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Abstract: The invention of new design techniques for unobscured reflective systems using 
freeform surfaces has expanded the optical design space for these system types. We illustrate 
how the use of freeform surfaces can expand the design space of the Three Mirror Compact 
design type to allow both better performance at a given system volume and smaller volumes 
for a given performance target. By evolving designs using conventional off-axis asphere type 
surfaces to ever smaller volumes and then converting these off-axis asphere descriptions to 
centered Zernike descriptions, we show that the wavefront error improves by up to 69% in this 
case by allowing the surfaces to break rotational symmetry. In addition, we show that evolving 
designs from the same starting point as the off-axis asphere designs but instead using a centered 
Zernike description can produce a design with a 39% smaller volume in this case while 
maintaining the same diffraction-limited performance. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
One of the advantages often ascribed to freeform optical surfaces is their ability to reduce the 
mass or volume of rotationally non-symmetric optical systems while maintaining (and in some 
cases, exceeding) optical performance [1–4]. To investigate this volume reduction capability 
of freeform surfaces, we focus on the design of unobscured three mirror imagers. There are 
many traditional forms of such optical systems, including the three-mirror anastigmat (TMA) 
and the reflective triplet. Also known as the three-mirror compact (TMC), the unobscured 
reflective triplet is often touted as the most compact (in terms of overall length and volume) 
form of unobscured three mirror imager design [5–7]. The TMC and TMA have been popular 
design forms for improvement using freeform surfaces [4,8–10]. 

The present work compares the effectiveness of two surface types in reducing the volume 
of unobscured TMC designs. One is a traditional surface type, the off-axis section of a 
rotationally symmetric aspheric parent. The second surface type is a field-centered FRINGE 
Zernike freeform surface. We will use the FRINGE ordering of terms as specified in the CODE 
V manual throughout this work, so “FRINGE Zernike” will be shortened to simply “Zernike” 
or interchangeably “freeform” throughout [11]. We used Zernike polynomial surfaces in this 
study for a number of reasons. First, they are a complete polynomial set and they are orthogonal. 
Second, they are the basis set used in the aberration theory of freeform surfaces (ATFS) [12]. 
Additionally, Zernikes are well understood, simple to implement, and typically provide the 
required degrees of freedom according to the ATFS. Prior work has shown that Zernikes are 
equally capable for freeform design as other orthogonal polynomials [13], and there are many 
examples of effective reflective systems using Zernike polynomial surface descriptions 
[2,12,14,15]. 

The designs using sections of rotationally symmetric parent surfaces will be referred to as 
three-mirror compact asphere (TMCA) designs and the designs using Zernike surfaces will be 
referred to as three-mirror compact freeform (TMCF) designs in this work. 
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In systems using off-axis sections of rotationally symmetric surfaces, field-bias and aperture 
offset are used to unobscure the system. The field bias and aperture offset are akin to a tilt 
and/or decenter of the surface with respect to the local object and image and the local entrance 
and exit pupils for that surface. Because the field bias and aperture offset remove any rotational 
symmetry in the field-dependence of the aberrations, the parent surfaces of the TMCA designs 
should not be restricted to sharing an axis of rotational symmetry, as this restriction would 
impose an added constraint on the TMCA designs not present in the TMCF designs. This is 
analogous to the TMCF, which uses tilted surfaces to avoid obscuration rather than field-bias 
and aperture offset. Thus, the only difference from an aberration standpoint between a non-
coaxial TMCA and a TMCF are the restrictions on the surface shape that can be used to correct 
the optical aberrations. Freeform surfaces allow more degrees of freedom than rotationally 
symmetric surfaces do because their aberration contributions can be decoupled from each other, 
as shown by Fuerschbach et al. [16]. 

The basic thesis of this work is that non-coaxial TMCAs have fewer layout options than 
TMCFs. The way we exemplify this property is by starting with plane-symmetric, unobscured 
non-coaxial TMCA designs from the literature and showing that, by adding freeform terms to 
the surfaces, more plane-symmetric aberrations can be corrected; thus, allowing more layout 
options for a given performance level, or better performance for a given first-order layout. 

First, we describe the design process for the TMCA and a process to progressively reduce 
the volume target. Next, we show that these TMCA designs can be converted to TMCF designs 
with the same surface shapes but described using centered Zernike polynomials, which we term 
the TMCF Converted designs. We then show that, without changing the first-order layout, the 
Zernike polynomials can further correct aberrations that were not possible with the off-axis 
asphere descriptions of the TMCA. These designs will be termed TMCF Frozen-Geometry 
designs. Next, we use the same volume reduction algorithm on the TMCF designs to 
progressively reduce the volume to determine the volume-performance relationship for 
comparison to the TMCA-based designs. These designs are termed TMCF Volume-Optimized 
designs. Finally, we summarize and discuss the results by looking at the aberration full-field 
displays (FFDs) and the surface departures. For readability, the acronyms and descriptions for 
each design completed in this work are summarized in Table 1. 

Table 1. Naming convention and descriptions for the designs completed in this work 

Design 
Name TMCA TMCF Converted TMCF Frozen-

Geometry 
TMCF Volume-

Optimized 
Surface 
Type Off-axis QCON Centered Fringe 

Zernike 
Centered Fringe 

Zernike 
Centered Fringe 

Zernike 

Description 

Off-axis 
asphere 
designs, 

optimized for a 
given volume 
from 110 L to 

70 L 

Off-axis asphere 
designs converted to 

centered Zernike 
surface types 
(Identical in 

performance and 
first-order layout to 

TMCA designs) 

TMCF Converted 
designs whose 

surface shapes are 
optimized for 

aberration correction 

TMCF designs 
optimized for a given 
volume from 110 L to 

50 L 

Layout 
optimized 
for a given 
volume? 

Yes No No Yes 

Surface 
coefficients 
optimized? 

Yes No Yes Yes 

2. Traditional TMC design – the TMCA 
The TMC uses a positive-negative-positive power distribution without an internal image, 
similar to the (refractive) Cooke triplet. Traditionally, TMCs are effective with the aperture 
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stop at the primary or at the secondary [7], both having certain advantages depending on the 
use case. The aperture stop at the secondary is best for controlling aberrations (similar to the 
Cooke triplet) and allows for telecentricity in image space if needed. This work will focus on 
TMC configurations with the aperture stop at the secondary. 

Traditional design techniques for unobscured three mirror imagers using rotationally 
symmetric surfaces typically start with a co-axial, rotationally symmetric, third-order 
aberration corrected design, which can be obtained using myriad methods [17–19]. These co-
axial designs then use field-bias or aperture offset to remove the obscuration. Many designs 
restrict the parent surfaces to remain co-axial, while others allow the parent surfaces to tilt and 
decenter relative to one another after they are unobscured. Other approaches do not start from 
rotationally symmetric designs, but instead consider tilted components with rotationally 
symmetric parent surfaces (usually beginning with off-axis conics) [20–24]. These techniques 
may start with given airspaces and radii, but do not allow specification of volume as a parameter 
to constrain the solution. One difficulty with specifying the volume as a constraint on the first- 
or third-order solution from these techniques is that there may be many first- or third-order 
layouts that lead to a given volume from these techniques. In this study, since we are primarily 
concerned with the relationship between volume and performance, we started from a well-
corrected non-coaxial TMCA design example and evolved it to meet our performance goals. 
The alternative would have been to create a new first- or third-order starting point at each 
volume target. 

 
Fig. 1. The layout of the threemrc.len example lens in CODE V, a TMCA type design. 

The reference design is the threemrc.len file included with the CODE V optical design 
software shown in Fig. 1. The reference design uses a conic primary, a conic secondary, and a 
10th order aspheric tertiary. This design was adapted to first fit the system specifications used 
in this work, as reported in Table 2. Specifically, the system was scaled up by 2.5x to increase 
the entrance pupil diameter (EPD) from 100 mm to 250 mm. Next, all three surfaces were 
converted to QCON surface types, which allow up to 30th radial order aspheric surface sag to be 
added to a base conic [25]. Using aspheres with higher-order polynomial terms allows for more 
aberration correction when the design is re-configured for a smaller volume than a simple conic 
surface might allow. QCON surfaces are normalized and orthogonal, which helps with 
convergence, as shown by Forbes [25]. 
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Table 2. System specifications for the TMCA and TMCF designs 

Parameter TMCA Specification TMCF Specification 
Entrance pupil diameter (mm) 250 Same 
F-Number F/3.0 Same 
Number of mirrors 3 Same 
Distortion < 5% Same 
Square field-of-view (degrees) 3.75 x 3.75 Same 
Surface type Off-axis QCON Centered FRINGE Zernike 
Wavelength for evaluation 
(nm) 

587 Same 

Volume (L) 110 to 70 110 to 50 

To reduce the volume, the airspaces and radii were allowed to vary so that a volume 
reduction constraint could be applied. The QCON surface terms up to 22nd order were allowed 
to vary. In preliminary studies, terms higher than 22nd order did not have a beneficial effect on 
aberration correction and tended to slow down the optimization. The surface y-decenters and 
tilts about the x-axis were also allowed to vary. It was important to vary the surface decenters 
as it allowed different portions of the aspheric surface to be used for aberration control and was 
key to volume minimization. Clearance constraints were used to maintain the unobscured form. 
To maintain clearance, the clear-aperture of each surface is constrained to be greater than 5 mm 
from the closest ray. 

The volume was determined by a simple algorithm calculating the smallest rectangular box 
that bounds all the surface-ray intersections. The surface-ray intersections were calculated in 
global coordinates relative to a given surface’s coordinate axes orientation. To compute the 
volume of the bounding box, the maximum and minimum coordinate along each (x,y,z) axis is 
computed and the difference is taken to give an extent along each axis (Lx, Ly, Lz). The volume 
of the bounding box is then the product of the lengths. To find the minimum bounding box, this 
procedure is repeated while rotating the coordinate frame, as illustrated in Fig. 2, and the 
minimum volume is taken to give the smallest bounding rectangular box’s volume. This was 
repeated relative to each surface and the smallest volume was chosen. This simple volume 
algorithm allows us to quickly compute the volume and constrain the layout to The full Zernike 
coefficients are listea given volume target. It is important to note, however, that this volume 
may not be the as-built volume, for which other parameters must be considered, such as the 
thickness of the mirror substrates, the mirror mounting hardware, the detector housing size, etc. 
Even so, the optical ray-based volume we are using in this study and the as-built volume that 
considers these parameters are likely closely related by a multiplicative factor, ceteris paribus. 

 
Fig. 2. Diagram of surface-ray intersection coordinates (black dots) in the Y-Z plane at x = 0 and 
three bounding boxes in different coordinate frames (red, blue and green). 

By using this volume algorithm as a constraint in optimization, the radii and airspaces were 
able to change to fit the volume target. The volume was optimized to reduce the volume to a 
target of 100 L, which was chosen based on previous studies to achieve a compact, diffraction-
limited design. To ascertain the performance at increasingly smaller volumes, the volume 
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constraint target was progressively reduced in 0.1 L increments from 100 L down to 70 L to 
obtain TMCA designs of varying performance and volume. The volume target was also 
increased from 100 L up to 110 L, using the same procedure, to see the trend. This iterative 
approach allowed the surface coefficients to re-optimize for each slightly smaller volume. At 
each volume increment, first STEP optimization was used and then damped least squares 
optimization was used in succession to minimize the wavefront error while maintaining the 
volume target (see Chapter 3 in the CODE V Optimization Reference Manual [26]). One 
advantage of this optimization approach is that it is able to find well-optimized designs for a 
given volume for both TMCA and TMCF type designs by using small volume increments and 
taking advantage of standard optimization routines in CODE V. One disadvantage is that this 
process is lengthy due to the small volume increments. It is possible that local minima are found 
(as with any complex optical design problem) but using STEP optimization and small 
increments help to avoid local minima. 

The resulting wavefront error (WFE) performance ranges from a field-averaged 0.062 λ 
RMS WFE at 110 L up to 0.31 λ RMS WFE at 70 L. The full volume data are shown in Fig. 3. 
The smallest volume for which the TMCA design has average RMS WFE at or below the 
diffraction limit (i.e. 0.07 λ) is 96.9 L. 

 
Fig. 3. (a) Field-averaged RMS WFE performance versus volume for each design type. The 
original TMCA design optimized for volume (blue line) crosses the 0.07 waves line at 96.9 L. 
The TMCF Frozen-Geometry design (red line) crosses the 0.07 waves line at 72.6 L. The TMCF 
Volume-Optimized design (yellow line) crosses the 0.07 wave line at 59.0 L. The reverse 
optimization from 59 L to 110 L of the TMCF Volume-Optimized design (dashed green line) 
avoids the local minimum of the TMCF Volume-Optimized forward optimization. (b) The same 
data as the chart in (a), showing more detail in the 0.0 to 0.1 waves range. 

3. Conversion of TMCA designs to centered Zernike surfaces 
To determine the amount of improvement afforded by freeform surfaces for a given first-order 
geometry, each TMCA design was converted from the off-axis asphere geometry to the 
centered Zernike geometry. An algorithm was devised and implemented in a CODE V script to 
convert the TMCA designs to the equivalent centered Zernike designs. The algorithm captures 
a 3D surface profile of the effective aperture of each surface to produce a point cloud and the 
coordinates are transformed such that the chief ray of the central field point defines the origin 
of each surface. The coordinates are then tilted about the local x-axis such that the surface 
normal is perpendicular to the local X-Y plane. This configuration is conducive to using a 
decenter-and-bend (BEN) surface type in CODE V because there will be zero tilt at the center 
of the surface, and as such the tilt about the x-axis (alpha tilt in CODE V) is equal to the angle 
of incidence of the optical axis ray. The point cloud data for each surface is then fitted with a 

                                                                                                Vol. 27, No. 15 | 22 Jul 2019 | OPTICS EXPRESS 21754 



best fit sphere (BFS), and the residual sag after subtraction of the BFS is fitted with Zernike 
terms up to Z37. For each TMCA design, the decenter-and-return (DAR) surface decenters are 
converted to centered decenter-and-bend (BEN) surface decenters with only a tilt about the x-
axis. The surfaces are converted to Zernike FRINGE (ZFR) surface types and the computed 
coefficients are entered. The RMS WFE of the converted designs differ by less than 1% from 
110 L to 80 L, by less than 3.5% from 80 L to 70 L, and by 0.7% on average to the original 
TMCA designs. These designs, referred to as “TMCF Converted” designs, as reported in Table 
1, each have the same first-order geometry as the TMCA designs of the same volume, but are 
simply represented by centered Zernike surface types instead of off-axis aspheres. 

4. Additional WFE correction for the TMCF Converted designs using freeform 
surfaces 
To determine the amount of improvement afforded by freeform surfaces, the surface shapes of 
the TMCF Converted designs were optimized. Specifically, the Y-Z plane symmetric surface 
terms up to Z25 were allowed to vary. In these designs, referred to as TMCF Frozen-Geometry 
as reported in Table 1, the first-order geometry, as their name indicate, was kept frozen (air-
spaces, radii, and surface tilt angles) to facilitate a comparison to the originating TMCA design 
of the same volume. 

As seen in Fig. 3, the TMCF Frozen-Geometry designs significantly improved upon the 
average RMS WFE of the designs. 

The improvement in RMS WFE compared to the TMCA designs at each volume ranges 
from 0.031 waves at a volume of 110 L (a 50.4% improvement) up to 0.22 waves at a volume 
of 70 L (a 69.2% improvement). The average percent RMS WFE improvement over the range 
of volumes from 110 L to 70 L is 57.4%. 

This analysis shows that, for a TMCA geometry optimized for a given volume, the 
performance can typically be significantly improved by allowing the surface to depart from 
rotational symmetry by adding freeform terms to the surface. Said another way, the optimal 
surfaces for an unobscured TMC with a given volume are not, in general, sections of surfaces 
with rotationally symmetric parents. 

5. Additional volume reduction using freeform surfaces 
We have seen that a given TMCA first-order layout can achieve a lower RMS WFE by allowing 
the surfaces to break rotational symmetry. However, for a given volume target, we hypothesize 
that the optimal TMCF first-order geometry may be different than the optimal TMCA layout, 
since the freeform surfaces of the TMCF can better correct the plane-symmetric aberrations. 
To test this hypothesis, we used the same volume reduction algorithm as the TMCA designs to 
create TMCF designs for each volume, starting with the 110 L TMCF Frozen-Geometry, and 
progressively reducing the volume target down to 50 L. 

Like the TMCA volume reduction, the TMCF airspaces and radii were allowed to vary. The 
plane-symmetric Zernike terms up to Z25 (12 terms in total) were also allowed to vary. The 
magnitude of the Zernike power term and the magnitude of the linear tilt terms were constrained 
such that there is no Zernike power, tilt, or piston at the center of the surface. The resulting 
volume vs. average RMS WFE performance is shown in Fig. 3. The resulting design with the 
smallest volume having an average RMS WFE close to 0.07 waves has a volume of 59 L, a 
39% reduction in volume compared to the diffraction-limited TMCA design. 

In addition to the volume reduction curve for the TMCF Volume-Optimized designs shown 
in Fig. 3, the optimization procedure was repeated in reverse starting from 59 L up to 110 L. 
As we can see, this reverse optimization produces a smoothly varying line from 80 L down to 
65 L and avoids the local minimum in the forward curve. 
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6. Discussion 
The above results illustrate that rotationally symmetric surfaces do not typically produce the 
optimal surface shapes for a given first-order geometry when used in the context of a system 
that inherently lacks rotational symmetry such as the unobscured TMC design form. To 
understand why this is the case, we compare the three design types, TMCA, TMCF Frozen-
Geometry, and TMCF Volume-Optimized across similar volumes (iso-volume) and across 
similar performance levels (iso-performance). 

6.1 Iso-volume comparison 

It is instructive to compare the three designs types at the same volume. A volume of 72.5 L is 
the volume at which the TMCF Frozen-Geometry design is just below 0.07 waves average 
RMS WFE. At this volume, Fig. 4 shows the layouts for each of the three design types. The 
layouts for both the TMCA and the TMCF Frozen-Geometry designs are different from the 
TMCF Volume-Optimized design. The centered Zernike surfaces are able to correct plane-
symmetric aberrations according to the ATFS [12], and therefore, the TMCF Volume-
Optimized design can take advantage of a first-order geometry that the TMCA cannot 
adequately correct, and therefore achieves a lower RMS WFE. The optimal first-order layout 
when using freeform surfaces is different than the optimal layout using rotationally symmetric 
surfaces, as seen by comparing the two layouts in Fig. 4(a) and 4(b) with the layout in Fig. 4(c). 

 
Fig. 4. Layouts of each design type corresponding to a volume of 72.5 L, the smallest diffraction-
limited volume of the TMCF Frozen-Geometry: (a) The TMCA, (b) TMCF Frozen-Geometry, 
and (c) the TMCF Volume-Optimized designs. Note that the apparent overlap of the surfaces in 
the layouts is due to the extension of the surfaces in the drawing program. The clear apertures 
and the rays have no conflicts in the designs. 

The level and type of aberration correction can be seen by examining the full-field displays 
(FFD) of the Zernike aberrations for each of these designs. An FFD represents the magnitude 
and, where appropriate, orientation of a given aberration across the full field-of-view using a 
symbol. In general, comparing the TMCA and TMCF Frozen-Geometry designs, we see that 
the TMCF Frozen-Geometry design is better able to correct the plane-symmetric aberrations, 
or when correction is not possible (or not optimal), to achieve a better balance of the field-
dependence. For example, Fig. 5 shows the Zernike defocus FFD. The TMCA design has some 
higher-order field curvature, while the TMCF Frozen-Geometry design is able to substantially 
correct this aberration through balancing with a combination of Z4, Z8, Z9, Z12, and Z15 
Zernike surface coefficients. Figure 6 shows that the astigmatism is substantially reduced in 
both TMCF designs, with two astigmatism nodes being brought into the FOV. The same is true 
for coma in Fig. 7 and spherical in Fig. 8. Furthermore, the TMCF Volume-Optimized design 
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is able to achieve a better balance of these aberrations by changing the first-order layout. 
Additionally, the TMCF designs are able to directly correct the field-constant elliptical coma 
present in the TMCA design as seen in Fig. 9. 

 

Fig. 5. Zernike defocus (Z4) FFD for the (a) TMCA design, (b) TMCF Frozen-Geometry design, 
and (c) TMCF Volume-Optimized design. Blue indicates a positive value, red indicates a 
negative value. 

 

Fig. 6. Zernike Astigmatism (Z5/Z6) FFD for the (a) TMCA design, (b) TMCF Frozen-
Geometry design, and (c) TMCF Volume-Optimized design. 

 

Fig. 7. Zernike coma (Z7/Z8) FFD for the (a) TMCA design, (b) TMCF Frozen-Geometry 
design, and (c) TMCF Volume-Optimized design. 
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Fig. 8. Zernike spherical aberration (Z9) FFD for the (a) TMCA design, (b) TMCF Frozen-
Geometry design, and (c) TMCF Volume-Optimized design. Blue indicates a positive value, red 
indicates a negative value. 

 
Fig. 9. Zernike elliptical coma (Z10/Z11) FFD for the (a) TMCA design, (b) TMCF Frozen-
Geometry design, and (c) TMCF Volume-Optimized design. 

Not only do the freeform surfaces allow for better correction of the rotationally non-
symmetric aberrations, but they also allow for better correction of rotationally symmetric 
aberrations because of their beam-centered coordinate reference. Since the Zernike surface 
departure is centered on the surface, the rotationally symmetric Zernike terms (Z4, Z9, Z16, 
Z25) can contribute directly to the correction of rotationally symmetric aberration terms, in 
contrast to the off-axis asphere sections, where the rotationally symmetric contributions are not 
separable from the plane-symmetric contributions. Similarly, the plane-symmetric terms can 
contribute directly to the correction of plane-symmetric aberrations as determined by the ATFS 
[12]. For example, Fig. 8 shows the Zernike spherical aberration for which there is a substantial 
uncorrected field-constant term, but this can be removed directly using a Z9 surface shape at 
the stop surface (or any other surface, for that matter [2,12]). 

As seen in Table 3, the surface shapes in the TMCF designs depart further from a base 
sphere in general. Except for M1 of the TMCA, the freeform surfaces depart more than the off-
axis aspheres. This extra departure is directly related to the centered nature of the Zernike 
surfaces. When using off-axis aspheres, the surface coefficients are not orthogonal and are 
furthermore coupled together in terms of their aberration correction abilities. However, the 
centered Zernike surface terms are able to independently add surface departure and aberration 
correction, and thus achieve better correction, while adding more departure. This is the inherent 
tradeoff in achieving better correction through freeform surfaces, though recent work has 
shown that the effect can be reduced by constraining the surface coefficient magnitudes without 
sacrificing much correction ability [13]. 
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Table 3. Departure from Base Sphere for each design type in the iso-volume comparison 

Maximum Departure from Base Sphere (microns) 
 TMCA TMCF Frozen-Geometry TMCF Volume-Optimized 

M1 370 283 251 
M2 20 172 239 
M3 12 264 175 

7. Iso-performance comparison 
Another illustrative comparison is between TMC designs of the same performance. The layouts 
of the three designs closest to 0.07 waves RMS WFE for each design type are shown in Fig. 
10. The volumes of each bounding box are 96.9 L, 72.5 L, and 59.1 L in Figs. 10(a), 10(b), and 
10(c), respectively. The bounding boxes are also shown overlaid in Fig. 10(d). 

 

Fig. 10. Layouts of the smallest volume diffraction-limited designs of each TMC type with their 
bounding boxes: (a) The TMCA is shown with a blue bounding box, (b) the TMCF Frozen-
Geometry is shown with a red bounding box, and (c) the TMCF Volume-Optimized is shown 
with a green bounding box. (d) The bounding boxes are shown next to each other for perspective. 

The FFDs for each design type are shown in Figs. 11-13. Though these designs share similar 
overall RMS WFE performance, they achieve a different balance of aberrations, similar to the 
iso-volume comparison in Section 6a. Notably, the coma and higher order field-curvature are 
substantially reduced in both TMCF designs, while the plane-symmetric astigmatism terms 
actually increase for the TMCF designs. Evidently, the balance of aberrations in the TMCF 
designs allows the first-order layout to shift to a lower volume configuration. 

 

Fig. 11. Zernike defocus (Z4) FFD for the: (a) TMCA design, (b) TMCF Frozen-Geometry 
design, and (c) TMCF Volume-Optimized design. Blue indicates a positive value, red indicates 
a negative value. 
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Fig. 12. Zernike Astigmatism (Z5/Z6) FFD for the: (a) TMCA design, (b) TMCF Frozen-
Geometry design, and (c) TMCF Volume-Optimized design. 

 

Fig. 13. Zernike coma (Z7/Z8) FFD for the: (a) TMCA design, (b) TMCF Frozen-Geometry 
design, and (c) TMCF Volume-Optimized design. 

Table 4 shows the departure from base sphere for each design type for the iso-performance 
case. We are showing the surface departure as a way of comparing the aspheric nature of each 
surface. For surfaces with slowly varying shapes like the low-order Zernike polynomials used 
in this article, the sag and slope are closely correlated, so we have shown the maximum sag 
departure from base sphere. The TMCA design has substantially lower departure than either 
TMCF designs due largely to its larger volume and therefore slower surfaces. The surface 
departures of the primaries in all geometries contribute most of the departure, but the departure 
in both TMCF geometries are more balanced, and thus the aberration correction happening at 
each surface is more balanced as well. This trade-off in volume vs departure is not inherent to 
freeform, but it is accentuated by it. Faster optical surfaces are required for smaller volumes, 
and tilting those faster optical surfaces creates more off-axis aberrations, resulting in more 
required departure to correct those aberrations. However, freeform surfaces have more degrees 
of freedom, allowing for more modes of departure, and therefore can achieve the larger 
departures required to maintain performance at a given volume compared to off-axis sections 
of rotationally symmetric parent surfaces. The full Zernike coefficients are listed in Tables 5-7 
in the Appendix for reference. 

Table 4. Departure from base sphere for each design type in the iso-performance 
comparison 

 
TMCA 

TMCF 
Frozen-

Geometry 

TMCF 
Volume-

Optimized 
Mirror Maximum departure from base sphere (microns) 
M1 208 310 488 
M2 14 177 205 
M3 20 204 169 
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8. Conclusion 
The ability of freeform surfaces to expand the design space for plane-symmetric unobscured 
optical systems allows better overall correction of plane-symmetric aberrations for a given 
volume resulting in greater performance for a given volume. This has been demonstrated by 
progressively reducing the volume of a TMC design that uses rotationally symmetric surfaces 
and converting the layout to an equivalent field-centered freeform design that is shown to better 
correct the aberrations. Additionally, freeform surfaces allow for more compact first-order 
layouts, which are not otherwise correctable using rotationally symmetric surfaces. This was 
demonstrated by allowing the first-order layout of the converted designs to vary and achieving 
not only better correction by up to 70%, but smaller volume as well by up to 39%. Finally, a 
reduced volume comes at the expense of more freeform departures from the base sphere by up 
to an order of magnitude. 
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Appendix 
Table 5. The FRINGE Zernike coefficients for the primary mirror representing 

departure from base sphere for each diffraction-limited design. 

 TMCA 
96.9 L 

TMCF Frozen-Geometry 
72.5 L 

TMCF Volume-Optimized 
59.1 L 

Maximum Aperture Semi-Diameter (mm) 
 176.3330 176.3297 178.3835 

Normalization Aperture Semi-Diameter (mm) 
 170.7363 176.3297 178.3835 

FRINGE Zernike Coefficient, Primary Mirror (mm) 
Z1 0.0002458149 −0.0499511345 −0.0459181158 
Z2 0 0 0 
Z3 0.1165349914 0.2743568100 0.3637282551 
Z4 0.0000693106 −0.0745891417 −0.0686044094 
Z5 −0.1353639608 −0.1303619649 −0.3191715585 
Z6 0 0 0 
Z7 0 0 0 
Z8 0.0580866222 0.1368588872 0.1813839316 
Z9 0.0042482223 −0.0244205099 −0.0225119102 
Z10 0 0 0 
Z11 0.0021226646 −0.0111876327 −0.0053145466 
Z12 0.0008326605 0.0032969007 0.0044426267 
Z13 0 0 0 
Z14 0 0 0 
Z15 −0.0001083608 −0.0002331794 −0.0003350693 
Z16 0.0000027475 0.0002118401 0.0001687888 
Z17 0.0000613417 −0.0000150526 0.0000036374 
Z18 0 0 0 
Z19 0 0 0 
Z20 −0.0000238739 −0.0001049851 −0.0001578434 
Z21 −0.0000058420 −0.0000020773 −0.0000120510 
Z22 0 0 0 
Z23 0 0 0 
Z24 0.0000014837 −0.0000151256 −0.0000112040 
Z25 −0.0000009877 −0.0000056571 −0.0000055946 
Z26 0 0 0 
Z27 −0.0000051085 0 0 
Z28 −0.0000011038 0 0 
Z29 0 0 0 
Z30 0 0 0 
Z31 −0.0000002160 0 0 
Z32 0.0000004731 0 0 
Z33 0 0 0 
Z34 0 0 0 
Z35 −0.0000007115 0 0 
Z36 −0.0000008351 0 0 
Z37 −0.0000003518 0 0 
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Table 6. The FRINGE Zernike coefficients for the secondary mirror representing 
departure from base sphere for each diffraction-limited design. 

 TMCA 
96.9 L 

TMCF Frozen-Geometry 
72.5 L 

TMCF Volume-Optimized 
59.1 L 

Maximum Aperture Semi-Diameter (mm) 
 58.8430 58.1558 51.8783 

Normalization Aperture Semi-Diameter (mm) 
 59.8540 58.1558 51.8783 

FRINGE Zernike Coefficient, Secondary Mirror (mm) 
Z1 −0.0000370732 0.0040222707 −0.0432379214 
Z2 0 0 0 
Z3 −0.0108838775 0.0309447052 0.0519336946 
Z4 −0.0000594983 0.0060388280 −0.0641484832 
Z5 0.0075685216 0.1637450199 0.0459991873 
Z6 0 0 0 
Z7 0 0 0 
Z8 −0.0056694096 0.0152122037 0.0258454803 
Z9 −0.0009023299 0.0020221364 −0.0204517791 
Z10 0 0 0 
Z11 0.0004316819 −0.0129031757 −0.0079094718 
Z12 0.0003507853 0.0014483055 0.0008160642 
Z13 0 0 0 
Z14 0 0 0 
Z15 −0.0001534008 −0.0001660436 −0.0000823412 
Z16 −0.0000141538 0.0000070524 0.0004486702 
Z17 0.0000094924 −0.0001867808 −0.0001358152 
Z18 0 0 0 
Z19 0 0 0 
Z20 −0.0000069325 −0.0000450512 −0.0000314659 
Z21 −0.0000014708 −0.0000007223 −0.0000021700 
Z22 0 0 0 
Z23 0 0 0 
Z24 −0.0000007616 0.0000055418 −0.0000010724 
Z25 −0.0000000722 0.0000014733 −0.0000101124 
Z26 0 0 0 
Z27 −0.0000019708 0 0 
Z28 −0.0000020352 0 0 
Z29 0 0 0 
Z30 0 0 0 
Z31 0.0000008731 0 0 
Z32 0.0000001185 0 0 
Z33 0 0 0 
Z34 0 0 0 
Z35 −0.0000003232 0 0 
Z36 0.0000001153 0 0 
Z37 0.0000001151 0 0 
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Table 7. The FRINGE Zernike coefficients for the tertiary mirror representing departure 
from base sphere for each diffraction-limited design. 

 TMCA 
96.9 L 

TMCF Frozen-Geometry 
72.5 L 

TMCF Volume-Optimized 
59.1 L 

Maximum Aperture Semi-Diameter (mm) 
 130.8382 112.8335 95.8424 

Normalization Aperture Semi-Diameter (mm) 
 127.0619 112.8335 95.8424 

FRINGE Zernike Coefficient, Tertiary Mirror (mm) 
Z1 −0.0000295027 −0.0238951186 −0.0038304336 
Z2 0 0 0 
Z3 0.0184948453 0.0296065412 0.0334096363 
Z4 0.0000075512 −0.0359900827 −0.0057675680 
Z5 0.0052708109 0.1735489688 0.1215498815 
Z6 0 0 0 
Z7 0 0 0 
Z8 0.0093525473 0.0148120812 0.0167007000 
Z9 −0.0030420183 −0.0121925764 −0.0019534687 
Z10 0 0 0 
Z11 0.0000009640 −0.0176368745 −0.0117847907 
Z12 0.0000197513 0.0014581633 0.0007988727 
Z13 0 0 0 
Z14 0 0 0 
Z15 0.0000638552 0.0000104340 −0.0000074654 
Z16 −0.0000270045 −0.0000971190 −0.0000176261 
Z17 0.0000038198 −0.0006640551 −0.0004828835 
Z18 0 0 0 
Z19 0 0 0 
Z20 0.0000039500 −0.0001134695 −0.0000401195 
Z21 −0.0000051920 0.0000000153 −0.0000066702 
Z22 0 0 0 
Z23 0 0 0 
Z24 −0.0000049411 0.0000034202 −0.0000035400 
Z25 0.0000008578 0.0000004933 −0.0000012918 
Z26 0 0 0 
Z27 −0.0000003919 0 0 
Z28 0.0000026877 0 0 
Z29 0 0 0 
Z30 0 0 0 
Z31 0.0000026547 0 0 
Z32 −0.0000027713 0 0 
Z33 0 0 0 
Z34 0 0 0 
Z35 −0.0000016328 0 0 
Z36 −0.0000014470 0 0 
Z37 −0.0000013066 0 0 
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