Deterministic Sub-Wallet for Cryptocurrencies

Hossein Rezaeighaleh
Department of Computer Science
University of Central Florida
Orlando, USA
rezaei@knights.ucf.edu

Abstract— A big challenge in cryptocurrency is securing a user
key from potential hackers because nobody can rollback a
transaction made by an attacker with a stolen key once the
blockchain network confirms it. One solution to protect users is
splitting the money between super-wallet and sub-wallet. The user
stores a large amount of money on her super-wallet and keeps it
safe; she refills the sub-wallet when she needs while using the sub-
wallet for her daily purchases. In this paper, we propose a new
scheme to create sub-wallet that we call deterministic sub-wallet.
In this scheme, the seed of the sub-wallet keys is derived from the
super-wallet master seed, and therefore the super-wallet can build
many sub-wallet addresses and refill them in a single blockchain
transaction. Compared to existing approaches, our mechanism is
cheaper, real-time, more secure against man-in-the-middle attack
and easier for backup and recovery. We implement a proof-of-
concept on a hardware wallet and evaluate its performance. In
addition, we analyze the attacks and defenses of this design to
demonstrate that our proposed method has a higher level of
security than existing models.

Keywords—Dblockchain, cryptocurrency, hardware wallet, smart
card, Bitcoin.

I. INTRODUCTION

Blockchain technology and cryptocurrencies become
increasingly accessible and usable in various areas from
purchasing a coffee to transferring vehicles ownership. At the
same time, the crypto coins become more attractive and valuable
for hackers to steal, as we read the frequent news of hackers
stealing a large amount of money from blockchain users. A
major security issue in all cryptocurrencies, including Bitcoin
and many altcoins, is the safety of users’ private key.
Cryptocurrencies usually use elliptic-curve asymmetric
cryptography to control the ownership of coins or accounts. In
other words, to transfer fund from a user to another, the sender
signs a transaction with her private key, and the blockchain
verifies the signature of the transaction with the sender’s public
key. If the blockchain network accepts and confirms this
transaction, nobody can roll it back, unlike the traditional bank
transfer. Thus, if a hacker empties the user account and transfers
all her money to his account, she has no way to reverse the
transaction and recover her loss. Unfortunately, many people
have experienced this disaster.

A user’s private key has full control of the user’s fund, and
she should stand on her own feet and keep her private keys safe
by herself, which is one of the most critical challenges in
cryptocurrencies [1], [2]. Users usually employ crypto wallets
to generate and store their private keys and sign transactions.
Crypto wallets have many forms from online wallets to mobile

Cliff C. Zou
Department of Computer Science
University of Central Florida
Orlando, USA
czou@cs.ucf.edu

and cold wallets, and the most secure one is hardware wallet
which usually is in the form of a USB stick, Bluetooth device or
smartcard.

Even though the hardware wallet is a secure option, it is
risky that a user puts all of her fund on a device and uses that for
day-to-day purchase. A smart and simple solution is proposed
in [1] called super-wallet/sub-wallet model. The super-wallet is
like a saving account that stores a large amount of money and
only refills the same owner’s sub-wallet infrequently when
needed. The sub-wallet is like a spending account that stores a
small amount of fund used by the user for daily expenses.
Therefore, if the user’s sub-wallet is lost or hacked, she does not
lose a significant amount of money.

In the classic model [1], every time a user wants to refill her
sub-wallet, she sends fund from the super-wallet address to the
sub-wallet address. This process is straightforward but has
significant drawbacks. First, each time the user refills the sub-
wallet, the super-wallet creates a transaction and publishes to the
blockchain network. Thus, she pays a miner fee for each such
transaction. Also, she should wait for confirmation, so refilling
the sub-wallet takes time. Also, refilling the sub-wallet is risky
because a hacker could perform Man-In-The-Middle (MITM)
attack to replace the user’s sub-wallet address by his address to
receive fund from the super-wallet. Furthermore, the user must
maintain the backup of both super-wallet and sub-wallet.

To resolve these challenges in the super-wallet/sub-wallet
model, we propose a new scheme that we call deterministic sub-
wallet. In this model, the sub-wallet seed is derived from the
super-wallet seed, and this process being executed inside the
super-wallet. The super-wallet derives the sub-wallet addresses
and transfer fund to them in only one blockchain transaction. To
refill, the user transports a seed from the super-wallet to the sub-
wallet instead of creating a blockchain transaction.
Consequently, this model can refill multiple sub-wallet
addresses with only one mining fee and one-time waiting for
confirmation. It is secure because the super-wallet does not need
to get the sub-wallet addresses from the outside of the wallet and
it prevents a MITM attack. Also, there is no need to back up the
sub-wallet, because it can be derived from the super-wallet. For
proof-of-concept, we implement a prototype of our proposed
deterministic sub-wallet in a hardware wallet and evaluate its
performance. In summary, our contributions in this paper are:

e Designing a new super-wallet/sub-wallet model which
reduces refilling cost and time, enhances the security, and
removes the necessity for the sub-wallet backup

e Implementing a proof-of-concept in a hardware wallet



In section II, we overview related works including
Hierarchical Deterministic wallet and classic super-wallet/sub-
wallet model. In section III we explain our new proposed
deterministic sub-wallet model and Section IV is about our
prototype implementation in a hardware wallet, and we evaluate
its performance in section V. Next, we define our security
assumptions and threat model and do a security analysis of the
algorithm and its implementation in section VI. Finally, in
section VII, we finish the paper with a conclusion.

II. RELATED WORKS

A. Hierarchical Deterministic Wallet

Bitcoin, Ethereum, Litecoin, and almost all popular
cryptocurrencies use elliptic-curve cryptography (ECC) to sign
and verify transactions. They usually use secp256k! domain
parameters with ECC 256-bit [4]. Therefore, the user has a key
pair and uses the private key to sign transactions and transfer
fund to another user’s public key. The sender must know the
receiver’s public key to perform a transaction, and all users
publish their public key in a specific format called address.
Therefore, a user keeps her private key secret and publishes her
address to other users in the network that causes privacy
concerns because everyone that has access to the Internet can
discover the user’s addresses and track her transactions.

Thus, anonymity is a challenge in most cryptocurrencies
because all transaction history is on the blockchain network. To
tackle this problem, the user should use a new address in each
transaction to receive fund from others or return the remining
value of spending transaction called ‘change address’. It means
that she generates a new key pair for each transaction. Thus,
nobody can track her just by watching her transaction history,
and this is a best-practice in Bitcoin and many cryptocurrencies
[5]. However, generating a random private key for each
transaction requires maintaining a lot of private keys which is
hard to manage. Deterministic wallets are invented to solve this
problem and use a predictable algorithm to generate new private
keys, and because it can be hierarchical, they are called
Hierarchical Deterministic (HD) wallets [6]. In HD wallet, the
user has a tree of private keys which any node can be derived
from its parent using Child Key Derivation (CKD) algorithm.
The root of this tree is a private key which is called ‘master
private key’ and derived from an random value called ‘master
seed’. In other words, anyone who has the master seed can
derive all subordinate private keys and addresses. Consequently,
the user only needs to keep one seed value safe and generates a
lot of pseudo-random addresses which provide anonymity.

HD wallet uses a path to address each key in the key tree that
is a sequence of a letter and a few numbers. The first element in
the path is letter ‘m’ that denotes master seed and subsequent
numbers are the input indexes for CKD algorithm in the
corresponding round [6]. In addition to HD wallet base
algorithms, the cryptocurrency community proposed a
complementary standard to define a universal path format for all
coins (Bitcoin, Ethereum, Litecoin, and other coins) [7]. The
format of this addressing is as follows:

path = m/purpose’/coin’/account’/change/address_index (1)

There is also another proposal [8] which defines a
conversion algorithm to convert a list of memorable words
(mnemonics) to a seed for HD wallets. The user must write
down these words (12 to 24 words) on a piece of paper and keep
that safe. She can recover whole her key tree on a new wallet
using these words. Crypto wallets usually use this conversion to
back up the master seed.

Finally, there is a large universal tree derived from a word
list that covers all keys of all coins for a user wallet and each
key in the tree has a unique path. However, these mechanisms
are silent about the super-wallet/sub-wallet model, and there is
not any link between two wallet keys. In our proposed scheme,
we use the existing HD wallet structure and add a link between
the master seed of the super-wallet and the master seed of the
sub-wallet that we called sub-seed.

B. Classic Super-Wallet/Sub-Wallet Model

The idea of super-wallet and sub-wallet is proposed in [1]. It
is separating the main account that conveys a large amount of
money from spending account that is used for the daily
transactions. It mimics personal saving account and spending
account in traditional banking. A user uses her spending account
on a sub-wallet for day-to-day expenses such as a purchase from
online stores, pay bills or buy a coffee. On the other hand, she
uses her saving account on a super-wallet just for receiving like
a deposit of salary and refill her spending account on the sub-
wallet. Therefore, she uses her super-wallet rarely, e.g., one or
two times per month, and her sub-wallet several times per day.

The classic solution to build super-wallet and sub-wallet
proposed in [1] is straightforward. The user should have two
regular wallets. She designates one wallet as super-wallet and
stores all of her fund on that. Then, each time she wants to refill
the sub-wallet (second wallet), she retrieves a receiving address
from the sub-wallet and sends fund from the super-wallet to this
address. In this mechanism, the user creates a transaction in the
super-wallet each time she wants to refill the sub-wallet. This
process requires paying miner fee and waiting a period for
confirmations. Because usually, the terminal (e.g., laptop or
smartphone) is vulnerable to malware attacks, it is possible that
a hacker replaces the sub-wallet address by his own address to
steal funds from the super-wallet. Furthermore, the user should
back up both super-wallet and sub-wallet similar to all regular
wallets. In the next section, we address these issues with our
proposed model.

III. PROPOSED DETERMINISTIC SUB-WALLET

In contrast to classic super-wallet/sub-wallet model with
unlinked key trees, in our new scheme, deterministic sub-wallet,
we derive the sub-wallet seeds from the super-wallet master
seed. Therefore, the super-wallet can build all sub-wallet key
trees. So, the super-wallet refills several sub-wallet addresses
with one blockchain transaction, and refills the sub-wallet with
transporting one sub-seed.

Compared to the classic super-wallet/sub-wallet model, the
advantages of our proposed deterministic sub-wallet are:

e Deterministic sub-wallet is cheaper in terms of the miner fee
because it can refill multiple sub-wallet addresses with one



blockchain transaction, while classic model requires a
blockchain transaction in each refill.

e Refilling sub-wallet is real-time in the deterministic sub-
wallet because it is an offline sub-seed transporting from
the super-wallet to the sub-wallet without any transaction
with blockchain network.

e The classic model is vulnerable to Man-In-The-Middle
attack for key injection similar to other regular wallets, but
deterministic sub-wallet is not because the sub-wallet
addresses are generated inside the super-wallet.

e The user must back up both the super-wallet and the sub-
wallet seeds in the classic model, but in the deterministic
sub-wallet, there is no need to back up the sub-wallet seed
because it is derivable from the super-wallet seed. So, it is
enough to back up the super-wallet seed.

The abstract process of deterministic sub-wallet refilling is
as follows. The super-wallet generates a pool of sub-wallet
addresses and constructs a large transaction which transfer funds
from one (or more) super-wallet addresses to the generated sub-
wallet addresses. Then, the super-wallet signs and publishes the
transaction. After that, each time the user wants to refill the sub-
wallet, she exports a sub-wallet seed from the super-wallet and
imports that to the sub-wallet securely. In our previous paper
[9], we proposed a secure cryptographic mechanism to transport
a seed between wallets using Elliptic-Curve Diffie-Hellman. We
explain the details of the process in the following sections.

A. Sub-Wallet Seed Derivation

Both super-wallet and sub-wallet should be HD wallet to
support the anonymity and privacy of the user. In our model,
one sub-wallet can have only one seed at a time, but the super-
wallet derives a new seed each time to generate a new sub-wallet
address. So, to implement a deterministic sub-wallet, we
propose a simple function to derive multiple sub-wallet seeds
(subSeed) from a super-wallet master seed (masterSeed). This
function is as follows.

subSeed = HMAC-SHAS512(key="Sub-wallet xxxx",
data=masterSeed) (2)

In this function, we use a procedure similar to the master key
generation function in [6] with some modifications. The core
function is an HMAC-SHAS512 with a master seed as input data
and "Sub-wallet xxxx" string as input key. The “xxxx” is the
index of sub-wallet starting from 0 which is a four-digit
hexadecimal number. For example, the input key for sub-wallet
number 1 will be "Sub-wallet 0001". The output of this function
is a 512-bit deterministic pseudo-random value which can be
used as a regular seed to construct an HD wallet key tree on the
sub-wallet.

B. Sub-Wallet Refilling

Refilling many addresses of the sub-wallet in one transaction
requires a multi-output transaction. This type of transaction can
have more than one output to send coins to multiple addresses.
Cryptocurrencies like Bitcoin and other altcoins that uses
UTXO (Unspent Transaction Output) model support the multi-
output transaction, while some account-based cryptocurrencies

like Ethereum does not. This paper focuses on first group of
cryptocurrencies, but this design is applicable on Ethereum with
an additional Smart Contract like [10].

To refill the sub-wallet, the super-wallet creates and signs a
multi-output transaction. The refilling function gets inputs n, i
and v that described in TABLE 1. This algorithm runs on the
super-wallet and generates n sub-seeds starting from index i
using sub-wallet seed generation function. Next, it derives the
sub-wallet private keys and their addresses with a predefined
fixed path illustrated in Fig. 1. This path is fixed for all sub-
seeds and we use only the first address of each sub-seed. In this
path, ‘change’ is 1 because the result address is used to transfer
funds from the super-wallet to the sub-wallet as an internal use.

The super-wallet generates 7 addresses from 7 sub-seeds and
creates a transaction that transfers v/n coin to each address. It
divides the input fund for all addresses equally. Fig. 1 shows the
pseudo-code of the sub-wallet refilling algorithm and TABLE I.
describes the acronyms of the pseudo-code.

refillSubWallet (n, i, v){
for j=i to i+n {

s; = deriveSubSeed(masterSeed, j)
k; = deriveKey (seed=s.,
J J
path="m/44‘/coin’/0'/1/0")
a; = privateKeyToAddress (k;)
}

tx = signTX(v/n => a; : j=i to i+n)
sendTransaction(tx)

}

Fig. 1. Sub-wallet refilling pseudo-code

TABLE L. SUB-WALLET REFILLING PSEUDO-CODE ACRONYMS
Acronym Meaning
n number of sub-wallet addresses
i index of the first sub-wallet address
v sum of funds to refill
Sj Sub-seed of sub-wallet index j
k; Private key of sub-wallet index j
aj Address of sub-wallet index j
tx Blockchain transaction

To clarify this algorithm, we discuss a simplified example of
the sub-wallet refilling procedure illustrated in Fig. 2. Assume
that the super-wallet address (Super-walletaddress1) has 30 Bitcoin
at first. The sub-wallet refilling algorithm creates a transaction
with 5 sub-wallet addresses (n=5) starting from sub-wallet index
1 (i=1), and the total fund is 2 Bitcoin (v=2). After confirmation
by blockchain, the super-wallet address has 28 Bitcoin and each
sub-wallet address (Sub-walletaddresst to Sub-walletaddresss) has
0.4 Bitcoin.

In the real world and also our prototype implementation
some details are different. For example, to provide anonymity,
a change address is used that means the address of the super-
wallet to receive remaining fund in the left side is different from
the input super-wallet address in the right side. Furthermore, the
sum of the fund before and after publishing the refilling
transaction are not equal because of the mining fee. Also, the



input super-wallet address could be replaced by multiple super-
wallet addresses to provide enough fund to refill the sub-wallet
addresses.

Blockchain State
before refilling

Blockchain State
after refilling

Sub-wallet
refilling - -

Transaction
(n=5, i=1, v=2btc)

Super-wallet, j4ress1 - 28 btc
104 bic
0.4 btc,
0.4 btc.
0.4 btc.
0.4 btc.

Super-wallet,4qress1 - 30 btc
Sub-wallet, 44ress1

Sub-wallet, j4ressn -
Sub-wallet, 34ress3 -
Sub-wallet, 44ress4 -
Sub-wallet, 34resss -

Fig. 2. The simplified example of sub-wallet refilling in the blockchain. The
left side demonstrates the blockchain state before publishing the sub-
wallet refilling transaction, and the right side shows the state after that.

C. Sub-Wallet Seed Transporting

We need an algorithm to transport a sub-wallet seed (sub-
seed) from the super-wallet to the sub-wallet securely. To do
that, we employ a modified version of the seed transport
algorithm that proposed in [9]. This algorithm is based on
Elliptic-Curve Diffie-Hellman key (ECDH) agreement [3].

In ECDH, each party has its key pair, but both parties
compute a shared secret with its private key and the other party’s
public key. Also, an additional SHA-256 computation of EDCH
result value is recommended [3]. In our algorithm, we use the
computed secret as an AES 256-bit encryption key to encrypt
the sub-seed and transfer that from the super-wallet to the sub-
wallet. The problem of ECDH is the Man-In-The-Middle attack
where a hacker replaces the sub-wallet public key by hacker’s
public key, and the super-wallet cannot distinguish the sub-
wallet public key from the hacker’s one. To tackle this problem,
we employ side-channel user visual confirmation called
verification code aka vcode. Vcode is a cryptographic digest
(hash value) computed from the sub-wallet public key. Each
wallet computes the vcode independently and displays that on
the its screen. The user visually compares the equity of two
vcodes and ensures that no hacker replaces the sub-wallet public
during the transport process. Then, she confirms that by pressing
a physical button on the super-wallet (receiver). Visual
confirmation is a regular method in existing hardware wallets to
confirm transaction information like receiver address, amount
and fee before signing [12].

IV. PROTOTYPE IMPLEMENTATION

One of the most secure crypto wallet is hardware wallet
equipped with a screen and at least one physical button, else as
[11] and [13] argued a crypto hardware is not secure when it
uses a terminal (e.g., computer and smartphone) for interaction
with the user, because a hacker may install malware on the
terminal and make a Man-In-The-Middle attack. Traditional
smart cards are not secure enough to use as a crypto wallet
because of no direct input/output with the user. Fortunately, now
there are new smart cards in the market that use e-paper
technology as an on-card screen. This technology enables the

smart card to display information to the user with no
intermediate terminal. Also, buttons are available in these new
smart cards. Thus, we use a smart card with a screen and a button
as a hardware crypto wallet to implement our mechanism and
Fig. 3 shows the photo of such a smart card.

Logo for NFC Antenna

E-Paper
[Super-Wal l et] Display
el come
Programmable
IC Chip
Buttons

Fig. 3. Smart card with an e-paper display, physical buttons, and a
programmable IC chip

To develop a card application for the smart card, we employ
Java Card technology [14] which is a limited version of Java
Runtime Environment with fewer features. We write and
compile our program in Java, convert it to a Card Application
(CAP) and load it to the programmable IC chip on the smart
card. We implement our code with Java Card (JC) 3.0.1 APIL,
and it can run on all JC compatible smart cards, but the screen
API is vendor-specific.

Super-¥al let]

Refi 11

2.0 BTC
sub-addr

from index 1

(Conf i rm?[OK|

STEP 0 <

Sub-¥al let]

STEP 1 <

STEP 2
<

Sup-ual et |
rour seed is

copi ed
|successtul iy

STEP 3 .<

o

~

Fig. 4. The whole process of the sub-wallet refilling and the sub-seed
transporting from the the user’s perspective. Step 0 is for refilling the sub-
wallet addresses and Step 1 to step 3 are for the secure sub-seed transport
from the super-wallet to the sub-wallet.



The smart card has limited resources, and our test card has
only 2.5-kilobyte memory. Thus, we have implemented our
code efficiently to use minimum memory. A well-known
technique that we used is sharing the memory. We define just
two big arrays to allocate all available memory in one place and
then pass them to all functions that require them. Also, we avoid
very nested function callings and any recursive function because
calling function requires stack allocation which consumes
memory. In this type of programming inside a secure element
(IC card) you should be very stingy and use each byte carefully.
Because the refilling transaction is large for a smart card, we
have to limit the number of sub-wallet addresses that the wallet
can refill in one transaction. In our implementation for Bitcoin,
we limit it to 16 sub-wallet addresses which are enough in
significant cases. We have published our source code on GitHub
[15]. Fig. 4 demonstrates the whole process from the user’s
perspective.

V. PERFORMANCE EVALUATION

In our performance test, we use a smart card reader
connected to a laptop with a USB cord. We run each test case
10 times and use our evaluation program [16] to measure the
period of sending and receiving packets.

We compare classic sub-wallet and deterministic sub-wallet
in two scenarios. First, we assume that the user has several sub-
wallets and wants to refill some of them simultaneously. In this
scenario, the classic model creates one transaction per sub-
wallet, but deterministic model creates one transaction for
multiple sub-wallets. The performance result to execute this
process on the test smart card (sample hardware wallet) is
illustrated in Fig. 5. For one, two and three sub-wallets the
classic model is a little bit better because it is similar to regular
wallets and get all input addresses from outside of the hardware
wallet with no internal process. On the other hand, the super-
wallet on deterministic model derives sub-wallet seeds and
addresses internally that takes more time, but for four sub-
wallets and more it has better performance because of fixed
overhead time to sign a transaction in the classic model.

9 10

Fig. 5. Smart card execution time to refill multiple sub-wallets simultaneously

m Classic sub-wallet

5000 —
m Deterministic sub-wallet

4000

, il
1 2 3 4 5 6 7 8

Number of sub-wallets

Time (ms)
[ W
S S
S &
S S

In the second scenario, we assume that the user has only one
sub-wallet and wants to refill it repeatedly. For example, she
refills her sub-wallet one time per month in a year. In this
scenario, she may refill her sub-wallet for 1, 2, 3 to 12 months.
In the classic model, she should create a blockchain transaction
each time, but on the deterministic model, she can refill her sub-
wallet for multiple months in one blockchain transaction. To

compare the classic and the deterministic model in this scenario,
we use the current metrics of the Bitcoin network [17]. For the
time of writing this paper, TABLE II. shows the Bitcoin network
metrics. In these calculations, we assume that the average
transaction size is 250 bytes. Also, our mechanism to make
deterministic sub-wallet adds 34 bytes per sub-wallet address
except first one and it uses legacy addresses.

TABLE II. BITCOIN NETWORK METRICS
Inserted block | ypirnaton | Fecperbyte | 000
Next block 10 min 23 satoshi/byte 5750 satoshi
3 blocks 30 min 22 satoshi/byte 5500 satoshi
6 blocks 60 min 10 satoshi/byte 2500 satoshi

We compare the classic model with the deterministic model
with these metrics for time and fee. To simplify the comparison,
we only consider the worse cases. At first, to compare fee, we
use the best fee that is 2500 satoshi per transaction with 60 min
to confirm. In this situation, the classic model consumes less fee
to refill the sub-wallet. Fig. 6 demonstrates the consuming fee
for both models. For the classic model, the cost is the number of
sub-wallet times transaction fee, but on the deterministic model,
the cost is not very different for 1 to 12 refills and increase a
small amount for additional 34 bytes per sub-wallet address.

30000 |
9 10 11 12

25000
20000
15000
10000
5000
o NN
1

The results for the time are similar and Fig. 7 shows the time
results. In this comparison, we use the best network
confirmation time (10 min) which cost more, but it is the best
option for the classic model. Because the user should wait for
network confirmation for each refill, it takes much time. On the
other hand, because the deterministic wallet does all of that in
one transaction, the time is not related to the number of refills.

120

m Classic sub-wallet
m Deterministic sub-wallet

| II II |I ‘I ‘I ||
2 3 4 5 6 7 8

Number of Refills

1

Satosh

Fig. 6. Fee to refill one sub-wallet multiple times

m Classic sub-wallet

100
® Deterministic sub-wallet

80

6

4

* ot b

OIIIIIIIIIIIIII
1 2 3 4 5 6 7 8 9 10 11 12

Number of Refills

Time (minutes)
S

(= =]

Fig. 7. Time to refill one sub-wallet multiple times



VI. SECURITY ANALYSIS

A. Assumptions and Threat Model

The goals for our scheme are secure refilling the sub-wallet
addresses and secure transporting a sub-seed from the super-
wallet to the sub-wallet. In our threat model, we have the
following assumptions on hardware wallet, terminal, and user:

e The terminal, such as a computer, laptop or smartphone is
untrusted and could be compromised by a hacker, e.g., by
installing malware.

e The hardware wallets have a display and at least one
physical button as illustrated in Fig. 3 similar to existing
hardware wallets [12].

e The user follows the instructions and checks vcode on both
wallets’ displays during the sub-seed transfer procedure.

B. Less Super-Wallet Signings

Our proposed mechanism only needs one super-wallet
transaction signing to refill multiple sub-wallet addresses. It
decreases the permission required signing and provides better
security than the classic model. In other words, the user’s big
fund is less accessible to the potential hackers.

C. Capturing Sub-Wallet Seed

A hacker may sniff the communication to steal the sub-
wallet seed in two situations. First, it could happen when the
user creates the sub-wallet refilling transaction on the super-
wallet. To defend against this attack, we implement the entire
procedures of sub-seed creation, private key derivation and
address conversion on the super-wallet (e.g., via the onboard IC
chip on a smart card). Thus, the terminal passes the sub-wallet
index to the super-wallet, and there is no secret information to
sniff. Second, the hacker may try to sniff the terminal when the
user transports a sub-wallet seed from the super-wallet to the
sub-wallet. The sub-seed is encrypted with AES-256 bit to avoid
this attack, and there is no plaintext secret to steal.

D. MITM: Replacing Sub-Wallet Address

The hacker may want to make a Man-In-The-Middle
(MITM) attack to modify the receiver address in the transaction
before sending the inputs to the wallet. In this way, he can
replace the legitimate receiver address by his address to steal the
user’s fund. The classic model is vulnerable to this attack
because the sub-wallet key tree is unlinked, and the super-wallet
needs to get the sub-wallet address from the input. In contrast,
our proposed scheme avoids this attack by deriving the sub-
wallet seeds from the super-wallet master seed and generating
the sub-wallet addresses on the super-wallet. Therefore, there is
no need to get the sub-wallet addresses from inputs and the
hacker has no chance to replace them in the terminal.

E. MITM: Replacing Sub-Wallet Transport Public Key

Another possible MITM attack is that the attacker relays the
messages between the supper-wallet and the sub-wallet and tries
to replace the sub-wallet public key by the hacker’s public key
to convince the super-wallet to encrypt the sub-seed using the
hacker’s key. Then, the attacker computes the transport key
using the super-wallet public key and his private key and
decrypts the encrypted sub-seed.

To defend against this attack, we have used a verification
code (vcode) in the sub-wallet seed transport algorithm. Both
wallets compute their vcode of the sub-wallet public key and
display that in their screens. The user must confirm the equality
of them by pressing a physical button on the super-wallet. If a
hacker imports his public key to the super-wallet, the user will
be able to detect such an attack by comparing the two displayed
wallets’ vcode and hence reject this MITM attack.

VII. CONCLUSION

In this paper, we proposed a new scheme to create super-
wallet and sub-wallet. It derives the sub-wallet seed from the
super-wallet master seed, and we called it deterministic sub-
wallet. We implemented this new mechanism on a hardware
wallet as a proof-of-concept, and its performance was better
than the classic super-wallet/sub-wallet model. Also, our
security analysis illustrates that this mechanism is more secure
than the classic one.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
under grant DGE-1723587.

REFERENCES

[1] S.Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to better - how to make
Bitcoin a better currency”, in Proceedings of The 16th Financial
Cryptography and Data Security, 2012.

[2] S. Meiklejohn, “Top Ten Obstacles along Distributed Ledgers Path to
Adoption”, IEEE Security & Privacy, vol. 16, issu. 4, pp. 13-19, 2018.

[3] “SEC I:Elliptic Curve Cryptography”, Version 2.0, Standard for efficient
cryptography group, 2009.

[4] “SEC2: Recommended Elliptic Curve Domain Parameters”, Version 2.0,
Standard for efficient cryptography group, 2010.

[51 A. Narayanan, J. Bonneau, E. W. Felten, A. Miller, and S. Goldfeder,
Bitcoin and Cryptocurrency Technologies: A  Comprehensive
Introduction, Princeton University Press, 2016.

[6] “Hierarchical Deterministic Wallets”, Bitcoin Improvement Proposal 32
(BIP-0032), 2012.

[71 “Multi-Account Hierarchy for Deterministic
Improvement Proposal 44 (BIP-0044), 2014.

[8] “Mnemonic code for generating deterministic keys”, Bitcoin
Improvement Proposal 39 (BIP-0039), 2013.

[91 H. Rezaeighaleh, C. C. Zou, “New Secure Approach to Backup
Cryptocurrency ~ Wallets”, in  submission to IEEE Global
Communications Conference - Communication & Information Systems
Security Symposium, 2019.

[10] MultiSend Smart Contract [Online]. Available:
https://github.com/Alonski/MultiSendEthereum

[11] H.Rezaeighaleh, R. Laurens, C. C. Zou, “Secure smart card signing with
time-based digital signature”, in Proceedings of the 2018 International
Conference on Computing, Networking and Communications, pp. 182-
187, 2018.

[12] “Hardware wallet”, Bitcoin wiki, 2018 [Online]. Available:
https://en.bitcoin.it/wiki/Hardware wallet [Accessed Oct. 8, 2018].

[13] B. Schneier, and A. Shostack, “Breaking up is hard to do: modeling
security threats for smart cards”, USENIX Workshop on Smart Card
Technology, USENIX Press, 1999, pp. 175-185.

[14] “Java Card Runtime Environment Specification,” 3rd Edition, 2011.

[15] blackCardApplet [Online]. Available:
https://github.com/hosseinpro/blackCard Applet

[16] smartcardPage [Online]. Available:
https://github.com/hosseinpro/smartcardPage

[17] Bitcoin Fees [Online]. Available: https://bitcoinfees.info

Wallets”, Bitcoin



