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When using freeform surfaces in optical design, the field dependence of the aberrations can become quite com-
plex, and understanding these aberrations facilitates the design process. Here we calculate the field dependence
of low-order Zernike astigmatism (Z5/6) up to the eighth order in nodal aberration theory (NAT). Expansion
of NAT astigmatism terms to the eighth order facilitates a more accurate fit to the Zernike astigmatism data. We
then show how this estimated field dependence can be used to quantitatively analyze a freeform telescope design.
This analysis tool adds to the optical designer’s arsenal when up against the challenge of designing with freeform
optics. ©2019Optical Society of America

https://doi.org/10.1364/JOSAA.36.002115

1. INTRODUCTION

The rising popularity of freeform optics has driven the cre-
ation of new design methods and aberration theories that can
account for a lack of rotational symmetry. It is often convenient
to represent the aberrations of a given optical system in terms
of nodal aberration theory (NAT) [1,2]. To facilitate the use
of freeform surfaces in the optical design of rotationally non-
symmetric optical systems, Fuerschbach et al. developed an
extension to NAT, here called the aberration theory of freeform
surfaces (ATFS) [3]. The ATFS predicts the aberrations of a
given optical surface shape described by Zernike polynomial
terms based on its location relative to a local pupil. Other works
have proposed similar extensions of NAT by adding a pupil
offset vector [4].

The ATFS, methods derived from it, and other non-
rotationally symmetric aberration descriptions make use of
full-field displays (FFDs), which show the magnitude and
orientation of a given aberration over discrete points in the
field of view (FOV) [5–7]. Bauer et al. show how to guide the
design process using a visual, designer-guided semiquantitative
assessment by examining Zernike FFDs to ascertain the aberra-
tion content of the optical system [5]. This method allows the
designer to compare off-axis folding geometries and to decide
which Zernike surface terms should be varied at a given step in
the design based on the FFDs using ATFS and NAT.

Here we present a supporting method of freeform design
based on both the principles in ATFS and the methods of Bauer
et al. that uses a quantitative numerical analysis of the NAT

aberration content from the underlying FFD data. This method
is aided by an expansion of NAT to the eighth order for a more
robust fit to the higher-order field-dependent aberrations that
contribute to the Zernike astigmatism (Z5/6) FFDs.

In this work, we first expand the NAT wavefront expansion
to the eighth order for terms that contribute higher-order field
dependence to the Zernike astigmatism FFD. We then show
that the field dependence of Zernike astigmatism can be deter-
mined by decomposing the FFD data into its constituent NAT
aberration terms. Next, we show how this overall method can be
used to determine the value of the surface coefficients required
to correct certain NAT aberrations using ATFS. Finally, we
show a design example of a three-mirror freeform telescope
from the literature that illustrates both the FFD decomposi-
tion and the aberration correction through surface coefficient
estimation.

2. EXPANSION OF NAT ASTIGMATISM TO THE
EIGTH ORDER

NAT uses the vector formulation of Hopkins’ wavefront expan-
sion theorized by Shack and developed by Thompson with
contributions from Buchroeder [8–11]. Individual NAT poly-
nomial terms are determined by expanding the wavefront in
terms of the field and pupil coordinate vectors and the sigma
vector [12], which describes the aberration field centers. The
general NAT wavefront in vector notation is given by Eq. (1),
adapted from Thompson [[2], Eq. (42)], as follows:
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W =
N∑
j

∞∑
p

∞∑
n

∞∑
m

[Wk`m] j

[(
EH − Eσ j

)
·

(
EH − Eσ j

)]p

×
[
Eρ · Eρ

]n
[(
EH − Eσ j

)
· Eρ
]m
,

k = 2p +m, `= 2n +m . (1)

Thompson provides descriptions of spherical, coma, and
astigmatism NAT aberrations up to the sixth order in the
wavefront, where sixth order includes those terms for which
k + `≤ 6 [2,13–15]. Expanding this expression allows us
to determine the field dependence of the various aberrations
according to NAT. In design methods like that of Bauer et al.,
a qualitative analysis of the aberration FFDs is used to under-
stand the field dependence of the aberrations. To simplify the
task of visually analyzing FFDs and to reduce the burden on
the designer, we propose an analytical and quantitative way
to determine the field dependence using the NAT aberration
polynomial, which we describe in Section 3. However, because
higher-order terms begin to dominate when the low-order
aberration terms are corrected, sixth-order NAT terms may be
insufficient to accurately describe the field dependence and,
therefore, the expansion of Eq. (1) up to k + `= 8 will be
useful. When the lower-order aberration terms are corrected,
the higher-order terms begin to dominate, and fitting with
the sixth-order NAT polynomial can give a significant fit error
(10% or more). Fitting with the eighth-order NAT polynomial
reduces this fit error. Yet we are only interested in the terms
that produce new types of higher-order field dependence. This
is because fitting the FFD data to the NAT polynomial does
not distinguish between terms with different Eσ or ρ2 depend-
ence, only field dependence ( EH). Since the astigmatism FFD
data is showing the Zernike aberrations over the field of view,
terms with different Eσ or ρ2 dependence but the same field
dependence ( EH) cannot be distinguished in the FFD, since
the FFD only shows the field dependence. The Zernike Z5/6
(astigmatism) FFD shows the sum of the Eρ2-dependent terms
[see Eq. (41)]. Therefore, the eighth-order terms that exhibit
the same field dependence as the lower-order terms are dropped
from the expansion, since they do not contribute new field
dependence that is not already accounted for by the fourth-or
sixth-order expansion as we describe in Section 3.

Note that in this work we refer to the “order” of aberrations
by the wavefront order, in contrast to the optical terminology
that considers wavefront expansions to the fourth order as
“thirrd-order” and sixth-order expansions as “fifth-order,” etc.
The latter terminology refers to the combined aperture and field
dependence of the ray aberration coefficients, which we do not
consider in this work, so we have persisted with the wavefront
order.

A. Field Dependence of Zernike Astigmatism (Z5 and
Z6) Up to the Eighth Order

To determine the eighth-order NAT field dependence of the
Zernike aberrations, we first expand the NAT wavefront to
the eighth order. In this work, we focus on low-order Zernike
astigmatism (Z5 and Z6 in FRINGE ordering) since it is often
the largest aberration of off-axis or tilted component systems.

Additionally, according to ATFS, all low-order Zernike free-
form surface shapes contribute to the field dependence of
Zernike astigmatism in general, except in the special case of the
shape being located at the stop surface, so it is critical to have a
quantitative understanding of it for freeform design.

To analytically understand the astigmatism terms with
higher-order field dependence, we can examine the difference
between the NAT astigmatism terms for expansion through
the sixth order and through the eighth order. The sixth-order
terms are those terms where k + `= 6, and the eighth-order
terms have k + `= 8, which we have denoted in the subscripts
as follows:

Wk+l=6,m=2 =

n∑
j=1

W242, j

[(
EH − Eσ j

)
·

(
EH − Eσ j

)]0

×
[
Eρ · Eρ

]1
[(
EH − Eσ j

)
· Eρ
]2

+

n∑
j=1

W422, j

[(
EH − Eσ j

)
·

(
EH − Eσ j

)]1

×
[
Eρ · Eρ

]0
[(
EH − Eσ j

)
· Eρ
]2
, (2)

Wk+l=8,m=2 =
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j=1

W262, j

[(
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)
·

(
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)]0

×
[
Eρ · Eρ

]2
[(
EH − Eσ j

)
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]2

+
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j=1

W442, j

[(
EH − Eσ j

)
·

(
EH − Eσ j

)]1

×
[
Eρ · Eρ

]1
[(
EH − Eσ j

)
· Eρ
]2

+
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j=1

W622, j

[(
EH − Eσ j

)
·

(
EH − Eσ j

)]2

×
[
Eρ · Eρ

]0
[(
EH − Eσ j

)
· Eρ
]2

. (3)

It is worth noting here that Thompson treats W242 as an
oblique spherical aberration [13]. We include it here because, as
Thompson also notes: “It is in fact exactly third-order astigma-
tism with an aperture to the fourth dependence, characteristic
of third-order spherical aberration.” Therefore, W242 terms
will contribute to the Z5/6 field dependence. Additionally,
Thompson considers field curvature terms and astigmatism
terms in the same treatment [15]. Because here we consider
only terms contributing to Z5/6 field dependence, we do not
consider the field curvature terms in the expansion.

The sixth-order astigmatism expansion terms are generated
from Eq. (2), and the eighth-order astigmatism terms are gen-
erated from Eq. (3). Comparing the first lines and the second
lines of each equation, we see that they produce the same field
dependence in the sixth order and eighth order since they differ
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only by a ρ2 factor. Furthermore, we can see that higher-order
field dependence will be produced by the third line of Eq. (3).
We can expand this line to determine the new field-dependent
terms as follows:

n∑
j=1

W622, j

[(
EH − Eσ j

)
·

(
EH − Eσ j

)]2[
Eρ · Eρ

]0
[(
EH − Eσ j

)
· Eρ
]2

=

n∑
j=1

W622, j

[
H2
+ σ 2

j − 2
(
EH · Eσ j

)]2[
EH · Eρ − Eσ j · Eρ

]2

=

n∑
j=1

W622, j

[
H4
+ σ 4

j + 4
(
EH · Eσ j

)2
+ 2H2σ 2

j

− 4H2
(
EH · Eσ j

)
− 4σ 2

j

(
EH · Eσ j

) ]
. . .

×

[(
EH · Eρ

)2
+
(
Eσ j · Eρ

)2
− 2

(
EH · Eρ

) (
Eσ j · Eρ

)]
.

(4)

At this stage, it is helpful to introduce a vector identity involv-
ing the Shack vector product (SVP) that allows us to group terms
according to field dependence [11,16] as follows:

2
(
EA · EB

) (
EA · EC

)
=

(
EA · EA

) (
EB · EC

)
+ EA2

· EB EC . (5)

Applying this identity to the last term in Eq. (4) yields two
terms as follows:

2
(
EH · Eρ

) (
Eσ j · Eρ

)
=

(
EH · Eσ j

)
ρ2
+

(
EH Eσ j

)
· Eρ2. (6)

A special case of Eq. (5) where EB = EC is also useful is

2
(
EA · EB

)2
=

(
EA · EA

) (
EB · EB

)
+ EA2

· EB2

= A2 B2
+ EA2

· EB2 . (7)

Applying Eq. (7) to the relevant terms in Eq. (4) yields two
terms each, one field curvature and one astigmatism term as
follows: (

EH · Eρ
)2
=

1

2
H2ρ2

+
1

2
EH2
· Eρ2 , (8)

(
Eσ j · Eρ

)2
=

1

2
σ 2

j ρ
2
+

1

2
Eσ 2

j · Eρ
2 , (9)

(
EH · Eσ j

)2
=

1

2
H2σ 2

j +
1

2
EH2
· Eσ 2

j . (10)

To further simplify the algebra, we can examine the Zernike
Z5/6 polynomial and compare it with the ρ dependence in
Eq. (4) in the light of Eqs. (8)–(6) as follows:

Z5 ∝ ρ
2 cos 2φ = Eρ2

· x̂ , (11)

Z6 ∝ ρ
2 sin 2φ = Eρ2

· ŷ . (12)

Any terms in Eq. (4) that do not have Eρ2 dependence will not
contribute to the Z5/6 FFD, and therefore we can ignore them

for the purposes of this exercise. Thus, we drop the first term
on the right-hand side of Eqs. (6), (8), and (9). Applying the
identities to Eq. (4) and dropping the irrelevant terms therefore
yields

[W]
Z5/6
622 =

n∑
j=1

W622, j

[
H4
+ σ 4

j + 4H2σ 2
j + 2 EH2

· Eσ 2
j

− 4H2
(
EH · Eσ j

)
− 4σ 2

j

(
EH · Eσ j

) ]
. . .

×

[
1

2
EH2
· Eρ2
+

1

2
Eσ 2

j · Eρ
2
−

(
EH Eσ j

)
· Eρ2

]
. (13)

We denote the wavefront expansion [W]
Z5/6
622 with the

superscript Z5/6 to refer to those NAT wavefront terms that
contribute to the Zernike astigmatism aberrations, Z5 and Z6.
The bracketed term [W]622 is used to denote a shorthand for the
NAT wavefront expansion for the terms related to the Hopkins
W622 term, similar to the shorthand used in [2]. To dissect and
better understand Eq. (13), it is instructive to gather the terms
according to their “order” of field dependence.

1. Sixth-Order FieldDependence

Only one term will contribute sixth-order dependence
according to Eq. (13) as follows:

W
Z5/6

622,6thOrder
=

1

2

n∑
j=1

W622, j H4 EH2
· Eρ2. (14)

Note that this term has no Eσ j dependence. This is simply the
“normal” rotationally symmetric eighth-order astigmatism term
expressed in the appropriate NAT vector format.

2. Fifth-Order FieldDependence

There are two terms that contribute to the fifth-order field
dependence:

W
Z5/6

622,5thOrder

=−

n∑
j=1

W622, j H2
[

H2
(
EH Eσ j

)
+ 2

(
EH · Eσ j

)
EH2
]
· Eρ2.

(15)

We then define the eighth-order NAT coefficient EA622:

EA622 ≡

n∑
j=1

W622, j Eσ j . (16)

This gives the final fifth-order representation:

W
Z5/6

622,5thOrder

=−

n∑
j=1

H2
[

H2
(
EH EA622, j

)
+ 2

(
EH · EA622, j

)
EH2
]
· Eρ2.

(17)
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3. Fourth-Order FieldDependence

At first glance, there appear to be four fourth-order terms:

W
Z5/6

622,4thOrder
=

n∑
j=1

W622, j

[
1

2
H4
Eσ 2

j + 2H2σ 2
j
EH2
+

(
EH2
· Eσ 2

j

)

× EH2
+ 4H2

(
EH · Eσ j

) (
EH Eσ j

) ]
· Eρ2.

(18)

We define three sigma dependences:

B622 ≡

n∑
j=1

W622, jσ
2
j , (19)

EB2
622 ≡

n∑
j=1

W622, j Eσ
2
j , (20)

EB2∗
622 ≡

n∑
j=1

W622, j
(
Eσ ∗j
)2

. (21)

Combining these definitions and the identities in Eqs. (A4)
and (A5) provided in Appendix A with Eq. (18) yields the
fourth-order terms:

W
Z5/6

622,4thOrder

=

n∑
j=1

[
3H4 EB2

622, j + 4B622, j H2 EH2
+

1

2
EH4 EB2∗

622, j

]
· Eρ2.

(22)

4. Third-Order FieldDependence

There appear to be four third-order terms:

W
Z5/6

622,3rdOrder

=

n∑
j=1

W622, j

−4H2σ 2
j

(
EH Eσ j

)
− 2 EH2

· Eσ 2
j

(
EH Eσ j

)
. . .

−2H2
(
EH · Eσ j

)
Eσ 2

j − 2σ 2
j

(
EH · Eσ j

)
EH2

 · Eρ2.

(23)

However, we can apply the identities in Eqs. (A6)–(A9)
to simplify to only three terms. We define the following
sigma-dependent aberration coefficients:

EC 3
622 ≡

n∑
j=1

W622, j Eσ
3
j , (24)

EC622 ≡

n∑
j=1

W622, jσ
2
j Eσ j , (25)

EC∗622 ≡

n∑
j=1

W622, jσ
2
j Eσ
∗

j . (26)

Collecting all the terms, considering the identities and
definitions, we get the third-order field-dependent terms:

W
Z5/6

622,3rdOrder

=−

n∑
j=1

[
6H2 EH EC622, j + 2H2 EH∗ EC 3

622, j + 2 EH3 EC∗622, j

]
· Eρ2.

(27)

5. Second-Order FieldDependence

The second order has four terms that can be simplified to three
terms while separating the field dependence from the sigma
dependence:

W
Z5/6

622,2ndOrder
=

n∑
j=1

W622, j

[
1

2
σ 4

j
EH2
+ 2H2σ 2

j Eσ
2
j

+

(
EH2
· Eσ 2

j

)
Eσ 2

j + 4σ 2
j

(
EH · Eσ j

)
EH Eσ j

]
· Eρ2.

(28)

The first two terms are already separated. The third and fourth
terms can be separated and combined with the others using
Eqs. (A10) and (A11). There are three sigma-dependent terms
to define:

D622 =

n∑
j=1

W622, jσ
4
j , (29)

ED2
622 =

n∑
j=1

W622, jσ
2
j Eσ

2
j , (30)

ED4
622 =

n∑
j=1

W622, j Eσ
4
j . (31)

Combining the terms and substituting the definitions, we get
the second-order field-dependent terms:

W
Z5/6

622,2ndOrder

=

n∑
j=1

[
3D622, j EH2

+ 4H2 ED2
622, j +

1

2
EH2∗ ED4

622, j

]
· Eρ2.

(32)

6. First-Order FieldDependence

We have

W
Z5/6

622,1stOrder

=−

n∑
j=1

W622, j

[
σ 4

j

(
EH Eσ j · Eρ

2
)
+ 2σ 2

j

(
EH · Eσ j

) (
Eσ 2

j · Eρ
2)].
(33)
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The second term can be separated into two terms based on field
and sigma dependence and combined with the first term using
Eq. (A12). We now have two fifth-order sigma-dependent terms
to define:

EE622 ≡

n∑
j=1

W622, jσ
4
j Eσ j , (34)

EE 3
622 ≡

n∑
j=1

W622, jσ
2
j Eσ

3
j . (35)

Combining the terms and applying the definitions, we get the
first-order field-dependent terms:

W
Z5/6

622,1stOrder =−

n∑
j=1

[
2 EE622, j EH + EE 3

622, j
EH∗
]
· Eρ2. (36)

7. Field-ConstantDependence

We have

W
Z5/6

622,Const =
1

2

n∑
j=1

W622, jσ
4
j

(
Eσ 2

j · Eρ
2). (37)

There is no field dependence to separate in this case, but we do
need to define a new sigma-dependent term:

EF 2
622 =

n∑
j=1

W622, jσ
4
j Eσ

2
j . (38)

Thus, the field-constant eighth-order term is given by

W
Z5/6

622,Const =

n∑
j=1

1

2
EF 2

622, j · Eρ
2. (39)

8. NewFieldDependenceof Eighth-OrderNATAstigmatism

Some of the terms from Eqs. (14), (17), (22), (27), (32), (36),
and (39) have higher-order field dependence compared to the
sixth-order expansion terms, but some are simply new combina-
tions of sigma and field dependence. The relevant polynomial
for the purposes of this work is constructed by collecting all the
fourth-and sixth-order expansion terms and adding in the new
field dependence from the eighth-order expansion as follows:

Wk+`≤8
Z5/6

=
1

2



[
W222 +W422 H2

+W622 H4
− 2 EH ·

((
EA422

)
+ 2H2 EA622

)]
EH2 . . .

+3H2 EB422 + 6H4 EB
2
622 +

EH
4
EB

2∗
622 . . .

−2
(
EA222 + H2

(
EA422 + 3 EC622

)
+ H4 EA622

)
EH . . .

− EC 3
422
EH∗ −4 H2 EH

∗
EC

3
622 −4 EH

3
EC
∗

622 +
ED

4

622
EH

2∗
+ EB2

222


· Eρ2 . (40)

Note that only the lowest-order field-dependent term is
included in Eq. (40), e.g., only the field-constant fourth-order
expansion term is included, and the field-constant sixth-order
term is excluded. The new field-dependent terms from the
eighth-order expansion are in bold text in Eq. (40).

3. FITTING THE Z5/6 FFD WITH NAT FIELD
DEPENDENCE

Recent design methods relying on ATFS use the Zernike FFD
as a guide for the designer to determine the limiting aberration
in a given design [3,5]. The limiting aberration is then corrected
using a certain surface shape according to ATFS. These meth-
ods rely on a qualitative analysis of the FFD and the designer’s
knowledge of ATFS. Many high-performance reflective free-
form systems have been designed and even fabricated using this
method [17–20]. However, the designer may find it advanta-
geous to be able to determine exactly how much of a given NAT
aberration is present in a system. Furthermore, armed with this
information, a designer could predict the magnitude of a given
Zernike surface shape to add to a given surface. In this section,
we will show this is possible using the field dependence of the
Zernike astigmatism FFD shown in Eq. (40).

To estimate the NAT aberrations in an optical system, we
can fit the Zernike FFD data with the NAT polynomial. This
method is similar to that of Gray et al., where Gray performed
a similar analysis for the standard rotationally symmetric wave-
front expansion [21]. Said another way, we can expand the NAT
wavefront polynomial in terms of the Zernike polynomials. The
coefficients of each Zernike polynomial term will be determined
by the following integral (adapted from [21]):

zn

(
EH; Eσ j

)
=

1

Nn

∫ 2π

0

∫ 1

0
W
(
EH, Eρ; Eσ j

)
Zn ( Eρ) ρdρdφ.

(41)

Here we have used the FRINGE ordering of the Zernike
polynomials [22]. We are interested in the coefficients of the
astigmatism terms (Z5/6) of the Zernike polynomial given by
Eqs. (11) and (12). In the light of these equations, the only terms
in the NAT wavefront polynomial that will be non-zero fol-
lowing the integral of Eq. (41) for Z5 and Z6 will be terms that
depend on the x̂ or ŷ components of Eρ2, respectively. Because of
the dot product with Eρ2 in Eq. (40), all of the x̂ components of
the left side of that dot product will be non-zero in the Z5 inte-
gral, and the ŷ components will be non-zero in the Z6 integral.
Therefore, for the purposes of our fitting algorithm, it remains
to determine the components of the right side of Eq. (40).

A. Plane-Symmetric Optical Systems

For plane-symmetric optical designs that are symmetric about
the y−z plane, this task is greatly simplified by the fact that

the sigma vectors are only along the ŷ axis, and therefore every
NAT coefficient has no x̂ component. However, the polynomial
in Eq. (40) does contain various vector operations involving
the field coordinate EH that need to be calculated in order to
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determine the vector components of each term:

EH = Hx x̂ + Hy ŷ , (42)

EH∗ =−Hx x̂ + Hy ŷ , (43)

EH2
= 2Hx Hy x̂ +

(
−H2

x + H2
y

)
ŷ , (44)

EH2∗
=−2Hx Hy x̂ +

(
−H2

x + H2
y

)
ŷ , (45)

EH3
= Hx

(
3H2

y − H2
x

)
x̂ + Hy

(
H2

y − 3H2
x

)
ŷ , (46)

EH4
=−4Hx Hy (H2

x − H2
y )x̂ +

(
H4

x − 6H2
x H2

y + H4
y

)
ŷ .

(47)

This is all the SVP mathematics that we need to know for a
plane-symmetric system. The rest are either inner products or
scalar operations. The products between the field coordinates
and the NAT coefficients are simplified by the fact that each
coefficient simply acts as a scalar since it only has a ŷ component.

There are two additional simplifications to the terms in
Eq. (40) due to plane symmetry:

EB2
622 =

EB2∗
622 =

∣∣∣ EB2
622

∣∣∣ ŷ , (48)

EC 3
622 =

EC∗622 =
EC622 =

∣∣∣ EC 3
622

∣∣∣ ŷ . (49)

Since the conjugate reverses the sign of the x̂ component,
then the terms EB2

622 and EB2∗
622 are equal in a plane-symmetric

system. Similarly, EC∗622, EC622, and EC 3
622 are equal. Therefore,

the eighth-order NAT wavefront for a plane-symmetric system
has 12 coefficients that determine the field dependence of the
Zernike FFD. It is instructive to write this out with the explicit
plane-symmetric constraints shown:

WZ5/6 =
1

2



[
W222 +W422 H2

+W622 H4
− 2 EH ·

(∣∣∣ EA422

∣∣∣ ŷ + 2H2
∣∣∣ EA622

∣∣∣ ŷ
)]
EH2 . . .

+3H2
∣∣∣ EB422

∣∣∣ ŷ +
∣∣∣ EB2

622

∣∣∣ (6H4 ŷ+ EH
4

ŷ
)
. . .

−2
(∣∣∣ EA222

∣∣∣ ŷ + H2
∣∣∣ EA422

∣∣∣ ŷ + H4
∣∣∣ EA622

∣∣∣ ŷ
)
EH . . .

−

∣∣∣ EC 3
422

∣∣∣ ŷ EH∗ − 4
∣∣∣ EC3

622

∣∣∣ ŷ EH
[

H2
+4

(
EH · ŷ

)2
]
. . .

+

∣∣∣ ED4
622

∣∣∣ ŷ EH
2∗
+

∣∣∣ EB2
222

∣∣∣ ŷ


· Eρ2 , (50)

where we have made the following substitution:(
H2 EH∗ + EH3

+ 3H2 EH
)
= EH

[
H2
+ 4

(
EH · ŷ

)2
]

. (51)

There are terms in Eq. (50) that contain a SVP opera-
tion with the unit vector ŷ . Any SVP with the unit vector ŷ
can be simplified with the following identity for any vector
EA= | EA| ŷ :

EAŷ = EA . (52)

Table 1. Field Dependence of Z5 and Z6 for a y−z
Plane-Symmetric System, Broken Down into Each NAT
Term and Listed in Ascending Wavefront Expansion
Order

NAT Coefficient Z5 Field Dependence Z6 Field Dependence

W222 (H2
y − H2

x ) 2Hx Hy

| EA222| −2Hy −2Hx

| EB2
222| 1 0

W422 (H2
y − H2

x )H
2 2Hx Hy H2

| EA422| −4H3
y −2Hx (H2

x + 3H2
y )

| EB422| 3H2 0
| EC 3

422| −Hy Hx

W622 (H2
y − H2

x )H
4 2Hx Hy H4

| EA622| 2Hy (H2
x − 3H2

y )H
2
−2Hx (H2

x + 5H2
y )H

2

| EB2
622| 7H4

x + 7H4
y + 6H2

x H2
y 4Hx Hy (H2

y − H2
x )

| EC 3
622| −4Hy (H2

x + 5H2
y ) −4Hx (H2

x + 5H2
y )

| ED4
622| (H2

y − H2
x ) −2Hx Hy

Therefore, the plane-symmetric NAT wavefront becomes

WZ5/6 =
1

2



[
W222 +W422 H2

+W622 H4
]
EH2 . . .

+3H2
∣∣∣ EB422

∣∣∣ ŷ +
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∣∣∣ (6H4 ŷ+ EH
4
)
. . .

−2
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∣∣∣ EA422

∣∣∣ [H2 EH +
(
EH · ŷ

)
EH2
]
. . .

−2
∣∣∣ EA622

∣∣∣ H2
[

H2 EH + 2
(
EH · ŷ

)
EH
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−

∣∣∣ EC 3
422
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∣∣∣ EH [
H2
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(
EH · ŷ

)2
]
. . .

+

∣∣∣ ED4

622

∣∣∣ EH2∗
+

∣∣∣ EB2
222

∣∣∣ ŷ



· Eρ2 .

(53)

Now each term can be separated into its x̂ and ŷ compo-
nents to obtain the contributions to the Z6 and Z5 FFDs,
respectively. The field dependence of the Z5 and Z6 poly-
nomials separated into each NAT term is shown in Table 1.

The FFD of each NAT term from Table 1 is shown in Fig. 1.
The Z5 and Z6 components are combined and represented by a
line marker. The magnitude and orientation of the line at each
field point are given by Eq. (54). The line magnitude represents
the peak-to-valley magnitude of the Z5/6 wavefront error, and
the angle represents the orientation of the peaks of the wavefront
error relative to the coordinate system of the image plane:
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Fig. 1. Zernike Z5/6 full-field display of each NAT plane-symmetric field dependence.

(a) (b)

NAT Coefficients, 6th vs 8th order fit

Fig. 2. (a) Zernike Z5/6 FFD of an optimized optical design with high-order aberration terms. (b) Comparison of the NAT coefficient estimation
using the sixth-order versus the eighth-order NAT astigmatism polynomial of the FFD data in (a).
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∣∣Z5/6

∣∣=√z2
6 + z2

5,

φZ5/6 =
1

2
tan−1

(
z6

z5

)
. (54)

The expansion to the eighth order yields different and more
accurate estimations of the NAT coefficients, especially when
higher-order terms start to dominate the Z5/6 astigmatism
FFD. Figure 2(a) shows the astigmatism FFD characteristic
of a well-corrected freeform three-mirror telescope. It is dif-
ficult to ascertain the constituent field-dependent terms just
by visually inspecting the FFD. Figure 2(b) shows the NAT
coefficients estimated by fitting the FFD data with the NAT
astigmatism polynomial for up to sixth-order terms (blue) and
up to eighth-order terms (red). In this case, we see significant
differences in the estimate of the NAT coefficients between the
two fits due to the relatively high magnitude of the higher-order
terms.

4. ESTIMATING REQUIRED FREEFORM
SURFACE DEPARTURE

The ATFS and later the work of Bauer et al. provided a frame-
work and design method for freeform mirror designs [3,5].
This design method systematically introduces each Zernike
polynomial surface term into a specific surface in the design
to correct specific aberrations based on ATFS. Comparison of
this systematic, aberration-based approach to a numerical opti-
mization method that is blind to the aberrations can be found in
Takaki et al. [23]. We can use the methods exposed in Bauer et al.
to theorize a calculus that allows us to quantitatively analyze a
given design. The analysis we present here involves determining
each surface’s effect on a given set of NAT aberrations. We have
completed this analysis for three main Zernike surface shapes:
Z5 (astigmatism), Z8 (coma), and Z11 (trefoil).

A. Zernike Astigmatism Shape (Z5)

From previous work, we know that adding a Z5 shape to any sur-
face in the design produces field-constant astigmatism ( EB2

222).
The overall field-constant astigmatism is given by [Eq. (14)
from [3]]

EB2
222 = G EB2

222 +

n∑
j=1

FF EB2
222, j . (55)

Here G EB2
222 is the field-constant astigmatism from the geom-

etry of the spherical surfaces and is proportional to the square of
the sigma vectors of the tilted surfaces (Eσ 2

j ). Similarly, a Z5 shape

on a given surface j gives FF EB2
222, j , the field-constant astigma-

tism term for that surface. FF EB2
222, j is proportional to the Z5/6

surface coefficients for that surface. In the plane-symmetric case,
it is proportional to Z5:

FF B2
222, j ≡ Bα222, j Z5, j . (56)

Here we have introduced a new notation using α to denote
the proportionality constant Bα222, j between a given Zernike
surface shape coefficient Z5, j and a given NAT coefficient for

a surface j . We have also dropped the vector notation for the
plane-symmetric case for the sake of simplicity. We see from
Eqs. (55) and (56) that to completely correct EB2

222 using a
given surface j , we set the surface coefficient Z5, j equal to the
total field-constant astigmatism divided by its proportionality
constant:

Z5, j

∣∣
B222=0 =−

G B2
222

Bα222, j

. (57)

Equation (57) assumes there is a linear relationship between
the Z5 surface shape coefficient of a given surface and the
NAT coefficient for field-constant astigmatism. We implicitly
assume this relationship based on [3]. The relationship has been
validated by the design methods shown in [5,16–18].

B. Zernike Coma Shape (Z8)

Once field-constant astigmatism is removed, often the next
largest aberration is field-constant coma ( EA131) together with
field-linear, field-asymmetric astigmatism ( EA222). From [3],
we know that adding a Z8 shape to an optical surface produces
both field-linear, field-asymmetric astigmatism ( EA222) and
field-constant coma ( EA131) terms as well as field-linear defocus
( EA220M), also known as focal plane tilt [3]:

EA131 = G EA131 −

n∑
j=1

FF EA131, j , (58)

EA222 = G EA222 −

n∑
j=1

(
ȳ
y

)
FF EA131, j , (59)

EA220M = G EA220M −

n∑
j=1

(
ȳ
y

)
FF EA131, j . (60)

We can again write the proportionality constants for these
terms relative to the surface coefficient Z8 (and again dropping
the vector notation):

−FF A131, j ≡ Aα131, j z8, j , (61)

−

(
ȳ
y

)
FF A131, j ≡ Aα222, j z8, j . (62)

Here we will show an example of how to correct field-
asymmetric, field-linear astigmatism ( EA222) and field-constant
coma ( EA131)using two surfaces. The residual blur from the focal
plane tilt can be corrected by tilting the physical image plane, so
its proportionality constant has not been defined here.

Section 3.A showed how to determine A222. Field-constant
coma A131 is equivalent to the Zernike coma (Z8) coefficient
at the central field point, e.g., (Hx , Hy )= (0, 0). To simulta-
neously correct both EA131 and EA222, we know from [5] that we
need two freeform surfaces with a Z8 surface shape. The total
magnitude of these two aberrations in a system with two surfaces
using a Z8 shape is given by combining Eqs. (58) and (59) with
Eqs. (61) and (62):
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A131 = A131,G + Aα131,a z8,a + Aα131,bz8,b ≡ 0, (63)

A222 = A222,G + Aα222,a z8,a + Aα222,bz8,b ≡ 0. (64)

Solving this system of equations for the required surface coef-
ficients gives

z8,a

∣∣
A131,A222=0 =

−Aα222,b (G A131)+ Aα131,b (G A222)

Aα131,a Aα222,b − Aα131,b Aα222,a
,

z8,b

∣∣
A131,A222=0 =

Aα222,a (G A131)− Aα131,a (G A222)

Aα131,a Aα222,b − Aα131,b Aα222,a
.

(65)

It is convenient to define the ratio of A131 to A222 proportion-
ality constants for each surface and for the ratio of the overall
aberrations:

RZ8, j ≡
Aα222, j

Aα131, j

,

RZ8,sys ≡
G A222

G A131
. (66)

Rewriting Eq. (65), we get the solution in terms of these
ratios:

z8,a

∣∣
A131,A222=0 =−

(G A131)

Aα131,a

(
RZ8,sys − RZ8,b

)(
RZ8,a − RZ8,b

) ,
z8,b

∣∣
A131,A222=0 =

(G A131)

Aα131,b

(
RZ8,sys − RZ8,a

)(
RZ8,a − RZ8,b

) . (67)

One way to understand Eq. (67) is to imagine incrementally
changing the coefficient for a given surface, say z8,a , until the
ratio of the total aberrations A222/A131 is equal to the ratio of
the proportionality constants for the other surface coefficient
z8,b . Then we can increment that surface coefficient z8,b until
both aberrations vanish. Equation (67) accomplishes this task
by solving the system of equations directly.

C. Zernike Trefoil Shape (Z11)

After correcting EB222, EA222, EA131, often the next largest non-
symmetric aberrations are field-constant elliptical coma EC 3

333

and field-linear, field-conjugate astigmatism EC 3
422. From [3]

and [5], we know that a Zernike trefoil (Z11) shape on a surface
produces these aberrations, and therefore we can use a similar
procedure as in Section 4.B to obtain the required Z11 surface
coefficients for two surfaces to simultaneously correct EC 3

333 and
EC 3

422:

z11,a

∣∣
C3

333,C
3
422=0 =−

(
C 3

333,G

)
C 3,α

333,a

(
RZ11,sys − RZ11,b

)(
RZ11,a − RZ11,b

) ,
z11,b

∣∣
C3

333,C
3
422=0 =

(
C 3

333,G

)
C 3,α

333,b

(
RZ11,sys − RZ11,a

)(
RZ11,a − RZ11,b

) . (68)

5. DESIGN EXAMPLE

The eighth-order NAT expansion can be used to estimate the
required freeform departure to correct various NAT aberra-
tions for a given freeform design, and, significantly, this is done
without ray-trace optimization. Using the field dependences in
Table 1, programs were implemented in CODE V to compute
the NAT coefficients given the Z5 and Z6 wavefront coeffi-
cients at field points throughout the FOV. To estimate the NAT
coefficients, the CODE V algorithm uses singular value decom-
position to solve the system of equations given by Table 1 with
the input of the Z5 and Z6 FFD data. The Z5 and Z6 data was
collected by fitting the wavefront at the exit pupil without ray
aiming with the FRINGE Zernike polynomials up to Z37 (see
[24] for polynomial details) for each field point, as is done in the
FFD plots in CODE V. The wavefront is sampled by computing
the optical path difference of 58× 58 rays traced across the
pupil (the default in CODE V). As an example, we show the use
of this method using a design from the literature.

The example design is a freeform three-mirror compact
(TMC) design used in [5]. This design is the classic TMC
geometry made more compact using freeform surfaces. It uses
a positive-negative-positive optical power distribution on the
mirrors, and has the stop at the primary mirror. The design
uses a 200 mm entrance pupil diameter working at F/3 with
a 4◦ × 4◦ square field of view. All analyses are done at a wave-
length of 587 nm. A cross-sectional layout of the design stripped
of the freeform terms, leaving only the base spherical surfaces, is
shown in Fig. 3.

The process of adding freeform shapes to the surfaces starts
with an all-spherical design. We started with the final design
from [5] and removed the freeform terms, leaving only the tilted
spherical surfaces. Often, designing unobscured three-mirror
freeform telescopes requires re-optimizing the radii or adjusting
the first-order layout as described in [5]. However, the purpose
of the techniques described in this work is to provide a method
to estimate the required freeform departure to correct a given
aberration and not to re-optimize the first-order layout. The
first step towards adding freeform is to examine the FFDs and
the relevant NAT aberration coefficients. The FFDs for the
design with only spherical surfaces are shown in Fig. 4. Select
NAT aberration coefficients derived from these FFDs are shown
in Fig. 5.

Fig. 3. Layout of the example TMC design from Bauer et al.
with freeform surface terms removed, leaving only the base spherical
surfaces.



2124 Vol. 36, No. 12 / December 2019 / Journal of the Optical Society of America A Research Article

(a) (b) (c)

(d) (e) (f)

Fig. 4. Full-field displays for the design with all-spherical surfaces. Units are waves at 532 nm: (a) RMS wavefront error (WFE); (b) defocus (Z4);
(c) astigmatism, Z5/6; (d) coma, Z7/8; (e) spherical, Z9; (f ) elliptical coma, Z10/11.
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Fig. 5. Selected NAT coefficients related to the Zernike surface
terms Z5 (astigmatism), Z8 (coma), and Z11 (trefoil, or elliptical
coma) shown at each step.

From this point, we would like to estimate the required coef-
ficients to remove, in order, B222, A222/A131, and C422/C333

using Eqs. (57), (67), and (68), respectively. However, first we
must calculate the respective aberration ratios and therefore
the respective proportionality constants. One way to calculate

these values is to use the relations given by Fuerschbach et al. that
relate the Zernike surface shape coefficients to the NAT aber-
ration terms [3]. In practice, however, these relationships are
difficult to implement and produce a small inaccuracy because
they do not consider the induced aberrations of the system.
In this example, we have opted to use a differential technique
to estimate the proportionality constants. To do so, the NAT
coefficients are first estimated. Then a single Zernike surface
coefficient is changed by a small amount, and the NAT coef-
ficients are estimated again. This technique has the advantage
of including any induced aberration effects. Additionally, it
directly relates the coefficient in the design software with the
aberration, regardless of the Zernike normalization radius.

A. Correcting B2
222

From Fig. 4 we can see that the dominant aberration is pri-
marily field-constant astigmatism, so we begin by correcting
field-constant astigmatism as in Bauer et al. [5]. However, here
we make use of our ability to estimate B222. Table 2 shows the
result of two iterations of this process. Using Eq. (57), we can
predict that adding −23.4 µm of Z5 to the stop surface will
remove this field-constant astigmatism, and after it is added,
we see that the B222 term is reduced by a factor of 7e4. A second
iteration of re-estimating the proportionality constant and
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Table 2. B222 Removal Process with Two Iterations

Iteration 1 Iteration 2

Starting B222 Value (waves) 130.911 −0.018
Bα

222,M1 (waves/micrometers) 5.59 5.63
Z5,M1|B222=0 (micrometers) −23.4261 −23.4229
Final B222 Value (waves) −0.018 8.9e-008

adjusting the surface coefficient accordingly further reduces
B222 to negligible levels. This iteration process can be used as an
aberration-based optimization routine. The resulting Z5 FFD is
shown in Fig. 7(b).

Note that the proportionality constant for a given coefficient
will depend on the normalization radius. In this work, each
freeform surface has a normalization radius equal to the semi-
diameter of the clear aperture for that surface. This choice of
normalization radius allows the coefficients to be normalized
to the entire used aperture of the surface and ensures that rays
will not miss the surface. Choosing the normalization radius to
be the semi-diameter of the central field footprint may be more
convenient for NAT but does not always guarantee an error-free
ray trace.

B. Correcting A222 and A131 Simultaneously

Once B222 is removed, A222 and A131 are the next largest aber-
rations as can be seen in Fig. 5. Using Eq. (67), we can estimate
the coefficients required for any pair of surfaces, e.g., M1 and
M2 or M1 and M3, etc. Examining the ratios in Fig. 6(a) can
help determine which two surfaces will be most effective in
removing these two aberrations. The “effectiveness” is based
on the required departure that each surface needs to remove
these two aberrations. In this particular example, we see that
the Z8 ratio for the system as whole is smaller than the ratios
for M2 and M3. M1, the stop surface, has a ratio that is zero,
since a Z8 shape at the stop only produces field-constant coma

in the wavefront. Therefore, just by looking at the ratios, we
know that, by adding some amount of Z8 to the stop surface, we
can increase the magnitude of the overall system ratio until it is
equal to the ratio of M2. From there, adding any amount of M2
will either increase or decrease both A222 and A131 by the same
relative amount, and we can then drive both terms to zero. The
same could be done for M2 and M3, but using M2 to make the
system ratio equal to the M3 ratio would require more surface
aberrations to be added and therefore more surface departure.
This analysis can be summarized by Table 3. To reduce the over-
all freeform departure required, we can choose the combination
of surfaces that corrects the aberrations with the least departure
based on the values in Table 3. In the case of this design, M1 and
M2 require the least departure. Using M1 and M2 to remove
A222 and A131, we can see the resulting Z5/6 FFD in Fig. 7(c)
and the resulting Z7/8 FFD in Fig. 8(c).

C. Correcting EC3
333 and EC3

422 Simultaneously with a
Z11 Shape on Two Mirrors

The relevant proportionality constants and ratios can be sim-
ilarly analyzed for a Z11 shape on two surfaces. The relative
ratios for each mirror and for the overall aberrations are shown
in Fig. 6(b). In the case of a Z11 shape, both non-stop surfaces
have positive ratios along with the overall system ratio. The M3
ratio is closest to the overall aberration ratio.

Using a Z11 shape on M1 will add only field-constant ellipti-
cal coma ( EC 3

333), which will lower the RZ11,sys ratio. If the correct
amount is added, the RZ11,sys ratio will be equal to the M3 ratio.
Then, adding a Z11 shape on M3 will reduce both C333 and
C422 in the right proportions to simultaneously drive them both
to zero. We could instead add even more EC 3

333 to lower the over-
all RZ11,sys ratio further to equal the M2 ratio, but this would
require adding more surface departure and more aberrations
than in the M1–M3 case. Similarly, the combination of M2 and
M3 could be used. However, this would be even less efficient

(a) (b)

Fig. 6. (a) Ratios of A222 and A131 from adding a Z8 shape onto each mirror and for the overall aberrations seen in Fig. 5. (b) Ratios of C422 and
C333 from adding a Z11 shape onto each mirror and for the overall aberrations seen in Fig. 5.
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Table 3. A222/A131 Ratio for Each Pair of Surfaces and
the Resulting Predicted Surface Coefficients

Z8 Proportionality Constants and Ratio
Overall Z8 Values (Waves/Micrometers)
Aberrations (Waves) M1 M2 M3

G A222 63.34 Aα222, j −0.02141 −1.649 1.491

G A131 −62.64 Aα131, j −3.019 1.267 −0.4658
Ratio −1.01 Ratio 0.00709 −1.30 −3.20

Predicted Surface Coefficients
(Micrometers)

M1 M2 M3

M1+M2 4.59 −38.48 –
M2+M3 – −56.95 −20.50
M1+M3 14.16 – 42.69

than either of the other two cases, since more departure and
aberrations would need to be added using M2 to change the
overall aberration ratio to the ratio of M3. Therefore, we pro-
ceed with M1 and M3 and use Eq. (68) to remove C422 and C333

simultaneously. The resulting Z5/6 FFD is shown in Fig. 7(d),
and the resulting Zernike elliptical coma (Z10/11) is shown in
Fig. 9(d). In this case, only a single iteration was necessary to
reduce both C422 and C333 below 1e-7 waves.

D. Discussion

Examining Figs. 5 and 7(d), we see that there is some residual
field-constant astigmatism (B222) that has been accrued in the
A222/A131 correction step, even though it was already corrected

using a Z5 shape at M1, as indicated by the small but non-zero
value of Z5/6 seen at the center of the FFD in Fig. 7(c). The
exact cause of this is not obvious by considering only ATFS and
NAT alone, but induced aberrations are likely to blame [25,26].
Once we begin adding many waves of, for instance, Z8 depar-
ture onto surfaces that have non-collimated beam footprints as
in Section 5.B, the assumptions that allow us to ignore induced
aberrations begin to break down. Additionally, the beam foot-
print on any given surface is not always circular but is often
elliptical, causing a deviation from the pupil and field depend-
ence of each freeform term shown by the ATFS [4]. The amount
of aberration added by a freeform surface also depends not only
on the sag of the surface but also on the angle of incidence of the
rays. Ray bundles from different field points may strike a surface
at different angles of incidence and therefore pick up a different
amount of aberration. These sources of error contribute to the
deviation from linearity of the surface coefficient prediction.
However, applying another iteration of each step removes the
small residual B222, A222/A131, and C422/C333 aberrations.
The resulting FFDs are shown in Figs. 7(e), 8(e), and 9(e).
Additionally, Fig. 5 shows the relevant NAT coefficients at
each step and how each step affects the residual aberrations of
the others.

Regarding the collection of the Z5 and Z6 FFD data, note
that in general the accuracy of the wavefront fit depends on the
number of rays traced across the pupil. In the example design in
this work, we found that the default number of rays in CODE
V of 58× 58 rays across the entrance pupil was sufficient, and
increasing the number of rays did not change the wavefront fit
results appreciably.

Fig. 7. Astigmatism (Z5/6) FFDs after each step. The axes’ units are the object field angle coordinates in degrees. (a) Starting design without any
freeform (spheres only); (b) after B222 removal; (c) after A222/A131 removal; (d) after C422/C333 removal; (e) after removing the residuals of each terms
through another iteration of each step.

Fig. 8. Zernike Coma (Z7/8) FFDs for each step. The axes’ units are the object field angle coordinates in degrees. (a) Starting design without any
freeform (spheres only); (b) after B222 removal; (c) after A222/A131 removal; (d) after C422/C333 removal; (e) after removing the residuals through
another iteration of each step.
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Fig. 9. Zernike Elliptical Coma (Z10/11) for each step. The axes’ units are the object field angle coordinates in degrees. (a) Starting design without
any freeform (spheres only); (b) after B222 removal; (c) after A222/A131 removal; (d) after C422/C333 removal; (e) after removing the residuals through
another iteration of each step.

E. Higher-Order Zernike Surface Coefficients

The ATFS as detailed in [3] includes analysis of higher-order
Zernike terms beyond Z10/11. Additionally, previous work
detailing a freeform design method that relies on ATFS includes
a qualitative analysis of the FFDs for these higher-order Zernike
surface shapes [5]. In the present work, we have carried out a
quantitative analysis up to Z10/11 surface shapes because shapes
with higher orders than this produce more complicated field
dependence in Zernike aberration FFDs besides astigmatism
(Z5/6). Using similar methods to extend to higher-order FFDs
is certainly feasible; it requires analyzing the field dependence of
the relevant Zernike aberrations, which is envisioned as future
work.

6. CONCLUSION

We have expanded the field dependence of Zernike astigmatism
(Z5/6) up to the eighth order in a wavefront by expanding the
NAT wavefront up to the eighth order and collecting the terms
with new field dependence. We have then shown how to use
insights from ATFS to estimate the required Zernike surface
coefficients to correct certain NAT terms in plane-symmetric
optical systems as a tool for freeform design. The Z5, Z8, and
Z11 surface shapes for plane-symmetric optical systems have
been analyzed and methods to predict their required coefficients
given. As an example, a three-mirror freeform design from pre-
vious work was analyzed using these methods, and the method
was shown to be effective at predicting the required surface
coefficients and correcting the intended aberrations.

APPENDIX A

Below are some useful vector identities involving the SVP for
deriving the equations in Section 2.A. Equations (A1) and (A2)
are reproduced from [11]:

2
(
EA · EB

) (
EA EB · EC 2

)
=

(
EA · EA

) (
EB2
· EC 2

)
+

(
EB · EB

) (
EA2
· EC 2

)
, (A1)

2
(
EA · EB

) (
EA2
· EC 2

)
=

(
EA · EA

) (
EA EB · EC 2

)
+ EA3

· EB EC 2.

(A2)

Equation (A3) can be derived from Eqs. (5) and (A1):
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) (
EA EB · EC 2

)
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(
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) (
EB3
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)
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(
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) (
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. (A3)

The following equations follow from the identities in Eqs. (5)
and (A1)–(A3). They are listed in here the order in which they
are used in Section 2.A:(
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) [(
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]
=
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+
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(A12)

Equations (A5) and (A10) follow from Eq. (5). Equations (A4)
and (A11) follow from Eq. (A1). Equations (A6), (A8), (A9),
and (A12) follow from Eq. (A2). Equation (A7) follows from
Eq. (A3).
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