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Abstract: Freeform optical components enable significant advances for optical systems. A 
major challenge for freeform optics is the current lack of metrology methods with 
measurement uncertainty on the order of tens of nanometers or less. Towards addressing this 
challenge, optical coherence tomography (OCT) is a viable technique. In the context of low 
uncertainty metrology, the design requirements pertaining to the sample arm of an OCT 
metrology system are explicitly addressed in this paper. Two telecentric, broadband, 
diffraction limited, custom objective lens designs are presented with their design strategies. 
One objective lens was fabricated and experimentally tested for wavefront performance and 
telecentricity. This lens demonstrates near diffraction limited performance and a maximum 
deviation from telecentricity of 8.7 arcseconds across the full field of view, correlating to 
measurement uncertainty of less than 12 nm in simulation. The telecentricity test method 
developed completes the loop with respect to the design requirements and strategies presented 
and provides further intuition for telecentric lens designs in general. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Freeform optical components are gaining traction as they enable advances for optical systems 
in both performance and packaging [1–4]. A major challenge for freeform components is the 
need for non-contact figure metrology that has sufficiently low measurement uncertainty, is 
flexible across different surface shapes, and can accommodate for large sag and slope 
variations. As a rule of thumb, the measurement uncertainty of the metrology instrument 
should ideally be an order of magnitude lower than the specified tolerance on the optic. As 
typical figure tolerances may be on the order of λ/2 to λ/4 [5], where λ is the wavelength of 
operation, the uncertainty of the figure metrology should be at most on the order of tens of 
nanometers for the visible spectrum. Furthermore, it is also desired that the metrology has 
high dynamic range in terms of surface roughness to not only measure finished components 
but also to provide iterative feedback during the manufacturing process. 

Towards addressing this challenge, we have been investigating custom Fourier domain 
optical coherence tomography (OCT) systems for the metrology of freeform optical 
components [6,7]. In this technique, the low coherence characteristics of broadband light 
sources enable optical sectioning through depth. With a sufficiently broad spectral bandwidth 
and advanced post-processing algorithms, the localization of axial measurements may be 
pushed to the single digit nanometer level [8]. In the context of metrology for freeform optical 
components, the axial measurements correspond directly to the measured freeform sag after 
accounting for the reference surface. Lateral scanning of the beam across the sample enables 
three-dimensional volumetric measurements, resulting in point cloud measurements of the 
freeform under test. By applying telecentric scanning that is the focus of this paper, the OCT 
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metrology system does not require a priori knowledge of the surface under test, thus enabling 
flexibility across different surface shapes with little to no additional modifications. The range 
of measurable sag may be up to millimeters and the range of measurable slope may be up to 
tens of degrees, making this technique especially suitable for small optical components that 
are one to two inches in diameter. Moreover, OCT is sensitive to both specular and diffuse 
light signals [9], enabling measurements of both rough and smooth optical surfaces along the 
manufacturing process chain from grinding to polishing. 

To realize an OCT metrology system with the desired characteristics, multiple unique 
design requirements must be investigated and quantified. System design aspects are seldom 
discussed in typical OCT literature where the focus is on the application and experimental 
results [10–12]. However, hardware instrumentation design and optimization play a critical 
role in determining the measurement quality and warrant careful investigation. In this work, 
the specific design requirements placed on the sample arm of an OCT metrology system and 
their impact on the measurement uncertainty are explicitly addressed specifically for the case 
of pre-objective telecentric scanning, where an objective lens focuses the input collimated 
beam into the sample volume and rotary mirror device(s) enables beam steering via angular 
control at the objective lens’ pupil plane or its optical conjugates. The impact of telecentricity, 
distortion mapping, image plane flatness, and residual wavefront error on the measurement 
uncertainty is analyzed. 

Aside from the imaging requirements, signal throughput is another critical design 
consideration as it directly determines the range of measurable slopes and surface roughness. 
A typical OCT sample arm configuration is monostatic, i.e. the numerical aperture (NA) of 
the probing beam forms the solid angle cone that collects the back-reflected or back-scattered 
light signal. In other words, the typical OCT sample arm acts as both illumination and 
imaging systems. A challenge in signal collection arises when using OCT to measure optical 
surfaces when the optics has high slopes as well as when the optical surfaces are polished to 
be highly specular. One intuitive method to overcome this challenge is to increase the NA. 
However, increasing the NA typically reduces the depth of focus and consequently the range 
of measurable sag. Another commonly utilized method is to rotate the objective lens such that 
the probing beam remains normal to the sample surface [13,14]. This rotatory degree of 
freedom is an additional source of uncertainty and in addition it makes it necessary to have a 
priori knowledge to trace the surface. A bistatic configuration may be envisioned where the 
illumination and imaging systems are separate and independent of one another. However, this 
configuration is challenging for interferometry because unavoidable as-built differences result 
in optical path differences (OPD) that add to measurement error, as will be discussed in 
Section 2.2. We developed and report here a unique pseudo-bistatic scanning configuration 
that does not require rotation of the objective lens and retains the necessary depth of focus 
while maximizing signal throughput, enabling the measurement of arbitrarily smooth optical 
surfaces over a range of local slopes. 

With respect to the necessary specification requirements for low uncertainty freeform 
metrology laid out in this work, it was found that commercially available objective lenses do 
not satisfy these requirements especially in terms of high telecentricity across scan and wide 
spectral bandwidth over which diffraction limited performance is achieved. Existing off-the-
shelf OCT objective lenses rarely quantify telecentricity and assume that the user will 
compensate for it by adjusting the positioning of the rotary mirror device. This assumption is 
flawed, as will be addressed in detail in Section 2. Highly telecentric lenses exist for the field 
of machine vision; however, they are typically bi-telecentric and are therefore unsuitable for 
pre-objective scanning. In this work, two objective lens designs were developed; one was 
optimized for a large scanning field of view (FOV), while the other was optimized for a large 
NA and investigates the extent to which the pseudo-bistatic configuration may be applied in 
practice while balancing manufacturing sensitivity and cost. The design strategy for achieving 
the necessary requirements is presented and discussed. 
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In addition to the design aspects, the large FOV objective lens was toleranced, fabricated, 
and experimentally validated for both wavefront error and telecentricity. The telecentricity 
measurement method presented here is a single-shot interferometric method. Currently, the 
most prevalent method for measuring telecentricity is by using the lens under test to image a 
resolution target at different axial distances. This conventional method is mostly limited to 
testing bi-telecentric lenses and is limited in angular resolution and measurement uncertainty, 
which are determined by the detector pixel size, the travel range of the resolution target, and 
the quality of this linear travel. The telecentricity measurement method developed here 
requires no moving elements and is capable of testing lenses that are telecentric in either 
object or image space as well as bi-telecentric lenses. In addition, the method presented here 
is capable of not only quantifying telecentricity but also revealing any mis-alignment errors 
within the lens assembly. The telecentricity experimental results complete the loop with 
respect to the design strategy described and provide further intuition for telecentric lens 
designs in general. 

2. Impact of telecentricity, distortion mapping, residual wavefront error, and 
image plane flatness on measurement uncertainty 

For this study in the context of figure metrology, uncertainty is quantified in simulation 
modelling as the deviation of the as-measured surface from the known nominal prescription. 
In experiment, this uncertainty includes both accuracy and precision of the measured value 
with respect to the unknown ground truth. Throughout this work, the image space in optical 
design terminology refers to the sample space with the freeform under test. It is emphasized 
that the four aspects analyzed in this section have no direct causality correlation, as will be 
addressed in detail. 

2.1. Impact of telecentricity and distortion mapping 

The telecentricity characteristics and distortion mapping of the objective lens directly 
determine the resulting beam location mapping across lateral scans, which need to be 
constrained in design and accounted for in the measurement of the sample optic. 
Telecentricity is quantified as the absolute value of the maximum chief ray angle at the image 
plane across the lateral scanning FOV. Distortion mapping is evaluated as the deviation from 
an ideal f-θ mapping of the actual beam position on the image plane or another evaluation 
plane through focus. The f-θ mapping that creates a linear mapping of the scan angle to the 
beam position is typically desired with scan lenses. 

In experiment, we control the rotary mirror device to perform lateral scanning and obtain 
volumetric measurement data. The data matrix is therefore organized by the location of the 
beam as calculated using the mirror angle. Having non-zero distortion translates to having 
uncertainties in this location mapping in the form of the measurement being “squeezed” or 
“stretched” artificially, resulting in measurement artifacts not actually present on the surface 
under test. Even more problematic is when non-zero distortion is combined with non-
telecentricity, in which case the distortion mapping varies through focus and results in 
different mapping errors at different axial planes. Moreover, unless the lens is telecentric, 
having zero distortion at the best focus image plane does not result in zero distortion through 
focus. The impact of telecentricity and distortion on the location of the beam on the sample is 
illustrated schematically in Fig. 1. 

In optical design, it is likely under-appreciated that it is generally difficult to have both 
zero distortion and strict telecentricity at the same time, especially for designs with significant 
FOVs. As illustrated in Fig. 1, between the zero distortion with non-telecentricity case (red) 
and the non-zero distortion with strict telecentricity case (blue), experimental calibration is 
more straightforward when strict telecentricity is achieved since the beam centroid location 
displaces by a constant amount through focus. This aspect determines that for the objective 
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lens design it is best to prioritize telecentricity and evaluate distortion towards the end of the 
optimization process. 

 

Fig. 1. Schematic showing beam centroid location variations through focus at a single point in 
a lateral scan for possible telecentricity and distortion characteristics of an objective lens. 

Within this design criteria, we next quantify the tolerance on non-telecentricity with 
respect to the measurement uncertainty. As OCT with telecentric scanning is a point cloud 
technique that is largely decoupled from the surface under test, it does not matter to the 
instrument whether the sample surface has rotational invariance. To this end, a simple model 
with a parabolic surface is shown as follows. A parabola is chosen here to yield an analytic 
solution, while the results remain meaningful for other surface shapes of similar sag and slope 
values. For this model, the best focus plane is placed halfway of the total surface sag with 
zero-distortion at this plane. The chief ray angles of incidence θ are assumed to be zero on-
axis and linearly increasing toward the edge of the scanning FOV, a scenario not uncommon 
for a scan lens design. 

Figure 2(a) shows half of a one-dimensional slice through the parabolic sample. It can be 
seen from the shaded triangle in Fig. 2(a) that 
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where y is the beam location if strictly telecentric, y′ is the actual beam location accounting 
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The measurement error is evaluated as 
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The specifications for the parabola are chosen such that the corresponding maximum sag and 
slope are representative of the values for freeform optical components that we have surveyed 
[3,15–17]. For a Φ30 mm parabola with 2 mm maximum sag and 15° maximum slope (i.e. R 
= 56.25 mm), the measurement errors with a maximum non-telecentricity of 0.02° are shown 
in Figs. 2(b) and 2(c). As expected, the maximum error appears at the location of highest 
slope and largest non-telecentricity. For these specific simulation parameters, the errors are 
well contained within ± 30 nm up to approximately 25 mm in diameter, as shown by the 
green dotted lines in Fig. 2(c). 

Best focus

Non-telecentric, zero distortion

Telecentric, non-zero distortion

Telecentric, zero distortion
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order of magnitude of this error, at surface I′ and with an operation wavelength of 900 nm, the 
optical path length of the central ray of the on-axis ray bundle is 208.281 mm while that of 
the full field off-axis ray bundle is 208.338 mm, resulting in a measurement error artifact of 
57 μm at the edge of the field which is approximately three orders of magnitude worse than 
the required measurement uncertainty as laid out in Section 1. 

 

Fig. 3. Illustration of field curvature for a sample arm setup optimized for high telecentricity 
with an off-the-shelf achromatic doublet. Surface I indicates schematically the surface at which 
the central rays from each ray bundle across scans achieve equal optical path lengths (not to 
scale). Surface I′ is an arbitrarily selected performance evaluation surface. 

It is worth noting that the setup of Fig. 3 was optimized for high telecentricity, 
demonstrating that the measurement error artifact shown is strictly due to a non-flat image 
plane rather than non-telecentricity with no causality correlation between the two. This means 
that while one may compensate for telecentricity in practice by adjusting the axial position of 
the rotary mirror device, it is not consequent that diffraction limited performance will be 
maintained across a flat image plane. Therefore, in the optical design process for an OCT 
objective lens, one must optimize for diffraction limited performance across a planar 
evaluation surface as well as high telecentricity simultaneously. 

3. Pseudo-bistatic scanning configuration for enhanced signal collection 

As outlined in Section 1, signal throughput is another critical design consideration especially 
for finished optical surfaces of high slope that may have RMS surface roughness on the order 
of single digit nanometers or less. A unique pseudo-bistatic scanning configuration was 
developed to enable measurement of arbitrarily smooth optical samples without rotating the 
objective lens nor the sample, while maintaining the necessary depth of focus. 

In this pseudo-bistatic scanning configuration, the objective lens is used with a probing 
light beam of the same NA as one may use for a typical monostatic configuration, denoted as 
NAp. This NAp may be determined based on the required depth of focus or diffraction limited 
spot size. However, the objective lens is to be designed such that it is diffraction limited over 
a larger collection NA that is responsible for collecting the back-reflected light signal. A 
schematic layout of this configuration is shown in Fig. 4. 

 

Fig. 4. Schematic of the pseudo-bistatic scanning configuration showing the incoming probing 
beam (red) and the collected specular reflection (green), both within the collection aperture 
NAc for which the objective lens was designed. 

NAp

NAc

Freeform sample

Objective lens
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The collection NA, denoted as NAc, is given by 

 maxsin( 2 ),c pNA θ α= +  (5) 

where θp is the angle corresponding to NAp and αmax is the maximum slope angle one expects 
the sample surface to have. A corollary design criterion is that the system using this objective 
lens should also be designed accounting for NAc. In practice, this system level requirement is 
more readily achieved in optical fiber-based systems compared to free-space ones. 

As can be seen, though the optical components making up the illumination and imaging 
systems are the same, the sub-sections of those components experienced by the illumination 
and imaging beams are different, though this difference is constrained by the requirement of 
diffraction limited performance over NAc. As such, this configuration is referred to as pseudo-
bistatic. 

Under this configuration, the specularly reflected light is captured by the objective lens up 
to the slope angle αmax while maintaining the required depth of focus. As a result, this 
configuration enables the measurement of arbitrarily smooth samples within its design 
specifications. By having the objective lens well-corrected over the NAc, it is ensured that the 
OPD introduced from the optical lens system itself is minimized. A corollary advantage of 
this configuration is that it removes the need to rotate the objective lens to follow the local 
normal of the sample surface up to the slope angle αmax, thus eliminating errors that may 
result from the rotary actuation as well as the need of a priori knowledge of the surface. 
Moreover, as this configuration uses the same probing beam as that for a typical monostatic 
configuration, it also enables the integration of lenses designed for either configuration under 
one instrument to extend the measurement dynamic range in terms of sample slope and 
surface roughness. 

4. Telecentric and broadband achromatic objective lens designs 

Aside from the specification targets laid out in Section 2, a broad bandwidth of 360 nm 
centered at 900 nm was also required for our application to achieve 1 μm axial coherence 
length with a Gaussian laser source profile. A 2 mm depth of focus in air was also required in 
accordance with sag ranges found on existing freeform optics, translating to an image space 
probing beam NAp of 0.0324. Under these specification requirements, we report here two 
custom objective lens designs that are both highly telecentric and broadband diffraction 
limited over a flat image plane. One design is for a large FOV monostatic configuration, 
while the other is for the pseudo-bistatic configuration described in Section 3 with a large 
NAc. 

With respect to the design strategy for both lenses, it is emphasized that telecentricity is 
constrained from the beginning of the optimization process. This may be implemented by 
applying specific constraints to the optimizer merit function and/or by choosing a starting 
point design that was optimized with some telecentricity target. The specific constraint 
applied should be one that allows for both positive and negative angular values to enable a 
stable optimization process. For both design forms, it was found that telecentricity constraints 
greatly impact the design solutions found and it was in general difficult to recover 
telecentricity if not designed for without significant trade-off from the other performance 
specifications. 

With the level of telecentricity requirement indicated in Section 2.1 as guideline, the large 
FOV objective lens design was pushed for even more stringent telecentricity values nominally 
to investigate its design limits and to allow for manufacturing margin. It was found that by 
slowly walking the design form, telecentricity may be pushed to be on the order of 1″ 
(1 arcsecond = 1/3600 degrees) while maintaining diffraction limited performance over a flat 
image plane that is 40 mm in diameter. The large NA objective lens functions as a design 
study to investigate the extent to which the pseudo-bistatic configuration may be applied 
especially in terms of its scanning FOV. To measure a sample with 15° maximum slope, a 
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are shown in Fig. 7. The maximum measurement error on the parabolic part due to the 
nominal residual non-telecentricity from the large FOV objective lens is 0.4 nm while that 
with the large NA objective lens is 0.9 nm, affording sufficient margins for manufacturing 
tolerances with respect to telecentricity. 

 

Fig. 7. Simulated measurement uncertainty on the parabolic sample surface of Section 2.1 with 
the achieved nominal telecentricity of (a) the large FOV and (b) the large NA objective lens 
across their respective scanning FOVs up to the sample boundary. The green dotted lines 
bound ± 30 nm for ease of comparison with Fig. 2(c). 

5. Fabrication and testing 

The large FOV objective lens was selected for fabrication and testing. This choice was driven 
by several factors. First, the large FOV design enables lateral scanning over a significant 
sample area by using rotary mirror device(s) at its accessible entrance pupil plane or its 
optical conjugates. This optical scanning configuration eliminates the need of mechanical 
actuation of the sample up to its scanning FOV, which consequently eliminates noise sources 
associated with the mechanical actuation. Scanning via rotary mirror device(s) is also in 
general faster than mechanical stages. Secondly, the broad spectral bandwidth necessitates a 
free-space OCT system due to the current lack of commercially available fiber optic 
components, for example circulators and couplers/splitters, that can accommodate this 
spectral range. While the large NA objective lens enables the pseudo-bistatic configuration, 
under the free-space architecture it quickly becomes resource intensive as all other system 
sub-assemblies need to accommodate for a beam diameter that is approximately 20x bigger 
than that with the large FOV objective lens in the monostatic configuration. As such, the large 
NA objective lens is more suited for fiber-based systems while the large FOV objective lens 
may be used for both fiber-based and free-space systems. The trade-off with the large FOV 
objective lens is that it may be challenging to measure very smooth optical surfaces with high 
slope. However, it is worthwhile to investigate first with this objective lens to benchmark 
measurement uncertainty. As technology advances, an integrated system is envisioned where 
the two objective lenses may be mounted together under one instrument to extend the 
measurement dynamic range in terms of sample surface roughness. 

5.1. Tolerancing analysis 

During the design process, manufacturability was controlled for by monitoring the angles of 
incidence of the rays on each surface of the design and reducing them where necessary. 
Tolerance sensitivity was also evaluated and controlled during optimization using built-in 
functions of the optical design software (e.g. SAB and SN2 for CODE V). Tolerancing 
analysis was performed for polychromatic RMSWE as well as telecentricity across the full 
FOV. The image plane de-space and the aperture stop de-space were used as the only 
compensators. The final tolerance values chosen are generally considered to be in the 
precision category range of tolerances [5] and are shown in Table 4. 

It was found that the image plane de-space compensator was effective for the 
polychromatic RMSWE tolerancing with no effect on the telecentricity tolerancing and vice 
versa for the aperture stop de-space compensator. The two tolerancing analysis were therefore 

(a) (b)
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performed independently of one another under the same set of tolerance values. The 
cumulative yield results are shown in Fig. 8. Larger than 90% yield is achieved for both 
diffraction limited RMSWE and telecentricity of 0.02° (72″). 

Table 4. Tolerance table for the large FOV objective lens. 

Parameter Value 
Centered tolerances 

Glass material (nd, νd) ± 0.0005, ± 0.5% 
Radius (larger of two) ± 0.1% or 3 fringes (at 546.1 nm) 
Irregularity (fringes) 0.5 
Center thickness for lens elements (mm) ± 0.050 
Center distance for air spaces < 100 mm (mm) ± 0.050 
Center distance for air spaces ≥ 100 mm (mm) ± 0.100 
Outer diameter (mm) + 0.000/-0.025 
Clear aperture 90% 

Decentered tolerances 
Wedge, total indicated runout (mm) ± 0.010 
Tilt (rad) ± 0.001 
Element decenter (mm) ± 0.025 
Roll, doublet (mm) ± 0.010 

 

Fig. 8. Tolerancing analysis for the large FOV objective lens under the tolerances given in 
Table 4 for (a) polychromatic RMS and (b) telecentricity. The field points used are shown in 
the legend that applies to both plots. Larger than 90% yield is achieved for diffraction limited 
RMSWE and for 0.02° maximum non-telecentricity. 

5.2. Assembly and wavefront testing method and results 

The individual lens elements were fabricated and anti-reflection (AR) coated at Kreischer 
Optics, Ltd. (IL, USA). Since no lens elements were used as compensators, the opto-
mechanical mounting is a monolithic barrel that was designed and fabricated at Bauer 
Associates, Inc. (MA, USA). The barrel was designed with mounting seats to hold the 
individual lens elements vertically with gravity. Three radial holes were made around the 
barrel at each lens element location to allow for the injection of ultraviolet (UV) curable 
epoxy. The assembled lens system underwent wavefront testing prior to epoxy injection and 
UV curing. 

The lens assembly and experimental setup for wavefront testing is shown in Fig. 9(a). An 
aluminum spacer tube was precision machined to position a laser fiber output at the image 
plane of the objective lens to within ± 100 µm. The laser (CPS808S, Thorlabs Inc., NJ, USA) 
outputs at 808 nm, which is within the design wavelength range of the objective lens. The 
laser is coupled into a multimode fiber, the output tip of which acts as a quasi-point source. 
The objective lens is pupil matched to within ± 1 mm to a commercial camera (Fujinon 
HF16SA, Fujifilm, Japan), the output of which is monitored via a computer. The camera lens 
speed is fixed at F/1.6, which results in a magnification ratio of 9.625 with the objective lens 
speed of F/15.4. At the laser wavelength of 808 nm, the diffraction limited spot diameter on 
the camera detector is calculated to be 3.15 µm which is smaller than the detector pixel size of 
3.45 µm. This configuration means that if the objective lens was made and assembled to 

(0, 0)
(0, 14)
(0, 20)
(0, -14)
(0, -20)
(-14, 0)
(-20, 0)
(14, 0)
(20, 0)

(a) (b)
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One of the two lens designs reported was toleranced, fabricated, and tested for both 
wavefront performance and telecentricity. The single-shot telecentricity test method reported 
here is versatile for a range of telecentric lens configurations. For example, one may use a 
transmission flat and an auto-reflecting flat mirror to test a bi-telecentric lens. For a 
telecentric objective lens without an accessible entrance/exit pupil, for example the large NA 
objective lens presented here, additional steps need to be implemented to align to the internal 
pupil plane. Compared to the existing method of imaging a resolution target through axial 
distances, this method has finer angular resolution and is faster and more robust as it 
eliminates the large linear travel. Another interesting characteristic of this test method is that 
by essentially exchanging the chief ray with the marginal ray, telecentricity may be tested 
independently of the imaging or wavefront performance. For this method, it is crucial to know 
the length dimension of the pixels. A way in which the uncertainty of the telecentricity 
measurement may be improved is by precision machining fiducial markers of a known width 
apart on a component surface in the collimated space, for example the auto-reflecting flat 
mirror in the implementation shown here. 

During the design process of the two objective lenses, it was found that there is a 
significant trade-off between achieving high telecentricity and diffraction limited 
performance over a flat image plane. To first order, telecentricity may appear straightforward 
to achieve by placing the entrance pupil (or the rotary mirror device in practice) at the front 
focal plane of the objective lens. However, it becomes apparent that aberrations will result in 
deviations from this first order design when one recognizes that telecentricity is, by 
definition, imaging the pupil plane to infinity. As with any other imaging configurations, 
corresponding aberrations need to be optimized for during the design process. This aspect 
may be further illustrated by the telecentricity test method present there. If we apply this test 
method to the doublet configuration shown in Fig. 3, since it is in general challenging for a 
single doublet to form a diffraction limited focus for a collimated beam of broad bandwidth 
and large diameter, it becomes intuitive that in reverse it is challenging to achieve high 
telecentricity with a doublet without sacrificing wavefront performance on a flat image plane 
over a large scanning FOV. Conversely, a lens that is designed to form a diffraction limited 
focus for a large diameter collimated beam may be a suitable starting point for a telecentric 
objective lens design. The balancing between achieving high telecentricity and diffraction 
limited performance on a flat image plane ultimately leads to a more complex lens design 
compared to a non-telecentric counterpart. 
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