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Abstract: When leveraging orthogonal polynomials for describing freeform optics, designers 
typically focus on the computational efficiency of convergence and the optical performance 
of the resulting designs. However, to physically realize these designs, the freeform surfaces 
need to be fabricated and tested. An optimization constraint is described that allows on-the-fly 
calculation and constraint of manufacturability estimates for freeform surfaces, namely peak-
 to-valley sag departure and maximum gradient normal departure. This constraint’s 
construction is demonstrated in general for orthogonal polynomials, and in particular for both 
Zernike polynomials and Forbes 2D-Q polynomials. Lastly, this optimization constraint’s 
impact during design is shown via two design studies: a redesign of a published unobscured 
three-mirror telescope in the ball geometry for use in LWIR imaging and a freeform prism 
combiner for use in AR/VR applications. It is shown that using the optimization penalty with 
a fixed number of coefficients enables an improvement in manufacturability in exchange for a 
tradeoff in optical performance. It is further shown that, when the number of coefficients is 
increased in conjunction with the optimization penalty, manufacturability estimates can be 
improved without sacrificing optical performance. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

When seeking to correct the aberrations that arise in non-axisymmetric optical systems, 
designers often reach for rotationally-variant “freeform” optical surfaces. One of the first 
choices they face is the selection of mathematical freeform surface description. 

One accepted method is to characterize a freeform optic as a base surface (e.g. a sphere, 
conic, or biconic) plus sag departure described with a linear combination of polynomial terms 
[1]. If the base surface is a sphere with curvature c and sag departure is described by arbitrary 
polynomials{ },nP then the freeform surface sag z is given as 
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Without loss of generality, the polynomials nP  are expressed in polar coordinates, ns  is the 

weight for ,nP  and max/u ρ ρ= is the normalized radial coordinate. Further, while non-

orthogonal (or even non-polynomial) surface descriptions exist, the methods of this paper 
leverage orthogonality. Thus, it is required in this work that{ }nP is orthogonal. 

Even with the requirement of orthogonality, there is an abundance of options when 
choosing a polynomial set{ }.nP  Zernike polynomials, which are widely known in many 

applications in optics [2,3], are also used to characterize freeform surfaces [4–7]. Cartesian 
products of Chebyshev and Legendre polynomials, each a set of orthogonal polynomials with 
a long history in mathematics, can also be used to describe freeform surfaces [8,9]. Other 
orthogonal polynomials have been custom-introduced specifically for freeform surface 
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description. Forbes’ 2D-Q polynomials, hereafter referred to as 2D-Qs, were introduced by 
extending the 1-dimensional Qbfs and are orthogonal in gradient normal departure [10–12]. 
Zernike difference polynomials, defined as the difference between specific Zernikes, are also 
orthogonal in slope but can leverage existing computational knowledge about Zernikes [13]. 
Re-orthogonalizing existing polynomial sets over different apertures also yields new 
descriptions. Zernikes have been re-orthogonalized over rectangular, hexagonal, annular, and 
arbitrarily shaped apertures [14–17]. The Q-Legendre and A-polynomials also seek to 
preserve some properties of the 2D-Qs while being orthogonal over a square aperture [18,19]. 
This list is by no means exhaustive, and the questions of how surface descriptions compare 
and whether there is an optimal description for a given design problem are still open and 
beyond the scope of this work. 

Once a surface description is chosen, the description must be leveraged to achieve 
efficient convergence to a well-corrected minimum. The first step is often to understand the 
aberrations present in an optical system and how these aberrations can be corrected using 
orthogonal polynomial terms. Fuerschbach et al. presented a theory of understanding the 
aberrations of φ- type polynomial surfaces based on their location in the optical system, and 
uses this method to guide the design of a three-mirror telescope in the ball geometry [7,20]. 
Yang et al. extended these derivations to include all Zernike terms up to 16th order [21], 
while Zhong et al. examined the vectorial aberration contributions from biconic surfaces [22]. 
Bauer et al. developed this framework into a method of design based on vectorial aberration 
theory, including filters for choosing an optical starting point and strategies for correcting the 
aberrations identified in a system [23]. By linking design methods with the aberrations 
present in the system, each orthogonal polynomial term is introduced with the correction of 
specific aberrations in mind. 

It is not uncommon to introduce optimization constraints that enforce the 
manufacturability of the surfaces in a design. These constraints are often constructed with 
specific fabrication and testing regimes in mind and can involve sampling the surfaces over a 
large grid of points. Consequently, including these constraints from the beginning of 
optimization can be prohibitively time-consuming. Similarly, it is not uncommon to inform 
the design process with tolerancing information [24–27]. These approaches may lead to 
improved as-built performance but do not address the freeform departures that drive 
testability and fabrication time. 

By linking the surface manufacturability estimates to the orthogonality of the polynomials 
used in the surface description, the connection between the sum of the squares of orthogonal 
polynomial coefficients and the physical quantity associated with the orthogonality of the 
polynomials can be used to facilitate rapid calculation of the manufacturability estimates and 
their inclusion as optimization constraints. Both peak-to-valley (PV) sag departure and the 
maximum of the gradient of the normal departure are used here as manufacturability 
estimates; in this paper, departures reported are from the base sphere. These manufacturability 
estimates are linked to the surface testability in null or quasi-null interferometric testing 
regimes, which are common in optics. Further, improvements in PV sag departure and 
maximum gradient normal departure may also lead to surfaces that can be fabricated more 
rapidly or tested using a broader variety of metrology techniques [28–31]. 

In Section 2 of this paper, we show the mathematical construction of the optimization 
constraint from the square-sum of the orthogonal polynomial coefficients. The constraint, 
hereafter referred to as the square-sum penalty, is constructed in general for any orthogonal 
polynomial basis and in particular for both Zernikes and 2D-Qs. In Section 3 of this paper, we 
report two designs studies, a three-mirror telescope for use in LWIR imaging and a freeform 
prism for use as a combiner in AR/VR, to demonstrate that the square-sum penalty enables 
the fine-tuning of a design to improve manufacturability estimates. 
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2. Construction of the square-sum penalty  

2.1 Square-sum penalty for orthogonal polynomials 

The building blocks of the square-sum penalty are mathematical properties of orthogonal 
polynomials, which are described by Forbes [32]. 

A polynomial set{ }nP is orthogonal with respect to an angle bracket if 

 ', 0 when '.n nP P n n= ≠  (2.1) 

Here, the angle bracket ,f g  represents an inner product of f  and ,g  which can be 

thought of as a measure of how much f  and g  overlap [33]. For orthogonal polynomials, 

,f g  is typically a weighted integral of some product of f  and g  over a domain of 

interest [32]. Equations (2.6) and (2.10) show Zernike and 2D-Q angle brackets, respectively. 
Because orthogonal polynomials do not overlap in the sense of Eq. (2.1), terms within an 

orthogonal basis can be added or removed without concern for cross-term interaction. 
Consider a sag departure profile defined as a linear combination of polynomial terms, say 

.n nn
S s P=  An algebraic rearrangement of terms from [32] shows that, for a given 
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In other words, each coefficient ns in an orthogonal expansion can be calculated using only the 

surface S and the specific corresponding .nP  This equation may be more familiar if ,n nP P  is 

normalized to one and suppressed. 
Given the angle bracket, the orthogonal polynomial coefficients can be directly linked to 

physical properties of the freeform surface. Specifically, the angle bracket of a surface with 
itself often corresponds to some physical property of the surface. For example, the Zernike 
angle bracket of a Zernike freeform surface with itself is equal to the surface’s mean-square 
sag departure. For a general surface, this angle bracket is calculated as 

 2, , , .n n n n n
n n

S S S s P P P s= =   (2.3) 

This last equation, which is shared by all orthogonal polynomials, enables the 
manufacturability estimates associated with the angle bracket to be calculated by summing 
the squares of the orthogonal polynomial coefficients (possibly with weights). For most 
orthogonal polynomials used to specify freeform optical surfaces, the ,n nP P  weight factors 

often have either value one or simple, known formulas. Thus, Eq. (2.3) enables on-the-fly 
surface manufacturability estimates, in the sense that the manufacturability estimates can be 
included as optimization penalties without interrupting or prohibitively slowing down the 
optimization process. To return to the example with Zernikes, Eq. (2.3) enables the mean-
square sag departure of a Zernike freeform surface to be calculated with no sampling of the 
surface and only a handful of arithmetic operations per orthogonal polynomial coefficient. 

Using Eq. (2.3), it is possible to calculate – and therefore constrain – the manufacturing or 
testing estimates associated with the orthogonal polynomials. Sometimes, this constraint can 
be informed by the application. Ma et al., when designing rotationally-invariant systems with 
Qbfs for applications including lithography and mobile camera devices, showed that fringe 
density constraints were effective at reducing design sensitivity [34,35]. 
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Here, we explore improvement in manufacturability estimates without compromising 
optical performance. To accomplish this goal, the square sum from Eq. (2.3) is incorporated 
as an error function penalty. This constraint yields an error function of the form 

 2
SS AberErr = Err , ,n n n

n

P P sζ+ ⋅  (2.4) 

where AberErr is the error function contribution from system optical performance and ζ is the 

square-sum penalty weight. This square-sum penalty encourages the optimizer to minimize 
freeform departure during design. Further, calculating the square-sum penalty involves only a 
handful of arithmetic operations per orthogonal polynomial term and does not involve 
sampling the freeform surface over a grid of points. 

It is important to note that the manufacturability of individual surfaces within a system is 
only one of many factors that determine the overall manufacturability of an optical system 
[36]. Nevertheless, when comparing optical designs differing primarily in freeform surface 
shape, improvements in the PV sag departures and maximum gradient normal departures can 
be used to estimate improvements in the manufacturability of the surfaces. 

2.2 Square-sum penalty for Zernikes and 2D-Qs 

The square-sum penalty is now constructed for Zernikes and 2D-Qs, which are used in the 
designs in Section 3. Both Zernike and 2D-Q freeform surfaces can be thought of as a base 
surface plus sag departure described by orthogonal polynomials, with sag equations like 
Eq. (1.1). Both Zernikes and 2D-Qs have orthogonality properties with respect to angle 
brackets that are averages over a circular domain. In Eqs. (2.5) to (2.11), angle brackets with 
only one argument represent averages over a circular domain. 

A Zernike freeform surface with a base sphere and sag departure ( , )D u θ  has sag 

equation 
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( | |)/2 (2 1)m
n mP u− −  is a Jacobi polynomial, so long as ( | |)n m−  is even [37]. This two-index 

notation is mathematically convenient, although, during design, we use the single-index 
FRINGE Zernikes that follow the order of the traditional Seidel aberrations [38]. The square-
sum penalty does not depend on which Zernike ordering scheme is chosen. 

For the Zernikes, the angle bracket used here is 

 
1

0

1
( , ) ( , ) .f g f u g u u dud

π

π

θ θ θ
π −

=    (2.6) 

In other words, Zernikes are orthogonal in sag departure, which enables a link between the 
sag departure and the Zernike coefficients. By replacing S with ( , )D u θ  in Eq. (2.3), it can be 

seen that the mean-square sag departure of a Zernike freeform surface is equal to the 
(weighted) square sum of the Zernike coefficients given as 
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n nZ Z  in Eq. (2.3). If Eq. (2.7) is 

introduced into Eq. (2.4), the Zernike square-sum-penalized error function is now given as 
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A similar analysis can be done for the 2D-Q polynomials. A 2D-Q freeform surface with a 
base sphere and normal departure ( , )uδ θ  is described as 

 

2

2 2 2 2

2 2 0 0 2 2

0 1 0

( , )
( , ) ,

1 1 1

( , ): (1 ) ( ) [ cos( ) sin( )] ( ).
N M N

m m m m
n n n n n

n m n

c uz f
c c

u u u a Q u u a m b m Q u

ρ δ θρ θ
ρ ρ

δ θ θ θ
= = =

= = +
+ − −

= − + +  
 (2.9) 

The cosine factor 2 21 c ρ−  scales sag departure to normal departure, while c  is the 

curvature of the sphere that is the unique best fit of the 2D-Q freeform surface [10]. For the 
2D-Qs, the angle bracket is 
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In other words, the 2D-Qs are orthogonal in gradient normal departure. Correspondingly, the 
mean-square gradient normal departure of a 2D-Q freeform surface is equal to the square sum 
of the 2D-Q coefficients given as 
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Equation (2.11) is a well-known result central to the definition of the 2D-Qs. If Eq. (2.11) is 
introduced into Eq. (2.4), the 2D-Q square-sum-penalized error function is given as 
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Here, 
2
max

1

ρ
is a renormalization factor, necessary due to converting from u  to .ρ  

When specifying surfaces with Zernikes or 2D-Qs in design, the region of a freeform 
surface illuminated by the totality of the footprints of the fields, referred to as the effective 
aperture of the surface, is not always the same as the circular domain over which the Zernikes 
or 2D-Qs are orthogonal. Since the square-sum penalty calculates manufacturability estimates 
over this circular domain of orthogonality, the square-sum penalty may not exactly represent 
freeform surfaces with highly non-circular effective apertures. 

In practice, the effective apertures of freeform surfaces do not need to be perfectly 
circular. In our Reflective Prism design example in Section 3.4, the effective apertures are 
non-circular and have an aspect ratio of about 5:4. This aspect ratio is caused by the 
placement of the freeform surfaces away from the stop in conjunction with the aspect ratio of 
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the field of view. Even so, as shown by the results in Section 3.4, the square-sum penalty can 
improve manufacturability estimates for these non-circular effective apertures. 

That said, if the effective apertures in a design are highly non-circular (e.g., if their aspect 
ratios approach or exceed 2:1), then designers may wish to use other orthogonal polynomials, 
such as those described by Nikolic et al. or Broemel et al. [18,19]. For this reason, Section 2.1 
was written to facilitate the construction of the square-sum penalty for orthogonal 
polynomials beyond just Zernikes and 2D-Qs. 

3. Analysis of square-sum penalty in design 

3.1 Design study overview 

Two design case studies are presented to analyze the impact of the square sum penalty. For 
each design, a starting point was chosen that had the same layout and satisfied the same 
geometry constraints as the completed design but included no freeform terms and 
consequently had virtually no aberration correction. Orthogonal polynomial coefficients and 
system parameters were then introduced as optimization variables based on their ability to 
correct system aberrations, as detailed by Bauer et al. [23]. Use of up to the 16th FRINGE 
Zernike term or corresponding 2D-Q (see Eqs. (5) and (7) of Takaki et al. [39] or Figs. 16 and 
17 of Menke and Forbes [11] for the Zernike-Q correspondence) was allowed on each 
freeform surface, but only terms necessary for aberration correction were used. The resulting 
designs, which were created without the square-sum penalty, are used as benchmarks. 

The aberration correction process was then repeated with a range of values of ζ, the 
square-sum penalty weight. To facilitate comparison with the benchmark, no coefficients 
were used beyond those in the benchmark design, and the square-sum penalty was introduced 
at the beginning of the optimization process and applied equally to each surface. An initial 
value for ζ was chosen so that the optical performance and manufacturability estimates of the 
design were within 5% of the benchmark. Square-sum penalized designs were then created 
with increasing ζ values, and optical performance and manufacturability estimates (PV sag 
departure and maximum gradient normal departure) versus ζ were plotted. These plots, in 
Figs. 2 and 7 below, show that manufacturability estimates improve when the square-sum 
penalty weight is increased, in exchange for a tradeoff in optical performance. 

In practice, the optical performance of a design often must achieve some minimum 
specification and, therefore, is not always available for tradeoff. At the same time, designers 
are typically free to choose which orthogonal polynomial coefficients to use, provided that the 
surfaces in their designs can be manufactured and tested. Consequently, we explored the 
impact of the square-sum penalty when use of up to the 36th FRINGE Zernike or 
corresponding 2D-Q was allowed but optical performance equal that of the 16-term 
unpenalized benchmark was required. To conduct this exploration, we started with 16-term 
unpenalized benchmark designs and introduced additional higher-order polynomial terms 
while also introducing and adjusting the square-sum penalty so that optical performance 
remained equivalent to that of the benchmark. By leveraging the square-sum penalty in 
conjunction with additional polynomial terms, we improved manufacturability estimates 
without sacrificing optical performance, as shown in Sections 3.3 and 3.4, below. 

3.2 Notes on design procedures 

For all Zernike designs, the base sphere was constrained to be the best-fit sphere that 
eliminates the local sag departure at the origin and average sag departure around the edge, 
which is the same best-fit sphere used by the 2D-Qs, although different definitions of best-fit 
sphere can also be used for the Zernikes. To eliminate redundancy between the surfaces’ 
physical tilt parameters and the polynomial tilt terms, which are defined as tilt-degeneracy in 
[39], the mean tilt terms (i.e., terms with coefficients 2 / 3C C  for FRINGE Zernikes and 

1 1
0 0/a b for 2D-Qs) were removed and the freeform surface coordinate systems were required 

                                                                                               Vol. 27, No. 5 | 4 Mar 2019 | OPTICS EXPRESS 6134 



to be centere
freeform surfa
increases in th
optical perfor

All nume
algorithm and
used at points
not used. For
function durin

As a gene
include the sq
As another g
ending stages 

Surface c
primary autho

3.3 First des

The first desi
LWIR imagin
achieved a ro
maintaining 
wavelength, a
benchmark de
is no greater 
mirrors onto t
70 mm, and in
telescope desi

For both Z
sum penalty. 
necessary for 
Cross-section
are shown in F

Fig. 
bench

The squar
values increas
of average R

ed on the opti
face was chose
he size of the 
mance reported

erical optimiza
d the finite dif
s during the de
r all designs, 
ng optimization
eral note on th
quare-sum pena
general note, w

of optimizatio
oefficients wil

or. 

sign study: thr

ign study is a 
ng, based on a
ot-mean-squar
a ball geome
aperture size, 
esigns to achiev
than 820 ml. 

the system’s p
n this way mai
ign study can b
Zernikes and 2
All terms up 
aberration cor

ns and full-field
Fig. 1. 

1. Layout and op
hmarks with (a,b) Z

re-sum penalty
sing by orders-
RMS WFE ov

ical axis ray. 
n to enclose th
effective apert
d is the nomina
ation was con
fferences meth
esign, based o
root-mean-squ
n. 
he use of the s
alty as early in

we found that 
on improved th
ll be made av

ree-mirror tele

plane-symmetr
a design by F
re wavefront er
etry and prio
and F/# as F

ve similar opti
In all designs

plane of symme
intained the ba
be seen in Tabl
2D-Qs, a bench
to the 16th FR
rrection excep
d displays (FF

ptical performanc
Zernikes and (c,d) 

y was then intro
-of-magnitude
ver the field) 

For all design
he effective ap
ture during opt
al optical perfo

nducted in CO
hod for comput
on designer dis
uare spot size 

square-sum pen
n the design pr

enabling the 
he numerical sta
vailable upon 

escope 

ric, ball-geome
Fuerschbach et
rror (RMS WF
ritizing low v

Fuerschbach et
cal performanc
s, the projectio
etry was const
all geometry. F
le 1. 
hmark design w
RINGE Zernik
t for coma and

FDs) of the RM

ce (λ = 10 µm) 
2D-Qs. 

oduced, and th
. Figure 2 repo

and manufac

ns, the normal
perture tightly 
timization. For
ormance. 
ODE V. Both 
ting derivative

scretion. Globa
was used by 

nalty, we cons
rocess as allow
finite differen
ability of conv
request via co

etry three-mirr
t al. [7]. Fuers
FE) of less than
volume. We 
t al. and aime
ce. The overall
ons of the ima
trained to lie w
Full specificatio

was created wi
ke or correspon
d astigmatism 

MS WFE of th

for unpenalized 

he design proce
orts the optical
cturability esti

lization radius
while also allo
r all design stu

the step opt
e increments w
al search meth
CODE V as 

sider it best pr
wed by the desi
nces method du
vergence. 
ommunication 

ror telescope f
schbach et al.
n λ/100 at 10 μ
used the sam

ed for our unp
l volume of eac
age plane and 
within a circle 
ons for the thr

ithout use of th
nding 2D-Q te
on the second

hese benchmark

designs used as

ess was repeat
l performance 
imates for sq

s of each 
owing for 
udies, the 

imization 
were each 
hods were 
the merit 

ractice to 
ign study. 

during the 

with the 

for use in 
’s design 
μm while 
me field, 
penalized 
ch design 
all three 
of radius 
ee-mirror 

he square 
erm were 
d surface. 
k designs 

 

s 

ted with ζ 
(in terms 

quare-sum 

                                                                                               Vol. 27, No. 5 | 4 Mar 2019 | OPTICS EXPRESS 6135 



penalized designs. In this design study, the manufacturability estimates of the third mirror 
were always much greater than the manufacturability estimates of the other two mirrors. 
Consequently, we report both the manufacturability estimates for the third mirror individually 
as well as the sum of each manufacturability estimate across all three mirrors together. 

As we can see in Fig. 2, manufacturability estimates improve as ζ increases. For the 
Zernikes, PV sag departure and maximum gradient normal departure of the third mirror 
improved from 362 µm and 1.04° in the benchmark to 124 µm and 0.47°, respectively, while 
summed manufacturability estimates improved from 395 µm and 1.36° in the benchmark to 
153 µm and 0.68°. For the 2D-Qs, the manufacturability estimates of the third mirror 
improved from 321 µm and 0.97° in the benchmark to 121 µm and 0.41° while summed 
manufacturability estimates improved from 377 µm and 1.24° in the benchmark to 148 µm 
and 0.56°. Optical performance was traded off from 0.0083 λ to 0.0726 λ for the Zernikes and 
from 0.0082 λ to 0.0612 λ for the 2D-Qs (λ = 10 µm), so that the upper-bound square-sum 
penalized designs are both approximately diffraction limited. 

We also note from Fig. 2 that the square-sum penalty is maximally effective during the 
first three orders of magnitude of increase of the square-sum penalty weight. For the Zernikes, 
manufacturability estimates for the third mirror improved to 138 µm and 0.49° when the 
weight was 10−2, a factor of two improvement. The tradeoff in optical performance was 
comparatively less, from 0.0083 λ to 0.0142 λ. For the 2D-Qs, manufacturability estimates for 
the third mirror improved to 128 µm and 0.43° when the weight was 100, and again the 
tradeoff in optical performance was comparatively less, from 0.0082 λ to 0.0143 λ. 

Table 1. Three-Mirror Telescope Specifications 

Parameters Specifications 
Full Field of View 10° diagonal 
Entrance Pupil Diameter 30 mm 
Detector Size 6 mm x 8 mm 
Wavelength 10 µm 
Focal Length 57 mm 
Volume < 820 ml 
Distortion < 3% 
Average RMS WFE of Benchmark 0.0085 waves (λ = 10 µm) 
Ball Geometry Radius 70 mm 

This region of maximal square-sum penalty effectiveness coincides with the region in 
which the layout shifts. Figure 3 shows the layouts of the 2D-Q benchmark design alongside 
the 2D- Q square-sum penalized designs with weights 10−2, 100 and 102. By comparing the 
benchmark design to the square-sum penalized design with weight 100, we see that, although 
both designs maintain the ball geometry, the layout has evolved. At the same time, Fig. 2 
shows that manufacturability estimates have improved substantially. On the other hand, 
clearance and ball geometry constraints prevent the layout from continuing to change, so the 
design with weight 102 sees virtually no improvement in manufacturability estimates and a 
significant optical performance tradeoff. The Zernike designs see a similar trend (not shown). 

Next, we leveraged the square-sum penalty in conjunction with an increased number of 
coefficients to improve manufacturability estimates without decreasing optical performance. 
Use of up to the 36th FRINGE Zernike or corresponding 2D-Q term was allowed, and the 
weight of the square-sum penalty was adjusted so that the optical performance remained 
equivalent to that of the unpenalized benchmark design. We also created 36-term designs 
without use of the square-sum penalty. Both 36-term designs are compared to the 16-term 
unpenalized benchmark designs, in Table 2 for the Zernikes and Table 3 for the 2D-Qs. 

With the introduction of the square-sum penalty, manufacturability estimates improved 
relative to the benchmark without any decrease in optical performance. For both the Zernikes 
and 2D-Qs, PV sag departure of the third mirror improved by about 40%, from 362 µm to 
225  µm and 322 µm to 189 µm, respectively. Maximum gradient normal departure of the 
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cyc/mm over 3 mm sub-pupils, and full-field displays of both sagittal and tangential MTF are 
shown for the best-case and worst-case sub-pupils. Manufacturability estimates are evaluated 
over the effective aperture of each surface. 

Table 4. Specifications of Reflective Prism 

Parameters Specifications 
Full Field of View 26° by 41° 
Eyebox Diameter 8 mm 
Wavelength 587 nm 
Focal Length 21 mm 
Volume 6.5 ml 
Distortion < 12.5% 
Image Quality (Benchmark) MTF >10% @ 50 cyc/mm 

Evaluated over 3 mm sub-pupils 
(See Fig. 5) 

Eye Clearance >18.25 mm 
  
Micro-display  
Diagonal Length of Active Display 21.8 mm 
Resolution in Pixels 1080 x 1920 
Pixel Pitch 10 µm 
Pixel Angular Subtense 1.5 arcminutes 

The square-sum penalty was then introduced, and the designs recreated with increasing ζ 
value. Figure 7 reports that the optical performance and manufacturability estimates for the 
16- term square-sum penalized designs. Optical performance is reported as the minimum 
MTF at 50 cyc/mm across all fields, evaluated over fifteen 3 mm sub-pupils which sample the 
8 mm eyebox, while manufacturability estimates are reported in the same terms as the first 
design study. As with the first design study, the lower bound of the range of ζ values was 
chosen so that the manufacturability and optical performance are within 5% of benchmark 
values. The square-sum penalty weight was increased by half-orders of magnitude until 
optical performance drops below 10% MTF. For both Zernikes and 2D-Qs, increasing the 
square-sum penalty by another half-order of magnitude beyond this upper bound decreased 
MTF to nearly zero percent MTF. 

As ζ increases, the manufacturability estimates improve, and optical performance is traded 
off. For both Zernikes and 2D-Qs, the second freeform surface experienced most of the 
manufacturability estimate improvement from benchmark to endpoint: from 201 µm to 111 
µm and 2.01° to 1.08° for the Zernikes, and from 254 µm to 154 µm and 1.77° to 1.10° for 
the 2DQs. The shape of the first mirror is strongly dominated by astigmatism in all designs. In 
the Zernike design, Mirror 1 has 129 µm of Zernike astigmatism in the benchmark versus 120 
µm of Zernike astigmatism in the endpoint, while, in the 2D-Q design, Mirror 1 has 186 µm 
of Q  astigmatism (i.e., terms with coefficients 2 2

0 0,a b  for the 2D-Qs) in the benchmark versus 

173  µm of Q astigmatism in the endpoint. Significant adjustment of astigmatism on the first 
mirror requires a more significant tradeoff of optical performance than is allowed in Fig. 7 or, 
alternatively, an increase in the square-sum penalty weight on Mirror 1 relative to that of 
Mirror  2, which was not allowed in this design study. 
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4. Conclusion 

In this paper, an optimization constraint for use in freeform optical design, which calculates 
manufacturability estimates of a freeform surface, was constructed from the square sum of 
orthogonal polynomial coefficients. This square-sum penalty can be constructed for general 
orthogonal polynomials, with examples provided for both Zernikes and 2D-Qs. The square-
 sum penalty was then introduced in two design examples: a three-mirror ball geometry 
telescope and a freeform prism combiner. It is shown that using the square-sum penalty with a 
fixed number of coefficients leads to an improvement in manufacturability estimates in 
exchange for a tradeoff of optical performance. Further, if the number of coefficients is 
increased in conjunction with the introduction of the square-sum penalty, manufacturability 
estimates can be improved with no sacrifice of optical performance. 
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