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SUMMARY 

Single-particle cryo-EM continues to grow into a mainstream structural biology technique. Recent 

developments in data collection strategies alongside new sample preparation devices heralds a future 

where users will collect multiple datasets per microscope session. To make cryo-EM data processing more 

automatic and user-friendly, we have developed an automatic pipeline for cryo-EM data preprocessing and 

assessment using a combination of deep learning and image analysis tools. We have verified the 

performance of this pipeline on a number of datasets and extended its scope to include sample screening 

by the user-free assessment of the qualities of a series of datasets under different conditions. We propose 

that our workflow provides a decision-free solution for cryo-EM, making data preprocessing more 

generalized and robust in the high-throughput era as well as more convenient for users from a range of 

backgrounds. 
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INTRODUCTION 

Single-particle cryo-electron microscopy (cryo-EM) is becoming a mainstream technique for structural 

biology (Kühlbrandt, 2014). In the past few years, cryo-EM has seen a 20-40% year-to-year growth in 

structures deposited in the Protein Data Bank. This growth is due to continued developments in sample 
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preparation (Arnold et al., 2017; Cheng et al., 2018; Darrow et al., 2019; Jain et al., 2012; Ravelli et al., 

2019; Zivanov et al., 2018), data collection (Fernandez-Leiro and Scheres, 2016; Lyumkis, 2019), and 

algorithms for data processing (Punjani et al., 2017; Scheres, 2012; Tegunov and Cramer, 2019; Zivanov 

et al., 2018). These developments have greatly accelerated the speed of data collection for cryo-EM, and 

have also led to widespread adoption of users across a range of expertise, where experts represent a 

continually shrinking fraction of cryo-EM users.

With the fast pace of cryo-EM development, several challenges have emerged. First, with new imaging and 

sample preparation technologies, including the increased frame rate detectors, beam-image shift data 

collection (Cheng et al., 2018; Zivanov et al., 2018), and robotic sample preparation (Arnold et al., 2017; 

Darrow et al., 2019; Jain et al., 2012; Ravelli et al., 2019), a single cryo-EM instrument can easily generate 

5,000-8,000 movies data per day. These technologies have enabled cryo-EM to become a more high-

throughput technique, with more than one dataset collected per day per instrument. Second, although a 

number of improvements have been made in software development, cryo-EM data processing remains 

computationally expensive. High-performance computing (HPC) resources and GPUs are typically used 

(Baldwin et al., 2018; Cianfrocco and Leschziner, 2015). However, since each project requires multiple 

rounds of human trial and error in the preprocessing steps, these human-driven choices can slow down a 

project due to a lack of computing resources.   

 

Third, cryo-EM frustrates many users because of its complexity in data processing. The manual and 

subjective decisions involved in solving a structure, such as the programs, parameters, and determination 

of good micrographs and good 2D class averages, can affect the final result significantly (Lawson and Chiu, 

2018). While an expert can make the correct decisions after a few trials, new users typically find it 

problematic to perform such monitoring and evaluations. Moreover, due to the variety of samples in the 

cryo-EM field, it is nearly impossible to create a general guideline for the new users to follow.  

 

Despite the increasing throughput of cryo-EM data collection, the cumbersome nature of cryo-EM 

preprocessing slows scientists’ ability to ask biological questions from their dataset. For example, during 
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cryo-EM sample screening, scientists may want to assess sample integrity or complex formation. However, 

in order to compare and contrast multiple grids, the scientist will have to manually interact with the data to 

perform movie alignment, particle picking, CTF estimation, and 2D classification. Modern cryo-EM needs a 

tool to streamline data quality assessment and data preprocessing automatically and robustly.  

 

Many approaches have been proposed and developed to address these challenges. For example, Appion 

(Lander et al., 2009), cryoSPARC (Punjani et al., 2017), SPHIRE (Moriya et al., 2017), Warp (Tegunov and 

Cramer, 2019), and RELION-3.0 (Fernandez-Leiro and Scheres, 2017; Zivanov et al., 2018) provide 

preprocessing tools that can be stitched together into pipelines. Despite this ability, easy computation 

access to these remains an issue. To address the computation resource problem, COSMIC2 (Cianfrocco 

et al., 2017), a science gateway for cryo-EM, has been developed with the philosophy of bringing popular 

cryo-EM tools and resources to all scientists in the field, removing the practical limitations that accessing 

those resources would otherwise entail.  

 

Many algorithms have also been developed to accelerate cryo-EM data preprocessing and minimize 

subjective decisions and tedious human annotations. Notably, deep learning, especially convolutional 

neural network (CNN), has greatly changed and improved the step of particle picking (Al-Azzawi et al., 

2019; Bepler et al., 2019; Nguyen et al., 2019; Tegunov and Cramer, 2019; Wagner et al., 2019; Wang et 

al., 2016; Xiao and Yang, 2017; Zhang et al., 2019; Zhu et al., 2017). Nevertheless, the field still lacks a 

robust tool that will make decisions by evaluating the output from data preprocessing steps, so that human 

intervention can be removed, making an automatically streamlining workflow possible. 

   

Here, we introduce several deep learning and image analysis tools for automated preprocessing and 

assessment of cryo-EM datasets. By connecting these tools with state-of-the-art data preprocessing 

algorithms, we make a general workflow that can achieve expert-level performance on a number of different 

cryo-EM datasets without any user intervention. Our workflow takes movies or motion-corrected 

micrographs as the input and outputs a particle stack that contains high-resolution particles that will be used 

in the following 3D reconstruction steps without any user decisions. Specifically, our workflow can 
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automatically detect bad micrographs using MicAssess, determine the best parameters for particle picking 

and 2D classification, and identify the good class averages that can be used in 3D reconstruction using 

2DAssess. In the workflow, the subjective user decisions are replaced with statistical models based on the 

features extracted with image processing methods and convolutional neural networks, along with the expert 

knowledge. We believe that our automatic pipeline helps to establish a framework to accelerate data 

preprocessing and to perform data assessment at multiple levels in the high-throughput era of cryo-EM. 

RESULTS 

Overview of the Method 

The current routine of cryo-EM data preprocessing consists of a number of subjective user decisions (Fig. 

1). First, many users will manually go through all the motion-corrected micrographs to pick out the bad 

micrographs, and then select an estimated resolution threshold to remove the remaining bad micrographs 

based on the results of CTF estimation. Next, most particle pickers will require the users to manually pick 

a few particles, set the estimated particle diameter and determine the picking threshold before automatic 

particle picking. Then the particles will be extracted with the user-defined box size and pixel size used for 

2D classification, where the users need to determine the class number and the diameter of the mask. 

Finally, the users need to select the good 2D class averages based on their own judgment, and the particles 

in the selected 2D class averages will be re-extracted and used in the downstream 3D reconstruction steps. 

 

Our general workflow streamlines the preprocessing steps to take either movies or motion-corrected 

micrographs as the input and output a stack of clean particles that can be used as the input in the 

subsequent 3D analysis (Fig. 1). During this process, we built statistical models in order to capture human 

decision-making during the preprocessing steps. Instead of developing new preprocessing tools and 

algorithms, our workflow takes advantage of these developments and provides evaluations so that expert-

level decisions can be made automatically. We provide an overview of the method below. 



5 

MicAssess: Automatic micrograph assessment 

First, we developed a tool that can assess the quality of motion-corrected micrographs even before CTF 

estimation: MicAssess. Unlike EMPIAR datasets, which consist of mostly usable micrographs, many real-

world data generated from the microscopes are dirty and noisy. Researchers often undertake significant 

effort to manually eliminate bad micrographs to obtain a clean dataset to work within the downstream 

preprocessing steps. Although the difference between good and bad micrographs is unambiguous, it is still 

difficult to find a universal and robust criterion. Many scientists have been using the resolution outputs from 

CTF estimation for micrograph cleaning, however, there lacks a publicly accepted resolution cutoff, and 

there are still a number of bad micrographs that will make through using this metric for decision making.  

  

Convolutional neural networks (CNN) are changing the field of computer vision as well as biology in recent 

years and have been widely applied to image classification, object detection, image segmentation, etc 

(Moen et al., 2019). In cryo-EM, a number of CNN- based particle picking models have been developed 

and widely used, including Warp (Tegunov and Cramer, 2019), crYOLO (Wagner et al., 2019), and Topaz 

(Bepler et al., 2019). With the similar idea, we developed a CNN-based micrograph assessor, MicAssess. 

The architecture of MicAssess is described in Fig. 2A. Similar to many CNN models, our model consists of 

a feature extraction convolutional network and a classification network. For the feature extraction network, 

we used a standard ResNet34 (He et al., 2016), which is a deep and light-weighted fully convolutional 

residual network with 34 layers. Following the feature extraction, the convolutional network is the 

classification network, which consists of one fully connected (FC) layers with 512 nodes. Dropout layers 

with a 0.5 dropout rate and batch normalization are also applied, and leaky rectified linear unit (LReLU) is 

used as the activation function. Finally, the last layer uses a sigmoid function as the activation function and 

performs prediction, which is the probability that the input micrograph is considered as “good”. 

 

Most image classification problems are considered as supervised learning, which means that they need to 

be trained on labeled datasets. We have collected and manually labeled a total of 4,644 micrographs (2,372 

good micrographs and 2,272 bad micrographs) from several EMPIAR datasets in addition to in-house 

datasets (Table 1). Our good micrograph dataset consists of proteins and complexes ranging from 50 kDa 

https://paperpile.com/c/VKjkYW/vQThL
https://paperpile.com/c/VKjkYW/MVIdz
https://paperpile.com/c/VKjkYW/6txhG
https://paperpile.com/c/VKjkYW/lKXya
https://paperpile.com/c/VKjkYW/WrkoY
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to 4 MDa (Fig. 2B, upper row), while our bad micrograph dataset consists of a variety of unusable 

micrographs including micrographs that are either empty or too dense, contaminated, or with protein 

aggregates (Fig. 2B, lower row). The dataset was randomly split into a training set (80 %) and a validation 

set (20 %). Data augmentation was applied before training to increase the amount of training data and 

reduce overfitting. The trained model was evaluated on the validation set, and an accuracy of about 97% 

was achieved. A detailed description can be found in the Methods section.  

 

To test the effectiveness of MicAssess, we analyzed a published dataset collected by our lab on the 

Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) (Cash et al. 2019). 

This dataset contains 6,736 micrographs and is a combination of untilted and tilted series.  Importantly, the 

training data in MicAssess did not include any P-Rex1 micrographs. As a comparison, we also classified 

the micrographs using the CTF maximum resolution outputs from CTFFIND4, with determination thresholds 

being 4 Å for untilted micrographs and 10 Å for tilted micrographs. To quantify the performance of both 

CTF-based micrograph cleaning and MicAssess, we manually labeled the total 6,736 micrographs and 

used the labels as the “ground truth” with which to compare.  

 

A comparison of CTF maximum resolution cutoff to the ground truth highlighted a number of discrepancies.  

As is typical, the distribution of CTF maximum resolution values for tilted or untilted micrographs does not 

show a bimodal distribution. (Fig. 3A). Therefore, even though 4 Å and 10 Å resolution cutoff thresholds 

are considered reasonable, such numbers are not obvious from the distribution of the data, but rather 

arbitrary. Compared to human-labeled “ground truth”, CTF-based micrograph cleaning reached an overall 

accuracy of 77.5% (Fig. 3B). This indicates that while CTF maximum resolution is a convenient method to 

remove bad micrographs, there is room for improvement in order to obtain more accurate micrograph 

assessment. 

 

Compared to CTF maximum resolution, MicAssess showed higher accuracy for identifying both good and 

bad micrographs. To highlight the power of MicAssess, MicAssess was also able to correctly classify many 

bad micrographs with < 4 Å CTF maximum resolutions (Fig. 3C). Such micrographs will not be captured by 
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the CTF-based micrograph cleaning approach. Overall, MicAssess found 1,388 bad micrographs (Fig. S2) 

and had an accuracy of 93.0%, with a notably very low false-negative rate (0.12%) (Fig. 3D). In other words, 

only 8 good micrographs were misclassified to the bad category.  

 

This analysis indicates the MicAssess performs nearly as well as human assessment for the P-Rex1 test 

dataset. More importantly, MicAssess does not need any arbitrary threshold, and both tilted and untilted 

micrographs were predicted with the exact same procedure, providing a completely “hands-off” tool for 

micrograph assessment, which enables the automatic cryo-EM data preprocessing and assessment at the 

very beginning. 

Automatic particle diameter estimation 

Since our workflow aims for decision-free preprocessing, the suitable particle picker should not need any 

human picking beforehand. Therefore, any template-based particle picker or CNN-based particle picker 

that needs to be trained on manually prelabeled particles cannot be used in the workflow. Fortunately, we 

are able to use the general model of crYOLO (Wagner et al., 2019), which is a CNN-based particle picker 

pretrained on a number of EMPIAR and in-house datasets. The two parameters needed for particle picking 

in crYOLO are box size and threshold.  

 

Optimally, the box size should be the size of the particle. Since this information is usually unclear for a new 

protein, our workflow will first perform particle picking on a subset of the micrographs with different box 

sizes. The picked particles will be extracted, low pass filtered and averaged without any alignment. We then 

find the edge of this averaged image using a Canny edge detector, and the size of the particle is determined 

based on the edge detected and is dilated by an empirical factor of 1.5 (Fig. S3). After that, the workflow 

uses crYOLO to pick the particles from all micrographs. The threshold parameter controls the strictness of 

the decision of a particle. The workflow uses a very low threshold of 0.1 since many false positives can be 

removed in the following 2D classification step. 

https://paperpile.com/c/VKjkYW/6txhG
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2DAssess: Automatic selection of good 2D class averages  

After particles are picked and extracted from micrographs with CTF information, particles are subjected to 

2D classification, whereby good 2D averages are identified using 2DAssess. Similar to the micrograph 

classifier, our CNN-based classifier model (Fig. 2C) also requires a labeled dataset for training. We have 

obtained the 2D class averages from ten different datasets from a range of diameters use in 2D 

classification, providing 2D averages for optimal masks, masks that are too tight, and masks that are too 

large (Table 2).  

 

The 2D class averages are preprocessed and labeled in four different classes (Fig. 2D): good, clip, edge, 

and noise. The good class includes all the good class averages that will be selected and used in the 

downstream processing steps. The clip class includes the class averages that are clipping the neighboring 

particles, usually a sign that the diameter is too large. The edge class includes the class averages with 

“barcode” like patterns, which means that some particles are on the edge of the micrograph or the carbon. 

The noise class includes all the other bad class averages that are not covered by the clip and edge classes, 

which contains pure noise, over-aligned, and low-resolution class averages.  The dataset was 

downsampled to account for the class imbalance and then randomly split into a training set (80 %) and a 

validation set (20 %). We noticed that when the diameter of the mask becomes large, one class average 

might contain two particles. The CNN-based classifier failed to detect this and would misclassify such 2D 

class averages to the “good” class. To prevent this, we checked the saliency map (Hou and Zhang, 2007) 

of the 2D class averages in the predicted “good” class, and re-classify the class averages with two or more 

objects to the correct “clip” class. The combination of the CNN-based classifier and the saliency map check 

made up the complete 2D class average assessor, which we named it as 2DAssess. 

 

To further enrich the number of good class averages, we used deep convolutional generative adversarial 

networks (DCGAN) (Radford et al., 2015) to generate artificial good class averages using the true good 

class averages in the training set. We then carefully selected 66 artificial good class averages generated 

by DCGAN (Fig. S4) and added them to the training set. Although the selected images are not from 2D 

class averages of real proteins, they will most likely be labeled as good class averages without any prior 

https://paperpile.com/c/VKjkYW/uJOs3
https://paperpile.com/c/VKjkYW/bvbfv
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knowledge of the protein. Adding these DCGAN generated images as a data augmentation approach 

improves the generalizability of the classifier when the good 2D class average samples are limited. Some 

simple data augmentation (elaborated in the methods section of the paper) was applied in training and 

validation. The precision and recall of each class for the validation set are reported in Table 3. Notably, the 

good class reached a precision of 94% and a recall of 97%.  

Testing on EMPIAR Datasets 

T20S proteasome (EMPIAR-10025) 

First, we tested our workflow on a subset of the published T20S proteasome cryo-EM dataset (EMPIAR-

10025) (Campbell et al., 2015) (Fig. 4). This subset contains 87 micrographs, all of which were all being 

classified as good by MicAssess. Subsequently, the diameter was estimated to be 195 Å. Using this 

diameter, crYOLO picked 52,153 particles that were used to search a range of diameters during 2D 

classification (Fig. 4A & B). For each diameter used in RELION 2D classification, 2DAssess was used to 

estimate the number of good particles. Finally, comparison across all diameters used in 2D classification 

indicated that the best diameter for T20S was 195 Å (Fig. 4B). For the 195 Å diameter, the good 2D class 

averages selected by 2DAssess had a 100% prediction accuracy (Fig. 4C), correctly identifying all good 

and bad 2D averages. 

 

Using the stack of particles associated with good averages, we then performed 3D refinement to obtain a 

3.0 Å structure of the T20S proteasome (Fig. 4D & E). The resolution is slightly lower than the original 

paper (Campbell et al., 2015) because we used only a small subset of the EMPIAR dataset, and the results 

were obtained without extensive classification or CTF refinement. This structure demonstrates that the 

automatic preprocessing pipeline provided a high-resolution stack of particles of T20S without user 

intervention.  

https://paperpile.com/c/VKjkYW/qITFR
https://paperpile.com/c/VKjkYW/qITFR
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Hemagglutinin (HA) trimer (EMPIAR-10175) 

After successfully analyzing T20S, we next wanted to try a more challenging sample. To this end, we 

selected the influenza hemagglutinin trimer (HA trimer) dataset (EMPIAR-10175) (Noble et al., 2018) due 

to its extreme orientation differences: end-on views have a diameter of 55Å whereas the side-on views 

have a diameter of 140Å. After running MicAssess on 1,099 micrographs,  MicAssess identified 205 

micrographs as bad (examples are shown in Fig. S5), and the rest of 894 micrographs were preprocessed 

by the downstream pipeline. After 2D classification, the best diameter to be used in 2D classification was 

selected to be 150 Å (Fig. 5A & B). The good and bad class averages were all correctly classified by 

2DAssess (Fig. 5C).  

 

Using the output stack of good particles, we performed a 3D refinement with the selected 150,684 particles. 

This allowed us to determine a structure at 3.2 Å resolution (Fig. 5D & E), comparable to what was 

published previously for HA trimer (Noble et al., 2018). This structure confirmed that the automatic pipeline 

is capable of handling datasets of varying size and shape, setting the stage for real-world data analysis. 

Analysis of real-world data  

Aldolase 

To extend our preprocessing pipeline, we analyzed an in-house collected aldolase dataset. This dataset 

contains 1,118 micrographs, in which 1,075 micrographs were predicted as good by MicAssess. The 

examples of bad micrographs being selected by MicAssess are shown in Fig. S6. After estimating the 

particle diameter, the 2D classification showed an optimal mask diameter of 108 Å (Fig. 6A & B). 2DAssess 

correctly predicted all the good class averages. In this dataset, there were two falsely identified good 

averages that were actually bad, which only accounted for 1.53% of the total particles (Fig. 6C).  

 

Using the particle stack generated by the pipeline (including all of the false positives), we performed a 3D 

refinement to obtain a final structure of aldolase at 3.2 Å (Fig. 6D & E). This demonstrates that the 

https://paperpile.com/c/VKjkYW/JxFdB
https://paperpile.com/c/VKjkYW/JxFdB
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preprocessing pipeline successfully handles more realistic data, as expert users also determine a structure 

to the same resolution.  

P-Rex1 - a sample screening case study for high-throughput cryo-EM 

Finally, in order to demonstrate the effectiveness of the pipeline, we automatically analyzed multiple 

datasets to simulate a sample screening experiment. The datasets we used were collected from six cryo-

EM sessions of P-Rex1 under different conditions (Fig. 7A), including apo P-Rex1 on different types of 

grids (18sep06b and 18sep28b), with different additives (18jan09b and 18jan09d), and with a binding 

partner Gβγ at different concentrations (18jul14a and 18jan18c). The goal of this sample screening case 

study is to verify that our pipeline provides a robust and user-free approach for automatic data quality 

assessment at different levels considering that only one dataset (18jan18c) is amenable for high-resolution 

cryo-EM (Cash et al., 2019). 

 

All six datasets were analyzed with the pre-defined automatic pipeline, where no user input was required 

other than microscope settings. The outputs of the automatic pipeline were the 2D class averages selected 

by 2DAssess for each dataset (Fig. 7A & Fig. S7). The datasets were assessed at different levels, from 

the micrographs to the 2D class averages, throughout the pipeline. At the first step, MicAssess quickly 

captured that one of the datasets, 18sep28b, contained mostly bad micrographs (70%) (Fig. 7B). All the 

other five datasets contained mostly good (above 50%) micrographs (Fig. 7B). The particle picker picked 

170-350 particles per micrograph for all five datasets, except 18sep28b, which only had an average of 85 

picked particles per micrograph, confirming the bad quality of this dataset (Fig. 7C). After 2D classification, 

the class averages were classified by 2DAssess, where we found that four datasets have over 50% of the 

picked particles to be good particles outputted by the automatic pipeline (Fig. 7B), and there were 100~200 

good particles per micrograph (Fig. 7C). 

 

Although many of the datasets showed promising statistics of good micrograph and good particle fractions, 

the good 2D class averages selected by 2DAssess revealed that apo P-Rex1 alone and with additives had 

a very strong preferred orientation on the cryo-EM grids (Fig. 7A). On the other hand, one of the datasets 

https://paperpile.com/c/VKjkYW/ynpmO
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of P-Rex1 with Gβγ (18jul14a) exhibited a sample heterogeneity, where we found Gβγ oligomers in the 

good 2D class averages (Fig. 7A), indicating that the concentration of Gβγ added was too high. Finally, the 

2D class averages output by the automatic pipeline from the last dataset (18jan18c) showed the P-Rex1 

and Gβγ interactions, and new orientations were also seen as a result (Fig. 7A). This case study 

demonstrated that our automatic preprocessing pipeline is an objective, fully automatic approach for sample 

screening for high-throughput cryo-EM.  

DISCUSSION 

Cryo-EM is on the verge of becoming a high-throughput technique due to the ability of collecting multiple 

datasets per microscope session. This new era requires consistent and reproducible methods to assess 

and preprocess the micrographs directly from the microscopes in a timely manner. Our workflow provides 

a robust way to assess and preprocess cryo-EM data automatically without any user intervention, and it 

takes advantage of pre-existing software and preprocessing algorithms. We maintained the flexibility to 

incorporate any preprocessing algorithms, as long as no subjective user decisions are required. Notably, 

our workflow also worked on a dataset which used deliberate crowding as a strategy to achieve thinner ice, 

as shown in our test on EMPIAR-10181 (Herzik et al., 2017) (Fig. S8). While the good results might be 

expected for the highly curated EMPIAR datasets, our workflow performed equally well on our in-house 

datasets of aldolase and P-Rex1 screening, indicating that the workflow is likely robust for a variety of 

sample types. To our knowledge, this is the first fully automatic and generic workflow for cryo-EM data 

preprocessing. 

 

Instead of competing with state-of-the-art software packages, our workflow uses the deep-learning-based 

assessment tools we developed and provides a platform to streamline all the preprocessing steps. For 

example, Warp (Tegunov and Cramer 2019) is a user-friendly preprocessing software which enables the 

users to interact directly with their data. However, manual inspections and user decisions are still needed 

in the whole preprocessing with Warp. The assessment tools introduced in this paper can be used in the 

Warp workflow to help with automatic data preprocessing.  

 

https://paperpile.com/c/VKjkYW/gtIk
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As the initial step in our workflow, it is important that MicAssess can efficiently identify most bad 

micrographs, but keeping ideally all the good micrographs. Therefore, MicAssess was tuned to tolerate 

more false positives, reducing the risk of a good micrograph being misclassified. The P-Rex1 benchmark 

result showed that it can effectively identify most of the bad micrographs from a big real-world dataset. 

Furthermore, MicAssess also has the potential to be incorporated into the data acquisition step. With the 

new K3 camera, which can collect as fast as 8,000 movies per day, it is impossible to manually assess the 

quality of the newly collected micrographs. MicAssess provides a way to assess these micrographs on the 

fly even before CTF estimation so that the user can get real-time feedback on the qualities of the 

micrographs. 

 

In our workflow, we only used 2DAssess to predict whether a class average is good or bad, but it can predict 

four different classes (clip, edge, good, and noise), which contains a lot more information. For example, a 

large percentage of particles being classified as “clip” usually indicates the mask diameter is too large 

because neighboring particles are being included in some 2D class averages. This gives the 2DAssess the 

potential to improve 2D classification by performing automatic diameter searching. Specifically, since most 

2D classification algorithms are iterative, intermediate 2D class averages are generated after each iteration. 

It is possible to apply 2DAssess on the 2D class averages in the early iterations and use the outputted 

predictions to guide the automatic diameter searching. 

 

Given that MicAssess and 2DAssess are deep-learning based models, both models will continue to improve 

with more representative training data. Moreover, as deep learning models, these tools can be tuned for 

specific samples, users, or facilities to aid in sample assessment. Sample tuning could be extended into 

other parts of the pipeline, including particle picking and, likely, 3D analysis. Further work in this area stands 

to help streamline initial phases of cryo-EM data processing. 

  

An important aspect of our pipeline centers on creating a workflow that does not depend on user-defined 

thresholds. These thresholds are typically CTF maximum resolution and particle picking thresholds, but 
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could also apply to how 2D class averages are selected. By developing statistical tools to assess the data, 

we developed tools that more closely mirror user-based decisions, instead of fixed-value thresholds. 

 

While this pipeline provides an important first step for automated pre-processing, there remains room for 

improvement. Namely, we continued to use 2D classification as a tool in order to measure particle quality, 

where belonging to ‘good’ class averages was a criteria for subsequent 3D analysis. Moreover, 2D 

classification is the bottleneck of the speed of this pipeline, where about 99% of the CPU core hours were 

spent in the 2D classification step. Future work into particle sorting stands to provide a quick readout of 

particle quality to enable faster pre-processing routines. 

 

Overall, this work demonstrates that user-free preprocessing is capable to perform in a manner comparable 

to that of an expert. Future work may extend into automated 3D analysis to enable cryo-EM users to quickly 

analyze multiple datasets in parallel.  
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STAR METHODS 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources should be directed to and will be fulfilled by the Lead 

Contact, Michael A Cianfrocco (mcianfro@umich.edu). 

 

METHOD DETAILS 

MicAssess 

Motion corrected micrographs in MRC format were low-pass filtered and cropped to downscale to the 

network input image size of 494x494. Micrographs were then normalized to a mean of zero. A circular mask 

with diameter 494 pixels was applied to each micrograph, and then rotations and flipping were applied 

randomly in the training and validation dataset. The model was a 34-layer ResNet connected to two fully 

connected layers with leaky ReLU as the activation function and 0.5 dropout rate. The final predicting layer 

used a sigmoid function as the activation function. The loss function used was the binary cross-entropy 

loss. We used the ADAM optimizer with 0.0001 learning rate in training for optimization. In the real 

prediction, in order to tolerate more false positives than false negatives, we set the threshold as 0.1 (i.e. 

only micrographs with probabilities of being good lower than 0.1 will be classified as bad).  

 

MicAssess was written in Python and employed Keras with Tensorflow as the backend. It has been 

optimized for GPU, but it can be run on CPU-only machines as well, and is compatible with all platforms 

(Linux, Windows, and macOS). It currently supports data from both K2 and K3 cameras. 

CTF estimation 

CTF estimation is performed using CTFFIND4 (Rohou and Grigorieff, 2015), with all the parameters, 

including pixel size, spherical aberration, magnification, and voltage, are related to the experiment given 

earlier. 

mailto:mcianfro@umich.edu
https://paperpile.com/c/VKjkYW/yd7Ak
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2D classification 

Picked particles were scaled to about 3 Ångstrom/pixel and extracted using RELION3 (Zivanov et al., 2018). 

After that, all the particles will be processing with 2D classification in RELION3. The workflow uses the 

maximum class number, 200, for the best performance in the sacrifice of speed. Multiple 2D classification 

jobs for one dataset will be submitted, with different diameters of the mask, ranging from 0.5 to 2 times the 

particle size estimated earlier. 

2DAssess 

Training and validation data consist of the RELION (Zivanov et al., 2018) outputs of 2D classification from 

12 different datasets (Table 3). The EMPIAR datasets were preprocessed by the pipeline, and the outputted 

2D class averages were manually labeled to the correct classes. Classes with significantly more samples 

were downsampled to eliminate the possible problems caused by class imbalance.  The final dataset has 

527, 550, 898, 1002 images for good, clip, edge, and noise classes respectively, and was randomly split 

into a training set (80 %) and a validation set (20 %). 

 

Given that the output averaged images from RELION (Zivanov et al., 2018) already contained a mask with 

diameter d, we cropped all average images to remove mask edges.  To do this, we first cropped the images 

to size dxd which only keep the centers of the images. Images were then normalized to a mean of zero, 

and resized to 256x256 using Lanczos resampling. Random rotations and flipping were applied in the 

training and validation dataset.  

 

We used a simple DCGAN (Radford et al., 2015) model to artificially generate images that belong to the 

good class as a data augmentation approach. The training data used for DCGAN is the 527 images in the 

good class. The generator of DCGAN was a convolutional neural network implementing upsampling 

convolutions, organized as input (100-d) -> transpose conv3x3 1024-d, stride 2, batch normalization, ReLU 

activation -> transpose conv1x1 1024-d, stride 1, batch normalization, ReLU activation -> transpose 

conv3x3 512-d, stride 2, batch normalization, ReLU activation -> transpose conv1x1 512-d, stride 1, batch 

normalization, ReLU activation -> transpose conv3x3 256-d, stride 2, batch normalization, ReLU activation 

https://paperpile.com/c/VKjkYW/JdZDO
https://paperpile.com/c/VKjkYW/JdZDO
https://paperpile.com/c/VKjkYW/JdZDO
https://paperpile.com/c/VKjkYW/bvbfv
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-> transpose conv3x3 256-d, stride 2, batch normalization, ReLU activation -> transpose conv3x3 1-d, stride 

1, tanh activation -> generated image. The discriminator of DCGAN was a simple convolutional neural 

network, organized as input -> conv3x3 32-d, stride 2, batch normalization, leaky ReLU activation, dropout 

rate 0.25 -> conv3x3 64-d, stride 2, batch normalization, leaky ReLU activation, dropout rate 0.25 -> 

conv3x3 128-d, stride 2, batch normalization, leaky ReLU activation, dropout rate 0.5 -> conv3x3 128-d, 

stride 2, batch normalization, leaky ReLU activation, dropout rate 0.5 -> fully connected layer with a single 

output with sigmoid activation. 10,000 epochs were used in training and only the images generated from 

the last 2,000 were saved. We then carefully selected 66 images and added them to the training set. All the 

selected images generated by DCGAN are shown in Fig. S4.  

 

The CNN-based classifier failed to correctly classify class averages containing two particles, which is a 

situation that occurs when the 2D classification mask is too large. Therefore, we confirmed that all images 

predicted to be in the good class did not have two particles by calculating a saliency map of the 2D class 

averages. A saliency map is a representation of an image that can highlight the unique features of the 

image. In our application, we calculated the saliency map with the spectral residual approach and based 

on the object detected by the saliency map, we checked 1) the number of the object, and 2) whether the 

center of mass of the detected object is around the center of the image. Only the 2D class averages with 

one centered object detected will pass this saliency map check. The other class averages, with either more 

than one object or the object, are typically not well centered (usually due to the case that there are more 

than one particle but the particles are too close to be differentiated by the saliency map), will be moved to 

the correct clip class. 

 

2DAssess was written in Python and employed Keras with Tensorflow as the backend. It has been 

optimized for GPU, but it can be run on CPU-only machines as well, and is compatible with all platforms 

(Linux, Windows, and macOS). 
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The number of the good particles that belong to the good 2D class average groups are calculated across 

all the diameters used in the 2D classification jobs, and the diameter with the best particles is being selected 

as the best diameter. 

T20S single-particle analysis 

3D refinement. After the preprocessing pipeline, 45,066 particles were re-extracted to a pixel size of 0.88 

Å/pixel with a box size of 390 Å. Using EMD-6287 as an initial model, we performed a 3D refinement in 

RELION-v3.0 (Zivanov et al., 2018) using D7 symmetry to obtain a structure at 3.0 Å resolution and B-factor 

of -94 Å2. 

HA Trimer single-particle analysis 

3D refinement. After the preprocessing pipeline, 150,684 particles were re-extracted to a pixel size of 

1.275Å/pixel with a box size of 250Å. Using EMD-7792 as an initial model, we performed homogenous 3D 

refinement in cryoSPARC v2.11.2-live_privatebeta using C3 symmetry to obtain a structure at 3.2 Å 

resolution and a B-factor of -151 Å2.  

Aldolase single-particle analysis 

Sample preparation. Pure aldolase isolated from rabbit muscle was purchased as a lyophilized powder 

(Sigma Aldrich) and solubilized in 20 mM HEPES (pH 7.5), 50 mM NaCl at 1.6 mg/ml. Sample as dispensed 

on freshly plasma cleaned UltrAuFoil R1.2/1.3 300-mesh grids (Electron Microscopy Services) and applied 

to grid in the chamber of a Vitrobot (Thermo Fisher) at ~95% relative humidity, 4°C. The Sample was blotted 

for 4 seconds with Whatman No. #1 filter paper immediately prior to plunge freezing in liquid ethane cooled 

by liquid nitrogen.  

Cryo-EM data acquisition. Data were acquired using the Leginon automated data-acquisition program 

(Suloway et al., 2005). Image preprocessing (frame alignment with MotionCor2 (Zheng et al., 2017) and 

CTF estimation) were done using the Appion processing environment (Lander et al., 2009) for real-time 

feedback during data collection. Images were collected on a Talos Arctica transmission electron microscope 

(Thermo Fisher) operating at 200 keV with a gun lens of 6, a spot size of 6, 70 μm C2 aperture and 100 μm 

https://paperpile.com/c/VKjkYW/JdZDO
https://paperpile.com/c/VKjkYW/WSumq
https://paperpile.com/c/VKjkYW/7F3J
https://paperpile.com/c/VKjkYW/0uiE3
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objective aperture. Movies were collected using a K2 direct electron detector (Gatan Inc.) operating in 

counting mode at 45,000x corresponding to a physical pixel size of 0.91 Å/pixel. The dose rate was 4.413 

e/pix/sec for a 10 second exposure, which makes for a total dose of 44.13 e/Å2 for the 1118 images collected 

at a defocus range of 0.8-2 μm. 

 

3D refinement.  After the preprocessing pipeline, 425,087 particles were re-extracted to a pixel size of 1.22 

Å/pixel with a box size of 271 Å. Using EMD-8743 as an initial model, we performed a 3D refinement in 

RELION-v3.0 (Zivanov et al., 2018) using D2 symmetry to obtain a structure at 3.2 Å resolution and B-factor 

of -110 Å2. 

P-Rex1 screening single-particle analysis 

P-Rex1 samples were prepared as described (Cash et al., 2019) with the exception of details described in 

Table 4. 

 

DATA AND CODE AVAILABILITY  

Cryo-EM structures have been deposited to the EMDB under accession codes EMD-21491 (T20S), EMD-

21490 (HA Trimer), and EMD-21492 (Aldolase). Aldolase dataset has been deposited to EMPIAR under 

EMPIAR-10379. 

Software tools capable of running MicAssess and 2DAssess arebe available at 

https://github.com/cianfrocco-lab/Automatic-cryoEM-preprocessing under the MIT license. The 

preprocessing pipeline will also be incorporated into the freely available COSMIC2 science gateway: 

https://cosmic2.sdsc.edu:8443/gateway/. 

 

 

 

 

  

https://paperpile.com/c/VKjkYW/JdZDO
https://paperpile.com/c/VKjkYW/ynpmO
https://github.com/cianfrocco-lab/Automatic-cryoEM-preprocessing
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Figure 1. Conventional cryo-EM preprocessing vs. automatic preprocessing pipeline. Left panel: 

current workflow describing the preprocessing of cryo-EM datasets, with all the user decisions needed in 

red. Right panel: the automatic pipeline introduced in this paper. All user decisions are replaced by the new 

tools developed in blue. 
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Figure 2. Deep learning-based tools for cryo-EM micrograph and 2D class average assessment. (A) 

The architecture of MicAssess. The motion corrected micrograph will be inputted to a feature extraction 

convolutional network (a standard ResNet34 in the paper), and after one dropout layer, one fully connected 

layer and another dropout layer, output the prediction of the micrograph. (B) Examples of the labeled good 

and bad micrographs in the training set. The good class contains partially good images, images with small 

or very large proteins, etc.. The bad class contains all different kinds of unusable micrographs, including 

micrographs that are empty or too dense, contaminated, or with protein aggregates. (C) The architecture 

of CNN-based model in 2DAssess. The input class average image will be inputted to  a feature extraction 

convolutional network (a standard ResNet50 in the paper), and after one dropout layer, output the prediction 

of the 2D class average to be one of the four classes. (D) Examples of the labeled 2D class averages in 

the good, clip, edge, and noise classes in the training set.  
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Figure 3. MicAssess performs equivalently to CTF resolution cutoff on micrograph assessment. (A) 

Histograms of the CTF maximum resolutions outputted by CTFFIND4 of the test set. Vertical lines indicate 

the selected hard thresholds for tilted and untilted micrographs (4 Å and 10 Å respectively). Micrographs 

higher than the thresholds are considered as bad. (B) Confusion matrix and evaluation metrics for CTF 

resolution threshold vs. human assessment on P-Rex1:Gβγ dataset. (C) Histograms of the CTF maximum 

resolutions outputted by CTFFIND4 of the test set, color labeled according to the predictions by MicAssess. 

Vertical lines indicate 4 Å and 10 Å respectively. (D) Confusion matrix and evaluation metrics of MicAssess 

on the P-Rex1 test set. 
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Figure 4. High-resolution cryo-EM structure of T20S proteasome from automatic preprocessing 

pipeline. (A) Overview of the intermediate results of automatic pipeline on EMPIAR-10025 dataset. (B) 

Histogram showing the fractions of the good particles identified by the pipeline with different diameter used 

in 2D classification. The diameter with the most good particles (195 Å) is selected (darker blue) to be the 

best diameter, and the corresponding 2D classification result is used to output the final particle stack. (C) 

2DAssess achieves 100% prediction accuracy on the EMPIAR-10025 dataset. All the good 2D averages 

(86.4% of the picked particles) and a subset of the bad 2D averages predicted by 2DAssess are shown. 

(D) 3D electron density volume using the particle stack outputted by the pipeline as the input for 3D 

reconstruction steps. (E) FSC curve of the electron density map in panel C, showing a resolution of 3.1 Å. 
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Figure 5. High-resolution cryo-EM structure of HA trimer from automatic preprocessing pipeline. (A) 

Overview of the intermediate results of automatic pipeline on EMPIAR-10175 dataset. (B) Histogram 

showing the fractions of the good particles identified by the pipeline with different diameter used in 2D 

classification. The diameter with the most good particles (150 Å) is selected (darker blue) to be the best 

diameter, and the corresponding 2D classification result is used to output the final particle stack. (C) 

2DAssess achieves 100% prediction accuracy on the EMPIAR-10175 dataset. All the good 2D averages 

(89.8% of the picked particles) and a subset of the bad 2D averages predicted by 2DAssess are shown. 

(D) 3D electron density volume using the particle stack outputted by the pipeline as the input for 3D 

reconstruction steps. (E) FSC curve of the electron density map in panel C, showing a resolution of 3.2 Å. 
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Figure 6. High-resolution cryo-EM structure of aldolase from automatic preprocessing pipeline. (A) 

Overview of the intermediate results of automatic pipeline on the aldolase dataset. (B) Histogram showing 

the fractions of the good particles identified by the pipeline with different diameter used in 2D classification. 

The diameter with the most good particles (108 Å) is selected (darker blue) to be the best diameter, and 

the corresponding 2D classification result is used to output the final particle stack. (C) 2DAssess achieves 

very high prediction accuracy on the aldolase dataset. All the good 2D averages (79.2% of the picked 

particles) and a subset of the bad 2D averages predicted by 2DAssess are shown. The two false positives 

(blue shaded) only account for 1.53% of the total picked particles. (D) 3D electron density volume using the 

particle stack outputted by the pipeline (including the false positives) as the input for 3D reconstruction 

steps. (E) FSC curve of the electron density map in panel C, showing a resolution of 3.2 Å. 
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Figure 7. Automatic analysis of multiple P-Rex1 cryo-EM data sets to assess sample quality. (A) The 

six datasets analyzed by the automatic pipeline in this case study, including different sample preparations, 

different additives and whether a binding partner was added. 2D class averages were predicted by 

2DAssess and the five good and representative 2D class averages for each dataset are shown for 

assessment. (B) Fractions of the good micrographs in all the micrographs (orange) and fractions of the 

good particles outputted by the automatic pipeline in all the picked particles (purple) for each dataset. (C) 

The numbers of picked particles (brown) and the numbers of good particles outputted by the automatic 

pipeline (blue) for each dataset. 
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Particle Name EMPIAR ID 

26S Proteasome EMPIAR-10072 

AAV EMPIAR-10202 

Ribosome EMPIAR-10077 

Rag complex EMPIAR-10049 

NOMPC EMPIAR-10093 

GluDH EMPIAR-10217 

RNA PolIII EMPIAR-10190 

Spliceosome EMPIAR-10160 

In-house dataset - 160 kDa N/A 

In-house dataset - 480 kDa  N/A 

In-house dataset - 180 kDa  N/A 

In-house dataset - 168 kDa  N/A 

In-house dataset - 80 kDa  N/A 

 

Table 1. Sources of the micrographs in the training and validation dataset used for MicAssess. 
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Particle Name EMPIAR ID 

RNA-Pol III EMPIAR-10190 

Rag complex EMPIAR-10049 

E. Coli 70S-SelB ribosome EMPIAR-10077 

26S Proteasome EMPIAR-10072 

NOMPC EMPIAR-10093 

Spliceosome EMPIAR-10160 

TMEM16 EMPIAR-10241 

AAV EMPIAR-10202 

Betagal EMPIAR-10061 

GluDH EMPIAR-10217 

In house sample (180 kDa) N/A 

Apoferritin (in-house) N/A 

 

Table 2. A full list of the 2D class averages in the training and validation dataset used for 2DAssess. 
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 Precision Recall Support 

Clip 0.89 0.92 110 

Edge 0.91 0.84 180 

Good 0.94 0.97 120 

Noise 0.82 0.85 201 

 

Table 3. Precisions, recalls and the number of supports of each class in the validation set of 

2DAssess. 
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 18sep06b 18sep28b 18jan09b 18jan10d 18jul14a 18jan18c 

P-Rex1 
concentration (μM) 

3.0 3.0 3.0 3.0 3.0 3.0 

Additive (μM) - - DDM (80) Lubrol (40) DDM (80) DDM (80) 

Gβγ concentration 
(μM) 

- - - - 60 6.0 

Grid type Quantifoil 
1.2/1.3 

Lacey 
carbon 

Quantifoil 
1.2/1.3 

Quantifoil 
1.2/1.3 

Quantifoil 
1.2/1.3 

Quantifoil 
1.2/1.3 

Microscope Titan 
Krios 

Talos 
Arctica 

Talos 
Arctica 

Talos 
Arctica 

Titan 
Krios 

Titan Krios 

Original Pixel Size 
(Å) 

1 0.91 0.91 0.91 1 1 

Number of total 
micrographs  

1,716 1,491 1,206 1,110 1,352 5,011 

Number of good 
micrographs # 

986 445 841 790 1,217 4,157 

Estimated diameter 
(Å) 

144 144 135 132 138 151 

Number of total 
picked particles 

178,483 37,946 177,086 205,682 424,213 921,403 

Number of good 
particles 

94,514 9,535 114,630 141,982 145,941 492,883 

Pixel size for 2D 
classification (Å) 

4 3.59 3.64 3.67 3.94 3.97 

Best diameter for 2D 
classification (Å) 

129 216 108 105 110 120 

Workflow CPU core 

hours (Intel Xeon 

E5-2660 v3) 

3945 4166 13712 7516 4347 1251 

Workflow GPU hours 

(NVIDIA GTX 1080 

Ti) 

~2 ~2 ~2 ~2 ~2 ~2 

 

Table 4. Details of the automatic assessment of multiple P-Rex1 cryo-EM data sets. 
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 T20S Proteosome 

(EMPIAR-10025) 

HA Trimer (EMPIAR-

10175) 

Aldolase 

Microscope Titan Krios Titan Krios Talos Arctica 

Detector Gatan K2 Gatan K2 Gatan K2 

Voltage (kV) 300 300 200 

Electron exposure (e-

/Å2) 

53 73.24  44.13 

Defocus range (μm) 0.9 - 2.4 1.0-2.1 0.8 - 2.0 

Original pixel size (Å) 0.66 0.85 0.91 

Symmetry imposed D7 C3 D2 

Initial particle images 

(no.) 

52,153 167,788 536,520 

Final pixel size (Å) 0.88 1.275 1.22 

Final particle images 

(no.) 

45,066 150,684 425,087 

FSC threshold 0.143 0.143 0.143 

Map resolution (Å) 3.0 3.2 3.2 

B-factor (Å2) -94 -151 -110 

Workflow CPU core 

hours (Intel Xeon E5-

2660 v3) 

1600 2353 8293 

Workflow GPU hours 

(NVIDIA GTX 1080 Ti) 

~2 ~2 ~2 

 

 

Table 5. Overview of cryo-EM structures.  
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Figure S1, Related to Figure 3. Comparison of CTF maximum resolution vs. ground truth (human 

assessment). Histograms of the CTF maximum resolutions outputted by CTFFIND4 of the P-Rex1 test 

set, color labeled according to the manually labeled ground truth. Vertical lines indicate 4 Å and 10 Å 

respectively. 
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Figure S2, Related to Figure 3. Examples of bad micrographs identified by MicAssess in the P-Rex1 

test dataset. 
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Figure S3, Related to Figure 1. Particle size estimation. (A) Particles picked from 10 micrographs 

(EMPIAR-10025) were low pass filtered and averaged without any alignment. (B) Canny edge detector was 

applied to (A) and the edges found (inner circle) were dilated by a factor of 1.5 to estimate the diameter of 

the particle (outer circle). 
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Figure S4, Related to Figure 2. Artificial 2D class averages generated by DCGAN that were included 

in the training set of 2DAssess. 
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Figure S5, Related to Figure 5. Examples of bad micrographs identified by MicAssess in the 

EMPIAR-10175 dataset. Scale bar = 100 nm. 
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Figure S6, Related to Figure 6. Examples of bad micrographs identified by MicAssess in the aldolase 

dataset.  Scale bar = 100 nm. 
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Figure S7, Related to Figure 7. Example micrographs and 2D class averages from the automated 

analysis of P-Rex1 datasets. Showing all the good 2D class averages and a subset of the bad 2D class 

averages predicted by 2DAssess. Scale bar in the micrographs = 100 nm.  
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Figure S8, Related to Figure 1. Automatic preprocessing workflow also works on micrographs with 

high particle density (EMPIAR-10181). (A) Example micrograph from EMPIAR-10181 which used 

deliberate crowding as a strategy to achieve thin ice. (B) Good 2D class averages selected by the workflow. 

Scale bar = 100 nm. 
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