ON THE 2-PART OF THE BIRCH AND SWINNERTON-DYER
CONJECTURE FOR QUADRATIC TWISTS OF ELLIPTIC CURVES

LI CAI, CHAO LI, SHUAI ZHAI

ABSTRACT. In the present paper, we prove, for a large class of elliptic curves defined over
Q, the existence of an explicit infinite family of quadratic twists with analytic rank 0. In
addition, we establish the 2-part of the conjecture of Birch and Swinnerton-Dyer for many
of these infinite families of quadratic twists. Recently, Xin Wan has used our results to
prove for the first time the full Birch—Swinnerton-Dyer conjecture for some explicit infinite
families of elliptic curves defined over Q without complex multiplication.

1. INTRODUCTION

Let E be an elliptic curve defined over Q with conductor C, and complex L-series L(FE, s).
The Birch and Swinnerton-Dyer conjecture asserts that the rank of E(Q) is equal to its
analytic rank r,y, := ords—1 L(E, s). It furthermore predicts that the Tate-Shafarevich group
III(E) is always finite, and that

(1.1) Lra)(E, 1) _ pe(E) - [II(E)|
' ran!Q(E) R(E) EQwor®

where Q(E) is the Tamagawa factor at infinity, R(E) is the regulator formed with the Néron—
Tate pairing, E(Q)to; is the torsion subgroup of E(Q), and the ¢y(F) are the Tamagawa factors
(see [18], for example). In fact, the finiteness of III(E) is only known at present when ry, is
at most 1, in which case it is also known that r,, is equal to the rank of E(Q) (see [10], for
example).

If p is any prime number, the equality of the powers of p occurring on the two sides of (1.1)
is called the p-part of the exact Birch-Swinnerton-Dyer formula (but we should remember
that the left hand side of (1.1) is only known at present to be a rational number when
Tan 1S at most 1). We stress that, up until now, the full Birch-Swinnerton-Dyer conjecture
had never been proven for infinitely many elliptic curves without complex multiplication.
Roughly speaking, our present knowledge of Iwasawa theory shows that for a given FE, the
p-part of the Birch—-Swinnerton-Dyer conjecture is valid for all sufficiently large primes p
when r,, < 1. But there are real technical difficulties at present in using Iwasawa theory to
prove, in particular, the 2-part of the Birch—Swinnerton-Dyer conjecture. However, we can
apply rather classical results on modular symbols to derive the precise 2-adic valuation of the
algebraic part of the value of the complex L-series at s = 1 in the family of quadratic twists
of certain optimal elliptic curves E over Q with r,, = 0 and E(Q)[2] = Z/2Z. In particular,
for all of these twists, our results show that r,, = 0, whence the Mordell-Weil group and
the Tate—Shafarevich group of these twists are both finite by the celebrated theorems of
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Gross—Zagier and Kolyvagin. Moreover, we can prove the 2-part of exact Birch—Swinnerton-
Dyer formula for some of these twists. Happily, Xin Wan has now used some of our results
in this paper, combined with deep arguments from Iwasawa theory to prove for the first
time the validity of the full Birch-Swinnerton-Dyer conjecture for infinitely many elliptic
curves over QQ without complex multiplication (see [19, Appendix]). He employs deep and
complicated arguments from Iwasawa theory to establish the p-part of the Birch—-Swinnerton-
Dyer conjecture for all odd primes p for the elliptic curves in these families. However, it is
still not known how to extend these Iwasawa-theoretic arguments to the prime p = 2, whereas
our elementary arguments work well for p = 2. For the current progress on the Birch and
Swinnerton-Dyer conjecture, one can see the survey article by Coates [0].
We now denote the left-hand-side of (1.1) by L(@9)(E, 1). In particular, when ray, = 0,

L@ (B 1) .= L(E,1)/Qg,

where QF is equal to QE or ZQJEF, depending on whether or not E(R) is connected, and here
Q'g is the least positive real period of a Néron differential on a global minimal Weierstrass
equation for E. For each discriminant m of a quadratic extension of Q, we write E(™ for
the twist of E by this quadratic extension, and write L(E(™),s) for its complex L-series.
Let ordy for the order valuation of Q at the prime 2, normalized by ords(2) = 1, and with
ordy(0) = oo. If ¢ be any prime of good reduction for F, let a, be the trace of Frobenius at ¢
on E, so that Ny = 1+ ¢ —aq is the number of F-points on the reduction of £ modulo g. We
shall always assume that E(Q)[2] & Z/2Z, and we write E' := E/FE(Q)[2] for the 2-isogenous
curve of E. For each integer n > 1, write E[n] for the Galois module of n-division points on
E. Let S be the set of primes

S={g¢g=1mod 4:q1C,ordy(Ny) = 1}.

Theorem 1.1. Let E be an optimal elliptic curve over Q with conductor C. Assume that

(1) E has odd Manin constant;
(2) EQ)2] =Z/2Z;
(3) ordy(L\@9)(E 1)) = —1.
Let M = q1qs - - - g be a product of r distinct primes in S. Then L(E(M), 1) # 0, and we have

ordy (L9 (EM) 1)) = ¢ — 1.
In particular, EM(Q) and II(EM)) are both finite.

Remark 1.2. This theorem generalises [0, Theorem 1.2] (where E = X((49)) and [!, Theorem
1.3] (where E = X(36)) to a much wider class of elliptic curves E, with no hypothesis of
complex multiplication. It also generalises [20, Theorem 1.5 and 1.7] and [I], where only
prime twists are considered. For similar results for E without rational 2-torsion, see [20] and
[13]. In the presence of rational 2-torsion, the methods of [20] and [I4] cannot easily treat
twists by non-prime quadratic discriminants, because the obvious induction argument fails.
We overcome this difficulty by introducing a new integrality argument to make the induction
work.

Remark 1.3. If S is non-empty, we must have E(Q)[2] = E'(Q)[2] & Z/2Z, which is also
equivalent to the assertion that ¢ is inert in both the 2-division field Q(F[2]) and Q(E’[2])
(see [14, Lemma 4.1]), where as before E' := E/E(Q)[2]. Thus, by Chebotarev’s density

theorem, the set of primes S has positive density.
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Remark 1.4. We suppose that the Manin constant of £ has to be odd, which will be fully
discussed in Section 2. However, we can remove the Manin constant assumption when 4 1 C
by the recent work of Cesnavicius [3]. Moreover, the conjecture that the Manin constant is
always 1 has been proved by Cremona for all optimal elliptic curves of conductor less than

390000 (see [3]).

Our second main result is a proof of the 2-part of the Birch and Swinnerton-Dyer conjecture
for many of the twists in Theorem 1.1. As before, let E' := E/E(Q)[2] be the 2-isogenous
curve of FE.

Theorem 1.5. Let E and M be as in Theorem 1.1. Assume further that
(1) II(E")[2] = 0;
(2) all primes £ which divide 2C' split in Q(vVM);
(3) the 2-part of the Birch and Swinnerton-Dyer conjecture holds for E.

Then the 2-primary component ofI_U(E(M)) is zero, and the 2-part of the Birch and Swinnerton-
Dyer conjecture holds for EM)

Remark 1.6. In view of our assumption that #(E(Q)[2]) = 2, the 2-part of the Birch and
Swinnerton-Dyer conjecture for E would show that our hypothesis that ordy(L(*9)(E, 1)) =
—1 implies that III(E)[2] = 0, but it is still not known how to prove this at present. However,
if we assume that the 2-part of the Birch and Swinnerton-Dyer conjecture holds for E, as well
as the hypotheses of Theorem 1.1, we will have III(E)[2] = 0. Moreover, if we assume two
more conditions on III(E)[2] and ¢, then we can compare the local conditions of the Selmer
groups of E and EM) and get the triviality of III(EM))[2].

Remark 1.7. The 2-part of Birch-Swinnerton-Dyer conjecture for a single elliptic curve (of
small conductor) can be verified by numerical calculation when r,, = 0. Theorem 1.5 then
allows one to deduce the 2-part of Birch—Swinnerton-Dyer conjecture for many of its quadratic
twists (of arbitrarily large conductor).

Remark 1.8. We emphasize that the theorem applies to elliptic curves with various different
reduction types at 2, such as Xy(14) with non-split multiplicative reduction at 2, “34A1”
with split multiplicative reduction at 2, and “99C1” with good ordinary reduction at 2 (we
use Cremona’s label for each curve). We emphasize that it also applies to elliptic curves with
potentially supersingular reduction at 2, such as Xy(36) and “56B1”. We will give a detailed
descriptions of quadratic twists of X((14) and some numerical examples in Section 6. Of
course, the theorem could apply more families of elliptic curves, such as quadratic twists of
“46A17, Xo(49), “66A1”7, “66C1” and so on.

Recently, a remarkable preprint of Smith [17] uses some arithmetic properties of elliptic
curves at the prime 2 to establish some deep results conjectured by Goldfeld (in particular,
that the set of all square free congruent numbers congruent to 1,2,3 modulo 8 has natural
density zero). However, Smith’s analytic arguments at present seem only valid for elliptic
curves with full rational 2-torsion. We should mention that the non-vanishing result presented
in this paper could give a much weaker result in the direction of Goldfeld’s conjecture for the
family of elliptic curves in Theorem 1.1. We also remark that it would be possible to prove
analogous results to those established here for rank one quadratic twists of elliptic curves, by
combining the Heegner points arguments (see [5]) and the explicit Gross—Zagier formula (see

[2])-
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2. MODULAR SYMBOLS

Modular symbols were first used by Birch, and a little later by Manin [15]. They subse-
quently became the basic tool in Cremona’s construction of his remarkable tables of elliptic
curves and their arithmetic invariants [7]. We shall show in this paper that they are also very
useful in studying the 2-part of the conjecture of Birch and Swinnerton-Dyer. We first recall
some basic results of modular symbols, for more details, one can see [20], but we shall give
these results as well for reading convenience.

For each integer C' > 1, let S3(I'g(C)) be the space of cusp forms of weight 2 for T'g(C).
In what follows, f will always denote a normalized primitive eigenform in So(I'o(C)), all of
whose Fourier coefficients belong to Q. Thus f will correspond to an isogeny class of elliptic
curves defined over Q, and we will denote by E the unique optimal elliptic curve in the Q-
isogeny class of . The complex L-series L(F, s) will then coincide with the complex L-series
attached to the modular form f. Moreover, there will be a non-constant rational map defined
over Q

20 XO(C) - Ev
which does not factor through any other elliptic curve in the isogeny class of E. Let w denote
a Néron differential on a global minimal Weierstrass equation for E. Then, writing ¢*(w) for
the pull back of w by ¢, there exists vy € Q* such that

(2.1) vef(r)dr = ¢*(w).

The rational number vg is called the Manin constant. It is well known to lie in Z, and it is
conjectured to always be equal to 1. Moreover, it is known to be odd whenever the conductor
C of E is odd. Let H be the upper half plane, and put H* = H U P}(Q). Let g be any
element of I'g(C'). Let a, 8 be two points in H* such that § = ga. Then any path from « to
B on H* is a closed path on X (C) whose homology class only depends on a and . Hence it
determines an integral homology class in Hy(Xo(C),Z), and we denote this homology class
by the modular symbol {c,3}. We can then form the modular symbol

A
({a, 8% 1) ::/ 2mif(2)dz.

[0}

The period lattice Ay of the modular form f is defined to be the set of these modular symbols
for all such pairs {«, 8}. It is a discrete subgroup of C of rank 2. If £ denotes the period
lattice of a Néron differential w on F, it follows from (2.1) that

Define 7, (resp. i€23;) to be the least positive real (resp. purely imaginary) period of a Néron
differential of a global minimal equation for F, and Q;{ (resp. zQ]T) to be the least positive
real (resp. purely imaginary) period of f. Thus, by (2.2), we have
(2.3) QE = I/EQ?, QE = VEQ;.
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In this section, we will carry out all of our computations with the period lattice Ay, but
whenever we subsequently translate them into assertions about the conjecture of Birch and
Swinnerton-Dyer for the elliptic curve F, we must switch to the period lattice £ by making
use of (2.2).

More generally, if o, 8 are any two elements of H*, and ¢ is any element of So(I'o(C)), we

put ({«, 5}, 9) f 2mig(z)dz. This linear functional defines an element of H;(Xo(C),R),
which we also denote by {«, 8}.

Let m be a positive integer satisfying (m,C) = 1. Let a,, be the Fourier coefficient of the
modular form f attached to E. According to Birch, Manin [15, Theorem 4.2] and Cremona
[7, Chapter 3], we have the following formulae:-

(24) - am LB )=~ Y ({07} 1)

llm llm
k mod
here [ runs over all positive divisors of m; and
9(x) k
2.5 L(E,x, )
(25) Ex)=50 5 A0

mod m

here x is any primitive Dirichlet character modulo m, and ¢(X) = > i 1104 m )Z(k)e%’%

For each odd square-free positive integer m, we define r(m) to be the number of prime
factors of m. Also, in what follows, we shall always only consider the positive divisors of m,
and define x,, to be the primitive quadratic character modulo m. Define

“ k = k = k
Sm = Z<{07E}7f>? S;n = Z <{Oaa}vf>a Tm :me(k)<{0’%}af>
k=1 k=1 k=1
(k,m)=1
Recall that (see [20, Lemma 2.2]), for each odd square-free positive integer m > 1, we have
(2.6) > 5= Z rtm=d N~ .
llm nlm

r(n)=d

We repeatedly use the above identity to prove the following lemma.

Lemma 2.1. Let E be the optimal elliptic curve over Q attached to f. Let m be any integer
of the form m = q1q2 - ¢y(m), with (m,C) =1, r(m) > 1, and q1, . . ., @r(m) arbitrary distinct
odd primes. Then we have

r(m)
N,

we Noon LED) =D D, b

d=1 n|m

r(n)=d

N,

q1

where by, = (—1)7™) Hq‘m(l —q), here q runs over the prime factors of ™.
Proof. We give the proof of the lemma by induction on r(m), the number of prime factors of
m. The assertion is true for r(m) =1 by (2.4). Assume next that r(m) = 2. Note that
NoyNgy = =(1+@1)(1 +q2) = (1 +q1 — Noy ) (1 + g2 = Nyp)) + (1 + q2)Ngy + (1 + 1) N,
—((1+q)(1 +q2) — a(hatn) +(1+ Q2)NQ1 +(1+ Q1)NlI27
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and in view of (2.4) and (2.6), we then have that

Ny Ny, L(E, 1) = > Sy = (14 ¢2)Sg, + (1+ ¢1)Sg)
llq1q2

=(1—-q2)Sq + (1 —q1)S¢ + Sqlqw

as required. Now assume that r(m) > 2, and that the lemma is true for all divisors n > 1 of
m with n # m. We then consider the case m = q1g2 - - - ¢, (). First note that

Ny Ny -+ Ny =(=1)" 0711+ cn)(l +q2) (L4 @) — aqlaqz Tl ,,)

r(m) r(m)
rm)QzN H1+Qk) Z H (1+ qx)
- k#z =t k;éz,]
r(m) r(m)
+o (=D Y (L)1 +g5) HNmZ (1+a) Hqu
=t k;éz,g k:;éz
Without loss of generality, here we can just consider the coefficients of S('h, S;qu, ey
S(’hq2 ) in the identity of the lemma, i.e. by, bg gz, - - bgigo-g,(m)- By our assumption,

and again in view of (2.4) and (2.6), we conclude that

r(m) r(m) r(m)
by = — (—1 (17 M arw+ e a-w [Tava
=
r(m) r(m) r(m) r(m)
+ ()TN (1 —g) (1 —gp) [[ A+ )+ + (DY (1 +q) [T — )
1,j=2 k=2 =2 k=2
i#j k#i,j ki
Note that
r(m)
2t =TT =) + (1 -+ g0),
i=2
hence we have
r(m)
by = (1) T] (1 = a)-
i=2
Similar arguments hold for bq,g,, - - -, bgigo-g, ()1 » a0d it is easy to see that
bqqu'“QT(m) = (_1)r(m)'
The proof of the lemma is complete. O

Lemma 2.2. Let E be the optimal elliptic curve over Q with analytic rank zero attached to
f. Let m be any integer of the form m = qiq2- - Gy, with (m,C) =1, r(m) > 1, and
q1,- - Qr(m) arbitrary distinct odd primes congruent to 1 modulo 4. If ords(N,,) = 1 holds
for any 1 <i <r(m), then we have

ordy(S), /QJr) = orda(Ng Ny, - - - N,
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Proof. We give the proof of the lemma by induction on r(m). The assertion is obviously true
for r(m) = 1 according as (2.4). When r(m) = 2, say m = ¢1¢2, by Lemma 2.1, we have that

NQ1NQQL(E7 )=(01- qQ)St,n +(1- (h)S;Q + Sl/hqz'

The assertion for r(m) = 2 then follows by noting that ¢; = 1 mod 4 and the induction
assumption. Now assume that r(m) > 2, and that the lemma is true for all divisors n > 1 of
m with n # m. We then consider the case m = q1g2 - - - ¢,(n). According to Lemma 2.1, we
have that

r(m)—1
NyNey -+ Nopy LIES D) = Y Y ()™ [[( —a)S, + (-1)""™s],.
d=1 n|m ql7

r(n)=d

By our assumption, it is not difficult to see that

ordg(H(l - q)S;l/Q}r) > orda(Ngy Ny, -+ N,

9r(m)

L(E,1)/9Q5)

a3
holds for all divisors n > 1 of m with n # m. Then the assertion for m = q1q2 - - - g, () follows
immediately. This completes the proof of the lemma. O

3. INTEGRALITY AT 2

Let E be the optimal elliptic curve defined over Q with discriminant Ag and conductor
C, which is attached to our modular form f. In this section, we will prove some results of
integrality at 2, and apply them to get the non-vanishing results for some certain quadratic
twists of elliptic curves, provided L(E, 1) # 0. Recall that

QE = Z/EQ}_,
we then have
ordy(L(E,1)/Q) = ordy(L(E,1)/QF) — ords(vp) = ordz(L(E,1) /),

under our assumption on the Manin constant.
When the complex L-series of E/ does not vanish at s = 1, for every prime number p, the
strong Birch—Swinnerton-Dyer conjecture predicts the following exact formula

ordy(L9)(E,1)) = ordy(#(I1(E))) + ordy(] [ co(E)) — 20rd, (#(E(Q))),
ite;

We begin by establishing some preliminary results, which will be needed for the proof of the
desired results. Throughout this section, we will always assume m = 1 mod 4. Since the
form of the period lattice of a Néron differential on FE is different, according as the sign of
the discriminant of E. We first consider the case when the discriminant of F is negative.

Recall that when the discriminant of F is negative, then E(R) has only one real component,
and so the period lattice £ of a Néron differential on E has a Z-basis of the form

[Q L Q5+ ZQE]
E> 9 )
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where QE and 2, are both real, and the period lattice Ay of f has a Z-basis of the form
J’_ . —
[Q L QF +i9;

)

o 9

where Q;{ and QJT are also both real. We can then write

(3.1) (0. 50 1) = (snm2} + ity 2

for any integer m coprime to C, where sy, ,,, ti ., are integers of the same parity. Moreover, by

the basic property of modular symbols, ({0, %}, f) and ({0, mT_k}, f) are complex conjugate
periods of f. Thus we obtain

(m—1)/2
(3.2) S/ = > sk
k=1
(k,m)=1
Similarly, when m = 1 mod 4, we have
(m—1)/2
(3.3) T/ = ) Xm(k)Skm.
k=1
(k,m)=1

Moreover, in this case, by (3.2), we always have that
ordy(NyL(E, 1)/9;{) >0,
for any prime ¢ with (¢, C') = 1. We define
i = 3 xalb)if0. 5y, p),
ke(Z/mZ)x
then we have the following theorem of integrality at 2.

Theorem 3.1. Let E be an optimal elliptic curve over Q with Agp < 0. Let m be any integer
of the form m = q1q2 - - ¢y(m), with (m,C) =1, r(m) > 1, and q1, . . ., @r(m) arbitrary distinct
odd primes in S. Then

Z Tc/l,m/Q+ = 2r(m)\pm7

dlm

where W, is an integer.

Proof. 1t is easy to see that

S Thm= X Y0, L)
dlm

ke(Z/mZ)* dm
* k
— 27‘(m) n
>, {0 —hh),
ke (Z/mZ)*

where Y " means that &k runs over all the elements in (Z/mZ)* such that x,, (k) =1 for all
1 <4 <r(m). Since ¢; =1 mod 4, if k is of an element in the above summation, so is m — k.
8



Then by (3.1), we have that

(m—1)/2

* l{ *
>, {0 —hh= D smff
ke(Z/mZ)* (k,k;)lzl
Then the argument follows immediately if we define

(m—1)/2

*
\I]m = Z Sk,m

(k,m)=1

which is an integer. O

When the discriminant of F is positive, then E(R) has two real components, and so the
period lattice £ of a Néron differential on E has a Z-basis of the form

[QF, Q5]

with QE and 2, real numbers, and the period lattice Ay of f has a Z-basis of the form

[QF,i97],
with Q}r and Q; real numbers too. We can then write
k ) _
(3.4) o, %}, f) = skmQf +ithmS;
for any integer m coprime to C', where s, ,,, 1 are integers. Similarly, we can obtain
(m—1)/2
(3.5) S/ =2 S s,
k=1
(k;m)=1
and when m = 1 mod 4, we have
(m—1)/2
(3.6) T/ =2 > X (k) skm-
(i) =1

Moreover, in this case, by (3.5), we always have that
ordy(NgL(E,1)/Q7) > 1,

for any prime ¢ with (¢,C) = 1. We then have the following parallel theorem of integrality
at 2.

Theorem 3.2. Let E be an optimal elliptic curve over Q with Ag > 0. Let m be any integer
of the form m = q1q2 - - - @r(m), with (m,C) =1, r(m) > 1, and qu, . . ., @y arbitrary distinct
odd primes in S. Then

Y Tim/Qf =27,

dlm

where W, is an integer.



Proof. The proof of the above theorem is similar to Theorem 3.1. As usual, we have

ZTé,m = Z ZXd f>
dlm

ke(Z/mZ)* dlm
_ or(m) * -
- 2 Z <{O’ m}7 f>7
ke(Z/mZ)x

where Y means that &k runs over all the elements in (Z/mZ)* such that x,, (k) = 1 for all
1 <4 <r(m). Since ¢; = 1 mod 4, if k is of an element in the above summation, so is m — k.
But when the discriminant is positive, by (3.4), we have

(m— 1)/2
> o) = Z LCAUS
ke (Z,/mZ)* (km) ,

Then the argument follows immediately if we define

(m—1)/2

*
\Ilm = § Sk,m»

k=1
(k;m)=1

which is an integer. O

4. NON-VANISHING RESULTS

The aim of this section is to apply the results of integrality at 2 in the previous section to
obtain the corresponding non-vanishing results of quadratic twists of elliptic curves. Specifi-
cally, we prove the precise 2-adic valuation of the algebraic central value of these L-functions
attached to some certain families of quadratic twists of elliptic curves. Moreover, one can
use these non-vanishing theorems to verify the 2-part of the Birch and Swinnerton-Dyer
conjecture. Throughout this section, we will always assume m > 0 and m = 1 mod 4.

Before proving our non-vanishing results, we will first prove the following lemma, in which
the action of Hecke operator on modular symbols is involved. For each prime p not dividing
the conductor C, the Hecke operator T, acts on modular symbols {«, 8} via

T,({a B}) = {(paspB} + 3 {‘”k boky

k mod p p

In particular, we have

(Tp({er, 8}), f) = ({a, B}, Tp f) = ap{e, B, f),
since T, f = a,f.
Lemma 4.1. Let m be any integer of the form m = q1q2 - - - (), with (m,C) =1, r(m) > 2,

and qu, - . ., qp(m) arbitrary distinct odd primes. Let d > 1 be a positive integer dividing m and
q be a prime dividing "7, then we have

Tam = (ag = 2xa(@)) Ty -
10



Proof. Recall that
k
ke(Z/mZ)x
By the Chinese remainder theorem, we have
(2/m2)* = (2/q7)" x (2" 7).
So we can write
m L + k’ k/q
/ _ / q /
(41) Td,m - Z Xd(k) Z <{O7T}af> - Z Xd(k Q)<{O>E}vf>

KE(Z)27)* keZ/qZ K E(Z)2T)

Let the Hecke operator T, act on the modular symbol {0, mk—;q}, we get that

/ / K’ +k
ﬂrq({o,’j}):{o,’“w S0, Y qo,5y
mrq m k mod gq q k mod ¢ q
Hence,
RS N R Pn S R DI B B W)
k€Z/qZ. kEZ/qZ

Then the first term of the right-hand side of (4.1) becomes

> )0+ Y 0.5 - 0.5 )

W e/ T)x mrq wezjgr, U m
which is equal to
(4.2 > B0y )= (0 ) )

ke(Z/™Z) q
> xalk)=0.
We(Z/ ™)

Then (4.2) becomes

TR SERVCHUPLR IR DI (R 8

ke(Z/22)> Ke(Z)22)*

if we substitute k = k’q in the second term. We then have

k
Tgm = aq Z xd(k) ({0, %}, f) —2xa(q) Z xa(k") ({0,
ke(Z/mT)x Wez/ma)*

k/

This completes the proof of the lemma by noting that

Tiw= 3 xa®){0,—}, 7).

T ke@/mo)x m/q
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Now we are ready to prove Theorem 1.1. When the discriminant of E is negative, we have
the following result.

Theorem 4.2. Let E be an optimal elliptic curve over Q with conductor C, and with odd
Manin constant. Assume that E has negative discriminant, and satisfies E(Q)[2] # 0 and
ords(L(E, 1)/9?) = —1. Let m be any integer of the form m = q1qa2 - - - ¢y (), with r(m) > 1
and qu, - . ., qp(m) arbitrary distinct odd primes congruent to 1 modulo 4, and with (m,C) = 1.
If orde(N,,) = 1 for 1 <i < r(m), then L(E'™ 1) # 0, and we have

ordy(L(E™,1)/QF ) =r(m) — 1.

Proof. We will prove the theorem by induction on 7(m), of course we have got the argument
when r(m) = 1 in [20, Theorem 1.5]. We firstly note that

ST=Y Y w0 Sy

dlm dlm k€(Z/mZ)*

ST DEED SRR NN

dm  ke(Z/mZ)*
1<d<m

By Lemma 4.1, it is easy to see that

Tc/l,m = H(aq —2xa4(q)) - Tc/l,d = H(aq —2xa(q)) - Ta-

alg alg
Hence,
Yo > ko, f} = > Tl —2xua) Tu
dim  k€(Z/mZ)* dm q|%
l<d<m l<d<m

We then apply Theorem 3.1 and get the following equation
S/ + > T —2xa9) ) - T/ + Tn/Qf = or(m)y,

d
1<£|l72m a'd ¢
where W,, is an integer with ordy(V¥,,) > 0. Note that ordy(L(E, 1)/(2;[) = —1 and

ordy(Ny,) = 1, we then have
ordg(S;n/Q}') =r(m)—1
by Lemma 2.2. Now assume that r(m) > 2, and that this theorem has been proved for all

products of less than r(m) such primes g;, and note that we have assumed the Manin constant
is odd, so we have that

ordg(Td/Q;{) =r(d) -1,
with 1 < d < m and d|m. Moreover, we also have ords(aq; — 2x4(q)) = 1. Consequently, we

have that
orda(] [ (ag = 2xa()) - Ta/Qf) = r(m) — 1.
ql’y

Hence we have that

ords( Z H( ag — 2xa(q)) - Td/Q}r) =r(m),

12



by noting that the number of the terms in this summation is even. So we must have
ordg(Tm/Q}r) =r(m)—1,
that is
ordy(L(E™, 1)/Qk ) =r(m) — 1.
This completes the proof of this theorem. O

When the discriminant of F is positive, we have the following parallel result.

Theorem 4.3. Let E be an optimal elliptic curve over Q with conductor C, and with odd
Manin constant. Assume that E has positive discriminant, and satisfies E(Q)[2] # 0 and
ordy(L(E, 1)/9?) = 0. Let m be any integer of the form m = q1q2 - - Gr(m), with r(m) > 1
and qu, - . ., qp(m) arbitrary distinct odd primes congruent to 1 modulo 4, and with (m,C) =1.
If orda(Ng,) =1 for 1 <i <r(m), then L( E() 1) # 0, and we have

ordy(L(E™, 1)/Qf,.,) = r(m).

Proof. We will also prove the theorem by induction on r(m), of course we have got the
argument when r(m) = 1 in [20, Theorem 1.7]. Note that ordg(L(E,l)/Q}r) = 0 and
orda(Ng,) = 1, we then have

ordg(S,/n/Q;f) =r(m)
by Lemma 2.2. Now assume that r(m) > 2, and that this theorem has been proved for all
products of less than r(m) such primes g;, and note that we have assumed the Manin constant
is odd, so we have that

ordg(Td/Q;?) = r(d),

with 1 < d < m and d|m. Moreover, we also have ords(aqy — 2x4(q)) = 1. Consequently, we
have that

ordy(] [ (aq — 2xa(q)) - Ta/2f) = r(m).
al’y
Hence we have that
ordy( > [](aq —2xa(q) - Tu/Qf) = r(m) + 1,

dm q|’y
1<d<m

by noting that the number of the terms in this summation is even. So we must have
ordg(Tm/Q}') =r(m),
by the following equation
S/ + Y (e — 2xa(@) - Ta/Qf + T /Qf = 271w,

dm q|7F
l<d<m

which is deduced from Theorem 3.2. Hence we have

ordy(L(E™, 1)/ ) = r(m).
This completes the proof of this theorem. O

This completes the proof of Theorem 1.1 by combining the above two theorems and the
celebrated theorems of Gross—Zagier and Kolyvagin.
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5. 2-PART OF THE BIRCH—SWINNERTON-DYER CONJECTURE

In this section, we will prove that the 2-part of the Birch—-Swinnerton-Dyer conjecture holds
for some certain families of the quadratic twists of elliptic curves in the previous section. In
particular, we will prove the following result, combining with the non-vanishing result in
Theorem 1.1, to give a proof of Theorem 1.5.

Proposition 5.1. Let E be an elliptic curve over Q with E(Q)[2] 2 Z/27Z. Let M = q1--- ¢
be a square free product of r primes in S.
(1) Then EM)(Q)[2] = Z/27.
(2) Let £o|C be the prime such that ord(ce,(E)) = 1. Assume £y splits in Q(vV' M) and
orda([],ce(E)) = 1. Then

0, ifl+# Ly, and L1 M,

0rd2(C£<E(M))) = {1 if 0 =to, or f|M

In particular, orda(]], Cg(E(M))) =r4+1.

(3) Assume further that Sela(E)[2] = Z/27Z and UI(E')[2] = 0. If all primes £]2C split
in Q(vM), then 1 < dim Sely(EM)) < 2. In particular, if II(EM)) is finite, then
MI(EMD)[2] = 0 and Sely(EM)) = Z/27.

Proof. (1) Tt follows from the facts that E[2] = EM)[2] as Gg-modules and E(Q)[2] = Z/27Z.

(2) First consider £ # £y and £ f M. Let £ and €M) be the Néron model over Z; of
E and EM) respectively. Notice that EMM) /Qy is the unramified quadratic twist of EWM),
Since Néron models commute with unramified base change, we know that the component
groups ®¢ and ®¢(n) are quadratic twists of each other as Gal(Fy/F;)-modules. In particular,
De[2] 2 Do) [2] as Gal(Fy/Fp)-modules and thus

Ds(Fe)[2] = P (Fr)[2]-

It follows that c(FE) and ¢;(E™)) have the same parity, and hence ¢;(E™)) is odd.
Next consider £|M. Since EM) has additive reduction at £ and ¢ is odd, we know that

Do (Fo)[2] = EMD(Qo)[2].
On the other hand, EM)(Qy)[2] = E(Qy)[2] = E(F,)[2], which is Z/2Z since £ € S. Thus
ordy(cg(EM))) =1 for any ¢|M.
Finally consider £ = £y. By our extra assumption that ¢y is split in Q(\/M ), we know that
EM) /Q, and E/Qy are isomorphic, hence ¢o(EM)) = ¢,(E), which has 2-adic valuation 1.
(3) Let ¢ : E — E’ be the isogeny of degree 2, and QAS : ' — E be the dual isogeny. We use

the following well-known exact sequence relating the 2-Selmer group and ¢, ngS—Selmer groups
(see [16, Lemma 6.1]):-

0 — E'(Q)[¢]/¢(E(Q)[2]) — Sely(E) — Sely(E) — Sel;(E') — LI(E")[¢]/¢(LI(E)[2]) — 0.
By our assumption Sely(FE) = Z/27 and III(E')[2] = 0, it follows from the above exact
sequence that

Sely(E) = E'(Q)[¢]/¢(E(Q)[2)) = Z/2Z, Sel;(E') = Sely(E) = Z,/27.
By abuse of notation we denote the 2-isogeny EM) — E'M) again by ¢ (note that EM) =

E'M)),
14



We first claim that the isomorphism of Gg-representations EM)[¢] = E[¢] induces an
isomorphism of ¢-Selmer groups

Sely(EM)) 2 Sel 4 (E).
For v a place of Q, we denote the local condition defining the ¢-Selmer group Sely(E) to be
Ly(E) = im(E'(Q,)/¢(E(Qy))) € H'(Qu, E[4]).

To show the claim it suffices to prove for any v,
L,(EMDy = £,(E).

We now prove the claim by the following 4 cases.
(1) For v { 2C Moo, then both E and E’ have good reduction at v # 2 and hence

L,(EM) = £,(E) = Hy,(Qu, E[4])

is the unramified condition.
(2) For v|M, the desired equality of local condition at v follows from [11, Lemma 6.8].
(3) For v|2C, by assumption we have v splits in Q(v/M), hence EM) and E are isomorphic
over Q,, and E'M) and E’ are isomorphic over Q,. The desired equality of local condition
at v follows.
(4) For v = oo, since M > 0, we know that EM) and E are isomorphic over R, and E'M)
and E’ are isomorphic over R. The desired equality of local condition at v again follows.
This completes the proof of the claim.

Now by [L1, Theorem 6.4}, we have

[Sels(E)[ \E |Sely(E |Ly(E
|Sel ( E’ H ’ |Sel( E/(M) H
Since we have shown that £,(E) = L,(E™)) for every place v of Q, we obtain

Sely(E)| _ [Sely(ED)
Sely(E)] ~ [Sel, (EOD)|

Hence Sel ¢3(E/ (M)y > 7,/27,. Now the well-known exact sequence for E) implies that
dim Sl (E™) < dim Sely (E™) + dim Sely (B'™)) =141 =2.

On the other hand, E)(Q)[2] & Z/27Z, so dim Selo(EM)) > 1. Tf III(EM))[2] is finite, then
by the Cassels-Tate pairing III(E(™))[2] has square order, hence by the previous bounds it
must be 0, as desired. O

We are now ready to give the proof of Theorem 1.5.

Theorem 5.2. (Theorem 1.5) Let E and M be as in Theorem 1.1. Assume further that
(1) HI(E)[2] = 0;
(2) all primes £ which divide 2C split in Q(v/M);
(3) the 2-part of the Birch and Swinnerton-Dyer conjecture holds for E.
Then the 2-primary component of IIL(EMM))
Dyer conjecture holds for EM)

is zero, and the 2-part of the Birch and Swinnerton-

15



Proof. 1f the 2-part of the Birch and Swinnerton-Dyer conjecture holds for E, then
E)-TI(E
ords <Hz012( ) 2( )> _ 1
| E(Q)tor]

Since F(Q)[2] = Z/27Z and I1(E)[2] has square order, we know that III(E)[2] = 0, Selz2(E) =
Z/27 and orda(] [, ce(E)) = 1. By Theorem 1.1, we have

ordQ(L(“lg)E(M), 1)=r-—1,
and II(EM)) is finite. The assumptions of Proposition 5.1 are all satisfied, and hence

EMQ)[2] =2/2Z, ordy( [] (cp(BM)) =r+1, HI(EM)[2] =0,
p|CM

We then have

[T, cp (B - 11(200)
TE\TTE Qe )T

Therefore, the 2-part of the Birch and Swinnerton-Dyer conjecture holds for F(). g

6. APPLICATIONS

In this section we will apply Theorem 1.1 and Theorem 1.5 to give some families of qua-
dratic twists of elliptic curves which satisfy the 2-part of the exact Birch—-Swinnerton-Dyer
formula. In particular, we give a full discussion of quadratic twists of X(14), and some anal-
ogous examples on the quadratic twists of “34A41”, “566B1”, and “99C'1 (in Cremona’s label),
for which we will not give the proofs in details since they are similar to the case of X(14),
and all the numerical examples are verified by “Magma”. Moreover, we also include a family
of elliptic curves satisfying the full Birch—Swinnerton-Dyer conjecture. More examples have
been included in Wan’s paper [19].

In the following, we always denote A’ to be the 2-isogenous curve of a given elliptic curve
A defined over Q. For each square free integer M, prime to the conductor of A, with M =
1 mod 4, as usual, we define

L@ (AN 1) = L(AM), 1) /Q 4 an).

6.1. Quadratic twists of Xy(14). Let A be the modular curve X(14), which has genus 1,
and which we view as an elliptic curve by taking [oo] to be the origin of the group law. It
has a minimal Weierstrass equation given by

Ay’ +ay+y=a®+4z — 6,

which has non-split multiplicative reduction at 2. Moreover, A(Q) = Z/6Z. The discriminant
of Ais —20.73. Also, a simple computation shows that Q(A[2]) = Q(v/—7). Writing L(A4, s)
for the complex L-series of A, we have

L(A,1)/Q% =1/6.

Let ¢1,...,q- be r > 0 distinct primes, which are all =1 mod 4.
16



Recall that the L-function of an elliptic curve E over Q is defined as an infinite Euler

product
L(E,s) = [0 —aqq* + ") [0 —aga™®) " =D ann,
qtC q|C
where
q+1—#E(F,) if E has good reduction at g,

0 — 1 if F has split multiplicative reduction at g,
77y —1 if E has non-split multiplicative reduction at g,
0 if F has additive reduction at q.

Here we give a result of the behavior of the coefficients a4 of the L-function of elliptic curve
A.

Theorem 6.1. Let q be an odd prime with (q,14) = 1. Then we have that
as=—1, a7 =1,

and

mod 4 if ¢ =1 mod 8,

mod 4 if ¢ =3 mod 8 and q is inert in Q(~/—T7),

mod 4 if ¢ =5 mod 8 and q splits in Q(v/—7),

mod 4 if ¢ =7 mod 8,

mod 4 if ¢ =3 mod 8 and q splits in Q(/—7),

0 mod 4 ifq=>5mod 8 and q is inert in Q(v/—7).

O O N NN

Proof. The assertions for as and a7 are clear, since A has non-split multiplicative reduction
at 2 and split multiplicative reduction at 7.

Let A’ denote the 2-isogenous curve of A, which has a minimal Weierstrass equation given
by

Ay 4oy 4y =2 — 36z — 70.

It is easy to get that Q(A’[2]) = Q(v/2). For ag, first note that the 2-division field Q(A[2]) =
Q(v=T7) and Q(A'[2]) = Q(v/2), and we have the same L-function of A and A’. So we have
that A(F,)[2] = Z/2Z x Z./27Z when g splits in Q(v/=7), and A'(F,)[2] = Z/2Z x Z./27Z when q
splits in Q(v/2). Since A(F,)[2] and A’(F,)[2] are subgroups of A(F,) and A’(F,), respectively.
We have that 4 | #A(F,) and 4 | #A'(F,). While for ¢ is both inert in Q(v/2) and Q(v/—7), we
have that A(F,)[2] & Z/2Z. 1t is easy to compute that Q(v/2) is a subfield of Q(A[4]*), where
AJ4]* means any one of the 4-division points which is deduced from the non-trivial rational
2-torsion point of A(Q). But g is inert in Q(v/2), that means A(F,)[4] = A(F,)[2] & Z/2Z.
Hence 2 | #A(F,), but 4 1 #A(F,;). Hence

2 mod 4 if ¢ is both inert in Q(v/2) and Q(v/=7),
0 mod 4 if g splits in Q(v/2) or Q(v/=7).

Then all the assertions follow by applying a, = ¢ +1 — N,. This completes our proof. [

N, = #A(F,) = {

We then can apply Theorem 1.1 to get the following result.

Theorem 6.2. Let M be any integer of the form M = qiqa---q., v > 1, with q1,...,qr
arbitrary distinct odd primes all congruent to 5 modulo 8, and inert in Q(v/=7). We then
have
ordy (L (AM) 1)) = — 1.
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In particular, we have L(A(M), 1) #0.

Proof. According to Theorem 6.1, when ¢; = 3,5 mod 8 and ¢; is inert in Q(1/—7), we have
orda(Ng,) =1 for 1 <i <r. The theorem then follows immediately by Theorem 4.2. O

We next prove the 2-part of the Birch and Swinnerton-Dyer conjecture for all the twists
EM) in Theorem 1.5. Note that AM) has bad additive reduction at all primes dividing M.
Write c,(AM) for the Tamagawa factor of AM) at a finite odd prime ¢ | M. We then have
that
(6.1) ordy(cq(AM)) = orda(#A(Qg)[2).

We apply the results in [, §7] on the Tamagawa factors of A(M)
result.

, we then get the following

Proposition 6.3. For all odd square-free integers M with (M,14) = 1, we have (i) AM (R)
has one connected component, (ii) orda(ca(AM))) = 1, ordy(cr(AM))) = 0, (iii) orda(cy(AM))) =
1 if ¢ does not split in Q(v/=7), and (iv) orda(ce(AM))) = 2 if q splits in Q(v/=7).

Proof. Assertion (i) follows immediately from the fact that Q(A[2]) = Q(v/=7). Assertion
(ii) follows easily from Tate’s algorithm. The remaining assertions involving odd primes ¢
of bad reduction follow immediately from (6.1), on noting that A(Qq)[2] is of order 2 or 4,
according as ¢ does not or does split in Q(v/—7), respectively. O

To obtain the 2-part of the Birch—Swinnerton-Dyer formula, we also have to investigate the
2-part of I_H(A(M )). If we just apply Theorem 1.5, of course we will get that the 2-part of the
Birch—Swinnerton-Dyer formula holds for a family of quadratic twists, provided both 2 and 7
split in Q(\/M ), whence M has to have an even number of prime factors. However, a classical
2-descent of quadratic twists of X¢(14) has been carried out earlier by Junhwa Choi, which
yields that IIT(A®M))[2] is trivial, provided that all the prime factors of M are distinct primes
congruent to 3,5 modulo 8 and inert in Q(v/—7). We then can get the following theorem.

Theorem 6.4. Let M be any integer of the form M = qiqa---q-, v > 1, with q1,...,qr
arbitrary distinct odd primes all congruent to 5 modulo 8, and inert in Q(v/—7). Then the
2-part of Birch and Swinnerton-Dyer conjecture is valid for AM).

Proof. Under the assumptions of the theorem, III(A®))[2] is trivial. Then combining the re-
sults of Proposition 6.3, we have that ords ([, cg(AM))) = 1. Note also that #(A(Q)[2]) =

2. So we have

ordy (#(UIL(AM))) + ordy ([ | ep(AMD)) + orda (oo (AM)) — 20rdy(#(AM(Q))) =7 — 1.

Hence, the 2-part of Birch and Swinnerton-Dyer conjecture holds for A1), O

Here is the beginning of an infinite set of primes ¢ satisfying the conditions in the above
theorem:-

S = {5,13,61,101, 157, 173, 181, 229, 269, 293, 349, 397, .. .}.

6.2. More numerical examples. For the following three examples, the analogous methods
of quadratic twists of X((14) would apply, so we will not give the detailed proofs here.
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6.2.1. Quadratic twists of “34A1”. Let A be the elliptic curve “34A1” with the minimal
Weierstrass equation given by

Ay 4oy =a3 -3z +1,

which has split multiplicative reduction at 2 and as = 1. Moreover, A(Q) = Z/6Z and
L(@9) (A1) = 1/6. The discriminant of A is 26 - 17. Also, a simple computation shows that
Q(A[2]) = Q(+/17) and Q(A'[2]) = Q(v/2). Here is the beginning of an infinite set of primes
q which are congruent to 1 modulo 4 and inert in both the fields Q(v/17) and Q(/2):-

S ={5,29,37,61,109, 173,181,197, 269, 277,317,397, .. .}.
Let M = q192- - - ¢, be a product of r distinct primes in S. We then have
ordy (L W9 (A 1)) = —1,

and the 2-part of Birch and Swinnerton-Dyer conjecture is valid for all these twists.

6.2.2. Quadratic twists of “66B1”. Let A be the elliptic curve “56B1” with the minimal
Weierstrass equation given by

Ayt =3 — 2% — 4,

which has potentially supersingular reduction at 2 and ags = 0. Moreover, A(Q) = Z/2Z and
L@9) (A 1) = 1/6. The discriminant of A is —2'0-7. Also, a simple computation shows that
Q(A[2]) = Q(v/—T7) and Q(A’[2]) = Q(+/2). Here is the beginning of an infinite set of primes
q which are congruent to 1 modulo 4 and inert in both the fields Q(v/—7) and Q(v/2):-

S =1{5,13,61,101, 157,173,181, 229, 269, 293, 349, 397, .. .}.
Let M = q1q2- - - g, be a product of r distinct primes in S. We then have
ordg (L) (AM) 1)) = p -1,

and the 2-part of Birch and Swinnerton-Dyer conjecture is valid for all these twists.

6.2.3. Quadratic twists of “99C17. Let A be the elliptic curve “99C'1” with the minimal
Weierstrass equation given by

Ay 4oy =23 —2? — 152 + 8,

which has good reduction at 2 and ag = 1. Moreover, A(Q) = Z/2Z and L(®9)(A4,1) = 1/2.
The discriminant of A is 3?-11. Also, a simple computation shows that Q(A[2]) = Q(v/33) and
Q(A’[2]) = Q(+/3). Here is the beginning of an infinite set of primes ¢ which are congruent
to 1 modulo 4 and inert in both the fields Q(v/33) and Q(+/3):-

S ={5,53,89,113,137,257,269, 317,353, 389, .. .}.
Let M = q1q2- - - g, be a product of r distinct primes in §. We then have
ordy (L9 (AM) 1)) = ¢ — 1,
and the 2-part of Birch and Swinnerton-Dyer conjecture is valid for all these twists.
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6.3. Examples satisfying the full Birch—Swinnerton-Dyer conjecture. Let A be the
elliptic curve “46A1” with the minimal Weierstrass equation given by

Ay +oy =2 — 2% — 10z — 12,

which has non-split multiplicative reduction at 2 and as = —1, ag = 0. Moreover, A(Q) =
7./27 and L(®9) (A, 1) = 1/2. The discriminant of A is —2'°-23. The Tamagawa factors cy = 2,
co3 = 1. Also, a simple computation shows that Q(A[2]) = Q(v/—23) and Q(A'[2]) = Q(v/2).
Here is the beginning of an infinite set of primes ¢ which are congruent to 1 modulo 4 and
inert in both the fields Q(v/—23) and Q(+/2), and satisfy a, # 0:-

S = {5,37,53,61,149, 157,181,229, 293,373, .. .}.

Let M = qig2---q» be a product of r distinct primes in §. By Theorem 1.1, we have
L(AM) 1) #£ 0, and
ordy (L9 (AM) 1)) =1 — 1.

If we carry out a classical 2-descent on AM) | one shows easily that the 2-primary component
of III(AM)) is zero and orda(c,,) = 1 for 1 < i < r, and therefore the 2-part of the Birch and
Swinnerton-Dyer conjecture holds for E) . Alternatively, we can just apply Theorem 1.5,
and take the number of prime factors of M, say r(M), to be even, and take M =1 mod 8,
then the assumption that both 2 and 23 split in Q(v/M) will hold, whence we can also verify
the 2-part of the Birch and Swinnerton-Dyer conjecture. Then combining with the result in
[19, Theorem 9.3], the full Birch and Swinnerton-Dyer conjecture is valid for AM). Hence
the full Birch and Swinnerton-Dyer conjecture is verified for infinitely many elliptic curves.
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