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Orbital order and possible non-Fermi liquid in moiré systems

Yichen Xu ,1 Xiao-Chuan Wu,1 Chao-Ming Jian,2 and Cenke Xu 1

1Department of Physics, University of California, Santa Barbara, California 93106, USA
2Station Q, Microsoft, Santa Barbara, California 93106-6105, USA

(Received 18 October 2019; revised manuscript received 6 May 2020; accepted 8 May 2020;
published 22 May 2020)

Motivated by recent observation of nematicity in moiré systems, we study three different orbital orders that
potentially can happen in moiré systems: (1) the nematic order, (2) the valley polarization, and (3) the “compass
order.” Each order parameter spontaneously breaks part of the spatial symmetries of the system. We explore
physics caused by the quantum fluctuations close to the order-disorder transition of these order parameters.
Especially, we recognize that the symmetry of the moiré systems leads to a crucial difference of the effective
theory describing the nematic order from the standard Hertz-Millis formalism. We demonstrate that this key
difference may lead to a special non-Fermi liquid behavior near the order-disorder nematic transition, different
from the standard non-Fermi liquid behavior usually expected when a Fermi surface is coupled to the critical
fluctuations of orbital orders. We also discuss the interplay of the three order parameters and the possible rich
phase diagram at finite temperature. Within the three orbital orders, the valley polarization and the compass order
likely strongly compete with the superconductor.
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I. INTRODUCTION

Systems with moiré superlattices have surprised the
condensed-matter community with a plethora of correlated
phenomena, supposedly due to the strong Coulomb inter-
action and the narrowness of the minibands in the moiré
mini Brillouin zone [1–7]. Correlated insulators at fractional
fillings [8,9], high-temperature superconductors (compared
with the miniband width) [5–7,10–15], quantum anomalous
Hall effect [16–19], strange metal (non-Fermi liquid) [20,21],
competing orders [22,23], and spin-triplet pairing [5–7] have
all been reported in recent experiments on moiré systems.
Many of these phenomena may have to do with order parame-
ters with nontrivial transformations under spatial symmetries,
i.e., the orbital orders. For example, the quantum anomalous
Hall effect definitely requires valley polarization because
the Chern numbers of two degenerate minibands from two
different valleys must cancel each other due to symmetry
[16–19]. Also, a strong signature of nematic anisotropy was
found in recent experiments on twisted bilayer graphene
(TBG) in both the superconductor phase and the metallic
phase [22,23]. Mean-field analysis of orbital orders in lat-
tice models related to moiré systems have also been studied
[24].

Motivated by experimental observations, in this paper we
discuss possible orbital orders in moiré systems. We will
explore generic physics at the order-disorder transition of the
orbital orders based on the spatial symmetries of the systems.
Three different kinds of orbital orders, i.e., (1) the nematic
order, (2) valley polarization, and (3) “compass order,” which
spontaneously break different subgroups of the entire spatial
symmetries, will be discussed. These orders should be viewed
as possible instability of the Fermi surface due to interac-

tions. We will focus on the order-disorder quantum phase
transition of these order parameters, and especially how the
quantum fluctuations of these order parameters may affect the
electrons. We demonstrate that, due to the unique symmetry
of the systems, the nematic order fluctuation may lead to
a special non-Fermi liquid behavior, different from what is
usually expected at the quantum critical regime of an orbital
order. The interplay between these order parameters allows
a very rich phase diagram at zero and finite temperature.
Within these three orbital orders, the valley polarization and
compass order can potentially strongly compete with the
superconductor.

II. THREE ORBITAL ORDERS

In all the moiré systems discovered so far, the most general
microscopic symmetry is C3 × T , where T is an effective
time-reversal symmetry which is a product between the or-
dinary time reversal and a spin flipping, hence this effective
time-reversal symmetry still holds even with a background
Zeeman field (in-plane magnetic field). Under this symmetry,
the Fermi surface of the miniband emerging from each valley
only has a C3 symmetry, and T interchanges the two valleys.
The dispersion of the minibands from the two valleys sat-
isfy ε1(�k) = ε2(−�k), where the subscript is the valley index.
Different moiré systems have different extra symmetries, for
example, TBG without alignment with the Boron Nitride
(BN) substrate has an inversion symmetry I, while the trilyer
graphene and h-BN heterostructure has a reflection symmetry
P [25]. Both I and P interchange the two valleys [25–27].
We assume that the system under study has the symmetry
C3 × T × I. Under these spatial symmetries, the momenta
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and electron operators transform as

C3 : (kx + iky) → ei2π/3(kx + iky),

T : ca,�k → τ 1
abcb,−�k, I : ca,�k → τ 1

abcb,−�k, (1)

where a, b are the valley indices. In this paper, we will
discuss three different orbital orders, each breaking different
subgroups of the entire symmetry C3 × T × I .

The first orbital order we will consider is the nematic
order φ, which is a complex scalar order parameter. The
microscopic operator of the nematic order parameter in a
two-dimensional rotational invariant system can be written
as [28]

φ̂(�x) ∼ ψ†(�x)(∂2
x − ∂2

y + i2∂x∂y)ψ (�x), (2)

where ψ (x) is the real-space electron operator. φ̂ is an opera-
tor with zero or small momentum compared with the Fermi
wave vector. In a system with symmetry C3 × T × I, the
zero-momentum nematic operator can be represented as

φ̂ ∼
∑

�k
c†

1,�k
(
k2
x − k2

y + 2ikxky + α(kx − iky)
)
c1,�k

+
∑

�k
c†

2,�k
(
k2
x − k2

y + 2ikxky − α(kx − iky)
)
c2,�k, (3)

with real number α. Since the Fermi surface on each valley
only has a C3 symmetry, the dx2−y2 + idxy order parameter
with angular momentum (+2) will mix with a px − ipy order
parameter with angular momentum (−1). The nematic order
parameter φ ∼ 〈φ̂〉 transforms under the symmetries as

C3 : φ → ei2π/3φ, T : φ → φ∗, I : φ → φ. (4)

A nonzero condensate of φ will break the spatial symmetries
down to T and I only, and in this sense we can still refer to φ

as a nematic order parameter. Nematic order has been found in
many condensed-matter systems (for a review, see Ref. [29]),
and a strong signature of the existence of nematic order in both
the superconducting phase and the normal metallic phase was
recently reported in TBG [22,23].

The second orbital order we will discuss is the valley
polarization 	, which corresponds to an operator

	̂ ∼
∑

�k
c†

1,�kc1,�k − c†
2,�kc2,�k . (5)

A valley polarization 	 ∼ 〈	̂〉 is an Ising-like order pa-
rameter. A nonzero 	 will cause imbalance of the electron
density between the two valleys, i.e., the electron has higher
population at one valley than the other and it may lead to the
quantum anomalous Hall effect [16–19]. 	 preserves the C3

symmetry, but breaks both T and I .
The last order parameter is the ‘compass order, which

is again a complex scalar order parameter. The microscopic
compass order operator is represented as

ϕ̂ ∼
∑

�k
c†

1,�k
(
k2
x − k2

y + 2ikxky + α(kx − iky)
)
c1,�k

−
∑

�k
c†

2,�k
(
k2
x − k2

y + 2ikxky − α(kx − iky)
)
c2,�k . (6)

Under the symmetry actions, the compass order parameter
ϕ ∼ 〈ϕ̂〉 transforms as

C3 : ϕ → ei2π/3ϕ, T : ϕ → −ϕ∗, I : ϕ → −ϕ. (7)

The symmetry transformation of ϕ can be viewed as the def-
inition of the order parameter. ϕ also has the same symmetry
transformation as the composite field φ	.

The full symmetry C3 × T × I guarantees that a nonzero
nematic order leads to three different degenerate ground
states, while a compass order can take six different expecta-
tion values with degenerate energy. The compass order and
valley polarization both break time-reversal symmetry T ,
hence both orders can lead to anomalous Hall effect, as was
observed in Refs. [18,19]. Since the nematic order preserves
T , a nematic order alone cannot lead to the anomalous Hall
signal. But a nematic order breaks the rotation symmetry,
hence it directly couples to the background strain of the
system.

III. ORDER-DISORDER TRANSITION OF
THE NEMATIC ORDER

Normally, when an order parameter with zero or small
momentum couples to the Fermi surface, the dynamics of the
order parameter is overdamped at low frequency according to
the standard Hertz-Millis theory [30,31]. The nematic order
parameter is slightly more complicated; when coupled to a
circular Fermi surface, the dynamics of the nematic order
parameter is decomposed into a transverse mode and longitu-
dinal mode, and only the longitudinal mode is overdamped.
The separation of the two modes was computed explicitly
in Ref. [28], whose physical picture can be understood as
follows. Consider a general order parameter with a small
momentum �q; the overdamping of this mode comes from its
coupling with the patch of Fermi surface where the tangential
direction is parallel with �q. For a circular Fermi surface,
without loss of generality, let us assume �q = (qx, 0), then
the Fermi patches that cause overdamping locate at �k f ∼
±ŷ. But Im[φ] defined previously has nodes along the ±ŷ
direction (rotational invariance guarantees that the “tangen-
tial patch” of the Fermi surface coincides with the node of
the transverse mode), hence Im[φ]�q with �q = (qx, 0) is not
overdamped.

But now the symmetry of the system, especially the
fact that the d− wave order parameter mixes with the p−
wave order parameter, no longer guarantees that for any
small momentum �q the tangential patch of the Fermi surface
coincides with the node of the order parameter, hence φ

is always overdamped, which can be shown with explicit
calculations following Ref. [28]. Thus we will start with
the following Hertz-Millis type of action for the nematic
order parameter φ, which is invariant under the symmetry
C3 × T × I:

Sb = S0 +
∫

d2xdτ u(φ3 + φ∗3) + g|φ|4,

S0 =
∑
�q,ω

φ∗
�q,ω

( |ω|
q

+ q2 + r

)
φ�q,ω. (8)
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For convenience, we have written the free part of the action
S0 in the momentum and Matsubara frequency space, but the
interaction terms of the action in the Euclidean space-time.
Also, since the U(1) rotation of φ is in fact a spatial
rotation, there should be coupling between the direction of
�φ = (Re[φ], Im[φ]) and the direction of momentum, which
we have ignored for simplicity [32]. Following the standard
Hertz-Millis theory [30,31], the action Eqs. (8) is scaling
invariant if we assign the following scaling dimensions to the
parameters and field:

[ω] = 3, [qx] = [qy] = 1, [r] = 2,

[φ(�x, τ )] = 3
2 , [u] = 1

2 , [g] = −1. (9)

At the level of the Hertz-Millis theory, normally the total
space-time dimension is greater than the upper critical di-
mension, hence the self-interaction of the order parameter
is usually irrelevant, and the theory will lead to an ordinary
mean-field transition (for a review, see Ref. [33]). However,
unlike the ordinary Hertz-Millis theory, in our current case
there is an extra symmetry-allowed term u(φ3 + φ∗3) that is
relevant even though the total space-time dimension is D =
d + z = 5. Thus, we need to perform analysis beyond the
mean-field theory and explore the possible new physics led
by the new term.

The relevant u term breaks the U(1) symmetry of φ down
to a Z3 symmetry, which is the symmetry of a three-state
clock model [34]. A mean-field analysis of such Ginzburg-
Landau theory would lead to a first-order transition which
occurs at rc = u2/g, but a two-dimensional three-state clock
model (equivalent to a three-state Potts model) has a con-
tinuous transition and can be potentially described by the
Ginzburg-Landau theory with a Z3 anisotropy on a U(1)
order parameter [35]. References [36,37] also presented ex-
amples of first-order quantum phase transitions at the mean-
field level (precisely due to a cubic term like our u term
in the action) being driven to continuous transitions by
fluctuations, especially when the order parameter is cou-
pled to gapless fermions [37], which is analogous to our
situation.

Without knowing for sure the true nature of the transition
described by Eqs. (8), at least the scaling analysis in the
previous paragraph applies when r is tuned close to while
greater than rc, and in the energy scale ω � (u2/g)3/2 the
order parameter φ can always be viewed as a massless scalar
field with self-interaction u and g in Eqs. (8).

If we further assume that (u2/g)3/2 	 1/g3 and only look
at energy scale ω < 1/g3, the irrelevant coupling g is renor-
malized small enough. Hence, when the parameters in Eqs. (8)
satisfy (u2/g)3/2 	 1/g3, there is a finite energy window ω ∈
((u2/g)3/2, 1/g3) where we can view φ as a massless scalar
field which interacts with itself mainly through the u term
in Eqs. (8), and the ordinary |φ|4 interaction is irrelevant
and renormalized perturbatively weak. We expect that the
action Eqs. (8) with the relevant interaction u can lead to
new universal physics that is beyond the standard Hertz-Millis
theory.

Based on Eqs. (8), if we take into account the rel-
evant perturbation u, in general, the boson propagator

FIG. 1. (a) The one-loop correction to the boson propagator from
the u term in Eqs. (8). (b) The one-loop correction [Eq. (14)] to
the fermion propagator through the boson-fermion coupling g′ in
Eq. (12).

reads

Gb(ω, �q) = 1

G−1
b0 (ω, �q) + �b(ω, �q)

,

G−1
b0 (ω, �q) = |ω|

q
+ q2. (10)

A full reliable analysis of Eqs. (8) with the relevant perturba-
tion u is difficult; we will first limit our study to the lowest
nontrivial order of perturbation of u, later we will discuss
other analysis. At the one-loop level [Fig. 1(a)], the boson
self-energy �b(ω, �p) reads

�b(ω, �q) ∼ u2
∫

d2kdν Gb0(ν, �k)Gb0(ω + ν, �q + �k),

∼ const + Au2
√

|ω|2/3 + cq2 + · · · . (11)

A and c are both order-one constants. The behavior of the bo-
son self-energy is consistent with power counting of the loop
integral, and at low energy it dominates other quadratic terms
S0 in the standard Hertz-Millis theory due to the fact that u is
a relevant perturbation. The cutoff-dependent constant can be
reabsorbed into r, and the ellipsis includes terms that are less
dominant in the infrared [38].

For our purpose, we need to analyze the effects of the
boson-fermion coupling on the electrons. In the standard
Hertz-Millis theory without the relevant u term in the boson
action, the one-loop self-energy of the electron scales as
� f (ω) ∼ isgn[ω]|ω|2/3. We will analyze how the u term may
change the behavior of the fermion self-energy. Following the
formalism used in Refs. [39–43], we expand the system at one
patch of the Fermi surface. The “one-patch” theory is a very
helpful formalism to systematically evaluate loop diagrams in
a boson-fermion coupled theory. This one-patch theory breaks
the C3 symmetry, hence the real and imaginary parts of φ

are no longer degenerate. Since we are most interested in the
scaling behavior of the Fermion self-energy, we will consider
a one-component boson field with the dressed propagator
and self-energy given by Eq. (11). The one-patch theory
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reads

Sb f =
∑
ω,�k

ψ
†
ω,�k

(
iω − v f kx − vk2

y

)
ψ

ω,�k

+S0 +
∑
ω,�q

�b(ω, �q)|φω,�q|2

+
∫

d2xdτ g′φψ†ψ, (12)

where S0 is given by Eqs. (8) and �b(ω, �q) given by Eq. (11).
For this one-patch boson-fermion coupled theory, we need

to use a different assignment of scaling dimensions, which
was introduced in Refs. [39–43], for a better controlled analy-
sis of the boson-fermion coupled theory. To avoid confusion,
we use [ ] to denote the scaling dimension of the original pure
boson theory Eqs. (8), but { } to denote the scaling dimension
of the one-patch boson-fermion coupled theory:

{ω} = 3, {kx} = 2, {ky} = 1,

{φ(�x, τ )} = 5
2 , {ψ} = 2, {g′} = − 1

2 . (13)

Under the new scaling relation Eqs. (13), S0 becomes irrele-
vant compared with �b(ω, �q) in Eq. (11). We will first ignore
the irrelevant term S0 completely (which will be revisited
later) to reveal the main effect of the new u− term in Eqs. (8).
The one-loop fermion self-energy [Fig. 1(b)] reads

� f (ω) ∼
∫

d2kdν Gf 0(ν, �k)Gb(ω + ν, �k)

∼
∫

d2kdν
1

iν − v f kx − vk2
y

1√
|ω + ν|2/3 + ck2

∼ iω ln

(
�

|ω|
)

(14)

This behavior of fermion self-energy is similar to the
marginal Fermi liquid, and it is consistent with the simple
power counting of the loop integral. The marginal Fermi
liquid was proposed as a phenomenological theory for the
strange metal phase (a non-Fermi liquid phase) of the cuprate
high-temperature superconductor [44]. A similar strange
metal behavior was observed in the TBG [20–22]. Our goal
here is not to directly address the observed strange metal
bahavior [45], instead we stress that the electrons at the order-
disorder transition of the nematic order in the moiré systems
should behave differently from what is usually expected at
a nematic quantum critical point. This difference originates
from the unique symmetry of the moiré systems.

Because g′ is an irrelevant perturbation in Eq. (12), ac-
cording to the scaling convention of the “one-patch” theory
Eqs. (13), higher order perturbation of g′ in theory Eq. (12)
is not expected to lead to a more dominant correction to
the fermion self-energy in the infrared, hence we no longer
need to worry about the infinite “planar diagram” problem
in ordinary cases when an order parameter is coupled with
a Fermi surface [42].

The results above are based on the one-loop calculation
in the expansion of u, and higher order expansion of u will
modify the results in the infrared limit. If eventually the nem-
atic transition is driven continuous by fluctuations as the
examples given in Refs. [36,37], then a full analysis for the

FIG. 2. (a) The schematic representation of the Schwinger-
Dyson equation. (b) The example of vertex correction that is not
summed in the Schwinger-Dyson equation.

infrared limit is desired. Although we cannot completely solve
the strongly interacting theory Eqs. (8) analytically beyond
the perturbation expansion, an approximate solution can be
obtained through the Schwinger-Dyson (SD) equation, which
sums a subset of the Feynman diagrams Fig. 2(a):

�b ∼ u2
∫

d2kdν Gb(ν, �k)Gb(ω + ν, �q + �k),

G−1
b = G−1

b0 + �b. (15)

Here we have ignored the vertex correction from the full SD
equation [for example, vertex correction Fig. 2(b)]. We also
take a simple ansatz that, at the order-disorder transition, the
boson self-energy is approximated by the scaling form

�b(ω, �q) ∼ u2ηQ2−η, (16)

with anomalous dimension η, where Q is the infrared cutoff
that can be taken as Max[|ω|1/3, | �q|]. The previous one-loop
result simply yields η = 1. Now the bosonic part of the boson-
fermion coupling action Eq. (12) is replaced by Sb = S0 +∑

ω, �p �b(ω, �q)|φω,�q|2. Again, if we tentatively ignore S0, the
scaling of the boson-fermion coupling theory is modified as

{ω} = 3, {kx} = 2, {ky} = 1,

{φ(�x, τ )} = 4 + η

2
, {ψ} = 2, {g′} = −η

2
. (17)

The one-loop fermion self-energy should then scale as

� f (ω) ∼ iω|ω| η−1
3 . (18)

As long as η > 0, the boson-fermion coupling g′ in Eq. (12)
is still irrelevant, hence higher order fermion self-energy
diagrams from the boson-fermion coupling theory are not
expected to change Eq. (18) in the infrared.

The solution of the approximate SD equation would yield
η = 1/3, which will lead to a non-Fermi liquid behavior
that is in between the standard Hertz-Millis theory and also
the marginal Fermi liquid. After we convert the Matsubara
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frequency to real frequency, the imaginary part of the fermion
self-energy (inverse of the fermion lifetime) is a very char-
acteristic property of the non-Fermi liquid, and the analysis
above suggests that the imaginary part of fermion self-energy
should scale as Im(� f ) ∼ sgn(ω)|ω|β with 2/3 < β < 1.

If eventually the transition in Eqs. (8) is driven continuous
by fluctuation (like the examples given in Refs. [36,37]), then
the field φ is indeed massless even in the infrared limit at the
transition. Then the difference of our results described above
from the standard Hertz-Millis theory should be obvious in
the infrared limit. But even if the transition is first order at
rc = u2/g, as we discussed previously, when the parameters in
Eqs. (8) satisfy (u2/g)3/2 	 1/g3, at least there is a finite en-
ergy window |ω| ∈ ((u2/g)3/2, 1/g3) where φ can be viewed
as a massless scalar field with strong self-interaction mainly
through the u term, while other interactions in Eqs. (8) can
be ignored. In this case, the calculations in this section were
simplified by assuming that the boson self-energy �b dom-
inates the other quadratic term, i.e., S0 in Eqs. (8), because
S0 is irrelevant compared with �b. But in the finite energy
window described above, since we are not in the infrared
limit, one should keep a nonzero S0 together with �b in the
calculation of the fermion self-energy. Then the loop integral
in the evaluation of � f (ω) is more complicated. The fermion
self-energy is no longer a simple scaling form Im(� f ) ∼
sgn(ω)|ω|β with a constant exponent β. Instead, the exponent
β is expected to increase from the standard Hertz-Millis result
β = 2/3 while decreasing ω, i.e., in other words, the system
should cross over back to the standard Hertz-Millis result at
a higher energy scale. We have numerically calculated the
fermion self-energy by keeping a nonzero S0 in the bosonic
theory and confirmed this expectation of crossover.

Recently, the standard result of the fermion self-energy
scaling of the Hertz-Millis theory was confirmed in numerical
simulations [46] on nematic transitions on a square lattice.
We expect that our qualitative prediction of the fermion self-
energy under the symmetry of the moiré systems can also be
seen in future numerical simulations.

IV. VALLEY POLARIZATION AND COMPASS ORDER

The effective theory of the valley polarization order 	 and
compass order ϕ are more conventional Hertz-Millis theories
whose analysis can be quoted from Ref. [33]. A cubic self-
interaction term is not allowed for either order parameter. But
the symmetry transformation of the compass order ϕ allows a
term

u6(ϕ6 + ϕ∗6) (19)

in the Ginzburg-Landau-Hertz-Millis theory of ϕ, which is
irrelevant in the infrared at the total space-time dimension
D = 5. The three order parameters are coupled together in
the effective theory, and the lowest order symmetry-allowed
couplings are

Lmix = · · · + rφ|φ2| + rϕ|ϕ|2 + r	|	|2
+ v1(	φϕ∗ + H.c.) + v2(	ϕ3 + H.c.)

+ v3	
2|φ|2 + v4	

2|ϕ|2. (20)

FIG. 3. (a) The phase diagram when there is a compass order
at zero temperature—there are two consecutive Kosterlitz-Thouless
transitions at finite temperatures and an algebraic phase in between.
(b) Once there is a background strain in the system, the compass
order is identical to the valley polarization (VP) order and hence there
is only one Ising transition at finite temperature.

A full exploration of the multidimensional parameter space
will lead to a very complex and rich phase diagram. The
specific values of the parameters in Eq. (20) depend heavily
on the microscopic physics of the system.

Recently, evidence of strain that breaks the C3 rotation
symmetry has been reported in moiré systems [47], and the
strain can potentially strongly affect the band structure [48].
With a background strain field, the nematic order parameter
φ acquires a nonzero expectation value, and hence 	 and ϕ

become the same order parameter through the coupling v1

in Lmix.
At finite temperature, the nematic order and valley po-

larization will go through continuous transitions which cor-
respond to the three-state potts and Ising conformal field
theory with central charges 4/5 and 1/2, respectively, while,
if we start with a zero temperature compass order, the finite
temperature physics can be mapped to a six-state clock model
due to the u6 term mentioned previously in the Ginzburg-
Landau theory of the compass order. In this case, while raising
temperature, the system will undergo two consecutive contin-
uous Kosterlitz-Thouless transitions with an algebraic quasi-
long-range order in between. Within the algebraic phase, the
scaling dimension of the compass order parameter [ϕ] is
temperature dependent, and 1/18 < [ϕ] < 1/8. The nematic
order parameter φ ∼ ϕ∗2 and valley polarization 	 ∼ ϕ3 +
ϕ∗3 also have a power-law correlation function in the algebraic
phase, and their scaling dimensions are [φ] = 4[ϕ] and [	] =
9[ϕ]. Hence, even a weak background strain which pins φ is
always a relevant perturbation in the algebraic phase and will
collapse the two Kosterlitz-Thouless transitions of ϕ into a
single Ising transition of 	 (Fig. 3).

A signature of a hidden order which strongly competes
with the superconductor was observed experimentally [22,23].
Within the three orbital orders that we have discussed in
this paper, the valley polarization and compass order both
obviously compete with the superconductor. The reason is
that both these two order parameters break T and I, hence
breaking the degeneracy between electrons at �k and −�k (the
C3 symmetry alone does not protect this degeneracy), hence a
nonzero 	 or ϕ makes it difficult to form a zero-momentum
Cooper pair. Indeed, experiments so far have not found su-
perconductivity near the quantum anomalous Hall state in
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moiré systems, which at least require either valley polarization
or the compass order. We stress that the competing order
mentioned here does not necessarily mean it is the nature of
the correlated insulator observed experimentally.

V. FINAL REMARKS

In this paper, we studied three different orbital orders
that may occur in moiré systems. We demonstrate that at
the order-disorder transition of the nematic order parameter
(one of the three orbital orders), a special non-Fermi liquid
behavior is expected in a finite energy window, due to the
symmetry of the system. We focused on the metallic phase at
the disorder-order transition of the orbital order, since exper-
imentally a nematic metallic phase was observed [23] above
the nematic superconducting phase. Since the three different
orbital orders can interact with each other in the effective
theory and lead to a complex and rich phase diagram, de-
pending on the parameters, the moiré systems under different
conditions may display different orbital orders. We demon-
strate that the effective theory for the nematic order is beyond
the standard Hertz-Millis theory. Numerical methods such as
Refs. [46,49–51] are demanded to verify the results in the
current work.

We focused on the generic field theory analysis of the
phase transitions of the orbital orders, based on the symmetry
of the system. The parameters of the field theory can be
estimated through a calculation based on the lattice models,
but this estimate depends on the microscopic details of the
systems, and it may vary strongly between different systems.
For example, the parameter u stems from the C3 symmetry of
the Fermi surface at each valley, and its value depends on the
extent of the C3 deformation from the ordinary circular Fermi
surface, which likely strongly depends on the microscopic
model as well as the charge density. Due to the complexity
and subtlety of the microscopic analysis, we plan to leave
it to future studies. In the future, we will also pursue a
proper generalized renormalization group expansion such as
Refs. [39–41], as well as analysis of the stability of the
nematic order transition toward other orders such as super-
conductivity [52–55] in moiré systems.
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