
PHYSICAL REVIEW B 101, 174406 (2020)

Boundary criticality of topological quantum phase transitions in two-dimensional systems

Xiao-Chuan Wu,1 Yichen Xu,1 Hao Geng ,2 Chao-Ming Jian,3 and Cenke Xu1
1Department of Physics, University of California, Santa Barbara, California 93106, USA

2Department of Physics, University of Washington, Seattle, Washington 98195, USA
3Station Q, Microsoft, Santa Barbara, California 93106-6105, USA

(Received 7 February 2020; revised manuscript received 13 April 2020; accepted 14 April 2020;
published 5 May 2020)

We discuss the boundary critical behaviors of two-dimensional (2D) quantum phase transitions with fraction-
alized degrees of freedom in the bulk, motivated by the fact that usually it is the one-dimensional boundary
that is exposed and can be conveniently probed in many experimental platforms. In particular, we mainly
discuss boundary criticality of two examples: (i) the quantum phase transition between a 2D Z2 topological
order and an ordered phase with spontaneous symmetry breaking; (ii) the continuous quantum phase transition
between metal and a particular type of Mott insulator [U(1) spin liquid]. In particular, we obtain the critical
exponents and scaling laws of these exotic quantum phase transitions when the systems are probed from the
boundary in proposed experimental setup. These critical exponents obtained are significantly different from
those one would see through bulk measurements. This theoretical study could be relevant to many purely 2D
systems, where recent experiments have found correlated insulator, superconductor, and metal in the same phase
diagram.
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I. INTRODUCTION

Two-dimensional (2D) quantum many-body systems at
zero temperature gave us a plethora of exotic phenomena
beyond the classical wisdom of phases of matter. These
phenomena include topological orders [1,2], symmetry pro-
tected topological orders [3,4] (generalization of topological
insulators), and unconventional quantum phase transitions
beyond the Landau’s paradigm [5–9]. The unconventional
quantum phase transitions usually have very distinct universal
scalings compared with the ordinary (2 + 1)d Landau’s tran-
sitions. These unconventional quantum phase transitions, or
unconventional quantum critical points (QCP), could happen
between two ordinary Landau’s phases with different pat-
terns of spontaneous symmetry breaking [5,6], they can also
happen between a topological order and an ordered phase
[7,8,10]. Although many appealing numerical evidences of
these unconventional QCPs have been found [11–14], direct
clear experimental observation of these unconventional QCPs
is still demanded.

To identify an unconventional QCP in an experimental
system, we need to measure the correlation functions and
scaling dimensions of various operators at this QCP, and
compare the results with analytical predictions. In this work
we do not attempt to propose a particular experimental system
that realizes one of the unconventional QCPs, instead we try
to address one general issue that many experimental platforms
would face, platforms where potentially these unconventional
QCPs can be found. In numerical simulations of a QCP,
correlation functions and scalings in the bulk can be directly
computed. But experimentally many purely 2D systems of
interest are sandwiched between other auxiliary layers in
a Van der Waals heterostructure [15]. Hence, the bulk of

the 2D system is often not exposed for probing for many
experimental techniques. Instead, the 1D boundary of the 2D
system is exposed and can often be probed directly. Based on
the early studies of the boundary of Wilson-Fisher fixed points
[16–19] and the boundary of 2D conformal field theories
[20], we learned that the scaling of operators at the boundary
of a system can be very different from the bulk, hence the
previous calculations about unconventional QCPs in the bulk
may not be so relevant to many experimental platforms. We
need to restudy the critical exponents at the 1D boundary of
the system to compare with future experimental observations.

II. BOUNDARY CRITICALITY OF Z2 TOPOLOGICAL
QUANTUM PHASE TRANSITIONS

In this section we discuss the boundary critical behaviors
of a 2D topological quantum phase transition between a fully
gapped Z2 topological order, and an ordered phase which
spontaneously breaks the global symmetry of the system
and has no topological order. We assume that the “electric
gauge particle” (the so-called e anyon) of the Z2 topological
order is an N-component complex boson ba. This topological
transition is described by the following field theory:

S =
∫

dτd2x
N∑

a=1

|∂φa|2 + r|φa|2 + g

(
N∑

a=1

|φ|2a
)2

, (1)

where the complex scalar φa is the low-energy field of anyon
ba, and it is coupled to a Z2 gauge field which is not written
explicitly. Because a Z2 gauge field does not have gapless
gauge boson, it does not contribute any infrared corrections
to gauge invariant operators. This model has a QCP at r = rc
which separates two different phases. The physical meaning
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of the fields and parameters in this action depends on the
specific realization of Eq. (1), and two potential examples of
realizing Eq. (1) with different N will be discussed in the next
few paragraphs. When r > rc, φa is disordered and the system
is a Z2 topological order which is also the deconfined phase of
the Z2 gauge field; when r < rc, φa condenses and destroys the
Z2 topological order through the Higgs mechanism, and the
condensate of φa has ground-state manifold S2N−1/Z2, where
S2N−1 is a 2N − 1-dimensional sphere.

This theory Eq. (1) with different N can be realized in
various scenarios. For N = 1, this theory can be realized as
the transition between a 2D superconductor and a Z2 spin
liquid. Similar unconventional topological transitions have
been observed in numerical simulations in lattice spin (or
quantum boson) models [7,8], and theoretical predictions of
the bulk critical exponents have been confirmed quantitatively.
In this realization the boson b can be introduced by formally
fractionalizing the electron operator on the lattice as

c j,α = f j,αb j, (2)

where b j is a charge-carrying bosonic “rotor,” f j,α is the
fermionic parton that carries the spin quantum number. The
fractionalized degrees of freedom introduced here are essen-
tially the same as Ref. [21]: f j,α and b j share a U(1) gauge
symmetry, and the Z2 topological order is constructed by
assuming that b j has a finite mass gap, while f j,α forms a
superconductor at the mean-field level, which breaks the U(1)
gauge symmetry down to Z2. The quantum phase transition
between the superconductor and the Z2 topological is de-
scribed by Eq. (1) with N = 1. And in this particular realiza-
tion of Eq. (1), r is the tuning parameter for the deconfined
quantum phase transition between the superconductor and
a Z2 spin liquid. Similar Z2 spin liquid to superconductor
quantum phase transitions were discussed in the context of
organic frustrated quantum magnets and cuprates materials
[22,23]. The phases r > rc and r < rc correspond to the Z2
spin liquid (quantum disordered phase) and the supercon-
ductor (ordered phase), respectively. In the condensate of φ

(r < rc), the physical pairing symmetry of the superconductor
is inherited from the mean-field band structure of fα . The
long range Coulomb interaction between charge carriers is
often screened by auxiliary layers such as metallic gates in
experimental systems, hence in Eq. (1) there is only a short
range interaction. Equation (1) with N = 1 is often referred to
as the “XY∗” transition. In the dual picture, starting from the
superconducing phase, the XY∗ transition can also be viewed
as the condensation of double vortices of the superconductor.

Equation (1) with even N and N � 2 can be realized in
Sp(N ) spin systems, as the Z2 spin liquid can be naturally
constructed in Sp(N ) spin systems. ba ∼ φa is introduced as
the fractionalized Schwinger boson of the spin system, and the
Z2 topological order emerges when a pair of ba [which forms a
Sp(N ) singlet] condenses on the lattice [24,25]. In particular,
when N = 2, the theory Eq. (1) can be realized as the quantum
phase transition between a Z2 topological order and a non-
collinear spin density wave of spin-1/2 systems on a frustrated
lattice, for example the so-called 120◦ antiferromagnetic state
on the triangular lattice [10,26]. Now the quantum critical
point r = rc separates the quantum disordered Z2 spin liquid,
and the ordered 120◦ state. The order parameter of the non-

collinear spin order of a fully SU(2) invariant Hamiltonian
will form a ground-state manifold SO(3), which is equivalent
to SU(2)/Z2 = S3/Z2, where the Z2 is identified as the Z2
gauge group, and also the center of the spin SU(2) group. The
gauge invariant order parameter can be constructed with the
low-energy field φa as

�N1 = Re[φt iσ 2 �σφ], �N2 = Im[φt iσ 2 �σφ], �N3 = φ† �σφ,

(3)

and one can show that �Ni are three orthogonal vectors. In
this case theory Eq. (1) is referred to as the O(4)∗ transi-
tion, because there is an emergent O(4) symmetry rotates
(Re[φ1], Im[φ1], Re[φ2], Im[φ2]) as a four component real
vector (for more detailed discussions about the emergent sym-
metry, we refer the readers to Refs. [10,26]). Other systems
can potentially realize the theory with larger N , for instance,
spin systems with Sp(4) symmetry can be realized in spin-3/2
cold atom systems [27].

We are most interested in the composite operator
∑

a φ2
a ,

which is invariant under the Z2 gauge symmetry, but trans-
forms nontrivially under the physical symmetry, hence it is
a physical order parameter. When N = 1, in the conden-
sate of φ (or bj), the electron operator has a finite overlap
with the fermionic parton operator c j,α ∼ f j,α〈φ〉, hence the
superconductor order parameter � ∼ 〈φ2〉. In the bulk the
scaling dimension of φ2 can be extracted through the standard
ε expansion or numerical simulation [28]. Near the critical
point the superconductor order parameter should scale as
� ∼ |r − rc|β , where β = [φ2]ν and [φ2] is the scaling di-
mension of operator φ2. At the XY∗ critical point the exponent
ν ∼ 2/3. When N = 2, the composite operator

∑
a φ2

a is one
component of the spin order parameter of the noncollinear
spin density wave.

All the results above are only valid in the 2D bulk. But
in experiments on the boundary (as we discussed previously,
it is the boundary that is exposed and hence can be probed
conveniently), many of the critical exponents are modified.
We now consider a system whose 2D bulk is in the semi-
infinite xz plane with z > 0, with a 1D boundary at z = 0.
For simplicity, let us tentatively ignore the Z2 gauge field,
and view φa as a physical order parameter. The most natural
boundary condition is the Dirichlet boundary condition, i.e.,
the field vanishes at the boundary and also outside of the
system z � 0. The boundary condition of the system can be
imposed by turning on a large c|φa|2 term along the boundary,
which fixes φa(x, z = 0) = 0, where x = (τ, x).

At the mean-field level, the correlation function of the φa

field near the boundary can be computed using the “image
method” [16]:

G(x1 − x2, z1, z2) = d〈φa(x1, z1)φ∗
a (x2, z2)〉

= G(x1 − x2, z1 − z2)bulk

−G(x1 − x2, z1 + z2)bulk, (4)

where Gbulk = 〈φa(x1, z1)φ∗
a (x2, z2)〉bulk is the bulk correla-

tion function far from the boundary. Notice that the bound-
ary breaks the translation symmetry along the z direc-
tion, hence the full expression of the correlation function
near the boundary is no longer a function of z1 − z2. The
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expression in Eq. (4) guarantees that the correlation function
satisfies G(x1 − x2, 0, z2) = G(x1 − x2, z1, 0) = 0, which is
consistent with the boundary condition. The fact that the
correlation function of the φa field vanishes at the boundary
means that φa itself is no longer the leading representation of
the field at the boundary z = 0. Instead, another field with the
same global symmetry and quantum number at the boundary,

�1,a = ∂zφa, (5)

should be viewed as the leading representation of the field near
the boundary [29]. The field �1,a and φa have different spatial
symmetry transformations in the bulk of the system, but they
do have the same spatial symmetry at the boundary, as the
boundary breaks part of the spatial symmetry. In fact, since
�1,a and φa have the same symmetry transformation near
the boundary, an external field that couples to φa should also
couple to ∂zφa. At the mean-field level, a typical configuration
of φa scales as φa(x, z) ∼ z near the boundary, hence �1,a =
∂zφa is not suppressed by the boundary condition. Also, the
correlation function of �1,a at the boundary does not vanish,
and at the mean-field level it has scaling dimension [�1,a] =
[φa] + 1 = D/2, where D is the total space-time dimension of
the bulk.

The gauge invariant order parameter
∑

a φ2
a we are inter-

ested in reduces to �2 = ∑
a �2

1,a at the boundary, and it has
scaling dimension [�2] = D at the mean-field level. If the Z2
gauge field is ignored, then the correlation function of �1,a at
the boundary reads

〈�1,a(x1)�∗
1,a(x2)〉 = lim

z1,z2→0
∂z1∂z2G(x1 − x2, z1, z2), (6)

where G(x1 − x2, z1, z2) is still given by the image method
Eq. (4). If we assume that Gbulk takes the standard form at the
Gaussian fixed point

〈φa(x1, z1)φ∗
a (x2, z2)〉bulk = 1

[|x1 − x2|2 + (z1 − z2)2]
D−2
2

,

(7)

then the boundary correlation function of �1,a at the mean-
field level reads

〈�1,a(x1)�∗
1,a(x2)〉 = 2(D − 2)

|x1 − x2|D . (8)

At the Gaussian fixed point, the correlation function of �2 can
be derived using the Wick theorem:

〈�2(x1)�∗
2(x2)〉 =

∑
a

〈�1,a(x1)�∗
1,a(x2)〉2

∼ 1

|x1 − x2|2D . (9)

The scaling dimension of�2 will acquire further correction
from interaction, which can be computed through the ε =
(4 − D) expansion. Interestingly, at the leading ε order, [�2]
will receive corrections from both wave-function renormaliza-
tion and vertex corrections:

[�2] = D + 2δwf + δv. (10)

The wave-function renormalization δwf can be extracted
from the previously calculated ε expansion of the anoma-

FIG. 1. The diagrams that renormalize �2 at the first order of
ε. In the bulk the first diagram only shifts the mass of φa, but at
the boundary it makes a nontrivial contribution to the wave-function
renormalization.

lous dimension at the boundary of the Wilson-Fisher fixed
points, i.e.,

[�1,a] = D

2
+ δwf = D

2
− N + 1

2(N + 4)
ε. (11)

In contrast, in the bulk renormalization group (RG) analysis
of the Wilson-Fisher fixed point, the wave-function renor-
malization only appears at the second and higher order of ε

expansion.
The vertex correction is most conveniently computed using

the standard real-space RG, since now the momentum along
the ẑ direction is no longer conserved. We will use the follow-
ing operator-product-expansion (OPE) between �2(x, 0) and
the interaction term in Eq. (1) [Fig. 1(b)], where �2(x, 0) is
defined as �2(x, 0) = limz→0 [∂zφ(x, z)]2:

�2(x, 0)g

[∑
a

φ∗
a (x

′, z′)φa(x′, z′)

]2

= 2g lim
z→0

[∂zG(x − x′, z, z′)]2
∑
a

φ2
a (x

′, z′)

∼ 32z′4g
[(x − x′)2 + z′2]4

lim
z→0

[∂zφ(x, z)]2. (12)

Notice that like all the 4 − ε expansions, the OPE and loop
integrals were performed by assuming the bulk system is
in a four-dimensional space-time. Under rescaling x → x/b,
through the vertex correction the operator �2 will acquire a
correction

δ�2 = −�2

∫ a

a/b
4πr2dr

∫ +∞

0
dz′

32z′4g
(r2 + z′2)4

= −4gπ2(ln b)�2. (13)

The integral of z′ is within the upper semi-infinite plane z′ >

0.
Using ε expansion, g will flow from the noninteract-

ing Gaussian fixed point to an interacting fixed point g∗ =
ε/[4(N + 4)π2]. Plugging the fixed point value of g into
Eq. (13), we obtain the vertex correction

δv = ε

N + 4
. (14)

The wave-function renormalization δwf can be reproduced in
the same way through OPE [Fig. 1(a)]. Eventually the scaling
dimension of the gauge invariant order parameter �2 at the
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FIG. 2. The renormalization of operator �2 at the leading order
of ε can also be computed directly using the correlation functions in
this figure.

boundary is

[�2] = D − Nε

N + 4
. (15)

We have also computed this scaling dimension through direct
calculation of the correlation function of�2 near the boundary
(with diagrams in Fig. 2). These two calculations lead to the
same results.

As we discussed before, the case with N = 1 can be
realized as the transition between a Z2 topological order
and a superconductor. The QCP at r = rc separates the Z2
topological order phase with r > rc and the superconducting
phase with r < rc, and potential experimental applications of
this theory were discussed in Refs. [22,23]. In the bulk of the
system, the gauge-invariant superconducting order parameter
is given by

∑N
a=1 φ2

a (with N = 1). However, if the system is
probed from the boundary, then the leading gauge-invariant
superconducting order parameter is given by �2 instead.
Therefore, in the ordered phase but close to the critical point,
the superconductor order parameter probed from the boundary
should scale with the tuning parameter r as

� ∼ |r − rc|[�2]ν ∼ |r − rc|1.87, (16)

and we have taken ν ∼ 2/3 for the XY∗ fixed point [28].
For N = 2, the �2 operator is one component of the

noncollinear spin order of a SU(2) spin system, which
scales as

〈�S〉 ∼ �2 ∼ |r − rc|[�2]ν = |r − rc|1.97. (17)

Again, we have taken ν = 0.74 for the O(4)∗ fixed point
[28]. As a comparison, in the 2D bulk �2 should scale with
r as �2 ∼ |r − rc|0.82(N = 1) and �2 ∼ |r − rc|0.87(N = 2),
respectively, which is significantly different from the bound-
ary scaling.

When N = 1, the action Eq. (1) may or may not allow an
extra chemical potential term μφ∗∂τφ, depending on whether
the system has a (emergent) particle-hole symmetry φ → φ∗
or not. With nonzero μ the system has the same scaling as
a mean-field transition (with logarithmic corrections) as the
total space-time dimension is effectively D = 2 + d = 4, and
g is marginally irrelevant. In this case the scaling dimension of
the Cooper pair at the boundary becomes [�2]μ �=0 = D = 4,
and ν = 1/2 as in the mean-field transition.

The boundary scaling is valid as long as we consider cor-
relation function G(x1 − x2, z1, z2) with |x1 − x2| � z1, z2.
Right at the boundary of a 2D Z2 topological order, the gauge
field is confined, due to the condensation of the m anyons
of the Z2 topological order at the boundary (the boundary
of a Z2 topological order can also have e-anyon condensate,

but since in our case the e anyons carry nontrivial symmetry
transformations, we assume our boundary always has m-
anyon condensate). Near the boundary, the system still has
a finite confinement length ξ (z) as a function of z, i.e., the
distance from the boundary, due to the “proximity effect” of
the m condensation at the boundary. To guarantee that we can
approximately assume a deconfined Z2 gauge field near the
boundary, we need ξ (z) � z.

The most convenient way to estimate the confinement
length ξ (z) close to the boundary is to evaluate the energy
cost of two gauge charged particles separated with distance
x near the boundary. This energy cost can be estimated
in the “dual” Hamiltonian of a Z2 gauge theory, which
is a (2 + 1)d quantum Ising model: Hdual = ∑

j̄ −hτ x
j̄ −∑

μ=x,y J j̄,μτ z
j̄
τ z
j̄+μ

, where τ x
j̄ , τ

z
j̄
are a pair of Pauli operators

defined on the dual lattice sites j̄. The dual Ising operator τ z
j̄

is a creation and annihilation operator of the Z2 gauge flux. A
confined (and deconfined) phase of the Z2 gauge field corre-
sponds to the ordered (and disordered) phase of the dual quan-
tum Ising model with nonzero (and zero) expectation value
〈τ z〉 [30]. If there is a pair of static e particles with Z2 gauge
charges separated with distance x, then this system is dual to
a frustrated Ising model with Jj̄,μ = −J on the links along the
branch-cut that connects the two particles, while Jj̄,μ = +J
everywhere else. The energy cost of the two separated static
particles corresponds to the energy difference between this
frustrated Ising model nonuniform Jj̄,μ, and the case with
uniform Jj̄,μ. Then if τ z

j̄
has a nonzero expectation value 〈τ z〉,

the pair of Z2 gauge charges will approximately cost energy
E ∼ J〈τ z〉2x, i.e., the system is in a confined phase with a
linear confining potential between the two Z2 gauge charges,
and the confinement length is roughly ξ ∼ 1/(J〈τ z〉2). In our
system with a boundary at z = 0, although 〈τ z〉 is nonzero at
the boundary, its expectation value decays exponentially with
z because the Z2 gauge field is in a deconfined phase deep in
the bulk with 〈τ z〉 = 0. Hence, the confinement length ξ (z)
also increases with z exponentially, and we can safely assume
that the Z2 gauge field is still approximately deconfined near
the boundary.

III. CONTINUOUS METAL-INSULATOR TRANSITION

Another unconventional quantum phase transition that can
happen in 2D systems is the continuous metal-insulator tran-
sition, where the insulator is a U(1) liquid phase with a fermi
surface of the fermionic parton f j,α . Both f j,α and b j are
coupled to an emergent U(1) gauge field, which is presumably
deconfined in the 2D bulk due to the existence of the Fermi
surface and finite density of states of the matter fields. The
critical behavior of this transition in the bulk was studied in
Ref. [31], and it is again described by the condensation of bj ,
but in this case bj is coupled to an dynamic U(1) gauge field
aμ.

Although there is a gapless gauge field aμ in the bulk, the
gauge field dynamics is over-damped by the fermi surface
of fα through a term Sdamp ∼ 1

e2
∑

ω,�q |atω,q|2 |ω|
|q| based on

the standard Hertz-Millis formalism [32,33], where at is the
transverse mode of the gauge field. A simple power-counting
would suggest that the gauge coupling e2 becomes irrelevant
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at the transition where bj condenses, for both μ = 0 and
μ �= 0. Hence, the universality class of this transition does
not receive relevant infrared corrections from the gauge field.
Moreover, the direct density-density interaction between the
bosonic and fermionic partons also does not lead to relevant
effects [31]. Hence, the metal-insulator transition can still be
described by Eq. (1). The quasiparticle residue is proportional
to |〈b〉|, and the electron Green’s function is proportional
to |〈b〉|2. Hence, if one probes from the boundary, then the
local density of states of electrons at low energy, which is
proportional to the electron Green’s function, scales with the
tuning parameter r as

ρ ∼ |〈�1〉2| ∼ |r − rc|2[�1]ν, (18)

where r = rc is the location of the metal-insulator transition
point [31]. For μ = 0, [�1] is calculated in Eq. (11), and ν ∼
2/3; for μ �= 0, [�1] = 2 and ν = 1/2.

Again we need to address the question of confinement
length near the boundary, and demonstrate that ξ (z) � z. A
pure U(1) gauge field in (2 + 1)d is dual to a scalar boson
ϕ ∼ exp(iθ ) which physically is the Dirac monopole operator,
and the confined phase of a U(1) gauge field corresponds to a
phase with a pinned nonzero expectation value of ϕ. A U(1)
gauged particle becomes a vortex of θ in the dual formalism,
and in a deconfined phase a vortex costs logarithmically
divergent energy; but if ϕ has a pinned nonzero expectation
value, then a vortex will cost linearly diverging energy and
hence confined. Now suppose we consider a pair of gauge
charged particles separated at distance x, the energy cost will
be roughly x〈ϕ〉2. Hence, we need to evaluate 〈ϕ(z)〉 as a
function of z away from the boundary, assuming a nonzero
expectation value of ϕ at the boundary ϕ0 = 〈ϕ(z = 0)〉.
〈ϕ(z)〉 can be inferred from the correlation function 〈ϕ(z)〉 ∼
〈ϕ(z)ϕ(0)∗〉 ∼ exp[〈θ (z)θ (0)〉].

A (2 + 1)d pure U(1) gauge field without the matter field
is dual to a scalar boson model with an ordinary action S ∼∫
d2xdτρs(∂μθ )2, then θ has a positive scaling dimension

[θ ] = 1/2. The correlation function of θ reads 〈θ (r)θ (0)〉 ∼
1/r, which makes the correlation function of the monopole
operator saturates to a nonzero value as r → ∞. Hence, a
positive scaling dimension of θ in the dual action renders
the confinement of the compact gauge field in (2 + 1)d . If θ

has a negative scaling dimension in its (dual) action, then the
correlation function of ϕ will decay exponentially. Then the
confinement length ξ (z) ∼ 1/〈ϕ(z)〉2 ∼ 1/〈ϕ(z)ϕ(0)∗〉2 will
grow exponentially with z in the bulk away from the boundary.
And since ξ (z) � z, the boundary scaling behavior calculated
in this work can be applied under the assumption that the
gauge field is sufficiently deconfined near the boundary since
the confinement length is long enough in the vicinity of the
boundary.

Now we need to derive the dual action for θ more carefully.
Schematically the action for the transverse gauge field is

S =
∑
ω,�q

1

2

(
1

e2
|ω|
| �q| + c2| �q|2

)
|at |2. (19)

This action gives us an over-damped gauge bosonω ∼ iec| �q|3.
The canonical conjugate field of �a, i.e., the electric field
of the gauge field is defined as �E = δL/δ �̇a, hence �Eω,�q ∼

�aω,�q/(e2| �q|), hence the action can also be written as

S =
∑
ω,�q

e2

2
|ω|| �q|| �Eω,�q|2 + c2

2
| �q|2|atω,�q|2. (20)

Then we can use the standard canonical duality transformation
that preserves the commutation relation between the canonical
conjugate variables �E and �a:

�E = ẑ × �∇θ, �∇ × �a = n̂, (21)

where n̂ is the flux density, or the particle density conjugate to
θ (here the duality relation between gauge theory and scalar
boson is identical to the duality used in the quantum dimer
model, which was spelled out in, for example, Refs. [34,35]).
Eventually the dual action reads

Sd =
∑
ω,�q

1

2

(
e2|ω|| �q|3 + 1

c2
ω2

)
|θω,�q|2. (22)

The dual action also gives us an over-damped mode ω ∼
iec| �q|3 which is identical to the original gauge theory action.
Indeed, in the dual action θ (x, τ ) has a negative scaling
dimension in this dual action, which is consistent with our ex-
pectation that 〈ϕ(z)〉 decays exponentially in the bulk, hence
the gauge field is still approximately deconfined in the vicinity
of the boundary.

IV. DISCUSSION

In this work we computed the boundary universal scaling
behaviors of a class of deconfined quantum phase transitions,
which is relevant to future realization of these exotic transi-
tions in experimental systems. From the perspective of the
pure Laudau’s paradigm, the cases we study correspond to
the “ordinary transitions” of boundary CFT [16], meaning
the bulk will enter an ordered phase before the boundary,
which we believe is the most natural case in real systems.
Measurement of the scaling laws we calculated depends on
the specific realization of the theory Eq. (1). For example, if
the N = 1 theory is realized (as we proposed in this work)
as the transition between the Z2 spin liquid to superconduc-
tor, then the amplitude of the Cooper pair at the boundary
predicted in our calculation can be measured through the
Josephson effect by building a junction between the boundary
of the system and another ordinary bulk superconductor, as the
Josephson current is proportional to the amplitude of the su-
perconductor order parameter near the boundary. The Joseph-
son current should follow the same scaling law as Eq. (16).

The studies in this work can be naturally generalized to
higher dimensions. If there is a deconfined QCP between the
Z2 topological order and an ordered phase in the (3 + 1)d
bulk, then at its (2 + 1)d boundary the gauge invariant order
parameter �2 has precise scaling dimension [�2] = 4, since
in the bulk this transition is described by a mean-field theory
and received no extra corrections.

The direct transition between the Néel and valance bond
solid (VBS) order is another type of deconfined QCP that has
attracted a great deal of attentions. The boundary effect of this
deconfined QCP is more complex than the situations we have
considered because the boundary breaks the lattice symmetry,
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hence the boundary condition would couple to the VBS order
parameter. Another interesting scenario worth studying is the
boundary scaling of a bulk transition between a symmetry
protected topological (SPT) states and an ordered phase which
spontaneously breaks part of the defining symmetries of the
SPT phase. Although the bulk transition should belong to
the same universality class as the ordinary Ginzburg-Landau
transition, its boundary is expected to be very different due
to the existence of symmetry protected nontrivial boundary
states even in the SPT phase. Efforts have been made along

this direction including numerical simulation [36] and con-
struction of exactly soluble models [37]. We will leave these
subjects to future studies.
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