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Topological edge and interface states at bulk disorder-to-order quantum critical points
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We study the interplay between two nontrivial boundary effects: (1) the two-dimensional (2d) edge states of
three-dimensional (3d) strongly interacting bosonic symmetry-protected topological states, and (2) the boundary
fluctuations of 3d bulk disorder-to-order phase transitions. We then generalize our study to 2d gapless states
localized at an interface embedded in a 3d bulk, when the bulk undergoes a quantum phase transition. Our
study is based on generic long-wavelength descriptions of these systems and controlled analytic calculations.
Our results are summarized as follows: (i) The edge state of a prototype bosonic symmetry-protected state can
be driven to a new fixed point by coupling to the boundary fluctuations of a bulk quantum phase transition;
(ii) the states localized at a 2d interface of a 3d SU(N ) quantum antiferromagnet may be driven to a new fixed
point by coupling to the bulk quantum critical modes. Properties of the new fixed points identified are also
studied.
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I. INTRODUCTION

The most prominent feature of topological insulators (TIs)
[1–7] and more generally symmetry-protected topological
(SPT) states [8,9] is the contrast between the boundary and
the bulk of the system. In particular the two-dimensional (2d)
edge of three-dimensional (3d) SPT states hosts the most
diverse zoo of exotic phenomena that keep attracting attention
and effort from theoretical physics. It has been shown that
many exotic phenomena such as anomalous topological order
[10–16], deconfined quantum critical points (QCPs) [17], and
self-dual field theories [18–21] can all occur on the 2d edge
of 3d SPT states. Sometimes the symmetry of the system
is secretly realized as a self-dual transformation of the field
theories at the boundary [22,23]. All of these suggest that the
2d boundary of a 3d system is an ideal platform of studying
physics beyond the standard framework of condensed matter
theory.

On the other hand, even the boundary of an ordinary
Landau-Ginzburg type of quantum phase transition can have
nontrivial behaviors. It was studied and understood in the past
that the boundary of a bulk conformal field theory (CFT) fol-
lows a very different critical behavior from the bulk [24–29],
due to the strong boundary condition imposed on the CFT. The
boundary fluctuations (or the boundary CFT) of the Landau-
Ginzburg phase transitions were studied through the standard
ε expansion, and it was shown that the critical exponents
are very different from the bulk. Hence if experiments are
performed at the boundary of the system, one should refer
to the predictions of the boundary instead of the bulk CFT.
These two different boundary effects were studied separately
in the past. In this work we will study the interplay of these
two distinct boundary effects. Our goal is to seek new physics,
ideally new fixed points under renormalization group (RG)
flow due to the coupling of the two boundary effects.

For our purpose we give the system under study a virtual
two-layer structure (Fig. 1): layer 1 is a SPT state with
nontrivial edge states, and it is not tuned to a bulk phase
transition; layer 2 is a topologically trivial system which un-
dergoes an ordinary Landau-Ginzburg disorder-to-order phase
transition. Then as a starting point we assume a weak coupling
between the boundary of the two layers, and study the RG
flow of the coupling. Besides the edge state localized at the
boundary of a SPT state, we will also consider symmetry-
protected gapless states localized at a 2d interface embedded
in a 3d bulk. We will demonstrate that in several cases,
including the edge state of a prototype bosonic SPT state, the
2d boundary or interface will flow to a new fixed point due to
the bulk quantum phase transition.

Previous works have explored related ideas with different
approaches. Exactly soluble 1d and 2d Hamiltonians have
been constructed for gapless systems with protected edge
states [30]; the fate of edge states was also studied for 1d
and 2d SPT states [31–35]. But the 2d edge of 3d bosonic
SPT systems coupled with boundary modes which originate
from bulk quantum critical points, i.e., the situation that po-
tentially hosts the richest and most exotic phenomena, has not
been studied to our knowledge. We note that the interaction
between bulk quantum critical modes and the boundary of
free or weakly interacting fermion topological insulators (or
topological superconductors) was studied in Ref. [36], but the
coupling in that case was strongly irrelevant and hence will
not lead to new physics in the infrared (we will review the
interplay between the bulk quantum critical modes and the
edge states of free-fermion topological insulators in the next
section). We will focus on bosonic SPT states with intrinsic
strong interaction in this work. We use the generic long-
wavelength field theory description of both the bulk bosonic
SPT states and the edge states. Due to the lack of exact
results of strongly interacting (2 + 1)d field theories, we seek
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FIG. 1. We view the system under study as a two-layer system.
Layer 1 is a SPT state or TI with nontrivial edge states; layer 2 is an
ordinary disorder-to-order phase transition whose order parameter at
the boundary follows the scaling of boundary CFT. The boundary of
the entire system may flow to new fixed points due to the coupling
between the two layers.

a controlled calculation procedure that allows us to identify
new fixed points under RG flow. Indeed, in several scenarios
we will explore in this work, new fixed points are identified
based on controlled calculations.

II. EDGE STATES OF 3d SPT STATE AT BULK QCP

A. Edge states of noninteracting 3d TIs

We first consider the edge state of 3d topological insulator
(TI) and symmetry-protected topological (SPT) states. The
edge state of a free-fermion TI is described by the action

S =
∫

d2xdτ

Nf∑
α=1

ψ̄αγμ∂μψα, (1)

with γ 1 = σ 2, γ 2 = −σ 1, γ 0 = σ 3, ψ̄ = ψ†γ 0. Based on
the “tenfold-way classification” [1–3], for the AIII class, at
the noninteracting level the TIs are always nontrivial and
topologically different from each other for arbitrary integer
Nf , while for the AII class the TI is nontrivial only for odd
integer Nf , and they are all topologically equivalent to the
simplest case with Nf = 1. In both cases the fermion mass
term

∑
α ψ̄αψα is forbidden by the time-reversal symmetry.

Hence let us consider the disorder-to-order phase transition
in the 3d bulk associated with a spontaneous time-reversal
symmetry breaking, which is described by an ordinary
(3 + 1)d Landau-Ginzburg quantum Ising theory:

Sb =
∫

d3xdτ (∂φ)2 + uφ4. (2)

Because u is a marginally irrelevant coupling at the (3 + 1)d
noninteracting Gaussian fixed point, the scaling dimension of
φ in the bulk is precisely [φ] = 1.

Here we stress that the disorder-to-order transition is driven
by the physics in the bulk. Without the bulk, the boundary
alone does not support an ordered phase. To study the fate of
the edge state when the bulk is tuned to the quantum critical
point, we view the bulk as a “two layer” system (Fig. 1): layer

1 is a 3d TI which is not tuned to the quantum phase transition,
while layer 2 is at the disorder-to-order bulk quantum phase
transition between a time-reversal invariant trivial insulator
and a spontaneous time-reversal symmetry breaking phase.
Now both layers have nontrivial physics at the edge. The
quantum critical fluctuation (from layer 2) at the 2d boundary
must satisfy the boundary scaling law. When we impose the
most natural boundary condition φ(z � 0) = 0, the leading
field at the boundary which carries the same quantum number
as φ is 
 ∼ ∂zφ. Since φ has scaling dimension 1, 
 should
have scaling dimension [
] = 2, i.e.,

〈
(x, z = 0)
(0, z = 0)〉 ∼ 1/|x|4, (3)

where x = (τ, x, y). Equation (3) is a much weaker correlation
than φ in the bulk (more detailed derivation of boundary
correlation functions can be found in Refs. [24–27]).

Now we turn on coupling between the 2d boundaries
of the two layers. The edge state of the TI in layer 1 is
affected by the boundary fluctuations of layer 2 through the
“proximity effect.” The coupling between the two layers at
the 2d boundary is described by the following term in the
action:

Sc =
∫

d2xdτ
∑

α

g
ψ̄αψα. (4)

Since 
 ∼ ∂zφ has scaling dimension 2, g will have scaling
dimension [g] = −1; i.e., it is strongly irrelevant. This con-
clusion is consistent with the previous study Ref. [36]. A neg-
ative “mass term” 
2 will be generated through the standard
fermion loop diagram, but since 
 has scaling dimension 2,
this mass term will be irrelevant. Hence the edge state of a
3d TI is stable even at the bulk quantum critical point where
the time-reversal symmetry is spontaneously broken, and the
properties of the edge states (such as the electron Green’s
function) should be identical to the edge state of TI in the
infrared. To make the coupling g relevant, the quantum critical
modes also need to localize on the boundary, which is one of
the situations studied in Ref. [36].

B. Edge states of bosonic SPT states

The situation of bosonic SPT phases can be much more
interesting. The bosonic SPT state can only exist in strongly
interacting systems. We use the prototype 3d bosonic SPT
phase with [U(1) × U(1)] × ZT

2 symmetry as an example,
since this phase can be viewed as the parent state of many
3d bosonic SPT phases by breaking the symmetry down to
its subgroups, without fully trivializing the SPT phase. The
topological feature of this phase can be conveniently captured
by the following nonlinear sigma model in the (3 + 1)d
bulk [17,37]:

S =
∫
d3xdτ

1

g
(∂n)2 + i2π

�4
εabcden

a∂xn
b∂yn

c∂zn
d∂τn

e, (5)

where n is a five-component vector field with unit length, and
�4 is the volume of the four-dimensional sphere with unit
radius. (n1, n2) and (n3, n4) transform as a vector under the
two U(1) symmetries, respectively, and the ZT

2 changes the
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sign of all components of the vector n. The nonlinear sigma
model Eq. (5) is invariant under all the transformations.

The 2d edge state of this SPT phase can be described by
the following (2 + 1)d action:

S =
∫

d2xdτ
∑

α=1,2

|(∂ − ia)zα|2 + r|zα|2

+ u|zα|4 + 1

e2
(da)2, (6)

where aμ is a noncompact U(1) gauge field. The theory Eq. (6)
is referred to as the “easy-plane noncompact CP1” (EP-
NCCP1) model. We are most interested in the point r = 0. The
term

∑
α r|zα|2 would be forbidden if there were an extra Z2

self-dual symmetry that exchanges the two U(1) symmetries
[38], while without the self-duality symmetry r needs to be
tuned to zero, and the point r = 0 becomes the transition point
between two ordered phases that spontaneously breaks the
two U(1) symmetries, respectively [39,40]. At r = 0, starting
with the UV fixed point with noninteracting zα and aμ, both u
and e are expected (though not proven) to flow to a fixed point
with u = u∗, e = e∗.

The putative conformal field theory at r = 0 and its fate un-
der coupling to the boundary fluctuations (boundary modes)
of the bulk quantum critical points is the goal of our study
in this section. As was discussed in previous literature, it is
expected that there is an emergent O(4) symmetry in Eq. (6)
at r = 0, when we fully explore all the duality features of
Eq. (6) [18–22,38,41]. In the EP-NCCP1 action, the following
operators form a vector under O(4):

(n1, n2, n3, n4)∼ (z†σ 1z, z†σ 2z, Re[Ma], Im[Ma]), (7)

whereMa is the monopole operator (the operator that annihi-
lates a quantized flux of aμ). In the equation above, (n1, n2)
and (n3, n4) form vectors under the two U(1) symmetries,
respectively. The emergent O(4) includes the self-dual Z2
symmetry of the EP-NCCP1, i.e., the operation that exchanges
the two U(1) symmetries.

Now we consider the 3d bulk quantum phase transition
between the SPT phase and the ordered phases that break part
of the defining symmetries of the SPT phase. We first consider
two order parameters: φ0, φ3. φ0 is the order parameter that
corresponds to the self-dual Z2 symmetry, and φ3 is a singlet
under the emergent SO(4) but odd under the improper rotation
of the emergent O(4), and also odd under ZT

2 . Again we
view our system as a two-layer structure: layer 1 is a SPT
phase with solid edge states described by Eq. (6); layer 2 is
a topologically trivial system that undergoes the transition
of condensation of either φ0 or φ3. Both order parameters
have an ordinary mean-field-like transition in the bulk of
layer 2. Again at the boundary, both order parameters will
have very different scalings from the bulk. We assume that
system under study fills the entire semi-infinite space at z < 0;
then at the boundary plane z = 0, the most natural boundary
condition is that φ0(z � 0) = φ3(z � 0) = 0, hence all order
parameters near but inside the bulk should be replaced by
the following representations: 
0 ∼ ∂zφ0, 
3 ∼ ∂zφ3. Both
order parameters have scaling dimensions 2 at the (2 + 1)d
boundary of layer 2.

Now we couple 
0 and 
3 to the edge states of layer 1.
The coupling will take the following form:

Lc0 =
∑

α

g0
0|zα|2, Lc3 = g3
3z
†σ 3z. (8)

The RG flow of coupling constants g0,3 can be systematically
evaluated in a certain large-N generalization of the action in
Eq. (6):

S =
∫

d2xdτ
∑

α=1,2

N/2∑
j=1

|(∂ − ia)z j,α|2 + u

⎛
⎝∑

j

|z j,α|2
⎞
⎠

2

.

(9)

The large-N generalization facilitates calculations of the RG
flow, but the downside is that the duality structure and emer-
gent symmetries no longer exist for N > 2. In the large-N
limit of Eq. (9), the scaling dimension of the operators under
study is

N → +∞: [z†σ 3z] = [|z|2] = 2. (10)

In the equation above, each operator has a sum of index j,
which was not written explicitly. Apparently coupling con-
stants g0,3 are both irrelevant with large N due to the weakened
boundary correlation of 
0 and 
3.

We are seeking more interesting scenarios when the bound-
ary is driven to a new fixed point due to the bulk quantum
criticality. For this purpose we consider another order param-
eter �φ which transforms as a vector under one of the two
U(1) symmetries. Here we no longer assume the Z2 self-dual
symmetry on the lattice scale. Again at the boundary �φ should
be replaced by �
 ∼ ∂z �φ. At the 2d boundary, the coupling
between �
 and the edge state of layer 2 reads

Lcv = gv (
1z
†σ 1z + 
2z

†σ 2z). (11)

In the large-N limit of Eq. (9), the scaling dimension of the
operators under study is

N → +∞: [z†σ 1z] = [z†σ 2z] = 1. (12)

Hence gv is marginal in the large-N limit, and there is a chance
that gv could drive the system to a new fixed point with 1/N
corrections.

We introduce the following action in order to compute the
RG flow of gv with finite but large N :

S =
∫

d2xdτ
∑

α=1,2

N/2∑
j=1

|(∂ − ia)z j,α|2 + iλ+|z j,α|2

+ iλ−z†jσ
3z j + igv �
 · z†j �σ z j + 1

2
�
 · 1

|∂| �
. (13)

The λ± are two Hubbard-Stratonovich (HS) fields introduced
for the standard 1/N calculations [42,43]. The scalings of |z|2
and z†σ 3z in Eq. (9) are replaced by the HS fields λ+, λ− in the
new action Eq. (13), respectively. A coefficient i is introduced
in the definition of gv by redefining 
 → i
 for convenience
of calculation.

The schematic beta function of gv reads

dgv

d ln l
= (1 − �v )gv − Bg3v + O(v5). (14)
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FIG. 2. (a), (b): The 1/N contribution to z†σ 1,2z and ψ̄τ 1,2ψ

from the gauge field fluctuation; the solid lines represent either the
propagator of zα or ψα , and the wavy line represents the propagator
of the photon. (c), (d): The 1/N contribution to z† �σ z from λ± in
Eq. (13). (e), (f): The contribution to B in Eq. (14).

�v is the scaling dimension of z†j �σ z j in the large-N general-
ization of the EP-NCCP1 model Eq. (9), with �σ = (σ 1, σ 2).
The standard 1/N calculation leads to

�v = 1 − 56

3π2N
+ O

(
1

N2

)
. (15)

The 1/N correction of �v comes from the diagrams given
in Figs. 2(a)–2(d), where the wavy lines are the gauge boson
propagator, and the dashed lines represent propagators of both
λ±. The first term of Eq. (15) implies that gv is indeed weakly
relevant with finite but large N.

The constant B in the beta function arises from the operator
product expansion of the coupling term Eq. (11), which is
equivalent to the diagrams Figs. 2(e) and 2(f). This com-
putation leads to B = 1/(3π2). The two diagrams in Fig. 3
which are also at g3v order cancel each other for arbitrary
gauge choices. Similar two-loop diagrams at the same order of
1/N do not enter the RG equation due to lack of logarithmic
contribution, as was explained in Ref. [43]. �
 does not receive
a wave function renormalization due to the singular form of its
action. Hence with finite but large N, gv indeed flows to a new

FIG. 3. The two diagrams at g3v order which cancel each other for
arbitrary gauge choices.

fixed point:

g2v∗ = 56

N
+ O

(
1

N2

)
. (16)

We stress that this result is drawn from a controlled calculation
and it is valid to the leading order of 1/N .

As we explained before, the point r = 0 is a direct transi-
tion between two ordered phases that spontaneously break the
two U(1) symmetries. This transition will be driven to a new
fixed point by coupling to the boundary fluctuations of bulk
critical points as we demonstrated above. At this new fixed
point, the critical exponent ν follows from the relation

ν−1 = 3 − [λ+]. (17)

To evaluate the scaling dimension [λ+] we have to incorporate
the contributions of g2v from the diagrams shown in Fig. 4,
and combined with 1/N calculations performed previously
[43,44]. Then in the end we obtain

ν−1
∗ = 1 + 160

3π2N
+ 4g2v∗

3π2
+ O

(
1

N2

)

= 1 + 128

π2N
+ O

(
1

N2

)
. (18)

Again, there are other loop diagrams which appear to be
at the same order of 1/N but do not make any logarithmic
contributions [43].

III. INTERFACE STATES EMBEDDED IN 3d BULK

A. Interface states of noninteracting electron systems

In previous examples we studied topological edge states
at the boundary of a 3d system. In this section we will
consider the 2d states localized at an interface (z = 0) in a
3d space, when the entire 3d bulk (for both z > 0 and z < 0
semi-infinite spaces) undergoes a phase transition simulta-
neously. Without fine-tuning, we need to assume an extra

FIG. 4. The g2v diagram that contributes to the scaling dimension
of [λ+]. Here the solid line represents the propagator of z j,α , the
dotted line represents the vector operator �
, and the dashed line
represents λ+.
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reflection symmetry z → −z that connects the two sides of the
interface, which guarantees a simultaneous phase transition in
the entire system. In this case there is no physical reason
to impose the strong boundary condition at the interface
embedded in the 3d space, hence the quantum critical modes
at the interface follow the ordinary bulk scalings, instead of
the weakened correlation of boundary CFT.

Again we will consider free-fermion systems first. Let us
first recall that the AIII class TI has a Z classification which
is characterized by a topological index nT . nT will appear
as the coefficient of the electromagnetic response of the TI:
L ∼ iπnTE · B. nT must change sign under spatial reflection
transformationMz: z → −z. To construct the desired system,
we assume the semi-infinite space z < 0 is occupied with
the AIII class TI with Hamiltonian Ĥ , whose topological
index is nT , and its “reflection conjugate” M−1

z ĤMz fills the
semi-infinite space z > 0. Then there are Nf = 2nT flavors
of massless Dirac fermions localized at the 2d plane z = 0,
which are still protected by time-reversal symmetry. Now
we assume the entire bulk undergoes a quantum phase tran-
sition with a spontaneous time-reversal symmetry breaking,
whose order parameter couples to the domain wall Dirac
fermions as

S =
∫

d2xdτ

Nf∑
α=1

ψ̄αγμ∂μψα + gφψ̄αψα + 1

2
φ(−∂2)1/2φ.

(19)

The last term in the action is still defined in the (2 + 1)d
interface, and it reproduces the correlation of φ in the bulk:
〈φ(0)φ(r)〉 ∼ 1/r2. We stress that since now the order param-
eter resides in the entire bulk, φ no longer obeys the boundary
scaling as we discussed in previous examples. A negative
boson mass term −rφ2 can be generated through the standard
fermion mass loop diagram, hence we need to tune an extra
term at the interface to make sure the mass term of φ vanishes.

In this case the coupling constant g is a marginal pertur-
bation based on simple power counting. But gwill flow under
renormalization group (RG) with loop corrections in Figs. 2(e)
and 2(f):

β(g) = dg

d ln l
= − 2

3π2
g3 + O(g5). (20)

Hence even in this case, the coupling between the domain wall
states and the bulk quantum critical modes is perturbatively
marginally irrelevant.

So far we have assumed that the velocity of the interface
state is identical with the bulk. Now let us tune the velocity
of the domain wall Dirac fermions slightly differently, which
can be captured by the following term in the Lagrangian:∑

α

δψ̄α (γ
1∂x + γ 2∂y − 2γ 3∂3)ψα. (21)

δ defined above is an eigenvector under the leading order RG
flow. With the loop diagrams in Fig. 5, we obtain the leading
order beta function of δ:

β(δ) = dδ

d ln l
= − 1

5π2
g2δ. (22)

FIG. 5. The Feynman diagrams that renormalize the extra ve-
locity δ in Eq. (21). The box represents the vertex δ, and all three
diagrams contribute to the fermion self-energy and renormalize δ.

Together with β(g), the velocity anisotropy is also perturba-
tively irrelevant.

B. Interface states of quantum antiferromagnet

We now consider an SU(N ) quantum antiferromagnet on
a tetragonal lattice with a self-conjugate representation on
each site (we assume N is an even integer). With large N, an
antiferromagnetic Heisenberg SU(N ) model has a dimerized
ground state [45,46] where the two SU(N ) spins on two
nearest-neighbor sites form a spin singlet (valence bond).
We consider the following background configuration of a
valence bond solid (VBS): the spins form the VBS along
the ẑ direction which spontaneously breaks the translation
symmetry, while there is a domain wall between two opposite
dimerizations at the 2d XY plane z = 0; namely, z = 0 is
still a mirror plane of the system (Fig. 6). In each 1d chain
along the ẑ direction, there is a dangling self-conjugate SU(N )
spin localized on the site at the domain wall. Hence the 2d
domain wall is effectively an SU(N ) antiferromagnet on a
square lattice.

One state of the SU(N ) antiferromagnet which is the
“parent” state of many orders and topological orders on the
square lattice is the gapless π -flux U(1) spin liquid [47,48].
At low energy this spin liquid is described by the following
action of (2 + 1)d quantum electrodynamics (QED3):

S =
∫

d2xdτ

Nf∑
α=1

ψ̄αγμ(∂μ − iaμ)ψα + · · · . (23)

Here ψα are Nf = 2N flavors of 2-component Dirac fermions,
and they are the low-energy Dirac fermion modes of the
slave fermion f j,α defined as Ŝbj = f †j,αT

b
αβ f j,β ; T

b with b =
1 . . .N2 − 1 are the fundamental representation of the SU(N )
Lie algebra. Besides the spin components, there is an extra
two-dimensional internal space which corresponds to two
Dirac points in the Brillouin zone. There is an emergent
SU(Nf ) flavor symmetry in QED3 which includes both the
SU(N ) spin symmetry and discrete lattice symmetry.

It is known that when Nf is greater than a critical integer,
the QED3 is a conformal field theory (CFT). We will consider
the fate of this CFT when the three-dimensional bulk is
driven to a quantum phase transition. We will first consider
a disorder-to-order quantum phase transition, where the or-
dered phase spontaneously breaks the time-reversal and parity
symmetry of the XY plane. Notice that due to the reflection
symmetry z → −z of the background VBS configuration, the
two sides of the domain wall will reach the quantum critical
point simultaneously. The bulk transition is still described by
Eq. (2). When we couple the Ising order parameter φ to the
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FIG. 6. We consider an SU(N ) antiferromagnet with self-
conjugate representation on each site. The system forms a back-
ground VBS pattern, with opposite dimerizations between semi-
infinite spaces z > 0 and z < 0. There is a 2d antiferromagnet
localized at the interface z = 0, and the entire bulk can undergo phase
transition simultaneously due to the mirror (reflection) symmetry that
connects the two sides of the domain wall.

domain wall QED3, the total (2 + 1)d action reads

S =
∫

d2xdτ

Nf∑
α=1

ψ̄αγμ(∂μ − iaμ)ψα

+ gφψ̄αψα + 1

2
φ(−∂2)1/2φ. (24)

If the gauge field fluctuation is ignored, or equivalently in the
large-Nf limit, the scaling dimension of ψ̄ψ is [ψ̄ψ] = 2, and
hence the scaling dimension of g is [g] = 0; i.e., g is a marginal
perturbation. The 1/Nf correction to the RG flow arises from
the Feynman diagrams [Figs. 2(a) and 2(b) and Fig. 7] which
involves one or two photon propagators:

Ga
μν ( �p) = 16

Nf p

(
δμν − pμpν

p2

)
. (25)

Again in this case the fermions will generate a mass term for
the order parameter at the interface, which we need to tune to
zero. At the leading order of 1/Nf the corrected beta function
for g reads

β(g) = dg

d ln l
= − 128

3π2Nf
g− 2

3π2
g3 + O(g3). (26)

FIG. 7. The extra diagrams that contribute to the scaling dimen-
sion of

∑
α ψ̄αψα at the leading order of 1/Nf in QED3. Again the

wavy lines are photon propagators.

But this beta function does not lead to a new unitary fixed
point other than the decoupled fixed point g = 0. Hence in
this case the domain wall state is decoupled from the bulk
quantum critical modes in the infrared limit.

A more interesting scenario is when the bulk undergoes a
transition which spontaneously breaks the translation and C4

rotation symmetry by developing an extra VBS order within
the XY plane. The in-plane VBS order parameters are Vx ∼
ψ̄τ 1ψ , and Vy ∼ ψ̄τ 2ψ , where τ 1,2 are the Pauli matrices
operating in the Dirac valley space. The coupling between the
VBS order parameter and the domain wall QED3 reads

Sc =
∫
d2xdτ g

(
φ∗ψ̄τ−ψ + φψ̄τ+ψ

)+ φ∗(−∂2)1/2φ. (27)

Here τ± = (τ 1 ± iτ 2)/2. The scaling dimension of the VBS
order parameter at the QED3 fixed point has been computed
previously [47,49,50]: [ψ̄τ aψ] = 2 − 64/(3π2Nf ), and the
beta function of g to the leading order of 1/Nf reads

β(g) = 64

3π2Nf
g− 1

6π2
g3 + O(g3). (28)

In the large-Nf limit, the coupling g is marginally irrelevant,
but with finite and large Nf , g is weakly relevant at the
noninteracting fixed point, and it will flow to an interacting
fixed point

g2∗ = 128

Nf
+ O

(
1

N2
f

)
. (29)

This new fixed point will break the emergent SU(Nf ) flavor
symmetry down to SU(N ) × U(1) symmetry, where U(1)
corresponds to the rotation of the Dirac valley space. The fol-
lowing gauge-invariant operators receive different corrections
to their scaling dimensions from coupling to the bulk quantum
critical modes:

[ψ̄ψ] = 2 + 128

3π2Nf
+ 2

3π2
g2∗ + O

(
1

N2
f

)
,

[ψ̄T bψ] = 2 − 64

3π2Nf
+ 2

3π2
g2∗ + O

(
1

N2
f

)
,

[ψ̄τ 3ψ] = 2 − 64

3π2Nf
− 1

3π2
g2∗ + O

(
1

N2
f

)
,

[ψ̄τ 1,2ψ] = 2 − 64

3π2Nf
+ 1

6π2
g2∗. (30)
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The operators ψ̄τ 1,2ψ have exactly scaling dimension 2; the
Feynman diagram contributions from Fig. 2 cancel each other
for operator ψ̄τ 1,2ψ as they should. Notice that the last three
operators in Eq. (30) should have the same scaling dimension
in the original QED3 fixed point due to the large SU(Nf )
flavor symmetry, but at this new fixed point they will acquire
different corrections.

Another interesting scenario is that the bulk is at a critical
point whose order parameter couples to the Ising-like operator
ψ̄τ 3ψ , which breaks the in-plane parity but preserves the time
reversal:

Sc =
∫

d2xdτ gφψ̄τ 3ψ + 1

2
φ(−∂2)1/2φ. (31)

The microscopic representation of the operator ψ̄τ 3ψ can be
found in Ref. [47]. The beta function of the coupling g reads

β(g) = 64

3π2Nf
g− 2

3π2
g3 + O(g3), (32)

and once again there is new stable fixed point g2∗ = 32/Nf +
O(1/N2

f ). And at this fixed point,

[ψ̄ψ] = 2 + 128

3π2Nf
+ 2

3π2
g2∗ + O

(
1

N2
f

)
,

[ψ̄T bψ] = 2 − 64

3π2Nf
+ 2

3π2
g2∗ + O

(
1

N2
f

)
,

[ψ̄τ 1,2ψ] = 2 − 64

3π2Nf
− 1

3π2
g2∗ + O

(
1

N2
f

)
,

[ψ̄τ 3ψ] = 2 − 64

3π2Nf
+ 2

3π2
g2∗. (33)

The domain wall state considered here is formally equiv-
alent to the boundary state of a 3d bosonic SPT state with
pSU(N ) × U(1) symmetry, which can also be embedded to
the 3d SPT with pSU(Nf ) symmetry discussed in Ref. [51].
This SPT state can be constructed as follows: we first break
the U(1) symmetry in the 3d bulk by driving the bulk z < 0
into a superfluid phase, and then decorate the vortex loop of
the superfluid phase with a 1d Haldane phase with pSU(N )
symmetry [52–55]. Eventually we proliferate the decorated
vortex loops to restore all the symmetries in the bulk. A
1d pSU(N ) Haldane phase can be constructed as a spin chain
with a pSU(N ) spin on each site, and there is a dangling
self-conjugate representation of SU(N ) on each end of the
chain. And this dangling spin will also exist in the U(1) vortex
at the boundary of the pSU(N ) × U(1) SPT state. Notice that

the self-conjugate representation of SU(N ) is a projective
representation of pSU(N).

IV. DISCUSSION

In this work we systematically studied the interplay of two
different nontrivial boundary effects: the 2d edge states of
3d symmetry-protected topological states, and the boundary
fluctuations of 3d bulk quantum phase transitions. New fixed
points were identified through generic field theory descrip-
tions of these systems and controlled calculations. We then
generalized our study to the 2d states localized at the interface
embedded in the 3d bulk.

The last case studied in Eqs. (32) and (33) is special when
Nf = 2, and when the gauge field is noncompact. This is
the theory that has been shown to be dual to the EP-NCCP1

model [19,41] studied in Eq. (6), the operator
∑

α r|zα|2 is
dual to rψ̄τ 3ψ , and both theories are self-dual. By coupling
the operator ψ̄τ 3ψ to the bulk critical modes (rather than the
boundary fluctuations of the bulk critical points), we have
shown that this (2 + 1)d theory is driven to a new fixed
point, and the self-duality structure still holds. The self-duality
transformation of Eq. (6) now is combined with the Ising sym-
metry of the order parameter φ. However, the O(4) emergent
symmetry no longer exists at this new fixed point, due to the
nonzero fixed point of g in Eq. (31).

The methodology used in this work can have many po-
tential extensions. We can apply the same field theory and
RG calculation to the 1d boundary of 2d SPT states (for
instance the AKLT state), which was studied through exactly
soluble lattice Hamiltonians [30] and also numerical methods
[32–34]. Also, a 1d defect in a 3d topological state can
also have gapless modes [56,57]; it would be interesting to
investigate the fate of a 1d defect embedded in a 3d bulk at
the bulk quantum phase transition. Defects of a free or weakly
interacting fermionic topological insulator and topological
superconductor coupled with bulk critical modes was studied
in Ref. [36], but we expect the defect of an intrinsic strongly
interacting topological state can lead to much richer physics.
Last but not least, the “higher-order topological insulator”
has nontrivial modes localized at the corner instead of the
boundary of the system [58]. The coupling between the bulk
quantum critical points and corner topological modes is also
worth exploration.
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