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A vibration-insensitive, single-shot phase-calibration method for phase-only spatial light modulators (SLM) is
reported. The proposed technique uses a geometric phase lens to form a phase-shifting radial shearing interferom-
eter to enable common-path measurements. This configuration has several advantages: (a) unlike diffraction-based

SLM calibration techniques, this technique is robust against intensity errors due to misalignment; (b) unlike two-
beam interferometers, this technique offers a high environmental stability; and (c) unlike intensity-based methods,
the phase-shifting capability provides a phase uncertainty routinely in the order of 27t /100. The experimental

results show a significantly higher accuracy when compared to the diffraction-based approaches.
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1. INTRODUCTION

Phase-only liquid-crystal-on-silicon spatial light modulator
(SLM) technology has become a popular solution in a wide
range of optical applications as programmable optical devices
[1,2] ranging from interferometry [3] and imaging through
scattering media [4] to the generation of structured beams [5].
Furthermore, SLMs provide an active solution that can correct
for sources of error in the generation of wavefronts, especially
aberration correction of the measurement system using phase
modulation [6-8]. With this variety of applications in mind,
the phase distribution provided by an SLM must be character-
ized and calibrated to provide an accurate phase modulation.
Several calibration techniques have been reported that can be
categorized as interferometric, diffractive, and polarization-
based measurements [9,10]. For the sake of brevity, we have
included only exemplary publications to represent the main
categories. Interferometric methods involve the use of self-
reference methodologies, where a portion of the SLM serves as
the reference [11] and out-referenced implementations (basi-
cally Twyman—Green configurations, which in combination
with piezo-electric devices and phase-shifting algorithms [12],
provide an accurate phase measurement). Diffractive methods
rely on grating models to relate the phase projected on the SLM
to the intensity measured in either a Fourier plane [13] or other
detection planes; see, for example [14—16]. Diffraction-based
methods offer a simple solution that includes local and global
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measurements of the SLM panel. However, they lack accuracy
compared to phase-shifting interferometric methods. Also,
diffraction-based methods present a significant experimental
disadvantage, which is the uncertainty of the placement of the
sensor at a precise distance from the SLM, which results in inac-
curate intensity measurements. On the other hand, polarization
methods use polarimetric measurements such as the Mueller
matrix [17] or the Stoke parameters [18] to calculate the phase
retardance. Recently, another novel approach was the use of a
cross-analyzer system to relate the phase to intensity or to be
used as a phase shifter [19]. In general, these methodologies are
robust; however, they require several measurements to calculate
the phase retardance.

In this paper, we describe a method that uses a geometric
phase (GP) lens in a configuration that produces radially sheared
interferograms to measure gamma nonlinearity of the SLM
[19]. GP lenses have been exploited in recent studies of inco-
herent digital holography [20-22]. The calibration system
proposed here differentiates from previous methodologies as for
being (1) a single-shot phase measurement and (2) a common-
path configuration. This is an advantage in comparison to most
calibration techniques that require a minimum of four images
[9]. Also, contrary to conventional interferometric methods,
the common-path configuration allows for measurements that
are robust to vibrations. Moreover, alignment complexity was
significantly reduced in the presented method in comparison
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to off axis as, e.g., diffractive methods [13,15] or methods that
require multiple-path optical setups [23-25]. In addition to
these benefits, these GP lenses are cost effective and have become
off-the-shelf components in recent years.

The paper is organized as follows. Section 2 describes the
fundamental principles of the GP lens. Section 3 shows the
calibration system used in the measurement of the gamma
curve and the analysis process. Section 4 is the discussion of the
phase measurements attained and the gamma curve. Section 5
includes the conclusion and final remarks.

2. GEOMETRIC PHASE AND THE GEOMETRIC
PHASE LENS

Geometric phase lenses are flat liquid crystal patterned opti-
cal elements that, due to their optical anisotropy, can act as
either a converging or diverging lens depending on the input
polarization; see Fig. 1 [26]. The focal length f of a GP lens is
wavelength dependent [27-29].

Also known as the Pancharatnam—Berry phase, the geometric
phase device’s working principle is based on a local modifi-
cation of the polarization state traveling through the optical
element [27]. If the incoming illumination is linearly polarized,
then the converging and diverging wavefront have right-
handed circular polarization and left-hand circular polarization,
respectively [21].

As described in Refs. [21,22], the intensity pattern captured
when a polarizer of arbitrary angle €2 is placed between the GP
lens and a camera is given by Eq. (1), where & is the quadratic
phase modulation (as a positive and negative lens) of the GP
lens:

I(x, y)=1,(x, y) + L,(x, ) cos(QQ2 + 2Dsp ). (1)

In other words, by rotating the polarizer, it is possible to obtain
four intensity distributions that can be employed in a phase-
shifting algorithm. The calibration method presented here is
based on the use of those intensity distributions (holograms).
A polarized camera with an on-sensor array of linear polarizers
[30] (at four different polarizations) was used to capture four
phase-shifted intensities simultaneously and to calculate the
phase with a single shot.

GP Lens

Diverging wavefront
- fopr = -100 mm

Incident light
linearly polarized
| vf" Jepr=100mm
Fig. 1.  GP lens with incident linearly polarized light splitting the

wavefront into both a diverging and converging wavefront.
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3. CALIBRATION SYSTEM AND MEASUREMENT
METHODOLOGY

A. Experimental Setup

The calibration system for measuring the nonlinearity of the
gamma curve is shown in Fig. 2. Here the beam is generated by
monochromatic laser illumination (A = 532 nm) that is filtered
and collimated. The beam has a diameter of approximately
8 mm and is linearly polarized with the fast axis of the SLM
by means of a half-wave plate (HWP). A non-polarizing beam
splitter allows for normal incident light to be modulated by the
SLM. The SLM under test was the Holoeye Pluto 2 VIS-16
with high phase retardation (6.77 for 532 nm, pixel pitch 8 um,
resolution 1920 x 1080, fill factor of 93%, and dimension
of 15.36 mm x 8.64 mm). The reflected light is redirected
towards the radial shearing interferometer (RSI), which is the
central part of our calibration system. The RSI consists of the
GP lens (diameter of 25.4 mm and focal length of 100 mm for
532 nm) and a converging relay lens (diameter of 25.4 mm and
focal length of 100 mm). The total length of this system forms a
4 f system with unitary magnification for the object wave. The
RSI working principle is that the optical path length difference
is generated by varying the radii of the two wavefronts [31-33].

Then the radially sheared interferogram is captured by
a polarization camera (FLIR BFS-U3-51S5P-C, pixel size
3.45 um X 3.45 pm, resolution 2448 x 2048, and dimensions
of 8.80 mm X 6.60 mm), which is placed at the focal length
of the relay lens. The polarized camera is fabricated with an
on-sensor array of linear polarizers in four different orientations
(0, 45, 90, and 135 deg) [30]. This array of linear polarizers
allows for four phase-shifted interferograms (each using a 4
of the total amount of pixels) to be captured simultaneously
and therefore enabling single-shot phase measurements. The
phase difference at the SLM (®spy) is calculated using Eq. (2)
[12,21]:

I 135°) — 7 45°
®5LM=tan_1< (x,y,135°) — I(x, y, 5))‘ @)

I(x,y,0°) — I(x, y,90°)

B. Measurement of the Gamma Curve

The SLM calibration requires determination of the relationship
between the grey level sent to the SLM and the phase modula-
tion. For this purpose, the SLM was programmed with a phase

Polarized

Radial Shearing camera
Interferometer
(RSD

Relay lens

GP Lens

1
OBIS 532 nm

SLM

ol

HWP Beam splitter

Fig.2. Calibration system to measure gamma nonlinearity of SLM.
The radial shearing interferometer (RSI) is shown in the dashed square.
It consists of a GP lens, a relay lens, and a polarized camera.
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(a) Alignment process of the SLM fast axis with the incident polarization and (b) optimization of the GP lens fringe visibility.

reference distribution (grey level equals zero along the SLM),
and the phase difference was calculated in comparison with a
binary phase object at the SLM for each grey level. This phase
object is projected sequentially in steps of 1 from 1 to 255, and
a series of object holograms is collected at each step. Then,
using Eq. (2), the phase for both the reference and the object
holograms are solved.

In order to align the linear polarization of the light both, with
the SLM fast axis and the optimal orientation of the GP lens,
the following procedure was taken. First, the linearly polarized
light was rotated with a half-wave plate and aligned with the fast
axis of the SLM. Alignment with the SLM fast axis was made by
projecting a binary grating onto the SLM and then measuring
the power with a photodiode in the first diffraction order in the
far field with the aid of a Fourier transform lens. The half-wave
plate was rotated to maximize the power in the first order of
diffraction as shown in Fig. 3(a). In the second step, the GP lens
was placed on a continuous rotation mount about the optical
axis as shown in Fig. 3(b). The GP lens’s angular position was
determined by maximizing the visibility fringes observed by
placing a polarizer in front of a conventional camera.

After aligning the linear polarization of the system with the
fast axis of the SLM [Fig. 3(a)] and optimizing the orientation
of the GP lens [Fig. 3(b)], vertically incident polarized light is
transmitted into the GP lens, which splits the light both into
right- and left-hand circularly polarized light. The camera and
polarizer were replaced by a polarized camera, as shown in Fig. 2,
where four polarization states were captured in a single shot
(0, 45, 90, and 135 deg) and processed to calculate the phase

retardance.

4. PHASE DATA, GAMMA CURVE, AND
DISCUSSION

For the gamma curve determination, the square of
100 pixels x 100 pixels pixels was chosen as an object. During
the measurement, the grey level of the square was changed in the
range from 0 to 255. Note that PLUTO-2-VIS-016 enables us
to change the phase up to 6.7 at 530 nm wavelength. However,
the retrieved phase is within a range from —m to 7 because

of the 27 ambiguity of the wrapped phase [34]. This means

that for the entire calculation of the gamma curve to 6.7,
we obtained the repetition of phase information for each 27
period. Therefore, at each point of discontinuity in the gamma,
amultiple of 277 was added to represent the correct phase value.

The registered holograms show the presence of a twin
image (i.e., a virtual image), which is a defocused image of the
measured object, and the speckle-noise effect because of the
high-coherence light source (monochromatic laser). The twin
image problem is considered a limitation of the holographic
techniques.

Due to the nature of the GP lens being self-referencing, a
copy of the object is made in the reference wave. Because of the
imaging conditions set by the calibration system, this copy is
unfocused and is highly diffracted. To limit undesired diffrac-
tion effects from this unfocused copy, the object was placed atan
off-axis location so that the twin and the object do not overlap
as shown in Fig. 4. The off-axis distance was calculated to be
3.8 mm from the center of the phase object to the center of the
SLM. However, the diffractive effects still affect the result of the
final phase. Figures 5(a)—5(c) show five different retrieved phases
without any filtration; the selected grey levels of the objects are
the following: 10, 20, 40, 100, and 200. Due to the spatial
separation of the twin image and phase object, which is shown
in Fig. 4, there is no need to apply the iterative phase-retrieval
method to suppress the twin image [35].

100 200 300 400 500
pixels

Fig. 4. Presence of twin image phase map for a grey level of 200.
Spatial separation of the twin image and phase object.
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Fig. 5.
(a), (f) 105 (b), (g) 205 (c), (h) 405 (d), (i) 100; and (e), (j) 200.

Retrieved phases (a)—(e) without any filtration and (f)—(j) filtrated using the proposed procedure of the selected grey levels of the objects:
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Fig. 6.

and (b) the unwrapped gamma curve.

Experimentally obtained gamma curve of the Holoeye Pluto 2 V16: (a) the wrapped gamma curve due to large modulation in the device

Table 1. Quantitative Comparison between Results
Obtained with and without Filtration Procedure

Grey Level 10 20 40 100 200
o before filtration 0.475 0.341 0.307 0.282 0.395
o after filtration 0.118 0.107 0.079 0.091 0.064

In our approach, the twin image and noise suppression
are done by the following steps: (1) filtering each retrieved
phase using the block-matching 3D (BM3D) image denoising
method [36-38]; (2) propagating the optical field [39,40] to
obtain the focused twin image; (3) applying a Gaussian filter of
part of the hologram with the twin image; (4) backpropagation
of the optical field to the focused object image. The propagation
in Figs. 5(d)-5(f) shows the retrieved phases after filtration by
the proposed procedure. It can be noticed that the effects of
the parasitic fringes and speckle noise are suppressed. Table 1
presents a quantitative comparison between the results obtained
with and without the proposed filtration procedure. The cal-
culated o of the retrieved phase confirms that the method we
proposed works propertly, as a clear reduction of parasitic effects
can be observed.

In Fig. 6, the estimate of the gamma curve is shown. The
obtained data is in agreement with the specifications provided
by the manufacturers at 530 nm, approximately 6.7 of phase
retardation.
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Fig.7. Measured gamma curve using: unfiltered data (red), filtered
data (blue), and the referenced Fresnel method (black).
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Fig.8. Movingaverage of each measured gamma curve using: unfil-

tered data (red), filtered data (blue), and the referenced Fresnel method
(black).

Figure 7 shows the measured relation between phase and
grey level (so-called gamma curve) using: (1) unfiltered data
(blue line), (2) filtered data (red line), and (3) for reference we
have included the gamma curve obtained using a diffraction-
based methodology (black line) [14]. It can be noticed that
the filtered and unfiltered data are similar. The obtained data
is in agreement with the specifications provided by the manu-
facturers at 530 nm, approximately 6.7 of phase retardation
for all methodologies. Notably, the measurements obtained
with the Fresnel method show to have significant outliners
and discontinuities, which highlight an inherent weakness of
diffraction-based methods. Furthermore, the graph in Fig. 7 can
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further be improved using sophisticated regression techniques;
however, this is beyond the scope of this work.

To estimate the uncertainty level of the GP lens method
proposed here, we calculated the moving average of each curve,
which is shown in Fig. 8, and the standard deviation, which
was found to be 0.14, 0.08, and 0.06 for the Fresnel method,
unfiltered data, and filtered data, respectively. Based on these
calculations, the uncertainty for the filtered data is ~ 4/100 or
(271/100 = 0.06 rad).

In addition to our results, we show in Table 2 a list of ideal
traits that SLM calibration methods have—listing the three
main categories, including interferometric, diffraction, and
polarization base calibrations. Our approach using a GP lens
and a polarization camera falls under the categories of polariza-
tion and interferometric, resulting in an accurate, single-shot
phase-calibration methodology.

5. SUMMARY

In summary, a single-shot polarization-based calibration tech-
nique for phase-only SLMs was described here. With the use
of a GP lens paired with a polarized camera, a phase-shifting
radial shearing interferometer was built to calibrate the phase
modulation of an SLM. A gamma curve was generated that
meets the specifications of the manufacturer. This calibration
procedure uses a common-path configuration that is insensitive
to environmental disturbances. The alignment requirements
of this setup are less stringent than interferometric and grating-
based methods. Taking advantage of the interference of waves,
the phase at each grey level is estimated with an interferometric
phase-shifting technique that provides a phase uncertainty in
the order of 277 /100, despite the presence of the twin image.

Table 2. List of Advantages and Disadvantages of SLM Calibration Methods
Exemplary
Methodology References Advantages Disadvantages
Interferometry Self-reference [11] Simple setup Notaccurate
It does not provide localized
measurements
Two-beam [23,25] High accuracy, when combined with Requires a flat reference
interferometry phase-shifting algorithms.
Digital Provides global and local phase Sensitive to vibrations and temperature
holography measurements changes
Diffraction [13-16] Provides global and local phase Distance uncertainty, thus low accurate
measurements
Simple calculation from intensity to phase ~ Not applicable for phase-shifting
algorithms
Polarization [17,18,24,41] Local measurements Requires from four to several
High accuracy, when combined with measurements
phase-shifting algorithms
GP Lens Thisapproach  Single-shot phase measurement Global measurements are limited by the

Robust common-path configuration
Easy alignment

High accuracy, when combined with
phase-shifting algorithms

presence of the twin image but can be
obtained with sequential measurements
(placing the object at different locations)
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