FINE DELIGNE-LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL
LEMMAS
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ABSTRACT. We prove a character formula for some closed fine Deligne—Lusztig varieties. We apply it to
compute fixed points for fine Deligne—Lusztig varieties arising from the basic loci of Shimura varieties of
Coxeter type. As an application, we prove an arithmetic intersection formula for certain diagonal cycles on
unitary and GSpin Rapoport-Zink spaces arising from the arithmetic Gan—Gross—Prasad conjectures. In
particular, we prove the arithmetic fundamental lemma in the minuscule case, without assumptions on the

residual characteristic.
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1. INTRODUCTION

1.1. The AFL conjecture. The arithmetic Gan—Gross—Prasad conjectures (AGGP) generalize the cele-
brated Gross—Zagier formula to higher dimensional Shimura varieties of orthogonal or unitary type ([GGP12,
§27], [Zhal2, §3.2], [RSZ17a]). The arithmetic fundamental lemma conjecture (AFL) arises from Zhang’s
relative trace formula approach towards the AGGP conjecture for the group U(1,n—2) x U(1,n—1),n > 2.
It relates a derivative of orbital integrals on symmetric spaces to an arithmetic intersection number of cycles

on unitary Rapoport—Zink spaces,

(1.1.1) w(7) - 00rb(v,1s,(0,)) = —Int(g) - logg.

For the precise definitions of the quantities appearing in the identity, see [RSZ17b, §1]. The left-hand side
of (1.1.1) is known as the analytic side and the right-hand side is known as the arithmetic-geometric side.

Let us briefly recall the definition of the arithmetic-geometric side. Let p be an odd prime. Let F
be a finite extension of @, with residue field F, and a uniformizer m. Let E be an unramified quadratic
extension of F. Let E be the completion of the maximal unramified extension of E. Let k = F,. For any
integer n > 1, the unitary Rapoport-Zink space N, is the formal scheme over S = Spf O parameterizing
deformations up to quasi-isogeny of height 0 of unitary Op-modules of signature (1,n — 1). Fix an integer
n > 2. There is a natural closed immersion § : V,,_1 — N,. Denote by A C N,,_1 xg N,, the image of
(id, ) : M1 = N1 X N
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Let C,,_1 be a non-split Hermitian space of dimension n — 1, for the quadratic extension E/F'. Here non-
split means that the discriminant has odd valuation. Define a non-split Hermitian space of dimension n by
Cy, := C,,_1®FEu, where the direct sum is orthogonal and u has norm 1. The unitary group J(F') := U(C,)(F)
acts on N, in a natural way. Let g € J(F). The arithmetic-geometric side of the AFL conjecture (1.1.1)
concerns the arithmetic intersection number of the diagonal cycle A and its translate by id xg, defined as
(see [Zhal2, §2.2])

Int(g) = X(Nn—l XSNn7 Oa ®L O(id Xg)A)'

When A and (id xg)A intersect properly, namely when the formal scheme
(1.1.2) AN (id xg)A = §(N,—1) NN

is an Artinian scheme (where N¢ denotes the fixed points of g), the arithmetic intersection number Int(g)
is simply the O -length of the Artinian scheme (1.1.2) (see [RTZ13, Proposition 4.2 (iii)]).
Recall that g € J(F) is called regular semi-simple if

L(g) IZOE~U+OE.gu+...+OE.gn71u
is a full-rank Opg-lattice in C),. In this case, the invariant of g is the unique sequence of integers
nv(g):=(r1=r>...2r,)

characterized by the condition that there exists a basis {e;} of the lattice L(g) such that {m~"e;} is a basis
of the dual lattice L(g)Y. It turns out that the “bigger” inv(g) is, the more difficult it is to compute the
intersection. With this in mind, recall that a regular semi-simple element g is called minuscule if 11 = 1 and
rn = 0.

1.2. The AFL in the minuscule case. In the minuscule case, the analytic side is relatively straightforward
to evaluate. One of our main results is an explicit formula for the arithmetic-geometric side Int(g) when ¢
is minuscule, which allows us to establish new cases of the AFL conjecture.

Theorem 1.2.1 (Corollary 5.1.4). The arithmetic fundamental lemma holds when g is minuscule.

Remark 1.2.2. When F = Q, and p > ”T'H, this theorem was first proved by Rapoport—Terstiege—Zhang
[RTZ13] (see also a simplified proof in [LZ17]). The same methods together with [Chol8] should prove
the theorem for any p-adic field F' with the size of its residue field ¢ > ”TH However, potential global
applications to the AGGP conjectures require the truth of AFL at all unramified places, thus it is desirable
to remove the assumption that g > ”T'H Our proof is different from [RTZ13] and treats all local fields F

(with odd residue characteristic, in order to define the Rapoport—Zink spaces) uniformly.

Remark 1.2.3. After this work is done, Zhang [Zhal9] has recently announced a proof of the arithmetic

fundamental lemma when F' = Q, and p > n (without assuming that g is minuscule).

To state the explicit formula for Int(g), assume g is minuscule and N # (. Then it can be shown that
g stabilizes both L(g)" and L(g), and acts as an unitary operator on V := L(g)"/L(g), which has a natural
structure of a Hermitian space over Fp2. Let g € U(V)(F,) be the induced element.

For any monic polynomial @ € Fg2[A] with Q(0) # 0, we define its reciprocal polynomial Q* by replacing
each root x € k* of @ with 9 (with multiplicities). We say @ is self-reciprocal if Q) = Q*.

Let f € Fy2[A] be the characteristic polynomial of g. Then f is self-reciprocal. For any monic irreducible
Q € F2[A], we denote the multiplicity of @ in f by mq.
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Theorem 1.2.4 (Theorem 5.1.2). Assume g is minuscule and Int(g) # 0. Then there is a unique monic

irreducible self-reciprocal Qo € F2[A] such that mq, is odd. We have

_ Mm@, + 1
Int(g) = —5 ~deg Qp - H (1+mg).
{Q,Q*}
Here the product is over pairs {Q,Q*} of monic irreducible non-self-reciprocal polynomials in Fy2[A] with

non-zero constant terms.

Theorem 1.2.1 then follows immediately from Theorem 1.2.4 and the explicit formula for the analytic side
given in [RTZ13, Proposition 8.2].

Remark 1.2.5. Theorem 1.2.4 is also used to prove the minuscule case of Liu’s arithmetic fundamental

lemma, for Fourier-Jacobi cycles, see [Liul8, Appendix EJ.

Remark 1.2.6. In Theorem 5.2.4 we also establish an analogous arithmetic intersection formula for GSpin
Rapoport—Zink spaces arising from the AGGP conjectures for orthogonal groups. This provides a new proof
n+1

of the main result of [LZ18], and also removes the assumption that p > “5= in loc. cit.

1.3. Computing the arithmetic intersection. The starting point of the proof of Theorem 1.2.4 is the
observation made in [LZ17, Proposition 4.1.2] that, in the minuscule case, the formal scheme (1.1.2) can be
identified with the fixed point scheme V9 of an explicitly given smooth projective variety V over k, under a
finite-order automorphism g. It also turns out that V9 is an Artinian scheme. Hence Int(g) is given by the
k-length of V9.

In order to compute the k-length of V9, there are two apparent approaches. One approach, taken in
[LZ17], is to explicitly study all the local equations. The other approach, which we take in the current

paper, is to compute it using the Lefschetz trace formula. Thus we obtain
(1.3.1) Int(g) = tr (g, H*(V)),

where H* (V) denotes the étale Qg-cohomology of V), for a fixed prime £ # p.

To compute the right hand side of (1.3.1), we utilize the fact that the variety V is the closure of a
generalized Deligne-Lusztig variety in a partial flag variety of the unitary group G = U(V) over F,. To be
precise, let G := Gy, and let o be the Frobenius automorphism of k over F,. Then V is the closure inside

G/ P of the generalized Deligne-Lusztig variety
Xp(w) :={hP € G/P:h~'o(h) € PwP},

for a certain standard parabolic subgroup P C G and a certain w € Wp\W/Wp. Here W denotes the Weyl
group of G and Wp denotes the parabolic subgroup of W corresponding to P. The automorphism g of V is
given by the natural action of the group element g € G(F,).

Vollaard [Vol10, Theorem 2.15] constructed a nice stratification

(1.3.2) v=||x;

of V into finitely many locally closed strata X;, where each X; is the image in G/P of a generalized Deligne—
Lusztig variety in G/P; for a different parabolic subgroup P; C G. This stratification is remarkable because

it is different from the naive decomposition

V=Xp(w)= | | Xp(w).
w EWp\W/Wp,w'<w
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In fact, the stratification (1.3.2) is a special example of stratification into fine Deligne—Lusztig varieties,
which will be discussed in the next subsection §1.4. Now each X; turns out to be a fine Deligne-Lusztig
variety in G/P, and can be related via parabolic induction to a classical Deligne-Lusztig variety in the full
flag variety of a Levi subgroup of G. In this way, the computation of the right hand side of (1.3.1) reduces
to computing the characters on the cohomology with compact support H:(X;) for each X, and eventually
reduces to the classical Deligne-Lusztig character formula in [DL76].

We thus place the problem of computing the right hand side of (1.3.1) into the more general framework
of developing a character formula for fine Deligne-Lusztig varieties and their closures.

1.4. A character formula for fine Deligne-Lusztig varieties. Let F, be a finite field. Let k = F,
and let o be the Frobenius automorphism of £ over ;. Let G be a connected reductive group over F,. Let
G = Gy, and let W be the Weyl group of G. Let J be a subset of the simple reflections in W. Let W be
the subgroup of W generated by J, and let P; be the corresponding standard parabolic subgroup of G. Let
JW be the set of minimal length coset representatives of W;\W. For w € /W, we have the associated fine
Deligne—Lusztig variety

Xjw=1{9P; € G/Ps;g7"0(g) € P; -, BuB},

where -, is the o-conjugation action. When J = 0, Xy ,, recovers the classical Deligne-Lusztig variety X,
inside the full flag variety of GG, associated to w.

In Definition 2.4.1, we will introduce the notion of a o-unbranched datum (J, %), where J is a set of
simple reflections in W, and .Z is a sub-diagram of the Dynkin diagram of G satisfying certain axioms with
respect to J. Associated to such (J, %), we will construct canonically a finite sequence of elements w; € /W,
such that we have the following simple closure relation (see Corollary 2.4.6)

(1.4.1) X = | | X,

The above stratification subsumes (1.3.2) as a special case. Moreover, for each i we will construct a rational
parabolic subgroup P; C G, and a projection to a reductive group P; — G; over F,, such that w; can be
naturally viewed as an element of the Weyl group W; of G; := G; . We show that each fine Deligne-Lusztig
variety X, is related via parabolic induction to the classical Deligne-Lusztig variety Xg’f in the full flag

variety of G; associated to w; (see Proposition 2.5.1):
X & G(Fy) xFiFa) X

For each i, we fix a o-stable maximal torus T; C G; of type w;. Now we are ready to state our main
character formula.

Theorem 1.4.1 (Theorem 2.8.1). Assume (J,.ZL) is a o-unbranched datum. Let w;,P;,G;,T; be as above.
Let g € G(F,) be a regular element. Then

(1.4.2) (g, H* (X0 ) Ztr g HA( X)) =D 3 #MI %

i yel;

|T; N (G:F)y)|.

Here we have
o I'; is a complete set of representatives of elements in T;(F,) modulo G;(F,)-conjugacy.

o MY = {r € G(F,)/P:(F,);r tgr € Pi(F,)}, and M7 C MY consists of those r € M? such that the
semi-simple part of the projection of r~1gr to G; is G;(F,)-conjugate to .

o CilFa)n, js the G;(F,)-conjugacy class of ;.



1.5. Four families of fine Deligne—Lusztig varieties. In §4, we apply Theorem 1.4.1 to fine Deligne—
Lusztig varieties that arise from the basic loci of Shimura varieties of Coxeter type [GH15]. There are four
infinite families of such fine Deligne-Lusztig varieties, where the F,-groups G are respectively the even non-
split special orthogonal group, the odd special orthogonal group, the symplectic group, and the odd unitary
group.

In all these cases, we obtain an explicit formula for tr(g, H*(X .4, )), for g € G(F,) whose image under the
standard representation is regular. Our formula is in terms of the characteristic polynomial of g, subsuming
the formula in Theorem 1.2.4 as a special case. See Theorems 4.3.3, 4.4.3, 4.5.4, 4.6.3. The odd unitary
cases and the even non-split special orthogonal cases are relevant to the AGGP conjectures for unitary and
orthogonal groups respectively, and our formulas lead to the arithmetic intersection formulas in Theorem
1.2.4 and Remark 1.2.6.

1.6. Further remarks on Theorem 1.2.4. Arguably the most difficult part of Theorem 1.2.4 is to compute
the intersection multiplicity at each point of intersection in (1.1.2). The computation in [RTZ13] uses Zink’s

theory of windows and displays to compute the local equations of (1.1.2). It requires explicitly writing

n+1
2

loc. cit. ensures that the ideal of local equations is admissible (see the last paragraph of [RTZ13, p. 1661]),

down the window of the universal deformation of p-divisible groups. The assumption p > made in
which is crucial in order to construct the frames for the relevant windows needed in Zink’s theory.
As mentioned above, the starting point of the simplified proof in [LZ17] is that the intersection (1.1.2)

can be identified with V9, and thus a deformation-theoretic problem of p-divisible groups is transformed to

a purely algebro-geometric problem over k. When p > "7“, the computation of V9 is further reduced in
[LZ17] to a more elementary fixed point problem of a linear transformation on a projective space. However,

when p < ”T'H the multiplicities remain mysterious.

Our proof of Theorem 1.2.4 shares the same starting point as [LZ17]. The new observation is the inductive
structure of fine Deligne—Lusztig varieties, which allows us to exploit the full power of the classical character
formula of Deligne-Lusztig. Our approach circumvents the need to analyze the local structure of (1.1.2),
and gives the desired formula without the extra assumption on p.

Finally, we remark that in the computation in [RTZ13] or [LZ17], the number mQSH in Theorem 1.2.4

appears as the common intersection multiplicity at each point of intersection. In our current computation,

we obtain a different geometric interpretation of this number, as the number of the strata X; whose H,
contribute non-trivially to the trace (1.3.1). (In the proofs of Theorem 4.3.3 and Theorem 4.6.3, this number
appears as |.Z|.) As a simple illustration of this phenomenon, consider the automorphism f(z) = x 4+ 1 of
order p on P! over k. The only fixed point is oo, which has multiplicity 2. On the other hand, we have
an f-stable stratification P! = A! U {co}, which gives tr(f, H*(P')) = tr(f, H:(A')) + tr(f,H}(c0)). Note
that tr(f, H:(A)) = tr(f, H}(c0)) = 1. Thus the multiplicity 2 also appears as the number of contributing
strata.

1.7. Organization of the paper. In §2, we introduce the notion of a o-unbranched datum, and study the
closure relation and inductive structure for the fine Deligne—Lusztig varieties associated to a o-unbranched
datum, culminating in the proof of the general character formula Theorem 1.4.1 (Theorem 2.8.1). In §3,
we recall the four infinite families of fine Deligne-Lusztig varieties arising from basic loci of Coxeter type in
Shimura varieties. In each case we identify the unique o-unbranched datum. In §4, we apply the general
character formula to each of the four families in §3, obtaining explicit character formulas in terms of char-
acteristic polynomials (Theorems 4.3.3, 4.4.3, 4.5.4, 4.6.3). In §5, we apply the results in §4 to obtain the

arithmetic intersection formulas in Theorem 1.2.4 and Remark 1.2.6 (Theorem 5.1.2 and Theorem 5.2.4).
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1.8. Notations and conventions. Let k& be an algebraically closed field. For a smooth scheme X over
k, we denote by H*(X) and H(X) the étale Q-cohomology and the étale Q-cohomology with compact
support respectively, for a fixed prime ¢ which is invertible in k.

For any linear algebraic group G over k, we identify G with its k-points. If a subfield kg of k£ and a ky-form
G of G are given in the context, we often abuse notation to write G(ko) for G(ko).

By convention, a quadratic space means a finite-dimensional vector space over a field equipped with a
non-degenerate quadratic form. Since we will never consider characteristic 2 fields, we shall specify the
quadratic form by specifying its associated bi-linear pairing. Thus the quadratic form is recovered from the
bilinear pairing |-, -] as & +— [z, z]/2. Similarly, Hermitian forms and symplectic forms are all understood to
be non-degenerate.

For any field F', we denote by F[\]™°"¢ the set of monic polynomials in the polynomial ring F[\].

1.9. Acknowledgments. X. H. was partially supported by the NSF grant DMS-1801352. C. L. was partially
supported by an AMS travel grant for ICM 2018 and the NSF grant DMS-1802269. Y. Z. was partially
supported by the NSF grant DMS-1802292. We would like to thank the Hausdorff Center for Mathematics
for the hospitality, during the Conference on the Occasion of Michael Rapoport’s 70th Birthday. We would

also like to thank the referees for careful reading and useful comments.

2. FINE DELIGNE-LUSZTIG VARIETIES

2.1. Basic setting and notations. Fix an odd prime p, and let ¢ be a power of p. Let k = F, and o be
the Frobenius automorphism of £ over [F,.

Let G be a connected reductive group over F,, and let G = Gj. We fix a o-stable Borel subgroup B of
G, with a Levi decomposition B = TU which is also o-stable. Let W be the canonical Weyl group of G
equipped with the canonical action of the Frobenius o, as in [DL76, §1.1]. Then using the pair (T, B) we
identify W with N (T)/T, and the identification is o-equivariant.

Let S be the set of simple reflections in W. For any J C S, let P; D B be the standard parabolic subgroup
of GG associated to J, and let L; be the standard Levi subgroup of P;. Denote by W the subgroup of W
generated by J (called a parabolic subgroup of W). Thus W is the Weyl group of L.

For w € W, we denote by supp(w) the support of w, i.e., the set of simple reflections that occur in some
(or equivalently, any) reduced expression of w. We define

supp,, (w) = U o' (supp(w)).
i€Z

We recall the notion of Coxeter elements following [Spr74, 7.3]. For each c-orbit in S, we pick a simple
reflection. Let ¢ be the product of these simple reflections in any given order. We call such ¢ a o-twisted
Cozeter element of W. More generally, for a o-stable subset ¥ C S, we may consider o-twisted Coxeter
elements of the parabolic subgroup Wy. If ¢ is such an element, then supp,(c) = %, and supp(c) is a

complete set of representatives of the o-orbits in 3.

2.2. Classical Deligne—Lusztig varieties. For w € W, the (classical) Deligne-Lusztig variety X,, in the
full flag variety G/B is defined by

X, ={9B € G/B;g 'o(g9) € BuB}.
These Deligne-Lusztig varieties give a partition of the full flag variety

G/B= || Xu.
wew
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The closure relation is given by the Bruhat order < of the Weyl group, i.e. for any w € W,

X, = |_| X

w’' <w

2.3. Fine Deligne—Lusztig varieties. Let J C S. Let G/P; be the partial flag variety of type J. In 1977,
Lusztig introduced a partition of G/P; into fine Deligne-Lusztig varieties.

We follow the approach in [He09, §3]. Let W be the set of minimal length coset representatives of
W \W. For any w € "W, we set

Xjw=1{9P; € G/Ps;g '0o(g) € P; -, BuB},

where -, is the o-conjugation action, i.e., z -, y := zyo(z)~*. When J = (), we have Xy, = X,.
Then we have a partition
G/PJ = |_| XJ,w
we W
into locally closed sub-varieties.
The partial order <;, on /W is introduced in [HeO7a, Proposition 3.8] (see also [HeO7b, 4.7]). For
w,w € W, we write
w <J7U wl
if uwo(u)™! < w' for some u € W;. By [HeO7a, Proposition 3.13] and [HeO7b, Corollary 4.6], <, is a

partial order on YW. Now we have
Theorem 2.3.1. [He09, Theorem 3.1] For w € 7W,

Xjw = | ] X 0

w eTWiw' < 0w

2.4. The o-unbranched datum. We would like to single out certain cases where the right hand side of

Theorem 2.3.1 has a relatively simple description.

Definition 2.4.1. We say that a subset J C S is o-unbranched if the following conditions hold.
(1) The set S — J is contained in one o-orbit in S.

(2) There exists a sub-diagram £ of the Dynkin diagram of (G, W,S) satisfying the following conditions.

e The diagram . is connected and without branching;
e The nodes of .Z form a complete set of representatives of the o-orbits in S.
e One (and hence exactly one) end-node of .Z isin S — J.
We call a pair (J,.Z) as above a o-unbranched datum for G. When we would like to emphasize the group

G, we write (G, J,.Z).

2.4.2. From now on we assume the existence of a o-unbranched subset J C S, and fix a o-unbranched
datum (J,.Z) once and for all. Let a be the number of nodes in .. By assumption £ is connected and

without branching, with exactly one end-node in S —J. Hence we may canonically list the consecutive nodes
in £ as

(2.4.1) T, T2, T €8,

with t, € S — J. Write ipax = a + 1.
For each 1 < i < iyax, define

W; = Catq—1"" 1.



Here by convention w;_, := 1. We also define
a
¥ = supp, w; = U the o-orbit of v,
j=i
the g-orbit of v;_1, if 2 < i < ipax,
0, ifi=1,

Ei =

sh=s— (2 un).

Lemma 2.4.3. Forall3 <i<aandm € Z, the sets {o™(v;—2),0™(ti—3), -+ ,0™(t1)} and {tq,ta—1, - ,t}

are disconnected from each other.

Proof. Suppose not. Then there exist j,l, with ¢ < j < aand 1 <1 <1 — 2, such that t; is connected with
o™ (t;). Choose n € N such that "™ (t;) = t;. Then in the list

m m m 2m 2m nm nm
i, 0 Y, 0 Vg1, ,0 5,0 X, , 00 Ly, 0 Uy, ,0 Ty,

each member is connected with its predecessor, and the last member is equal to the first member. Since the
Dynkin diagram does not contain loops, there must exist two adjacent members in the above list that are
equal. Thus there exist integers a, 8, with [ < 8 < j, such that c*™tg = 0“"rg4q or 0Mt; = glathmy,
The first case is impossible because tg # tg4+1. In the second case, we have v; = ¢™t;, which contradicts

with the axiom that t; and v; represent different o-orbits in S. O
Lemma 2.4.4. For each 1 < i < imax, we have

S=xusust
The sets X2, %;, Eg are all o-stable. Moreover X! is disconnected from ZB.

Proof. The first assertion holds because tq, - - ,t, lie in distinct o-orbits in S. The second assertion follows

easily from the definition. The third assertion follows from Lemma 2.4.3. ]

Note that each w; is o-twisted Coxeter in Wy, and Wzbl = Ws = W. We further have the following

result.

Lemma 2.4.5. For each 1 < i < imay, we have w; € 7W. Moreover
{we Wiw <;,w} = {w,we, - ,w,.}.

Proof. Since . is connected and since t, € S — J, we have w; € 7W. By definition, w; < w; for any 1.
On the other hand, let w € W with w <o wi. Then by [He07a, Proposition 3.8], there exists u € Wy
with £(wo(u)™!) = £(w) — ¢(u) and vwo(u)~! < wi. Then we have wo(u)~! € /W and wo(u)~! = w; for

some 1 < i < imax. Then uw; < wy. Since v € Wy and w; € YW, we have £(uw;) = £(u) + £(w;). Note

that v;_qw; £ wi, so we have u < t;_ot;_3---t;. By Lemma 2.4.3, the sets {o(t;—2),0(t;_3),...,0(r1)} and
{ta,%a—1,...,t;} are disconnected from each other. Hence w = w;o(u) = o(u)w;. Since w € W, we have
o(u) =1 and hence w = w;. O

By the above lemma, the fine Deligne-Lusztig variety X ., is defined for each 1 <7 < ipax.

Corollary 2.4.6. We have
XJ,U)l == |_| XJ,w.;~

1<i<imax

Proof. This follows from Theorem 2.3.1 and Lemma 2.4.5. (]
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Given g € G™8 N G(F,), our goal in this section is to compute
tI'(g, Jv g) = tr(g7 H*(XJ,’MH))'

Corollary 2.4.7. For g € G**¢NG(F,), we have

Tmax

tr(g, J,.£) = Z tr(g, H: (X w,)).

Proof. This follows from Corollary 2.4.6. ]
2.5. Parabolic induction. We keep the setting of §2.4. Fix 1 < i < iyax. Denote

Pi = PE Li =L

G = (L™, HPY = (L)

bush srush =t

Since ¥ is disconnected from E? (see Lemma 2.4.4), we have a canonical isomorphism
L3 = G x HP.

Let L; — LE be the central isogeny with the smallest kernel such that LE is the direct product of the inverse
images in L% of G2 and H?d. We denote by G; (resp. H;) the inverse image of G24 (resp. H%) in L?. Then
G24 (resp. H?) is indeed the adjoint group of G; (resp. H;), so the notation is compatible.

Thus we have LE = G; X H;. Moreover, since EE, 2§ are o-stable, the groups P;, L;, LE, G;, H;, as well as
the central isogeny L; — LE and the decomposition LE = G; x H;, are all defined over F,. When we would
like to emphasize the reductive groups over F, underlying P;, L;, etc., we shall write P;,L;, etc. We let 7,
denote the projection P; — L; — L? — G, and let 7} denote the projection P; — L; — LE — H;,.

Let W; := Wy,,. Then W; is identified with the Weyl group of G;, inside which w; is a o-twisted Coxeter
element. Let ijz be the classical Deligne-Lusztig variety associated to the element w; € W; in the full flag
variety of G;. Then we have a natural action of G;(F,) on XJi. Define the action of the group P;(F,) on
G(Fy) x Xg';' by

p-(g,2) = (gp~ ", mi(g) - x).
Let G(F,) xT (Fq) Xg’j be the quotient space. As a k-variety this is just a finite disjoint union of isomorphic
copies of X&'.

Proposition 2.5.1. For each 1 <1i < inax, we have a G(Fy)-equivariant isomorphism
G(F,) x"F) X0 =5 Xy, (9,9(GiNB)) — gg'Py.

Proof. We fix 1 < i < ipax. We claim that Zg is the maximal subset of J that is stable under Ad(w;) o o.
In fact, by definition Eg is a o-stable subset of J (see Lemma 2.4.4). Since Zg is disconnected from ¥? by
Lemma 2.4.4, Eg is also stable under Ad(w;). Now let K C J be a Ad(w;) o o-stable subset. If i = 1, then
Y, = 0 by definition. If 2 < i < ipayx, then Ad(w;)r;—1 € S, and for any v in the o-orbit of v;_1, either
Ad(w;)e = v or Ad(w;)t ¢ S. Hence ¥, N K = () in all cases. Similarly, for any integer j with ¢ < j < a, the
following holds. On one hand either Ad(w;)v; = t;—1 or Ad(w;) ¢ S, and on the other hand, for any v # t;
that is in the o-orbit of t;, either Ad(w;)v = v or Ad(w;)t ¢ S. (In fact we always have Ad(w;)v; ¢ S). Using
this and by induction on j, we see that K does not contain any element in the o-orbit of v;, for all j > i.
Therefore K N E'Z’» = (). We already saw KNX; =0, s0 K C Ef. This proves our claim that E? is the maximal
subset of J that is stable under Ad(w;) o o.
By the above claim and by [Lus07, 4.2(d)] (see also [He09, §3]), the projection map G/Py: — G/P;
induces an isomorphism '
Xot o 5 X
9
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Note that PE? o Bw;B C P;. Thus gPEE € XEf,wi implies that g~'o(g) € P;. By Lang’s theorem,

g to(g) € P; is equivalent to g € G(Fy)P;. The projection map G/Pg: — G/P; induces an isomorphism

X = G(F,) xPiEd X7,

= w;
where X' is the sub-variety of P;/ PE? given by
X'={pPy; € P;/Pys; p~'o(p) € Py o BwiB}.
Recall that m; denotes the projection P; — L; — LE- — G;. Note that
BifPge & Li/(Li N Pyy) = LY /(mi(B) x H;) = G;/mi(B),

where G;/m;(B) is the full flag variety of G;. Under this isomorphism, the sub-variety X’ of P; /sz is
identified to Xg” The proposition is proved. ([
Corollary 2.5.2. For each 1 <1i < ipax, we have an isomorphism of virtual G(F,)-representations

% ~ G(Fq * i
H? (XJ,wi) = IndPi((]Fq)) H, (Xg’l )’

where P;(Fy) acts on X$i via the projection m; : P;(F,) — Gi(Fy).
Proof. This follows immediately from Proposition 2.5.1. O

2.6. Review of regular elements. We recall the definition of regular elements and some standard facts.

Let G be a reductive group over k.

Definition 2.6.1. An element g € G is called regular, if the centralizer G, of g in G has dimension equal
to the rank of G. The set of regular elements is denoted by G*°2.

If G is semi-simple, the above definition is the same as [Ste65]. In general, one easily checks that g € G is
regular in the above sense if and only if the image of g in G*? is regular. Thus we can easily transport the

results from [Ste65], which only discusses semi-simple groups, to reductive groups.

Theorem 2.6.2. An element g € G is regular if and only if there are only finitely many Borel subgroups of
G that contain g.

Proof. This follows from [Ste65, Theorem 1.1] applied to G*. O

Proposition 2.6.3. Assume G’ is a reductive group over k that contains G as a closed subgroup. Then
G"®* NG C Grs.

Proof. Fix a Borel subgroup B’ C G’ that contains B. By Theorem 2.6.2, it suffices to show that the natural
map between flag varieties G/B — G’/B’ is finite-to-one (at the level of k-points). For this, it suffices to
show that B is of finite index in B’NG. Note that the identity component (B'NG)°? of B'NG is a connected
solvable closed subgroup of G which contains B. Hence (B’ N G)? = B. But we know that (B’ N G)° has
finite index in B’ N G because the latter is a linear algebraic group over k. |

Proposition 2.6.4. Let P = Pj be a standard parabolic subgroup of G, with standard Levi subgroup L = L.
The projection P — L maps P N G into L*°8.

Proof. The projection P — L induces a bijection from the set of Borel subgroups of G contained in P to the
set of Borel subgroups of L. Thus the proposition follows from Theorem 2.6.2. ]

The following proposition is well known and elementary to verify.

Proposition 2.6.5. Let V be a finite dimensional k-vector space. An element g € GL(V) is regular if and
only if each eigenspace of g is one dimensional. O
10



2.7. The character formula on a classical Deligne—Lusztig variety. Let g € G(F,) and let g = su be
the Jordan decomposition of g. Assume g is regular in G. Let w € W. Let (T, B,,) be the pair associated
to w as in [DL76, Lemma 1.13]. Namely, T, is a o-stable maximal torus of G, and B,, is a Borel subgroup
of G containing T, such that B,, and o(B,,) have relative position w. The pair (T,, B,,) is well defined up
to G(F,)-conjugation, but we fix a representative. We denote by ©s the conjugacy class in G(k) of s, and

denote by “(Fa)s the conjugacy class in G(F,) of s.

Proposition 2.7.1. In the above setting, we have

* |G3(IFC])| G(Fq)
92.7.1 tr(g, H* (X)) = oo @)l |\ G(Fa) g
(2.7.1) (0. Hi(X,) = ot ;
Proof. By [DL76, Theorem 4.2], we have
. 1
(. HE (X)) = 00y, 2 Qurae) .2 (),

9'€G(Fq);9'Tw(g9’) "1 CGY

where Qg1 (g)-1,c0 is the Green function. Since g is regular in G, we know that u is regular in GY. Hence
by [DL76, Theorem 9.16], we have Qg1 (4)-1,qo(u) = 1 for every ¢’ that appears in the above summation.
Therefore we have

tr(g, HA(X,,)) = m}q”#{g' € G(F,):¢'Tulg) ™" C GO

Now for ¢’ € G(F,), the condition ¢'T},(¢")~* C GY is equivalent to the condition s € ¢'T,,(¢’)~*, which is
equivalent to the condition (¢')~'sg’ € T\, N G(Fa)s, Therefore we have

#{g' € G(F,);g'Tu(g) ™" C G} = |Gu(Fy)| - [T n “Es
by the orbit-stabilizer relation. The proposition follows. O

Definition 2.7.2. For each v € T, (F,), define

_ 1G,(Fy)

T(w,7) : : T N EEDy .

IGY(F,)
Since T, is well defined up to G(F,)-conjugation, the above definition indeed only depends on w and .

Corollary 2.7.3. Let g € G(F,) N G™®8 and w € W. Let g = su be the Jordan decomposition. We have

0, if Ty NG Fa)s = (),

t 7H: Xw =
r(g, He(Xw)) T(w,), if Ty CEDs £

In the second case, v is any element of T, N ¢Fa)s.

Proof. This follows from Proposition 2.7.1, by noting that the right hand side of (2.7.1) only depends on the
G(F,)-conjugacy class of s. a

2.74. Let w e W and v € T,,(F,). We will give a more explicit formula for 7 (w, ), under the assumption
that G, is connected. For example, if G9°r is simply connected, then our assumption is always satisfied, by
a result of Steinberg [Ste68, Corollary 8.5] (cf. [Kot82, p. 788] or [Car93, Theorem 3.5.6)).

Assume G, is connected. We canonically identify W with Ng(T,)/Ty via the pair (T, By,) fixed before.
Then the Weyl group of G, is a canonical subgroup W (y) of W, generated by the reflections associated
to roots a in ®(Ty,, G) such that a(y) = 1 (see [Car93, Theorem 3.5.4]). Denote by F,, the automorphism

Ad(w) o o of W. Then W (v) is stable under F,,, as v is an F,-point of T,,.
11



Lemma 2.7.5. In the setting of §2.7.4, we have
T(w,y) = #{"v;x € W,%y € G(Fy)} = #(W/W(y))™
Proof. Since G., is connected, it follows from the Lang-Steinberg theorem that H'(F,, G,) = 0, and so
GFa)y = Gy N G(F,). Therefore
T(w,7) = |Tw(Fq) N %
Now assume h € G satisfies hyh=! € T,,. Then h™'T,,h C G,. Sine h~1T,h and T,, are two maximal tori
of G, there exists ¢ € G such that h='T,h = cT,,c~t. Then we have
hyh™' = (he)y(he)™t,  he € Ng(Ty,).

The above analysis shows that,

|Tw(Fg) N S| = #{"y; 2 € W, %y € G(Fy)}-
This proves the first equality in the lemma. To prove the second equality, note that

#{"vw € WPy € G(Ey)} = #(W/W,) ™™
where W, is the stabilizer of v in W. Since G, is connected, we have W, = W(vy), see [Car93, Theorem
3.5.3]. O

2.8. Combining the results. Keep the setting of §2.4. For each 1 < i < ipy,x, fix a o-stable maximal torus
T; in G; of type w;. Fix I'; C T;(F,) to be a complete set of representatives of elements in T;(F,) modulo
G;(F,)-conjugacy. Fix g € G(F,). For each 1 <4 < i,y and each v € T';, define

Mvzg = {T € G(Fq);r_lgr € Pi(Fq)} ) va’v ={re va; (mi(rtgr))s € Gi(FQ)W}.

Here (m;(r~'gr))s denotes the semi-simple part of m;(r~'gr) € G;(F,) in the Jordan decomposition. Note
that MY and M?7, if non-empty, are stable under right multiplication by P;(F,). We denote

M = MJ[P(Fy), MY = MIT/Pi(F,).
For v € I'; C T;(Fy), we also define T (w;, ) as in Definition 2.7.2, with respect to G; and w; € W;.

Theorem 2.8.1. Fiz g € G(F,) N G*8. Then

Imax

gng Z Z #MQ“/ ’LUZ,’Y)

i=1 yel';

Proof. By Corollary 2.4.7 and Corollary 2.5.2, we have

imax

(2.8.1) tr(g, J, %) Z | P;(F Z tr(m(r_lgr),HZ(Xg’j)).
TE/\A;lf
Fix 1 < i <ipax. For any r € Mv?, it follows from Proposition 2.6.4 that the image of r~'gr under P; — L;
is regular in L;. It easily follows that m;(r~!gr) is regular in G;. We may hence apply Corollary 2.7.3 to get
(2.8.2) 7 otr(m(r ), HAXE) = Y Y Twiy) = D> #MITT(wi,).
remM? VELi pe o Vel

Combining (2.8.1) and (2.8.2), we obtain

Imax Imax

tr(g, ], L) =D D |B(Fy)[ T HMIT - Twiy) =D D #MET - T(wi, ). O

=1 ~vel'; =1 ~vel';
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3. BASIC LOCI OF SHIMURA VARIETIES OF COXETER TYPE

The notion of basic loci of Coxeter type in Shimura varieties is introduced in [GH15]. The basic loci in
K
defined

these cases can be decomposed into a finite union of Ekedahl-Oort strata indexed by the set EO ..
in [GH15, §5.1], and each Ekedahl-Oort stratum is a union of classical Deligne-Lusztig varieties of Coxeter

type. We have the following classification theorem.

TABLE 1. o-unbranched data

Enhanced Tits datum

o-unbranched datum (G, J,.Z = (v1,t2,- - ,t4))

(Ap,wy,S) (trivial group, @, 0)

(Bn,wy,S) (2D",Sf{5n_1},(51,~~ ;Sn—1))
(BnaWY>S_{n}) (Bn-1,S = {sn—1}, (51, , 8n—-1))
(B-Cp,wy,S) (®Dy,S — {5n_1}, (81, ,8n-1))
(B-Cp, Y, S = {n}) (Bn-1,S = {sn-1}, (51, , $n-1))

(C'Bmwi/ag) (ans_{sn}v(sla"' vsn))

(C-BC,,wy,S) (Bn,S — {sn}, (51, " ,5n))

(C-BCyp,wY,S —{n}) (Cn,S—{sn}, (81, ,8n))

(Dn,wy',S)

(2Dn—1a S — {Sn—2}7 (51, T asn—Q))

(*A,, @V, S)

(2A2,0,S — {sm}, (51, ,5m)), m = LnT—lj

(23n7 wY? S — {n})

BTHS - {Sn}7 (51, T 75n))

(2B-Cp,wY,S — {n})

Cn,S - {Sn}7 (517 o ?STL))

(
(
(2Dn S — {snfl}; (slv e 7Sn71))

(2Dn,w¥,8) )

(A3, w3, S) (*(A1 x A1), {51}, (s2))
(*A5,w5,S) (*As, {52,583}, (s2,51))
(C2,wy,8) (*(A1 x A1), {51}, (52))

(C2,w8,S — {1})

(Ah ®7 (81))

(20276‘)%/’@ B {1})

(B2, {51}, (s1,52))

(QC'BQ’WY7S - {1})

(Ba, {52}, (52,51))

Theorem 3.0.2. [GH15, Theorem A] The irreducible enhanced Tits data of Coxeter type for o-stable max-
imal K are classified in the first column of Table 1.

We list in the second column of Table 1 the associated o-unbranched data. In each case, let w be the

. . K
maximal element in EO,

computed in [GH15, §6]. Then the reductive group G over Fy is the reductive
quotient of the parahoric subgroup associated to supp, (w), and we have J = K Nsupp,(w). In each case
it turns out that J is o-unbranched, and that there is a unique o-unbranched datum of the form (J,.%). In
table Table 1 we record the type of G, the set J, and the nodes (t1,--- ,t,) of the unique .Z in the order as
in (2.4.1). We let s; € S denote the i-th node, according to Bourbaki’s numbering [Bou68]. In all except the
four cases marked with %, we have v; = s; for all 1 <1i < a.

Consequently, the associated fine Deligne—Lusztig varieties come in four infinite families:
(1) G is the non-split even special orthogonal group SOsy,, J =S — {sp-1}, L = (51, , Sn—1)-
(2) G is the odd special orthogonal group SOg,11, J =S — {s,}, £ = (81, -, 8n).
(3) G is the symplectic group Spy,, J =S — {sp}, £ = (51, ,8n)-
(4) G is the odd unitary group Uspt1, J =S — {sn}, £ = (51, , Sn).
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4. EXPLICIT CHARACTER FORMULAS

In this section, we use Theorem 2.8.1 to compute tr(g, J,.#) for the four infinite families specified at
the end of §3. We shall only consider g € G(F,) whose image in GLx under the standard representation
is regular. This is a stronger hypothesis than requiring g to be regular in G, except for the unitary case.

However, for the known arithmetic applications this is enough (see §5). We first need some preparations in
§4.1 and §4.2.

4.1. Reciprocal of polynomials. We shall work with the base field F,, but we shall consider polynomi-
als f(A) in Fg[A] or Fp2[A]. These will appear as characteristic polynomials of elements in orthogonal or
symplectic groups over F,, or unitary groups of Fg2/F,-Hermitian spaces. Recall that o is the Frobenius

automorphism of k = Fy over Fy. For x € k, we write 7 for the image of x under o, i.e., 27 := z9.

Definition 4.1.1. For a polynomial f € F,2[\] with f(0) # 0, we define its reciprocal polynomial as

FrO) = (F0)7) 7 X8 f(1/0)7 € Fya[A].

We call f € Fg2[\] self-reciprocal, if f(0) # 0 and f = f*. (In particular, self-reciprocal polynomials are
monic.) These definitions restrict to polynomials in F,[)].

Remark 4.1.2. If f()) € Fy2[)] is monic and has factorization f(A) = J[;(A — A;) with each \; € k*, we

have f*(A) = [[;(A — (A]) "). If in addition f()) € Fg[A], then we also have f*(A\) = [[;(A — /\j_l).

Definition 4.1.3. We denote by Irr™ the set of monic irreducible polynomials in F,[A] with non-zero constant
terms. We let SR C Irr”™ be the subset of self-reciprocal irreducible polynomials, and let NSR := (Irr* —SR) /x
be the set of unordered pairs {Q,Q*} of non-self-reciprocal monic irreducible polynomials with non-zero
constant terms. Similarly, we denote by Irry the set of monic irreducible polynomials in Fg2[A] with non-

zero constant terms. We let SRy C Irry be the subset of self-reciprocal irreducible polynomials, and let
NSR2 = (ll’l’; — SRQ)/*

Lemma 4.1.4. If f € F [\ is self-reciprocal, then its irreducible factorization is of the form

(4.1.1) r=1lem" JI (@e)mee®,
QESR {Q,Q*}eNSR

for unique non-negative integers mg(f), m 1 (f). Similarly, if f € F 2|\ is self-reciprocal, then we have
Q {Q,Q"} q

(4.1.2) f= H Qme) H (QQ*)™e.e (),
QESRs {Q,Q* }ENSRs

for unique non-negative integers mq(f), myq,q+}(f)-
Proof. This easily follows from unique factorization in Fg[A] and F,2[A]. O

Definition 4.1.5. Let f € F,[\] be self-reciprocal. Define mq(f), mg,o-3(f) as in (4.1.1). Define
A(f) = ] A+mgeif)
{Q,Q*}eNsR
Similarly, let f € F2[A] be self-reciprocal. Define mq(f), m{q,q-}(f) as in (4.1.2). Define
Mr(f)= [ C+mgeyh)

{Q,Q*}ENSR;
14



Lemma 4.1.6. Let f € F [\ be self-reciprocal. Assume there is a unique element Qo € SR such that mg, (f)
is odd. Let m be an odd integer such that 1 < m < mg,(f). Then

#{U € F NN UU* = £/Qp} = A ().

Similarly, let f € F2[A] be self-reciprocal. Assume there is a unique element Qo € SRy such that mq,(f) is
odd. Let m be an odd integer such that 1 < m < mqg,(f). Then

#{U € Fpe[N™ " UU™ = f/QF' } = Mo(f).

Proof. We only prove the statement about .#(f), the other statement being similar. Write h := f/Qp*. For
any @Q € SR, mq(h) is even. For any {Q,Q*} € NSR, mg.o+}(h) = miqg,o-1(f). Now any U € Fy[x]meric
with UU* = h is given by

mo (h)

v=J] @ > II Yoy

QESR {Q,Q*}eNSR
where each Uig g+ = Q' (Q*)’, for any of the 1 + myqQ,q+3(h) possible choices of pairs of non-negative

integers (7, 7) satisfying i + j = mg q-}(h). |

Definition 4.1.7. Let f € SR of even degree d. By an admissible enumeration of the roots of f, we mean

an enumeration of the d distinct roots of f in k™ of the form Aq,--- ,)\%,)\fl, e ,)\;1 such that
2
AT =X, AT = A, L A7 = Ae, A7 = AT L
2 2 2

Lemma 4.1.8. Let f € SR of degree d. Then either d is even or f(A) = A+ 1. When d is even, there are
precisely d distinct admissible enumerations of the roots of f, all obtained from a given one by powers of a

cyclic permutation of order d.

Proof. The map z — ! induces an involution on the set of all d distinct roots of f. If d is odd, this
involution has a fixed point, which means 1 or —1 is a root of f. Hence f = A + 1.

We assume d is even. We first prove the existence of one admissible enumeration. The d distinct roots
of f are of the form Ay,---, Ag/2, )\1_1, e ,)\;/12. Since they form precisely one g-orbit, we may reorder the
A;’s or switch the roles of \; and )\i_l, to arrange that Ao = A7, -+, Ag/2 = )‘3/2—1' We claim that we must
then have AJ /o= )\1_1. In fact, since the d distinct roots form precisely one o-orbit, we have A9 /2= /\j_1 for
a unique 1 < j <d/2. If j > 2, then

—1 -1 —1
Mg AT A AT AL A A

already form one o-orbit, which does not contain Aj, a contradiction. Thus we have shown the existence of

an admissible enumeration. The rest of the lemma is clear. O
Definition 4.1.9. Let d > 2 be an even integer. Given a tuple A = (Aq,--- ,/\%) € (kx)@%, we define
A= 0 A A= (e Ae s ALY Al = (A A A y).
2 2 2 2

Let A be as above and let f € SR have degree d. We say that A is admissible with respect to f, if (A, A~1)
is an admissible enumeration of the roots of f in the sense of Definition 4.1.7.

Definition 4.1.10. Let f € SR, of odd degree d. By an admissible enumeration of the roots of f, we mean

an enumeration Ay, ---, Ag of the d distinct roots of f such that
A = Agy o A = A MG = A

Lemma 4.1.11. Let f € SRy of odd degree d.
15



(1) There are precisely d distinct admissible enumerations of the roots, all obtained from a given one by

powers of a cyclic permutation of order d.

(2) Assume d > 3. Let A\, -+, Aq be an admissible enumeration of the roots of f. For any integer j we
define Aj to be \jr, for 1 < j' <d such that j = j' mod d. Then for all j € Z we have

(4.1.3) AHT =N a.

Proof. Part (1) follows immediately from the fact that the d distinct roots form precisely one o2-orbit. We
prove part (2). Since for all j we have \; = 02U~V (), it suffices to prove (4.1.3) for j = 1. Since the set
of the roots is closed under the map x ~ (z7')7, we have (A 1)? = \; for some 1 < < d. We get

A= (7)) = ()7 = e IOT)7) = D 00) = My,

On the other hand )\‘1’2 =X2,802l—1=2 modd. Since 1 <[ <dand d > 3 is odd, the only solution of

this congruence is [ = (d + 3)/2, as desired. O
4.2. Eigenvalues +1. Fix a non-degenerate quadratic space (V,[-,-]) over k. We would like to control the
multiplicities of the eigenvalues £1, for elements g € O(V) N GL(V)™8. For g € GL(V) and X € k, we write

V (g, \) for the generalized eigenspace of g belonging to A, i.e., V(g,\) = ker(g — \)4m V.

Proposition 4.2.1. Let g € O(V)NGL(V)*8. Let j =1 or —1. Then dimV (g, j) is either zero or odd.

Proof. Firstly, it is easy to see that V (g, j) is orthogonal to V (g, A) for any A € k — {j}. In particular, the
quadratic form restricted to V (g, j) is non-degenerate, and we obtain a quadratic space (V(g,7),[,-])- By
Proposition 2.6.5, g|v(4,;) is in GL(V (g, j))*8. Thus we may and shall assume that V' = V'(g, 7).

Assume that dimV = dim V' (g, j) = 2n, with n > 1, and we are to deduce a contradiction. Under this
assumption we have g € SO(V) (since det g = 52" = 1). In particular g lies in a Borel subgroup of SO(V),
and so g stabilizes a maximal totally isotropic subspace M C V. Let N be a maximal totally isotropic
subspace of V such that V.= M @ N. Since g € GL(V)"*8, the Jordan canonical form of gy € GL(M) must
be one Jordan block of eigenvalue j (see Proposition 2.6.5). We thus find a k-basis eq,--- , e, of M, such
that (g — j) sends each ey to eq—1 (With eg := 0). Let f1,---, f, be the basis of N satisfying [eq, fg] = 0a s
Using g € SO(V) it is easy to see that

n
gfn :jfn + Z%eu
a=1

for some 7, € k. Then we have
0= [fn»fn] = [gfn>gfn] = 2j1n.

Hence 7,, = 0. It follows that (¢ — 7) maps the k-span of ey, - - - , ey, fn, into the k-span of eq,--- ,e,_1. Hence
the nullity of (g — j) is at least 2, a contradiction (see Proposition 2.6.5). |

4.3. The non-split even special orthogonal group. In this subsection we consider case (1) in §3.

We fix a non-degenerate non-split 2n-dimensional quadratic space (V,[-,-]) over Fy, with n > 1 (the case
n = 0 being trivial). Let G = SO(V, [-,-]). Let V := V ®p, k. By the classification of quadratic forms over
F, (see see [Kit93, §1.3], also cf. [DM91, §15.3]) there exists a k-basis e1,--- ,en, f1, -+, fn, of V, satisfying

[eave,ﬁ] = [fcwf,@] = 07 [eaafﬁ] = 5a,B7 V1 S a76 S n;
eo=¢en, fo=fa, VIi<a<n-—-1,;

€Z=fn, fszen-
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For each 1 < i < n, we define
‘/i = Spa’nk(ei7ei+17' c 7en>fi7fi+17"' 7fn) - ‘/7 Wi = Spank(ela"' ae’i) cV.

For each 1 < i <n —1, we have W; = W/, and we write W, for the F;-form of W;. For 1 < ¢ < n, we have
Vi = V7, and we write V; for the F,-form of V;.
Let G = Gj. Let B C G be the common stabilizer of either of the following two flags in V:

WicWeC---CW,_1 CW,,

Wi cWyC---CWpoy C W/
Then B is a o-stable Borel subgroup of G. Let T be the intersection of G with the diagonal torus in GL(V)

under the basis ey, - ,en, f1, -+, fn. Then T is the maximal torus of G contained in B.

We number the simple roots of (G, B,T) according to Bourbaki [Bou68]. We consider the o-unbranched
datum (J =S — {sp-1},Z = (s1, - ,8p—1)). Following the notation of §2.4 and §2.5, we have iy.x = n,
and for 1 < ¢ <n we have

P; = Stabg(W,_1),  L; = LI = GL(W,_;) x SO(V,)

G; = SO(V;) = SOz(n41-i) (non-split), H; = GL(W,;_1) = GL;_1 .
Here by convention Wy = 0 and GLg = {1}. As in §2.5, we have natural projections m; : P; — G; and
7, Py — Hi.
For any h € G;(k), we denote by f, € k[A] the characteristic polynomial of h acting on V;, which has
degree 2(n+ 1 —¢). Thus if h € G;(F,), then fj, is self-reciprocal in F4[A]. Similarly, for any h € H;(k), we
denote by fr(\) € k[\] the characteristic polynomial of h acting on W;, which has degree ¢ — 1.

Theorem 4.3.1. We fir 1 < ¢ < n. Writen' forn+1—1i. Thus G; = SOag,, with n’ > 1. We have the
following statements about T;(F,).

(1) If v € T;(Fy), then f, = Q™ for some Q € SR, and some positive integer m. Moreover, either Q(\) =
At 1, orm is odd.

(2) Let Q € SR. Assume m is an odd integer such that mdeg @ = 2n’. (In particular Q(\) # X+ 1). Then
there exists v € T;(Fq) with f, = Q™.

(8) Let Q and m be as in part (2). Let v € G;(k) be a semi-simple element such that f, = Q™. Then ~y is
Gi(k)-conjugate to an element of T;(F,).

(4) For any v € T;(F,), the centralizer G;  is connected.

(5) Let v € T;(Fy). Write fy, = Q™ as in part (1). Assume Q(A\) # A£1. Then T (w;,y) = (deg Q)/2. Here
T (wi,7y) is defined in Definition 2.7.2.

Proof. On T; we have coordinates
R T Oy ) = Y ),
such that the eigenvalues (with multiplicities) of y(Aq,--- , An/) acting on V; = k2"’ are
A, ,/\n,’)\l—17... ’)\;,1’

and such that

(431) rY(/\h e 7/\TL')J = ’Y((/\T_L’I)Ua (1j7 57 e a)‘Z’— )
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(1) Let (A1, -, Aps) be the coordinates of y. Since v7 = =, it follows from (4.3.1) that we have the following
equality between two 2n’-tuples in k*:

U2n’—1

(432) (>‘17)‘(1Ta"' 7>‘1 ) = (/\1"" a/\n/7>‘1_17"' >‘_1)'

) n’

We remark that (4.3.2) is valid even for i = imax = n. In fact, in that case T; = G; is the kernel of the norm
map ReSqu/Fq G — Gy, and (4.3.2) reads A = A\[ L.

Therefore all eigenvalues of v are in one o-orbit. It follows that f, has a unique monic irreducible factor
Q. Since f, is self-reciprocal, so is Q.

Now assume m is even. Then d := deg @ divides n’. Since (4.3.2) holds and since there are precisely d
distinct eigenvalues of 7, we know that )\‘{d = A\1. Since d divides n/, it follows that X{nl = \1. By (4.3.2)
27" = A7L. Hence Ay = A7, and so A, = £1. It follows that Q(A) = A = 1.

(2) Let d = deg Q. Then d is even since dm is even. We fix a tuple A € (kX)®% admissible with respect
to Q, see Definition 4.1.9. Then 7 := ~v(A, A7, --- /A, A= A) (with m total appearances of A and A~1) is
an element of T;(F,) satistying f, = Q™.

(3) Let d = deg@. We know d is even. We assume without loss of generality that v € T;(k). Since

fy = Q™, the n’ coordinates of v must contain elements Ay, ---, A 4 such that all roots of ) are given by

AL, ,)\%,)\1_1, e ,)\;1. We temporarily assume m > 1. By Lemma 4.1.8, there exists an admissible tuple
2

A with respect to Q()), obtained by permuting A1, - - -, Ag/2 and replacing some of them with their inverses.

Up to the action of W;, we may arbitrarily permute the coordinates of v, and we may replace an arbitrary
even number of coordinates of v by their inverses. As m > 1, we may therefore conjugate v by W; to arrange
that either

y=(A ATt A AT A)  (with m total appearances of A and A7)

or
y=~(AATL - A, AL A)  (with m — 1 total appearances of A and A™1).

In the first case we already have v € T;(F,). Assume we are in the second case. Since m is odd, we may

simultaneously replace each of the first m — 1 appearances of A or A~! by its bar, i.e., v is W;-conjugate to

fY(A7A_17"' aj\vA_l)]\) :’Y(AaA_lv"' 7A7A_17A)'

But the above element is W;-conjugate to
V(A[lL‘/&_l[lL e 7A[1]7A_1[1]7A[1]) = V(Qa Q_la e aQ7 Q_17 Q)a

where  := A[l] Note that §2 is admissible with respect to @), and using this fact it is easy to check that
the above element is in T;(F,).

Now we treat the case m = 1. In this case 7 is W;-conjugate to either v(A) or v(A), for a tuple A
admissible with respect to Q. The element y(A) is already in Tj(F,). The element y(A) is Wj-conjugate to
v(A[1]), which is in T}(F,) since A[1] is admissible with respect to Q.

(4) We claim that any element x € W; fixing v is a certain product of reflections associated to roots that
send vy to 1. Once the claim is proved, it will follows that G; . is connected, see [Car93, Theorem 3.5.3]. We
now prove the claim.

Fix a Z-basis €1, - - - , €nr of X*(T}), such that the roots are e, +eg, a # 5. Then W; can be identified with
({£11")' xS, acting on the set {-ey, - - , T, }. Here ({£11™) denotes the subgroup of {1}*" consist-
ing of elements with an even number of —1’s. For any z € W;, define A(z) := {o;1 < a < n/,z(ey) ¢ {£ea}}-
Assume z fixes 7, and assume A(x) # (. Take o € A(x). Then z(e,) = teg for some 3 # a. If x(en) = €5,

then we left multiply x by the reflection ¢, +— €g, €5 — €o. If z(€n) = —€g, then we left multiply = by the
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reflection e, — —e€g, g — —€,. In either case, we have left multiplied x by a reflection associated to a root
(i.e. €q —€a in the first case and €, + € in the second case) which sends 7 to 1, and the product is an element
y € W, which also fixes 7 and which satisfies #A(y) < #A(z). In this way, we reduce to the case where
A(z) = (. Now assume A(z) = (), and let B(z) = {a;1 < a <n',z(es) # €a}. Then z € ({:i:l}xnl)’ c Wi,
with —1’s appearing at the places indexed by B(z). In particular, #B(x) is even. Since x fixes v, we know
€a(y) = %1 for each a € B(x). By part (1) we know that +1 cannot simultaneously be eigenvalues of ~,
so these €, () must all be 1 or all be —1. Write B(z) = {aq,--- ,ar, 51, -+, B} arbitrarily. Then for each
1 < j <, the root €,; + €5, sends v to 1. We easily see that x is the product of the reflections associated
to the roots €4, +¢€g;, for 1 < j <[. The claim is proved.

(5) Let d = deg Q. By part (1) we know that m is odd and d is even. Write v = (A1, , An/). Since
(4.3.2) holds, we know that A1, - -+, Aq are the d distinct roots of Q(A). Since m(d/2) = n' and m is odd, we
have Ay = Aga, and in particular A7, = A7 It then follows from (4.3.2) that A := (A1,---, Ag/2) is an
admissible tuple with respect to @, and that v = v(A, A7, .-+ A).

By part (4) and Lemma 2.7.5, we have

T (wi,y) = #{y € T;(Fy);y" =~ for some x € W;}.

By the above argument, any such 4/ must be given by 4" = y(A’, (A’)~L,--- | A’), for a tuple A’ admissible
with respect to . By Lemma 4.1.8 there are precisely d distinct admissible tuples A’. On the other hand it
is clear that precisely d/2 such A’ are such that v(A’, (A’)~1,--- | A’) equals ®v for some x € W;. It follows
that T (w;,v) = d/2 as desired. O

Lemma 4.3.2. Let g € G(F,) N GL(V)™8. For each 1 <i <n, let MY be as in §2.8. We have a bijection
M — {U e F [N degU = i — 1,UU* divides f, in Fy[N},  7Pi(Fq) — fri(r-1gr):

Proof. Let (M?)’ be the set of g-stable (i — 1)-dimensional totally isotropic F,-subspaces of V. We know that
all (i — 1)-dimensional totally isotropic F,-subspaces of V are in the same G(IF,)-orbit, because i — 1 < n. !
Thus we have a bijection
M =5 (M), rPi(F,) — W
Now given W € (M)’ corresponding to rP;(IF,) € MY, the characteristic polynomial fy, of g|w is equal

to f,,;(r_l gr)- Hence it suffices to show that the map
(4.3.3) (M) — {U € Fy[A]™" deg U =i — 1,UU* divides f, in Fg[A]}, W fy,,

(which is obviously well-defined) is a bijection.

Given any element U(\) of the right hand side of (4.3.3), we obtain the Fy-subspace ker U(g) C V, which
is g-stable. Let S := f,/(UU*) € F4[\]. We now claim that ker U(g) has dimension i — 1 and is totally
isotropic. To check this it suffices to replace ker U(g) by its base change to k. Since g € GL(V)*8, we know
that the Jordan canonical form of g over k has only one Jordan block for each eigenvalue, by Proposition
2.6.5. Analyzing each Jordan block one by one, we see that (ker U(g))r is equal to (SU*)(¢)(V'), and has
dimension ¢ — 1. To check that (ker U(g)) is totally isotropic, let v € (kerU(g))r. Let w € V such that
v = (SU*)(g)w. Then

[v,v] = [v, (SU")(9)e] = [v,U*(9)S(g)w] = [U* (g7 )v. S(g)w] = [U(0)~"¢'~"U(g)v, S(g)w] =0,
where the last equality holds because U(g)v = 0. The claim is proved.

n contrast, even over the algebraically closed field k, there are two G(k)-orbits of n-dimensional totally isotropic k-subspaces
of V.
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By the claim, ker U(g) is an element of (M?)’. It then follows from the Cayley—Hamilton theorem that
U — ker U(g) is the inverse map of (4.3.3). Hence (4.3.3) is a bijection as desired. O

Theorem 4.3.3. Let g € G(F,) N GL(V)™8. We use the notations in Definition 4.1.5. For each @ € SR,
we stmply write mq for mq(fy). The following statements hold.
(1) We have m(x41y = 0, and m(x_y) is zero or odd.
(2) If tr(g, J,Z) # 0, then there is a unique element Qo € SR such that mq, is odd. In this case we also
know that Qo # X+ 1. (In particular, by part (2) we have mxy1y = m—1) = 0 in this case.)
(8) Assume there is a unique element Qo € SR such that mq, is odd. Assume Qo # A £ 1. Then
tr(g. /), 2) = CELINLL 4p)
Proof. Part (1) follows from Proposition 4.2.1 and the fact that m ;1) must be even in order for det g = 1.

By Proposition 2.6.3, we have g € G(F,)NG**8, and so we may apply Theorem 2.8.1 to compute tr(g, J, £)
in the following.

Firstly, assume 1 < i < n and MY 2 () for some v € Zg,(F,). Here Zg, denotes the center of G;. Take
rP;(Fy) € M?7. Then fr, (-14r) = (A — §)2(+1=9 for j =1 or —1, and it follows from Lemma 4.3.2 that

foN) = (A =3P 0U (VU ()
for some U(A) € Fy[A]. Then m(,_j) must be positive even, a contradiction with part (1). Hence M{" =0
forall 1 <i<mnandall~vye Zg, (F,).

We now prove part (2) of the theorem. Assume tr(g, J,.Z) # 0. Then there exist 1 < i <n and v € T;
such that MY 2 (). By the previous paragraph, we know that v ¢ Zg, (F,). Take rP;(F,) € M?7. Then by
Theorem 4.3.1 (1), we have fr (—14r) = Q™, for some @ € SR — {\ £ 1} and some odd m. Here Q # A+ 1
because v ¢ Zg,. By Lemma 4.3.2 we have f, = QmMUU* for some U € F,[\]™°™¢. It then follows that @Q,
which is not A £ 1, is the unique element of SR with m¢g odd. Part (2) is proved.

We now prove part (3). By Lemma 4.1.8 we know deg Qo is even. Define

J:={;1<i<n,2(n+1-—1)/deg Qo is an odd integer < mg,}.

For ¢ € .#, define m; := 2(n+ 1 — i)/deg Qo. Note that i — m; is a bijection & — {1,3,5,--- ,mg,}. In
particular || = (mg, + 1)/2. In the proof of part (2), we saw that if »P;(F,) € M?"” for some 1 <i <n
and some v € I';, then

(434) Z E ﬂ7 and fﬂi(’r‘flgT) = anl

Conversely, assume i € .# and assume rP;(F,) € MY is such that (4.3.4) holds. Then m;(r~1gr), is G;(k)-
conjugate to an element of T;(F,), by Theorem 4.3.1 (3). By Theorem 4.3.1 (4) and the Lang-Steinberg
theorem, m;(r~1gr)s is in fact G;(F,)-conjugate to an element of T;(F,). Thus rP;(F,) € M?7 for a unique

v € I';. In conclusion, we have a bijection
(4.3.5) {(i,v,7P;(Fy));1 <i <n,y €ly,rP(F,) € M7} =
{(,7Pi(Fy));i € I, rPi(Fy) € MY, frr-1gm = Q4" }
(4,7, 7Fi(Fq)) — (i, 7 Pi(Fy))-
We also note that if (¢,7,7P;(IF,)) is in the left hand side of (4.3.5), then f, = Qg"*, and so by Theorem
4.3.1 (5) we have

(4.3.6) T(ws, ) = degQ Qo
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Now we compute

r(g,J, %) = Z Z H#MPT T (wi, ) (by Theorem 2.8.1)
i=1vel;
m.y  de

= Z # {TP G Mz ; fﬂ-7 (r=1gr) = 1} : g2QO (by (435), (436))
€S

_ deg Qo Z #{U € F A" UU* = f,/Qp" } (by Lemma 4.3.2)

€S

deg 18, (by Lemma 4.1.6)
de mq, + 1

- —gf‘) me L s, .

4.4. The odd special orthogonal group. In this subsection we consider case (2) in §3.

We fix a non-degenerate 2n + 1-dimensional quadratic space (V,[-,]) over F,, with n > 0. Let G =
SO(V,[-,]). Let V := V ®p, k. By the classification of quadratic forms over I, (see [Kit93, §1.3]), there
exists an Fg-basis e1,- -+, ea2,41 of V, satisfying

[eou eﬂ] = 62n+2,a+57 VO[, ﬁ 7é n+ 17

[6n+1,€n+1] (S F;

For each 1 <i <n+ 1, we define
V; := spang_(€;,€i41," ", €2nt2-:) CV, W; := spang, (€1, - ,€;) C V.

We define V:=Vk V, =V, 0k W, =W, Q k.

Let G = Gi. Let B C G be the stabilizer of the flag W7, € Wy C --- C W, inside V. Then B is a
o-stable Borel subgroup of G. Let T be the intersection of G with the diagonal torus in GL(V') under the
basis e1,- -+, ea,p41. Then T is the maximal torus of G contained in B.

We number the simple roots of (G, B,T) according to Bourbaki [Bou68]. We consider the o-unbranched
datum (J =S — {s,},-Z = (s1, -+ ,8n)). Following the notation of §2.4 and §2.5, we have ipmax = n + 1,
and for 1 <¢ <n+ 1 we have

P; = Stabg(Wi_l), L; = Lh = GL(Wi_l) X SO(VIL)

Gi =SO(V;) = SOg(n11-4)11, H; = GL(W;_1) = GL;_; .
Here by convention Wy = 0 and GLy = {1}. As in §2.5, we have natural projections 7; : P; — G; and
7, Py — Hi.
For any h € G;(k), we denote by f, € k[\] the characteristic polynomial of h acting on V;, which has

degree 2(n +1 —4) + 1. Thus if h € G;(F,), then fj, is self-reciprocal in F,[A]. Similarly, for any h € H;(k),
we denote by fi(A) € k[A] the characteristic polynomial of h acting on W;, which has degree i — 1.

Theorem 4.4.1. We fir 1 <i <n. Writen' for n+1—1i. Thus G; = SOgpr11, with n’ > 1. We have the

following statements about T;(F,).

(1) If v € Ty(Fy), then fy(A) = Q(A)™(A —1) for some Q € SR, and some positive integer m. Moreover,
either Q(\) = A+ 1, orm is odd.

(2) Let Q € SR. Assume m is an odd integer such that mdeg @ = 2n’. (In particular Q(N\) # A+ 1 for

degree reasons). Then there exists v € T;(Fq) with fy(X) = Q(A\)™(A—1).
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(3) Let Q and m be as in part (2). Let v € Gi(k) be a semi-simple element such that fy(X) = Q(AN)™(A—1).
Then v is G;(k)-conjugate to an element of T;(F,).

(4) For any v € T;(F,) such that (A + 1) does not divide f,()\), the centralizer G; ., is connected.

(5) Let v € Ty(Fy). Write fy(A) = QA)™(A—1) as in part (1). Assume Q(N) # A £ 1. Then T (w;,7y) =
deg Q.

Proof. On T; we have coordinates
K" T O ) = 7Oy Aw),

such that the eigenvalues (with multiplicities) of y(A1,-- -, Ar) acting on Vi are Ay, -+, Apr, A7 L, -+ ,/\,_L,l7 1,
and such that

(4.4.1) Y1 A)T = (AT ATAS, AT ).

Observing that (4.4.1) has the same form as (4.3.1), parts (1) (2) (3) are proved in exactly the same way as
parts (1) (2) (3) of Theorem 4.3.1. (In fact the proof of part (3) here is even easier, due to the fact that the
Weyl group W; in the current case is larger.)

The proof of part (4) is also similar to the proof of Theorem 4.3.1 (4). In fact, fix a Z-basis €1, , €,
of X*(T;), such that the roots are +e,,te, £ €, o # . Using the same notation as the proof of Theorem
4.3.1 (4), we can again reduce to the case A(z) = ). Then the new feature is that #B(z) need not be even.
However, since —1 is not an eigenvalue by assumption, we know that e,(v) =1 for all « € B(x). Then « is
the product of the reflections associated to the roots €, for o € B(x).

The proof of part (5) is again similar to the proof of Theorem 4.3.1 (5), the only difference being that
here all deg @ admissible tuples A’ show up in the counting, as opposed to only (deg@)/2 of them. This is
due to the fact that the Weyl group W; is larger in the current case. g

Lemma 4.4.2. Let g € G(F,)NGL(V)™8. For each 1 <i <n+1, let M7 be as in §2.8. We have a bijection
M — {U e F [N degU = i — 1,UU" divides f, in Fy[N}, rPi(Fq) — frr(r-1gr):

Proof. The proof is identical to the proof of Lemma 4.3.2, based on the fact that all (i — 1)-dimensional
totally isotropic Fg-subspaces of V are in the same G(FF,)-orbit. ]

Theorem 4.4.3. Let g € G(F,) N GL(V)™&. We use the notations in Definition 4.1.5. For each @ € SR,
we simply write mg for mgo(fy). The following statements hold.

(1) We have m(x41y = 0, and m(y_1) is odd.
(2) If tx(g, J, L) # 0, then inside SR — {\ — 1} there is at most one element Qo with mq, odd.
(8) Assume there exists a unique Qo € SR —{\ — 1} such that mq, is odd. Then

Mt ().

(4) Assume there is no element Qo € SR — {\ — 1} such that mq, is odd. Then

tI’(g, J,,,E,ﬂ) = degQO

_ 1
twlo, ], 2) = "ODT a5y,

Proof. Part (1) follows from Proposition 4.2.1, the fact that A—1 always divides f,, and the fact that m ;1)
must be even in order for det g = 1.
By Proposition 2.6.3, we have g € G(F,)NG**8, and so we may apply Theorem 2.8.1 to compute tr(g, J, %)

in the following.
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We prove part (2). Assume tr(g,J,-£) # 0. Then there exist 1 < ¢ < n+ 1 and v € I'; such that
MY #£0. Take rPi(Fy) € MY If i =n +1, then fr (,—14) = A — 1. If 1 <4 < n, then by Theorem 4.4.1
(1), we have fr (—14r) = Q(A)™(X — 1), for some @ € SR and some integer m > 0. To simplify notation we
set @ := 1 and m := 0 when 7 = n + 1. Then in all cases fr,(-14r) = Q(A)" (A —1). By Lemma 4.4.2 we
have

(4.4.2) J,(0) = Q)™ (A = UNU* (V)

for some U € F,[A\]™™¢. Now if Q(\) = A — 1 or m = 0, then it follows from (4.4.2) that A — 1 is the
only element of SR whose multiplicity in f is odd. On the other hand, if Q(A\) # A — 1 and m > 0, then
Q(A\) # A+ 1 by part (1), and we know that m is odd by Theorem 4.4.1 (1). In this case, we conclude from
(4.4.2) that mq is odd, and that @ is the unique element of SR — {A — 1} whose multiplicity in f is odd.
Part (2) is proved.

We remark that the above analysis shows that under the sole assumption that SR—{X — 1} has an element

Q with mg odd, we have
(4.4.3) MPT =0, Vyelnn
(where T\, 41 in fact has only one element, the identity).

We now prove part (3). Under the hypothesis of part (3), the assertion (4.4.3) holds. Since Qp # A £ 1,
by Lemma 4.1.8 we know that deg Q) is even. Define

S ={1;1<i<n,2(n+1-1)/deg Qo is an odd integer < mg,}.

For i € .#, define m; := 2(n+ 1 — i)/deg Qo. Note that ¢ — m; is a bijection & — {1,3,5,--- ,mg,}. In
particular |.#| = (mg, + 1)/2. Similar to the bijection (4.3.5), we obtain a bijection
(4.4.4) {(i,7,7Pi(Fy));1 <i <n,ye€ly,rP(F,) € MI7} =

{(i,rPi(Fy))si € I, rPi(Fy) € MY, frir-1gr) = Q5" - (A= 1)}

(1,7, 7Fi(Fq)) — (i, 7 Pi(Fy)),
based on parts (3) (4) of Theorem 4.4.1 (part (4) being applicable because m 11y = 0). We also note that
if (4,7,7P;(F,)) is in the left hand side of (4.3.5), then f,(A) = Qo(A)™ (A — 1), and so by Theorem 4.4.1
(5) we have
(4.4.5) T (ws,y) = deg Qo.

Now we compute

tr(g, J,£) = Z Z #HMPT T (wi, ) (by Theorem 2.8.1, and (4.4.3) )
i=1vel;
=Y #{rPi(Fy) € MY frir1gry) = Q0" - (A= 1)} - deg Qo (by (4.4.4), (4.4.5))
€S
= deg Qo Z # {U € F [\™eme; UU™ = fg} (by Lemma 4.4.2)
= 0 (A=1)
= deg Qo |7 ///()\fi] 1) (by Lemma 4.1.6 applied to /\f and Qo)
me, +1

= deg QOT%(fg)’

In the second last step Lemma 4.1.6 is applicable because )y is the unique element of SR such that

mq, (fg/(A—1)) is odd, which follows from the definition of @y and part (1). Part (3) is proved.
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Finally we prove part (4). By the proof of part (2), we know that for any 1 <i < n+1, we have MJ"7 # ()
only if f,(\) = (A —1)2(*F1=9+1 The last condition is equivalent to v = id € T;.

Define

my—_1) — 1
/:{iEZ;n+l—(’\21)< <n +1}.

Now assume rP;(F,) € /\/lg1 for some 1 <4 <n+ 1. Then we have
(4.4.6) Frrrign(A) = (A — 1)2(n+1—i)+1.

In particular, 2(n +1 —4) + 1 < my_1, and so i € .#. Conversely, assume ¢ € ., and rP;(F,) € MY such
that (4.4.6) holds. Then rP;(F,) € Mf’id because the only semi-simple element of G; whose characteristic
polynomial equals (A — 1)2(*T1=9+1 jg the identity. Therefore similar to the proof of part (3), we have
g, 1, L) = > T(wid) - {U € Fy[\™o™e, UU* = f,/(A — 1)2(n+1—i>+1} =3 T(wi,id).(f,).
ic€s i€s
By Definition 2.7.2, we have T (w;,id) = 1 for each ¢ € .#. Hence
m—1) +1
2
4.5. The symplectic group. In this subsection we consider case (3) in §3.
We fix a 2n-dimensional symplectic space (V, [-,-]) over Fy, with n > 0. Let G = Sp(V, [-,-]). We fix an

Fy-basis e, -+, ea, of V, satisfying

tr(g, J,Z) = | I A (fg) = A (fg)- 0

[eaveﬁ} = 52n+1,a+67 Vi<a< ﬁ < 2n.
For each 1 <i <n+ 1, we define
V; := spang,_(€;,€i+1, ", e2nt1-i) C V, W; := spang_(e1,--,e;) C V.

We define V:=Vk V, =V, 0k W, =W, Q k.

Let G = Gg. Let B C G be the stabilizer of the flag W7 C Wy C --- C W, inside V. Then B is a
o-stable Borel subgroup of G. Let T be the intersection of G with the diagonal torus in GL(V') under the
basis ey, - ,e2,. Then T is the maximal torus of G contained in B.

We number the simple roots of (G, B,T) according to Bourbaki [Bou68]. We consider the o-unbranched
datum (J =S — {s,},-Z = (s1, -+ ,8n)). Following the notation of §2.4 and §2.5, we have ipax = n + 1,
and for 1 <7 <n+ 1 we have

P; = Stabg(W,_1),  L; = Lf = GL(W;_1) x Sp(V,)

Gi =Sp(Vi) = Spa(nti1—4) H; = GL(W,;_1) = GL;_1 .
Here by convention Wy = 0 and GLg = {1}. As in §2.5, we have natural projections m; : P; — G; and
wi P — Hi.
For any h € G;(k), we denote by f;, € k[)\] the characteristic polynomial of h acting on V;, which has
degree 2(n+1 —1). Thus if h € G;(F,), then fj, is self-reciprocal in Fy[A]. Similarly, for any h € H;(k), we
denote by fr(\) € k[)\] the characteristic polynomial of h acting on W;, which has degree i — 1.

Theorem 4.5.1. We fiz 1 < i < n. Write n’ for n+1 —1i. Thus G; = Spy,, with n’ > 1. We have the
following statements about T;(F,).

(1) If v € T;(Fy), then f, = Q™ for some irreducible, self-reciprocal Q € F4[\], and some positive integer

m. Moreover, either Q(\) = A+ 1, or m is odd.
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(2) Let Q € F4[A\] be an irreducible, self-reciprocal polynomial. Assume m is an odd integer such that
mdeg Q = 2n'. (In particular Q(\) # X+ 1). Then there exists v € T;(Fy) with f, = Q™.

(8) Let Q and m be as in part (2). Let v € G;(k) be a semi-simple element such that f, = Q™. Then ~y is
Gi(k)-conjugate to an element of T;(F,).

(4) Let v € T;(F,). Write f, = Q™ as in part (1). Assume Q(X) # X+ 1. Then T (w;,7y) = deg Q.

Proof. Since the root datum of G; is dual to that of an odd special orthogonal group, the torus 7; has a

similar description as the torus 7; in Theorem 4.4.1. Thus the proof of the theorem is identical to the proof
of Theorem 4.4.1. |

Remark 4.5.2. In Theorem 4.5.1 we do not state the analogue of Theorem 4.3.1 (4) and Theorem 4.4.1 (4).
This is because G being simply connected, the centralizer in G of any semi-simple element is automatically

connected, see §2.7.4.
Lemma 4.5.3. Let g € G(F,)NGL(V)™8. For each 1 < i <n+1, let MY be as in §2.8. We have a bijection
MY — {U € Fy[N]"" deg U =i — 1,UU* divides f, in Fy[N}, rPi(Fq) — frr(r-1gr)-

Proof. The proof is identical to the proof of Lemma 4.3.2, based on the fact that all (i — 1)-dimensional
totally isotropic F,-subspaces of V are in the same G(F,)-orbit. (Il

Theorem 4.5.4. Let g € G(F,) N GL(V)™8. We use the notations in Definition 4.1.5. For each Q € SR, we
simply write mq for mq(fy). The following statements hold.

1) Assume tr(g,J, L 0. Then inside SR there is at most one element Qy with mg, odd. Moreover, if
g Qo
such Qo exists, then Qg # A £ 1.

(2) Assume there exists a unique Qo € SR such that mq, is odd. Assume Qo # A+ 1. Then

o T1
tr(g, J,.Z) = deg Qo2 "= 4 (f,).

2
(8) Assume there is no element Qo € SR such that mq, is odd. Then
Mr— m
tr(g, . 2) = (5= + 1+ =) ().

Proof. By Proposition 2.6.3, we have g € G(F,) N G™, and so we may apply Theorem 2.8.1 to compute
tr(g, J,-Z) in the following.

We prove part (1). Assume tr(g,J,.Z) # 0. Then there exist 1 < ¢ < n+ 1 and v € T; such that
MPT £, Take rPi(Fy) € M?7. If i = n 4 1, then fr (,-14) = 1. If 1 <4 < n, then by Theorem 4.5.1
(1), we have fr (-1, = Q™, for some @ € SR and some integer m > 0. To simplify notation we set @ := 1
and m := 0 when ¢ = n + 1. Then in all cases fr,(-14r) = Q™. By Lemma 4.5.3 we have f, = QmUU™ for
some U € F,[A]™°m¢, Tt immediately follows that inside SR there is at most one element whose multiplicity
in fg is odd. Moreover, if such an element exists, denoted by Qo, then @ in the current discussion must
equal to Qo, and m must be odd. (In particular, ¢ < n.) In this case, we show that Qo # A £ 1. In fact, if
Qo = A*1, then m is even because Q™ = Q" has even degree. This contradicts with our previous assertion
that m must be odd. Part (1) is proved.

We remark that the above analysis also shows that under the sole assumption that SR has an element @

with mg odd, we have
(4.5.1) M7, =0, ¥y €Tun

(where T';,1+1 in fact has only one element, the identity).
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We now prove part (2). Under the hypothesis of part (2), the assertion (4.5.1) holds. Since Qg # A + 1,
by Lemma 4.1.8 we know that deg Qg is even. Define

S ={5;1<i<n,2(n+1-—1)/deg Qo is an odd integer < mg,}.

For i € .#, define m; := 2(n+ 1 — i)/deg Qo. Note that ¢ — m; is a bijection & — {1,3,5,--- ,mq,}. In
particular |.#| = (mg, + 1)/2. Similar to the bijection (4.3.5), we obtain a bijection
(4.5.2) {(i,v,7P;(Fy));1 <i <n,y € ly,rP(F,) € M7} =

{(i,TPi(Fq));i S f,TPi(Fq) S M?, fﬂ-i(.,.flgr) = anl}

(4,7, 7Fi(Fq)) — (i, 7 Pi(Fy))

based on Theorem 4.5.1 (3) and Remark 4.5.2. We also note that if (,7y,rP;(F,)) is in the left hand side of
(4.3.5), then f, = Q(", and so by Theorem 4.5.1 (4) we have

(4.5.3) T (wi,y) = deg Qo.

Now we compute

n

tr(g, J,L) = Z Z #HFMPT T (w;, ) (by Theorem 2.8.1, and (4.5.1) )

i=1~el;

=Y #{rPi(Fy) € MY; frir—1gr) = Q" } - deg Qo (by (4.5.2), (4.5.3))
i€s

=deg Qo Y #{U € F[N"™";UU* = £,/Q¢" } . (by Lemma 4.5.3 )

ies
=deg Qo |.I| A (f,) (by Lemma 4.1.6)
o +1
= deg Qo 2——. 4 (f,)-

Part (2) is proved.

Finally we prove part (3). We claim that for each 1 <i < n+ 1, we have MY # {) for some v € I'; only
if £,(\) = (A £ 1)2+1=) In fact, assume this is not the case. Take 7P;(F,) € M?7. Then by Theorem
4.5.1 (1), we have fr, -14) = Q™, for some @ € SR and some odd integer m. By Lemma 4.5.3 we have
fg = QmMUU* for some U € F,[A\|™°™¢, contradicting with the assumption that there is no element in SR
with odd multiplicity in f,. The claim is proved.

Define

M(A_ m
J:{z‘ez;nﬂ—%gignH}, /:{z’ez;nﬂf%gign}.

Now assume 7P;(F,) € M?7 for some 1 <i < n+1 and some v € I';. Then by the previous claim either of

the following two statements holds:

eic s and fr (ro1gm(A) = (A —1)2nF170,

U /, and fm(r*lgr)(A) =+ 1)2(”+1*i),

Moreover, in the above two cases, the image of v in GL(V;) is id and — id respectively. Conversely, if i € .#

and if rP;(F,) € MY is such that fr,(-14m(\) = (A — 1)2F1=9 then rP,(F,) € M?'. Similarly, if i € _#

and if 7P;(F,) € MY is such that fr, (-1 (A) = (A + 1)20+1=9 then rP;(F,) € M? ™. Therefore as in
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the proof of part (2), we have

tr(g, ], 2) = 3 T(wi,id) - # {U € BN U0 = f, /(A — 1)20170
€S

+ 37 Tlwi,—id) - # {U € BN 00" = f, /(A +1)20 1170 ]
ic g
Let ¢ € .#. By the obvious analogue of Lemma 4.1.6 applied to fq/(X — 1)2(v+1=9) and Qo = 1, we have
#{U € BN UU* = £/ (A= 1200 L — (£, /(= 1)2010),
which is equal to .#(f,). Similarly, for ¢ € #, we have
#{U e F N UUT = £/ (A+ 1200 = ().

On the other hand by Definition 2.7.2 we have 7 (w;,id) =1 for all i € .# and T (w;, —id) =1 foralli € 7.
Therefore

m— m
tr(g,J,.,iﬂ):(|ﬂ|+|/|)///(fg):< (; 1) 14 (;H)

4.6. The odd unitary group. In this subsection we consider case (4) in §3.

) (fy): O

We fix a (2n + 1)-dimensional Hermitian space (V,[-,]) over Fg= (for the quadratic extension F,2/F,),
with n > 0. Let G = U(V,[,,-]). By [PR94, Proposition 2.15], the Witt index of (V,[-,-]) is equal to the
Fg-rank of G, which we know is n. Also the norm map qug — [y is surjective. Hence there exists an
F2-basis e1, - -+, ean41 of V, satisfying

[6047 65} = 52n+2,a+ﬂ'
For each 1 <i <n+ 1, we define

V; = spany , (€iy€i41, " y€ap1a_4) CV, W, = spany , (e1,--- ,e;) C V.

We fix an embedding F,2 — k, viewed as the identity, and we let V :=V ®F k. Foreach 1 <i<n+1 we
also let V; :=V; ®qu kcV,and W; =W, ®Fq2 kcCV.

Let G = Gy,. The action of G on V®p, k =V & (V ®F 2,0 k) preserves the subspace V', and this induces
a k-isomorphism G = GL(V). Let B C G (resp. T C G) be the upper triangular subgroup (resp. diagonal
subgroup) under the basis e, -+ ,ea,+1. Then B is a o-stable Borel subgroup of G, and T is the maximal
torus of G contained in B.

We number the simple roots of (G, B,T) according to Bourbaki [Bou68]. We consider the o-unbranched
datum (J =S — {s,},-Z = (51, -+ ,8n)). Following the notation of §2.4 and §2.5, we have ipmax = n + 1,
and for 1 <7 <n+ 1 we have

P;, = Stabq;,(Wi_l), L; = LE = GL]Fq2 (Wi—l) X U(V,)

Gi = U(Vy) = Us(na1—iy+1, H; = GLg_, (W;—1) = Resg , /5, GLi—1 .
Here by convention Wy = 0 and GLo = {1}. As in §2.5, we have natural projections m; : L; — G; and
mi L — H.

For any h € G;(k) = GLayt1-i+1(k), we denote by f, € k[\ the characteristic polynomial of h, of
degree 2n+1—1i+ 1. When h € G;(F,;), we know that f, is self-reciprocal in Fy2[A]. Similarly, for any
h € H;(Fy) = GLr_,(W;), we denote by fu(\) € Fg2[A] the characteristic polynomial of h acting on Wj,
which has degree i — 1.

Theorem 4.6.1. We fix 1 <i<n+1. Writen' forn+1—1i. Thus G; = Usyy1. We have the following

statements about T;(F,).
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(1) If v € T;(F,), then the fy, = Q™ for some Q € SRy, and some positive integer m.

(2) Let Q € SRy. Assume m is an integer such that mdeg @ = 2n' + 1. Then there exists v € T;(F,) with
fw =Qm.

(8) Let Q and m be as in part (2). Let v € G;(F,) be a semi-simple element such that f, = Q™. Then v is
G;i(F,)-conjugate to an element of T;(F,).

(4) Let v € T;(F,). Write f, = Q™ as in part (1). Then T (w;,~y) = deg Q.

Proof. On T; we have coordinates

(B)2 = T, Aty oo Aznrgn) = (A, Aanrg),

such that the eigenvalues (with multiplicities) of v(A1, -+, A,/) acting on V; are Ay, -+, Aapr41, and such
that

(4.6.1) YA A1) = YL A e Al AT AL

In particular, we have

(1.6.2) YL o) =114 A

(1) Let (A1, -+, Aans41) be the coordinates of . Since v7 = v, it follows from (4.6.2) that all eigenvalues
of v are in one o?-orbit. Hence f., has a unique monic irreducible factor Q € Fg2[A]. Since f, is self-reciprocal,
so is Q.

(2) Let d = deg Q. Then d is odd by hypothesis. Let A = (A1, -, Aqg) be an admissible enumeration of
the roots of @, in the sense of Definition 4.1.10. Then v := (A, - ,A) (with m appearances of A) is an
element of T;(k). We now show that v € T;(F,).

If d = 1, then A\[? = Ay, and it is clear that v € T;(F,) by (4.6.1). Hence assume d > 3. By (4.6.1), we
need only show that A7 = Ay4n/41, where the subscripts are in Z/dZ, for all « € Z/dZ. By Lemma 4.1.11
(2), it suffices to show that n’ +1 = (d + 1)/2 mod d. Since d is odd, the last congruence is equivalent
to 2n’ +2 = d+ 1 mod d. But the last congruence is true because 2n’ + 1 = md. We have proved that
v € T;(Fy). By construction, f, = Q™. Part (2) is proved.

(3) Firstly, as G; is isomorphic to GL(V;) = GLa, 41 over k, we know that two semi-simple elements in
G, (k) are conjugate if and only if they have the same characteristic polynomial. Secondly, since G; has simply
connected derived subgroup, by the Lang—Steinberg theorem we know that any two semi-simple elements
in G;(F,) are G;(F,)-conjugate if and only if they are G;(k)-conjugate (cf. §2.7.4 and the proof of Lemma
2.7.5). The assertion now follows from part (2).

(4) Let d = deg Q. Since G; has simply connected derived subgroup, we may use Lemma 2.7.5 to compute
T (w;,7y). We have

T (wi,y) = #{y € T;(Fy);y" =~ for some x € W;}.
By (4.6.2), it is clear that any 4" € T;(F,) with characteristic polynomial @™ must be of the form +' =
y(A, - ), for some admissible enumeration A’ of the d roots of . There are d such admissible enumer-
ations (Lemma 4.1.11), and all of them correspond to elements in T;(F,) by the proof of part (2). Moreover,
it is clear that these d resulting elements of T;(F,) are in the same W;-orbit. Hence 7 (w;,v) = d. O

Lemma 4.6.2. Let g € G(F,) N G™8. For each 1 <i<n+1, let MY be as in §2.8. We have a bijection
M — {U € Fp[N"™ degU =i — 1,UU* divides f, in B[N}, rPi(Fy) — frrir1ge)-

Proof. The proof is completely analogous to Lemma 4.3.2, based on the fact that all (i — 1)-dimensional

totally isotropic F2-subspaces of V are in the same G(IF,)-orbit. O
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Theorem 4.6.3. Let g € G(F,) N G™. We use the notations in Definition 4.1.5. For each ) € SRy, we
simply write mq for mq(fy). The following statements hold.

(1) If tx(g,J,Z) # 0, then there is a unique element Qo € SRy such that mq, is odd.
(2) Assume there is a unique element Qo € SRq such that mq, is odd. Then

+1
tI‘(g, Jag) = degQOmQOT%(fg)

Proof. We apply Theorem 2.8.1 to compute tr(g, J,.£) in the following.

We prove part (1). Assume tr(g,J,-¢) # 0. Then there exist 1 < ¢ < n+ 1 and v € T'; such that
MPT # (. Take rPi(Fy) € M. Then by Theorem 4.6.1 (1), we have fr,-14) = Q™, for some Q € SRy
and some positive integer m. In particular m is odd because Q™ has odd degree. By Lemma 4.6.2, we have
fqg = QmMUU™ for some U € Fy [A]memic Tt then follows that @ is the unique element of SRy such that mg
is odd. Part (1) is proved.

We now prove part (2). Since f; has odd degree, it immediately follows from the hypothesis that deg Qo
is odd. Define
2n+1—1i)+1

deg Qo
For i € ., define m; := [2(n + 1 — i) 4+ 1]/ deg Qo. Note that i — m; is a bijection .# — {1,3,5,--- ,mq, }.
In particular |.#| = (mg, + 1)/2. Similar to the bijection (4.3.5), we obtain a bijection

J={i1<i<n+1, is a (necessarily odd) integer < mg,}.

(4.6.3) {(G,7,7Pi(F));1 <i<n+1,y€Ty,rP(F,) € M7} =
{(i,7Pi(Fy));i € I, rP(Fq) € MY, frrm1gr) = Q" }
(1,7, 7Pi(Fq)) — (i, rPi(Fy))

based on Theorem 4.6.1 (3). We also note that if (,7,rP;(F,)) is in the left hand side of (4.6.3), then
fy = Qg", and so by Theorem 4.6.1 (4) we have

(4.6.4) T (w;,v) = deg Qo.
The rest of the proof is identical to the proof of Theorem 4.3.3 (3), based on (4.6.3), (4.6.4), and Lemma
4.6.2. (]

5. APPLICATION TO ARITHMETIC INTERSECTION

In this section we apply Theorem 4.6.3 to prove the arithmetic fundamental lemma in the minuscule
case, generalizing the main result of [RTZ13] and [LZ17]. We also apply Theorem 4.3.3 to compute certain

arithmetic intersection in GSpin Rapoport—Zink spaces, generalizing the main result of [LZ18].

5.1. The arithmetic fundamental lemma in the minuscule case. We follow the notation of [RTZ13]
and [LZ17]. Let p be an odd prime. Let F be a finite extension of Q,, with residue field F, and a uniformizer
w. As usual we denote k := EI. Let E/F be a quadratic unramified extension. Let E be the completion
of the maximal unramified extension of E. Let S = Spf Op. Fix an integer n > 2. Let N, be the unitary
Rapoport-Zink space of signature (1,n — 1), which is a formal scheme over S parameterizing deformations
up to quasi-isogeny of height 0 of unitary Op-modules of signature (1,n — 1). For details on N, see [KR11],
[Mih16], and [Chol8].

Let C,, be a non-split Hermitian space of dimension n, for the quadratic extension E/F. Here non-
split means that the discriminant has odd valuation. We identify C,, with the space of special quasi-

homomorphisms for the framing object in the moduli problem of N,,, see [KR11] for F = Q,, (cf. [LZ17, §2.2,
29



§2.3]), and [Cho18] for general F. Similarly, we form N,,_; and C,,_;. We identify C,,_; with the orthogonal
complement in C,, of a fixed vector v € C,, of norm 1, thus C,, = C,,_1 ® Fu. We have a natural closed

immersion
0: Nn—l — ./\/:,L.

In fact ¢ identifies N,,_1 with the special divisor in N, associated to u, see [KR11] for F' = Q,, and see
[Cho18] for general F.
The unitary group J(F) := U(C,)(F) acts on N,,. Let g € J(F). Define

L(g) ::OE-u+(’)E.gu+...+@E_gn—1uccn.

Throughout we make two assumptions on g. Firstly, we assume that g is regular semi-simple minuscule, in

the sense that L(g) is a full-rank Og-lattice in C,, satisfying
mL(g)" C L(g) C L(g)".

Secondly, we assume that g has non-empty fixed points in NV, (k). By [RTZ13, §5], our second assumption
implies that both L(g) and L(g)Y are stable under g.

Define V := L(g)¥/L(g). This is an odd-dimensional vector space over F,2, with a natural structure of a
Hermitian space, see [LZ17, §2.4]. Let V := V(L(g)") be the smooth projective generalized Deligne-Lusztig
variety associated to the vertex lattice L(g)" as in [Vol10] and [VW11]. (These references assume F = Q,,
but see [Chol8] for general F.) The finite group U(V)(F,) naturally acts on V. Let G = U(V), G = Gy, and
let (J,.Z) be the o-unbranched datum for G specified in §4.6.

Lemma 5.1.1. The variety V is G(F,)-equivariantly isomorphic to X j ., -
Proof. Since G; = P; = G, by Proposition 2.5.1 we have an isomorphism
leéXLwICG/PJ, gB — gP;

where X, is the classical Deligne-Lusztig variety associated to w; in the full flag variety G/B. The lemma
then follows from [Voll10, Theorem 2.15], which asserts that V is also the closure in G/P; of the image of
Xw,- (Again, the reference [Vol10] assumes F' = Q, and F, = [F,,, but the result [Vol10, Theorem 2.15] easily

generalizes.) O

The action of g on V defines an element g € G(FF;). We also know that g is regular, because V is a cyclic
Fq2[g]-module. Let f = f; € Fy2[A] be the characteristic polynomial of g. Thus f is self-reciprocal. We use

the notations in Definition 4.1.5.

Theorem 5.1.2. As before, assume g € J(F) is reqular semi-simple minuscule, such that N # (. The

following statements hold.
(1) The formal scheme §(N,—1) NNZ over S is a k-scheme.
(2) The k-scheme §(Ny—1) NG is non-empty if and only if there is a unique element Qo € SR2 with mg, (f)

odd. In this case, 6(Np—1) NNF has finitely many k-points, and is in particular Artinian, and moreover
Int(g) is equal to the total k-length of §(N,_1) NNJ.

(3) Assume there is a unique element Qo € SRo with mg,(f) odd. Then the total k-length of 6(N,—1) NN
is equal to

mq,(f)+1
2
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Proof. We temporarily assume that F' = Q,. Then part (1) follows from [LZ17, Proposition 4.1.2] (cf. [RTZ13,
(9.6), Theorem 9.4]). Part (2) is proved in [RTZ13, Proposition 8.1 (1)] and [RTZ13, Proposition 4.2 (iii)].

For part (3), we first apply [LZ17, Proposition 4.1.2] to identify 6(N,—1) N NZ with V9, the scheme
theoretic fixed points of V under g € G(F,). By part (2), V9 is an Artinian scheme. Since V is smooth over k
and since V9 is Artinian, it is well known (see for instance [Ser00, p. 111]) that the intersection multiplicities
of the graph of identity and the graph of g in V x; V are simply given by the lengths of the local rings of V9,
as the higher Tor terms vanish. It then follows from the Lefschetz fixed point formula [GD77, Corollaire 3.7]
that the k-length of V9 is equal to tr(g, H*(V)). By Lemma 5.1.1, the last number is equal to tr(g, J,.Z).
Hence part (3) follows from Theorem 4.6.3 and the fact that g is regular. We have proved the theorem
assuming F' = Q.

We now explain the proof when F' is an arbitrary finite extension of Q,. In fact, the reason that the
references [RTZ13] and [LZ17] assumed F = Q, was because two ingredients needed in the arguments
depended on this assumption. The first is the theory of special cycles considered in [KR11], and the second
is the Bruhat—Tits stratification of the reduced subscheme of N,, into generalized Deligne—Lusztig varieties,
worked out in [Vol10] and [VW11]. Both of these ingredients have now been generalized to arbitrary F' in

[Chol18]. Based on this, all the previous arguments carry over.? O

Remark 5.1.3. Theorem 5.1.2 (3) was previously proved in [RTZ13] and [LZ17], under the assumption that
F = Q, with p > (mg, + 1)/2. This assumption is removed in Theorem 5.1.2. On the other hand, under
the same assumption on p the papers [RTZ13] and [LZ17] determine each local ring of 6(N,,—1) N NZ. This

is a result not revealed by the methods of the current paper.

Corollary 5.1.4. The minuscule case of the arithmetic fundamental lemma conjecture [RTZ13, Conjecture
7.4] (cf. [RSZ17b, §1]) holds.

Proof. It follows from the formula for the arithmetic intersection number Int(g) in Theorem 5.1.2 (2-3) and

the explicit computation of the analytic side in [RTZ13, Proposition 8.2]. |

5.2. Arithmetic intersection on GSpin Rapoport—Zink spaces. We follow the notation of [LZ18].
Let p be an odd prime, and fix an integer n > 4. Let RZ (resp. RZb) be the GSpin Rapoport-Zink space
associated to a self-dual quadratic Z,-lattice of rank n (resp. n —1). We have a natural closed immersion

§:RZ’ — RZ

of formal schemes over SpfW (k). These are specific Hodge-type Rapoport—Zink spaces introduced by
Howard—Pappas [HP17]. Associated to the precise data used to define RZ’ and RZ, we have a pair of
quadratic spaces V;gq) and V2 over Q,, and Vl,b(’(1> can be identified with the orthogonal complement in V;2 of
a fixed vector z,, € V;2 whose norm is 1. (The triple (Vf{’@, V2, x,) is analogous to the triple (Cj,_1,Cp,u)
in §5.1.)

The group J(Q,) = GSpin(V2)(Q,) acts on RZ. As in [HP17, §4.3], RZ is the disjoint union of open and
closed formal subschemes RZ" indexed by | € Z. The action of any g € J(Q,) on RZ maps each Rz"

(I+1y)

isomorphically to RZ , where [, is the p-adic valuation of the spinor norm of g in Q. We view p as an

2Tt should be pointed out that in [LZ17, §2.6], for a vertex lattice A the notation N, denotes the special cycle in N,
associated to AV. Thus a priori A is a formal scheme over S, but it is a theorem ([RTZ13, Theorems 9.4, 10.1], see also [LZ17,
Corollary 3.2.3]) that A is in fact a reduced scheme over k. This result plays a key role in [RTZ13] and [LZ17], and its proof
depends on Grothendieck—Messing theory. In contrast, in [VW11] and [Chol8] the notation A is by definition a scheme over
characteristic p. Thus the two notations agree only a posteriori.
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element of J(Q,) by viewing it as an scalar in the GSpin group. Thus p maps each Rz® isomorphically to
RZ(Z+2).
Let g € J(Qp). Define

L(g) = Zp.xn+Zp.gmn_i_...Zp.gn—lxn CV;?.

Here g acts on V2 via the natural map GSpin(V;2) — SO(V2). Throughout we make two assumptions on
g. Firstly, we assume that g is regular semi-simple minuscule, in the sense that L(g) is a full-rank Z,-lattice
in VI? satisfying

pL(g)" C L(g) C L(g)".
Secondly, we assume that g has non-empty fixed points in RZ(k). By [LZ18, §3.6], our second assumption
implies that both L(g) and L(g)Y are stable under g. It also directly follows from our second assumption
that [, = 0. In particular g stabilizes each Rz,

Define V := L(g)¥/L(g). This is an even-dimensional, non-zero vector space over F,, with a natural
structure of a non-split quadratic space, see [LZ18, §2.7]. Let S = Sp4)v be the smooth projective k-variety
associated to the vertex lattice L(g)Y as in [HP17, §5.3]. The finite group O(V)(F,) naturally acts on S.
By [HP17, Proposition 5.3.2] and its proof, we know that S has two connected components ST, S~ that
the action of SO(V)(F,) on S stabilizes each of S*,S57, and that any element of O(V)(F,) — SO(V)(F,)
interchanges S*,S7. Let G = SO(V), G = Gy, and let (J,.£) be the o-unbranched datum for G specified
in §4.3. For definiteness, we fix the convention so that our w; corresponds to the Weyl group element w™ in
[HP14, §3.2).3

Lemma 5.2.1. The variety S~ is G(F,)-equivariantly isomorphic to Xy, -
Proof. Since G; = P; = G, by Proposition 2.5.1 we have an isomorphism
leéXJ’wICG/PJ, gBi—>gPJ

where X, is the classical Deligne-Lusztig variety associated to wy in the full flag variety G/B. The claim
then follows from [HP14, Proposition 3.8], which asserts that S~ (denoted by £ ~ in loc. cit.) is also the
closure of the image of X, in G/Pj. O

The action of g on V defines an element g € O(V)(F,). The following result is implicitly assumed in
[LZ18], but is not explicitly stated and proved there. We give two proofs here, for the sake of completeness.

Lemma 5.2.2. The element g € O(V)(F,) lies in SO(V)(F,).

Proof. First proof. Let S = Sy, be as before. By [HP17, Theorem 6.3.1], we have an isomorphism
pZ\RZTLe((lg)v = S, where RZrLe(dg)v is a certain g-stable subscheme of RZ. It is easy to see that this isomor-
phism intertwines the action of g on the left and the action of g on the right, for example by checking the
statement on k-points. Since g stabilizes each RZ(Z), by [HP17, Corollary 6.3.2] we know that g stabilizes each
of the two connected components of pZ\RZ’X’d. Therefore g stabilizes each of the two connected components
of S. By the proof of [HP17, Proposition 5.3.2], any element of O(V)(F,) — SO(V)(F,) interchanges the two
connected components of S. It then follows that g € SO(V).

Second proof. The result follows from Lemma 5.2.3 in the following, applied to W := V2, L := L(g),
and h := the image of g under GSpin(V;2)(Q,) — SO(V2)(Q,). The hypothesis on the spinor norm of h is
satisfied because l, = 0. |

3This is harmless because up to outer automorphism of G, our w; corresponds to either w™ or wt in [HP14, §3.2]. All the
arguments below are the same in the two cases.
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Lemma 5.2.3. Let (W,[-,-]) be a quadratic space over Q,. Let h € O(W)(Q,) be an element whose spinor
norm (see [Kit93, §1.6]) in Q) /Q)*? has even valuation. Let L be a full-rank lattice in W satisfying pL¥ C
L C LY. Assume L is stable under h. Then the induced action h of h on the Fj-vector space LY /L has

determinant 1.

Proof. Since h stabilizes L, by [Kit93, Theorem 5.3.3] we have h = 7y - - - T3, where each 7; € O(W)(Q,) is
the reflection associated to an anisotropic vector v; € L (namely 7j(z) = x — 2[z,v;][vj,v;] v, Vo € W),
such that 7; also stabilizes L. By rescaling, we may and shall assume that each v; € L — pL. We now fix
1< <m.

Since 7; stabilizes L, we have [z, v;] € [v;,v,]Z, for all z € L, or equivalently that

(5.2.1) v € [Uj,Uj]LV.

Since pLY C L C LY and v; € L —pL, it follows from (5.2.1) that [v;,v;] has valuation 0 or 1. If [v;,v;] has
valuation 0, then 7; maps each z € LY into x + Z,v; C x + L, and so the image of 7; in GL(LY /L) is trivial.
Assume [v;, v;] has valuation 1. Then v; € pLY by (5.2.1), and so v; = pw; for some w; € LY — L. In this
case we have

plz, wj]

(5.2.2) Ti(z) = — Qp[wj, wj]

wj, Vo€ L.

Now the map
LY x LY —F,, (z,y)+— plz,y] modp
is well defined and descends to a non-degenerate bi-linear pairing on the F,-vector space LY /L (cf. [HP17,
§5.3.1]). Noting that p[w;, w;] = p~'[v;,v;] is by assumption in Z, we see from (5.2.2) that the image of 7;
in GL(LY/L) is given by the reflection associated to an anisotropic vector in LY /L, namely the image of w;.
In conclusion, the image of h in GL(LY /L) is the product of m’ reflections, where m’ is the number of
the v;’s such that [v;,v;] € pZ), whereas the m — m/ other v;’s satisfy [v;,v;] € Z)S. Since the spinor norm

of h has even valuation, we know that m’ is even. The lemma follows. O

By Lemma 5.2.2 we have g € SO(V)(F,). We also know that the image of g in GL(V) is regular, because
Vis a cyclic Fp[g]-module. Let f = f; € Fy[A] be the characteristic polynomial of g. Thus f is self-reciprocal.

We use the notations in Definition 4.1.5.

Theorem 5.2.4. As before, assume g € J(Q,) is reqular semi-simple minuscule, such that RZ9 # 0. The

following statements hold.

(1) The formal scheme §(RZ") N RZI over Spf W (k) is a k-scheme.

(2) The k-scheme §(RZ°)NRZY is non-empty if and only if there is a unique element Qy € SR with mg, (f)
odd. Moreover, when this is the case p“\(8(RZ") NRZ?) has finitely many k-points, and is in particular

Artinian.
(3) Assume there is a unique element Qo € SR with mq, (f) odd. Then the total k-length of p”\(6(RZ’)NRZY)
is equal to
mg,(f) +1
aex(@0) "L 4p)

Proof. Part (1) follows from [LZ18, Corollary 5.1.2], and part (2) is proved in [LZ18, Theorem 3.6.4].

For part (3), we first apply [LZ18] to identify p?\(6(RZ”)NRZ?) with S9, the scheme theoretic fixed points
of S under g. Since g is in SO(V)(F,) (Lemma 5.2.2), it stabilizes ST and S~. Hence S9 = (S+)9 U (S7)9.
By the same arguments as in the proof of Theorem 5.1.2 (3), the k-length of S9 is equal to tr(g, H*(S)) =
t2(g, H*(S+) + (g, H*(57).
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By Lemma 5.2.1 and by the fact that g is regular in GL(V), we know that tr(g, H*(S7)) is given by
the formula in Theorem 4.3.3 (3). Fix go € O(V)(F,) — SO(V)(F,). Then under the natural action of
O(V)(F,) on S, the element gy interchanges St and S—, by the proof of [HP17, Proposition 5.3.2]. Hence
we have tr(g, H*(ST)) = tr(goggy ', H*(S7)). Since the formula in Theorem 4.3.3 (3) only depends on the
characteristic polynomial, and since g and gogg, ' are elements of SO(V)(F,) which are both regular in
GL(V) and have the same characteristic polynomial, we have tr(g, H*(S™)) = tr(g, H*(S™)). It follows that
tr(g, H*(S)) is equal to twice the formula in Theorem 4.3.3 (3). The proof of part (3) is finished. O

Remark 5.2.5. Theorem 5.2.4 (3) was previously proved in [LZ18], under the assumption that p > (mq, +
1)/2. This assumption is removed in Theorem 5.2.4. On the other hand, under the same assumption on p
the paper [LZ18] determines each local ring of §(RZ’) N RZY. This is a result not revealed by the methods

of the current paper.

Remark 5.2.6. We correct two mistakes in [LZ17] and [LZ18]. Firstly, in both the papers the definition of
the reciprocal of a polynomial should be normalized so as to be monic, as in §4.1. This mistake does not affect
the correctness of any of the proofs. Secondly, in [LZ18, Theorem A (2), Theorem 3.6.4], the product should
be over pairs of non-self-reciprocal irreducible monic factors, as in Theorem 5.2.4 and Definition 4.1.5, as
opposed to over single non-self-reciprocal irreducible monic factors. To correct the proof of [LZ18, Theorem
3.6.4], one interprets the symbol []p 1) g« () in the proof as the product over such pairs {R(T), R*(T)}
rather than over such R(T)’s.
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