 4. Layouts of each design type corresponding to a volume of 72.5 L, the smallest diffraction-
limited volume of the TMCF Frozen-Geometry: (a) The TMCA, (b) TMCF Frozen-Geometry,
and (c) the TMCF Volume-Optimized designs. Note that the apparent overlap of the surfaces in
the layouts is due to the extension of the surfaces in the drawing program. The clear apertures
and the rays have no conflicts in the designs.

The level and type of aberration correction can be seen by examining the full-field displays
(FFD) of the Zernike aberrations for each of these designs. An FFD represents the magnitude
and, where appropriate, orientation of a given aberration across the full field-of-view using a
symbol. In general, comparing the TMCA and TMCF Frozen-Geometry designs, we see that
the TMCF Frozen-Geometry design is better able to correct the plane-symmetric aberrations,
or when correction is not possible (or not optimal), to achieve a better balance of the field-
dependence. For example, Fig. 5 shows the Zernike defocus FFD. The TMCA design has some
higher-order field curvature, while the TMCF Frozen-Geometry design is able to substantially
correct this aberration through balancing with a combination of Z4, Z8, 79, Z12, and Z15
Zernike surface coefficients. Figure 6 shows that the astigmatism is substantially reduced in
both TMCEF designs, with two astigmatism nodes being brought into the FOV. The same is true
for coma in Fig. 7 and spherical in Fig. 8. Furthermore, the TMCF Volume-Optimized design
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is able to achieve a better balance of these aberrations by changing the first-order layout.
Additionally, the TMCF designs are able to directly correct the field-constant elliptical coma
present in the TMCA design as seen in Fig. 9.
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Fig. 5. Zernike defocus (Z4) FFD for the (a) TMCA design, (b) TMCF Frozen-Geometry design,
and (¢) TMCF Volume-Optimized design. Blue indicates a positive value, red indicates a
negative value.
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Fig. 6. Zernike Astigmatism (Z5/26) FFD for the (a) TMCA design, (b) TMCF Frozen-
Geometry design, and (¢) TMCF Volume-Optimized design.
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Fig. 7. Zernike coma (Z7/Z8) FFD for the (a) TMCA design, (b) TMCF Frozen-Geometry
design, and (c) TMCF Volume-Optimized design.
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Fig. 8. Zernike spherical aberration (Z9) FFD for the (a) TMCA design, (b) TMCF Frozen-
Geometry design, and (c) TMCF Volume-Optimized design. Blue indicates a positive value, red
indicates a negative value.
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Fig. 9. Zernike elliptical coma (Z10/Z11) FFD for the (a) TMCA design, (b) TMCF Frozen-
Geometry design, and (¢) TMCF Volume-Optimized design.

Not only do the freeform surfaces allow for better correction of the rotationally non-
symmetric aberrations, but they also allow for better correction of rotationally symmetric
aberrations because of their beam-centered coordinate reference. Since the Zernike surface
departure is centered on the surface, the rotationally symmetric Zernike terms (Z4, Z9, 716,
Z25) can contribute directly to the correction of rotationally symmetric aberration terms, in
contrast to the off-axis asphere sections, where the rotationally symmetric contributions are not
separable from the plane-symmetric contributions. Similarly, the plane-symmetric terms can
contribute directly to the correction of plane-symmetric aberrations as determined by the ATFS
[12]. For example, Fig. 8 shows the Zernike spherical aberration for which there is a substantial
uncorrected field-constant term, but this can be removed directly using a Z9 surface shape at
the stop surface (or any other surface, for that matter [2,12]).

As seen in Table 3, the surface shapes in the TMCF designs depart further from a base
sphere in general. Except for M1 of the TMCA, the freeform surfaces depart more than the off-
axis aspheres. This extra departure is directly related to the centered nature of the Zernike
surfaces. When using off-axis aspheres, the surface coefficients are not orthogonal and are
furthermore coupled together in terms of their aberration correction abilities. However, the
centered Zernike surface terms are able to independently add surface departure and aberration
correction, and thus achieve better correction, while adding more departure. This is the inherent
tradeoff in achieving better correction through freeform surfaces, though recent work has
shown that the effect can be reduced by constraining the surface coefficient magnitudes without
sacrificing much correction ability [13].
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Table 3. Departure from Base Sphere for each design type in the iso-volume comparison

Maximum Departure from Base Sphere (microns)
TMCA  TMCEF Frozen-Geometry  TMCF Volume-Optimized

Ml 370 283 251
M2 20 172 239
M3 12 264 175

7. Iso-performance comparison

Another illustrative comparison is between TMC designs of the same performance. The layouts
of the three designs closest to 0.07 waves RMS WFE for each design type are shown in Fig.
10. The volumes of each bounding box are 96.9 L, 72.5 L, and 59.1 L in Figs. 10(a), 10(b), and
10(c), respectively. The bounding boxes are also shown overlaid in Fig. 10(d).

TMCA TMCF Frozen-Geometry TMCF V olume-Optimized

1.0L

T

e —
—

@)

Fig. 10. Layouts of the smallest volume diffraction-limited designs of each TMC type with their
bounding boxes: (a) The TMCA is shown with a blue bounding box, (b) the TMCF Frozen-
Geometry is shown with a red bounding box, and (c) the TMCF Volume-Optimized is shown
with a green bounding box. (d) The bounding boxes are shown next to each other for perspective.

The FFDs for each design type are shown in Figs. 11-13. Though these designs share similar
overall RMS WFE performance, they achieve a different balance of aberrations, similar to the
iso-volume comparison in Section 6a. Notably, the coma and higher order field-curvature are
substantially reduced in both TMCF designs, while the plane-symmetric astigmatism terms
actually increase for the TMCF designs. Evidently, the balance of aberrations in the TMCF
designs allows the first-order layout to shift to a lower volume configuration.
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Fig. 11. Zernike defocus (Z4) FFD for the: (a) TMCA design, (b) TMCF Frozen-Geometry
design, and (c) TMCF Volume-Optimized design. Blue indicates a positive value, red indicates
a negative value.
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Fig. 12. Zernike Astigmatism (Z5/Z6) FFD for the: (a) TMCA design, (b) TMCF Frozen-
Geometry design, and (¢) TMCF Volume-Optimized design.
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Fig. 13. Zernike coma (Z27/Z8) FFD for the: (a) TMCA design, (b) TMCF Frozen-Geometry
design, and (c) TMCF Volume-Optimized design.

Table 4 shows the departure from base sphere for each design type for the iso-performance
case. We are showing the surface departure as a way of comparing the aspheric nature of each
surface. For surfaces with slowly varying shapes like the low-order Zernike polynomials used
in this article, the sag and slope are closely correlated, so we have shown the maximum sag
departure from base sphere. The TMCA design has substantially lower departure than either
TMCF designs due largely to its larger volume and therefore slower surfaces. The surface
departures of the primaries in all geometries contribute most of the departure, but the departure
in both TMCF geometries are more balanced, and thus the aberration correction happening at
each surface is more balanced as well. This trade-off in volume vs departure is not inherent to
freeform, but it is accentuated by it. Faster optical surfaces are required for smaller volumes,
and tilting those faster optical surfaces creates more off-axis aberrations, resulting in more
required departure to correct those aberrations. However, freeform surfaces have more degrees
of freedom, allowing for more modes of departure, and therefore can achieve the larger
departures required to maintain performance at a given volume compared to off-axis sections
of rotationally symmetric parent surfaces. The full Zernike coefficients are listed in Tables 5-7
in the Appendix for reference.

Table 4. Departure from base sphere for each design type in the iso-performance
comparison

TMCF TMCF
TMCA Frozen- Volume-
Geometry  Optimized

Mirror Maximum departure from base sphere (microns)
Ml 208 310 488
M2 14 177 205

M3 20 204 169
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8. Conclusion

The ability of freeform surfaces to expand the design space for plane-symmetric unobscured
optical systems allows better overall correction of plane-symmetric aberrations for a given
volume resulting in greater performance for a given volume. This has been demonstrated by
progressively reducing the volume of a TMC design that uses rotationally symmetric surfaces
and converting the layout to an equivalent field-centered freeform design that is shown to better
correct the aberrations. Additionally, freeform surfaces allow for more compact first-order
layouts, which are not otherwise correctable using rotationally symmetric surfaces. This was
demonstrated by allowing the first-order layout of the converted designs to vary and achieving
not only better correction by up to 70%, but smaller volume as well by up to 39%. Finally, a
reduced volume comes at the expense of more freeform departures from the base sphere by up
to an order of magnitude.
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Appendix
Table 5. The FRINGE Zernike coefficients for the primary mirror representing
departure from base sphere for each diffraction-limited design.
TMCA TMCF Frozen-Geometry TMCF Volume-Optimized
969 L 72.5L 59.1L
Maximum Aperture Semi-Diameter (mm)

176.3330 176.3297 178.3835

Normalization Aperture Semi-Diameter (mm)
170.7363 176.3297 178.3835

FRINGE Zemike Coefficient, Primary Mirror (mm)

Z1 0.0002458149 —0.0499511345 —0.0459181158
72 0 0 0
VA] 0.1165349914 0.2743568100 0.3637282551
Z4 0.0000693106 —0.0745891417 —0.0686044094
Z5 —0.1353639608 —0.1303619649 —0.3191715585
Z6 0 0 0
z1 0 0 0
Z8 0.0580866222 0.1368588872 0.1813839316
79 0.0042482223 —0.0244205099 —0.0225119102
Z10 0 0 0
Z11 0.0021226646 —0.0111876327 —0.0053145466
Z12 0.0008326605 0.0032969007 0.0044426267
Z13 0 0 0
Z14 0 0 0
Z15 —0.0001083608 —0.0002331794 —0.0003350693
Z16 0.0000027475 0.0002118401 0.0001687888
z17 0.0000613417 —0.0000150526 0.0000036374
Z18 0 0 0
Z19 0 0 0
720 —0.0000238739 —0.0001049851 —0.0001578434
721 —0.0000058420 —0.0000020773 —0.0000120510
722 0 0 0
723 0 0 0
724 0.0000014837 —0.0000151256 —0.0000112040
725 —0.0000009877 —0.0000056571 —0.0000055946
726 0 0 0
727 —0.0000051085 0 0
728 —0.0000011038 0 0
729 0 0 0
730 0 0 0
731 ~0.0000002160 0 0
732 0.0000004731 0 0
Z33 0 0 0
734 0 0 0
735 ~0.0000007115 0 0
736 —0.0000008351 0 0
737 —0.0000003518 0 0
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Table 6. The FRINGE Zernike coefficients for the secondary mirror representing
departure from base sphere for each diffraction-limited design.

TMCA TMCF Frozen-Geometry TMCF Volume-Optimized
969 L 72.5L 59.1L

Maximum Aperture Semi-Diameter (mm)

58.8430 58.1558 51.8783
Normalization Aperture Semi-Diameter (mm)
59.8540 58.1558 51.8783
FRINGE Zernike Coefficient, Secondary Mirror (mm)

Z1 —0.0000370732 0.0040222707 —0.0432379214
72 0 0 0
Z3 —0.0108838775 0.0309447052 0.0519336946
Z4 —0.0000594983 0.0060388280 —0.0641484832
Z5 0.0075685216 0.1637450199 0.0459991873
Z6 0 0 0
z 0 0 0
Z8 —0.0056694096 0.0152122037 0.0258454803
79 —0.0009023299 0.0020221364 —-0.0204517791
Z10 0 0 0
Z11 0.0004316819 —0.0129031757 —0.0079094718
Z12 0.0003507853 0.0014483055 0.0008160642
Z13 0 0 0
714 0 0 0
Z15 —0.0001534008 —0.0001660436 —0.0000823412
716 —0.0000141538 0.0000070524 0.0004486702
z17 0.0000094924 —0.0001867808 —0.0001358152
Z18 0 0 0
Z19 0 0 0
720 —0.0000069325 —0.0000450512 —0.0000314659
721 —0.0000014708 —0.0000007223 —0.0000021700
722 0 0 0
723 0 0 0
724 —0.0000007616 0.0000055418 —0.0000010724
725 —0.0000000722 0.0000014733 —0.0000101124
726 0 0 0
727 —0.0000019708 0 0
728 —0.0000020352 0 0
729 0 0 0
730 0 0 0
Z31 0.0000008731 0 0
732 0.0000001185 0 0
733 0 0 0
734 0 0 0
735 —0.0000003232 0 0
736 0.0000001153 0 0
737 0.0000001151 0 0
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Table 7. The FRINGE Zernike coefficients for the tertiary mirror representing departure
from base sphere for each diffraction-limited design.

TMCA TMCF Frozen-Geometry TMCF Volume-Optimized
969 L 72.5L 59.1L
Maximum Aperture Semi-Diameter (mm)

130.8382 112.8335 95.8424

Normalization Aperture Semi-Diameter (mm)
127.0619 112.8335 95.8424

FRINGE Zemike Coefficient, Tertiary Mirror (mm)

Z1 —-0.0000295027 —0.0238951186 —0.0038304336
Z2 0 0 0
VA] 0.0184948453 0.0296065412 0.0334096363
74 0.0000075512 —0.0359900827 —0.0057675680
Z5 0.0052708109 0.1735489688 0.1215498815
76 0 0 0
z7 0 0 0
78 0.0093525473 0.0148120812 0.0167007000
79 —0.0030420183 —0.0121925764 —0.0019534687
Z10 0 0 0
Z11 0.0000009640 —0.0176368745 —0.0117847907
712 0.0000197513 0.0014581633 0.0007988727
Z13 0 0 0
714 0 0 0
Z15 0.0000638552 0.0000104340 —0.0000074654
716 —0.0000270045 —0.0000971190 —0.0000176261
z17 0.0000038198 —0.0006640551 —0.0004828835
Z18 0 0 0
719 0 0 0
720 0.0000039500 —0.0001134695 —0.0000401195
721 —0.0000051920 0.0000000153 —-0.0000066702
722 0 0 0
723 0 0 0
724 —0.0000049411 0.0000034202 —0.0000035400
725 0.0000008578 0.0000004933 —0.0000012918
726 0 0 0
727 —0.0000003919 0 0
728 0.0000026877 0 0
729 0 0 0
730 0 0 0
731 0.0000026547 0 0
732 ~0.0000027713 0 0
733 0 0 0
734 0 0 0
735 —0.0000016328 0 0
736 —0.0000014470 0 0
737 —0.0000013066 0 0

Funding

National Science Foundation I/UCRC Center for Freeform Optics (ITP-1338877, ITP-1338898,
[IP-1822049 and IIP-1822026) and the National Nuclear Security Administration (DE-
NA0001944) through the Frank J. Horton Graduate Research Fellowship awarded by the
Laboratory for Laser Energetics at the University of Rochester.

References

1. J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased
compactness,” Light Sci. Appl. 6(7), 17026 (2017).

2. A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform
optics,” Nat. Commun. 9(1), 1756 (2018).

3. K. Fuerschbach, G. E. Davis, K. P. Thompson, and J. P. Rolland, “Assembly of a freeform off-axis optical
system employing three @-polynomial Zernike mirrors,” Opt. Lett. 39(10), 28962899 (2014).



Research Article Vol. 27, No. 15| 22 Jul 2019 | OPTICS EXPRESS 21765 I

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

Optics EXPRESS N Y

R. Geyl, H. Leplan, and E. Ruch, “Advanced space optics development in freeform optics design, ceramic
polishing, rapid and extreme freeform polishing,” Proc. SPIE 10562, 105623S (2017).

W. B. Wetherell and D. A. Womble, “All-reflective three element objective,” U.S. patent US4240707A
(December 23, 1980).

L. G. Cook, “Reflective optical triplet having a real entrance pupil,” U.S. patent US4733955A (March 29, 1988).
J. M. Rodgers, “Unobscured mirror designs,” Proc. SPIE 4832, 33—60 (2002).

E. Muslimov, E. Hugot, W. Jahn, S. Vives, M. Ferrari, B. Chambion, D. Henry, and C. Gaschet, “Combining
freeform optics and curved detectors for wide field imaging: a polynomial approach over squared aperture,” Opt.
Express 25(13), 14598-14610 (2017).

J. Zhu, W. Hou, X. Zhang, and G. Jin, “Design of a low F-number freeform off-axis three-mirror system with
rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).

. A. Bromel, H. Gross, D. Ochse, U. Lippmann, C. Ma, Y. Zhong, and M. Oleszko, “Performance comparison of

polynomial representations for optimizing optical freeform systems,” Proc. SPIE 9626, 96260W (2015).

. “Appendix A Zernike Polynomials,” in CODE V Lens System Setup Reference Manual (Synopsys Inc., 2018),

p. 573.

. K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “Theory of aberration fields for general optical systems with

freeform surfaces,” Opt. Express 22(22), 26585-26606 (2014).

. N. Takaki, A. Bauer, and J. P. Rolland, “On-the-fly surface manufacturability constraints for freeform optical

design enabled by orthogonal polynomials,” Opt. Express 27(5), 6129-6146 (2019).

. Z.Zheng, X. Sun, X. Liu, and P. Gu, “Design of reflective projection lens with Zernike polynomials surfaces,”

Displays 29(4), 412-417 (2008).

. K. Fuerschbach, “Freeform optical surfaces for field biased and decentered aperture reflective optical design,” in

Optical Design and Fabrication 2019 (Freeform, OFT), 2019.

. K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “A new family of optical systems employing ¢-polynomial

surfaces,” Opt. Express 19(22), 21919-21928 (2011).

A. Rakich and N. Rumsey, “Method for deriving the complete solution set for three-mirror anastigmatic
telescopes with two spherical mirrors,” J. Opt. Soc. Am. A 19(7), 1398-1405 (2002).

A. Rakich, “Reflecting anastigmatic optical systems: a retrospective,” Opt. Eng. 57(10), 101701 (2018).

D. Korsch, “Closed-form solutions for imaging systems, corrected for third-order aberrations,” JOSA 63(6),
667-672 (1973).

J. R. Rogers, “Techniques and tools for obtaining symmetrical performance from tilted-component systems,”
Opt. Eng. 39(7), 1776-1787 (2000).

R. A. Buchroeder, “Tilted-component telescopes. Part I: theory,” Appl. Opt. 9(9), 2169-2171 (1970).

R. A. Buchroeder, “Design Examples of Tilted-Component Telescopes (TCT’s) (A Class of Unobscured
Reflectors),” in Optical Sciences Technical Report, No. 68 (Optical Sciences Center, University of Arizona,
1971).

R. A. Buchroeder, “Tilted component optical systems,” PhD, University of Arizona (1976).

J. C. Papa, J. M. Howard, and J. P. Rolland, “Starting point designs for freeform four-mirror systems,” Opt. Eng.
57(10), 101705 (2018).

G. W. Forbes, “Robust, efficient computational methods for axially symmetric optical aspheres,” Opt. Express
18(19), 19700-19712 (2010).

“Chapter 3 Optimization Modes,” in CODE V Optimization Reference Manual, Version 11.2 (Synopsys Inc.)
(2018).



	1. Introduction
	Table 1. Naming convention and descriptions for the designs completed in this work
	2. Traditional TMC design – the TMCA
	Fig. 1. The layout of the threemrc.len example lens in CODE V, a TMCA type design.
	Table 2. System specifications for the TMCA and TMCF designs
	Fig. 2. Diagram of surface-ray intersection coordinates (black dots) in the Y-Z plane at x = 0 and three bounding boxes in different coordinate frames (red, blue and green).
	Fig. 3. (a) Field-averaged RMS WFE performance versus volume for each design type. The original TMCA design optimized for volume (blue line) crosses the 0.07 waves line at 96.9 L. The TMCF Frozen-Geometry design (red line) crosses the 0.07 waves line ...
	3. Conversion of TMCA designs to centered Zernike surfaces
	4. Additional WFE correction for the TMCF Converted designs using freeform surfaces
	5. Additional volume reduction using freeform surfaces
	6. Discussion
	6.1 Iso-volume comparison

	Fig. 4. Layouts of each design type corresponding to a volume of 72.5 L, the smallest diffraction-limited volume of the TMCF Frozen-Geometry: (a) The TMCA, (b) TMCF Frozen-Geometry, and (c) the TMCF Volume-Optimized designs. Note that the apparent ove...
	Fig. 5. Zernike defocus (Z4) FFD for the (a) TMCA design, (b) TMCF Frozen-Geometry design, and (c) TMCF Volume-Optimized design. Blue indicates a positive value, red indicates a negative value.
	Fig. 6. Zernike Astigmatism (Z5/Z6) FFD for the (a) TMCA design, (b) TMCF Frozen-Geometry design, and (c) TMCF Volume-Optimized design.
	Fig. 7. Zernike coma (Z7/Z8) FFD for the (a) TMCA design, (b) TMCF Frozen-Geometry design, and (c) TMCF Volume-Optimized design.
	Fig. 8. Zernike spherical aberration (Z9) FFD for the (a) TMCA design, (b) TMCF Frozen-Geometry design, and (c) TMCF Volume-Optimized design. Blue indicates a positive value, red indicates a negative value.
	Fig. 9. Zernike elliptical coma (Z10/Z11) FFD for the (a) TMCA design, (b) TMCF Frozen-Geometry design, and (c) TMCF Volume-Optimized design.
	Table 3. Departure from Base Sphere for each design type in the iso-volume comparison
	7. Iso-performance comparison
	Fig. 10. Layouts of the smallest volume diffraction-limited designs of each TMC type with their bounding boxes: (a) The TMCA is shown with a blue bounding box, (b) the TMCF Frozen-Geometry is shown with a red bounding box, and (c) the TMCF Volume-Opti...
	Fig. 11. Zernike defocus (Z4) FFD for the: (a) TMCA design, (b) TMCF Frozen-Geometry design, and (c) TMCF Volume-Optimized design. Blue indicates a positive value, red indicates a negative value.
	Fig. 12. Zernike Astigmatism (Z5/Z6) FFD for the: (a) TMCA design, (b) TMCF Frozen-Geometry design, and (c) TMCF Volume-Optimized design.
	Fig. 13. Zernike coma (Z7/Z8) FFD for the: (a) TMCA design, (b) TMCF Frozen-Geometry design, and (c) TMCF Volume-Optimized design.
	Table 4. Departure from base sphere for each design type in the iso-performance comparison
	8. Conclusion
	Appendix
	Table 5. The FRINGE Zernike coefficients for the primary mirror representing departure from base sphere for each diffraction-limited design.
	Table 6. The FRINGE Zernike coefficients for the secondary mirror representing departure from base sphere for each diffraction-limited design.
	Table 7. The FRINGE Zernike coefficients for the tertiary mirror representing departure from base sphere for each diffraction-limited design.
	References



