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Summary. The paper considers statistical inference for the explained variance βTΣβ under
the high dimensional linear model Y D Xβ C ε in the semisupervised setting, where β is the re-
gression vector and Σ is the design covariance matrix. A calibrated estimator, which efficiently
integrates both labelled and unlabelled data, is proposed. It is shown that the estimator achieves
the minimax optimal rate of convergence in the general semisupervised framework.The optimal-
ity result characterizes how the unlabelled data contribute to the estimation accuracy. Moreover,
the limiting distribution for the proposed estimator is established and the unlabelled data have
also proved useful in reducing the length of the confidence interval for the explained variance.
The method proposed is extended to semisupervised inference for the unweighted quadratic
functional kβk2

2. The inference results obtained are then applied to a range of high dimensional
statistical problems, including signal detection and global testing, prediction accuracy evaluation
and confidence ball construction. The numerical improvement of incorporating the unlabelled
data is demonstrated through simulation studies and an analysis of estimating heritability for a
yeast segregant data set with multiple traits.

Keywords: Confidence set; Heritability; Minimaxity; Prediction accuracy; Signal detection;
Unlabelled data

1. Introduction

High dimensional linear models are ubiquitous in contemporary statistical modelling with a
wide range of applications in many scientific fields. The early focus has been mainly on de-
veloping methods for the recovery of the whole regression vector via penalized or constrained
l1-minimization approaches. Examples include the lasso (Tibshirani, 1996), Dantzig selector
(Candès and Tao, 2007), minimax concave penalty (Zhang, 2010), square-root lasso (Belloni
et al., 2011) and scaled lasso (Sun and Zhang, 2012). There has been significant recent in-
terest in statistical inference for low dimensional functionals, including confidence intervals
and hypothesis testing for individual regression coefficients (Zhang and Zhang, 2014; van de
Geer et al., 2014; Javanmard and Montanari, 2014a, b), minimaxity and adaptivity of confi-
dence intervals for general linear functionals (Cai and Guo, 2018b), estimation of the signal-
to-noise-ratio (Verzelen and Gassiat, 2018; Janson et al., 2017), inference for the lq-accuracy
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of a given estimator (Cai and Guo, 2018a) and estimation of quadratic functionals (Janson
et al., 2017; Guo et al., 2019). Motivated by a range of applications, the present paper considers
the semisupervised inference problem in high dimensions, where the main statistical goal is to
integrate both the labelled and the unlabelled data, and to propose efficient point and interval
estimators.

1.1. Problem formulation and motivation
We consider the high dimensional linear model with a random design:

yi =XT
i·β + εi, for 1� i�n, .1/

where yi ∈ R and Xi· ∈ Rp denote respectively the outcome and the measured covariates of the
ith observation, εi denotes the error and β ∈ Rp denotes the high dimensional regression vec-
tor. The covariates Xi· are independent and identically distributed (IID) p-dimensional random
vectors with mean 0 and covariance matrix Σ and the errors {εi}1�i�n are IID random variables
with mean 0 and variance σ2 and independent of {Xi·}1�i�n. The explained variance under the
regression model (1) is represented by Q=var.XT

i·β/=βTΣβ. We focus on the semisupervised
setting, where the data are a combination of the labelled data {yi, Xi·}1�i�n in the regression
model (1) and the unlabelled data {Xi·}n+1�i�n+N . Here the measured covariates of both the
labelled and the unlabelled data are assumed to be independent and to follow the same distri-
bution. The more conventional supervised setting is treated as a special case with no additional
unlabelled data.

The setting of semisupervised learning is commonly seen in applications where the outcomes
are more expensive to collect than are the covariates. For example, in the analysis of electronic
health records databases, the covariates are easy to be automatically extracted whereas labelling
of the outcomes is costly and time consuming (Chakrabortty and Cai, 2018; Gronsbell and Cai,
2017). In addition, semisupervised learning naturally arises in the integrative analysis of multiple
(genetics) data sets where the covariates are the same across all data sets but the outcomes that
are measured vary from study to study because of the specific purposes of individual studies
(van Iperen et al., 2017). This can be naturally formulated as semisupervised learning, where
the prespecified outcome is measured over only one or several (but not all) data sets whereas
the covariates are measured across all data sets.

The construction of the optimal estimator and confidence intervals for Q = βTΣβ in the
semisupervised and high dimensional setting is not only of significant interest in its own right
but is also closely connected to several other important statistical problems.

(a) Heritability: heritability is among the most important genetics concepts. Under model (1)
with the outcome normalized to have unit variance, βTΣβ is a measure of heritability,
which quantifies the total variance explained by genetic variants (Owen, 2012; Guo et al.,
2019; Janson et al., 2017; Verzelen and Gassiat, 2018).

(b) Signal-to-noise ratio SNR and proportion of variance explained : the signal-to-noise ratio
SNR and proportion of variance explained are important statistical concepts and are
defined respectively as βTΣβ=.βTΣβ +σ2/ and βTΣβ=σ2 under model (1). Together with
a good estimator of σ2 (Sun and Zhang, 2012; Belloni et al., 2011), the results for βTΣβ
that are established in this paper are useful for inference of SNR and the proportion of
variance explained.

(c) Signal detection and global testing: inference for the explained variance can be applied to
testing the global hypothesis H0 :β =βnull for βnull ∈Rp, which includes signal detection
as a special case with βnull =0. The connection is revealed in the adjusted linear model yi −
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XT
i·βnull =XT

i· .β −βnull/+ εi for 1� i�n, where testing for H0 :β =βnull is recast as testing
the hypotheses H0 : .β −βnull/TΣ.β −βnull/=0 versus H1 : .β −βnull/TΣ.β −βnull/> 0.

(d) Prediction accuracy assessment: accuracy assessment is of significant importance in ap-
plications. Let β̌ denote a given estimator based on the training data. We define the
out-of-sample prediction accuracy for a given observation xnew as Exnew{xT

new.β̌ −β/}2 =
.β̌ −β/TΣ.β̌ −β/. We introduce the following adjusted linear model for the independent
test data {Xi·, yi}1�i�n:

yi −XT
i· β̌ =XT

i· .β − β̌/+ εi for 1� i�n: .2/

Inference results developed for the explained variance can be applied to model (2) to
obtain the corresponding results for the prediction accuracy Exnew{xT

new.β̌ −β/}2.
(e) Confidence ball for β: construction of confidence balls for β is another important applica-

tion. Based on model (2), a confidence interval .L.Z/, U.Z// for .β̌ −β/TΣ.β̌ −β/ leads
to a confidence ball for β centring at β̌, {β : ‖β − β̌‖2

2 � U.Z/=λmin.Σ/}, where λmin.Σ/

denotes the smallest eigenvalue of Σ.

More detailed discussions about these statistical applications are presented in Section 5.

1.2. Results and contributions
A central question in semisupervised learning is how to use both labelled and unlabelled data
efficiently (Chakrabortty and Cai, 2017; Gronsbell and Cai, 2017). We introduce a novel two-
step calibrated high dimensional inference for variance explained estimator called ‘CHIVE’,
where the first step is to plug in the estimators of β and Σ, denoted by β̂ and Σ̂ respectively,
and the second step is to calibrate this plug-in estimator β̂TΣ̂β̂ through estimating a
dominating term in its error decomposition. The second step is to rebalance the bias and
variance and to improve the estimation accuracy. Different forms of β̂ and Σ̂ can be taken
as inputs of the CHIVE method and this flexibility is useful in integrating the unlabelled data
to estimate Σ more accurately. This idea is then extended to semisupervised inference for the
unweighted quadratic functional ‖β‖2

2, where the additional unlabelled data facilitate the
estimation of Σ−1.

Another important question is whether the unlabelled data have been efficiently utilized in
semisupervised learning. We address this question by establishing the minimax optimal rate of
convergence for estimating βTΣβ, where the optimal rate is M=

√
n+M2=

√
.N +n/+k log.p/=n,

with p, n, N, k and M denoting respectively the dimension, the size of the labelled data, the
size of the unlabelled data, the sparsity and the l2-norm of β. The proposed CHIVE estimator
achieves this optimal rate, which justifies the efficient use of the unlabelled data. The optimal rate
is not just achieved for the case where there is a large amount of unlabelled data but is also for
any given amount of unlabelled data. The minimax optimal rate characterizes the fundamental
difficulty of the inference problem in the semisupervised setting and is independent of specific
procedures. This minimax rate also reveals that the unlabelled data are most effective when the
signal strength ‖β‖2 is large.

We establish the limiting distribution of the CHIVE estimator and construct data-driven
confidence intervals for βTΣβ based on this estimator. The limiting distribution is normal and
its variance is scaled to the proportion of the labelled data, which is unique to the semisupervised
setting. A larger amount of unlabelled data leads to a smaller proportion of the labelled data
and hence a smaller asymptotic variance, which leads to a shorter confidence interval for βTΣβ.
The effect of the unlabelled data is also demonstrated in the numerical studies. Specifically,
in comparison with the estimators based only on the labelled data, the root-mean-squared
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estimator RMSE for estimation and the length of confidence intervals can be reduced by as
much as 70%. See the details in Section 6.

The improvement in semisupervised inference for ‖β‖2
2 is similar to that for βTΣβ at a high

level but different in technical details. Specifically, the estimation accuracy is significantly im-
proved in the strong signal regime, and the improvement is limited if the signal strength ‖β‖2

2 is
not sufficiently large. Construction of confidence intervals for ‖β‖2

2 also becomes easier in the
sense that the condition for sample size and model complexity is weakened by making use of
the unlabelled data.

The inference results that are obtained in this paper are applied to

(a) signal detection and global testing,
(b) prediction accuracy evaluation and
(c) confidence ball construction.

For signal detection, we control the type I error and characterize the type II error by establishing
the power function under a local alternative. The results can be easily extended to the general
global testing problem. For evaluation of out-of-sample prediction accuracy of a given sparse
estimator of β, both the point and the interval estimators are developed. We establish the
estimation error bound for the point estimator of the prediction accuracy and control the length
of the corresponding confidence interval. A confidence ball for the regression vector β with
controlled radius is also constructed. We stress that these procedures are data driven and do
not require a priori knowledge of the design covariance matrix Σ or the noise level σ. See more
details in Section 5.

1.3. Related work
Estimation and inference for quadratic functionals have been studied in the literature in a range
of settings. In particular, minimax and adaptive estimation of quadratic functionals plays an
important role in non-parametric inference and has been well studied in density estimation, non-
parametric regression and the white noise with drift model. See, for example, Bickel and Ritov
(1988), Donoho and Nussbaum (1990), Efromovich and Low (1996), Laurent and Massart
(2000), Cai and Low (2005, 2006) and Collier et al. (2017).

The most related works to the current paper are Verzelen and Gassiat (2018) and Guo et al.
(2019), which considered estimation of βTΣβ=σ2 and ‖β‖2

2 respectively, in high dimensional
linear regression. The main difference between the current paper and these two related works
are twofold.

(a) Verzelen and Gassiat (2018) and Guo et al. (2019) considered only the supervised setting
instead of the semisupervised setting. As demonstrated in both theoretical and numerical
justifications, a careful integration of the unlabelled data proves useful in improving the
estimation accuracy and reducing the length of constructed confidence intervals.

(b) The focus of Verzelen and Gassiat (2018) and Guo et al. (2019) is about point estimation
whereas the current paper studies the more challenging problem of uncertainty quan-
tification and also related hypothesis testing, in addition to point estimation. As is well
known, uncertainty quantification in high dimensions is significantly different from and
more involved than point estimation (Nickl and van de Geer, 2013; Cai and Guo, 2017).

Another related reference, Janson et al. (2017), studied the construction of confidence inter-
vals for ‖β‖2

2 in the setting of Σ= I, moderate dimension, where n=p→ξ ∈ .0, 1/ and no sparsity
assumption on β. The inference problem that is considered in the current paper is significantly
different from the setting that was considered in Janson et al. (2017), mainly because of the
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complicated geometry that is induced by the sparsity structure and the unknown design co-
variance matrix Σ. Other works that are related to quadratic functional inference include the
construction of confidence intervals for the l2-loss of the estimator that was considered in Cai
and Guo (2018b). In addition, Javanmard and Lee (2017) and Zhu and Bradic (2017) considered
hypothesis testing for high dimensional linear regression. As another significant difference, the
current paper studies how to integrate the labelled and unlabelled data efficiently in the gen-
eral semisupervised setting whereas all the aforementioned works solely focused on supervised
regression.

The statistical applications that are studied in this paper have also been considered separately
in the literature. Signal detection was studied in Ingster et al. (2010) and Arias-Castro et al.
(2011) under the linear model (1) in a special setting where the design covariance matrix Σ is
equal to or close to the identity matrix. In this setting, Ingster et al. (2010) and Arias-Castro
et al. (2011) established an optimal signal detection method and theory. The results that are
established in the present paper enable the study of signal detection under a general setting
where the design covariance matrix Σ is unknown. The confidence ball construction for the
whole regression vector was considered in Nickl and van de Geer (2013) in the case of known σ
and the optimal size and possibility of adaptive confidence balls was also established. The results
that are obtained in the current paper lead to a confidence ball construction for β in the case
of unknown σ. A problem that is related to prediction accuracy is inference for the estimation
accuracy, which was considered in Cai and Guo (2018b) and Janson et al. (2017). However,
inference for the prediction accuracy and that for the estimation accuracy are different problems.

1.4. Organization of the paper
The rest of the paper is organized as follows. In Section 2, we introduce in detail the CHIVE
estimator and establish its minimax rate optimality in the semisupervised setting. Section 3
focuses on quantifying the uncertainty of the CHIVE estimator and construction of the confi-
dence intervals for βTΣβ. In Section 4, we extend the methodology to semisupervised inference
for ‖β‖2

2. We apply in Section 5 the procedures developed to tackle three important problems:
signal detection and global testing, prediction accuracy evaluation and confidence ball construc-
tion. Simulation results are given in Section 6 to illustrate the numerical improvement through
incorporating the unlabelled data. An analysis of a yeast data set is presented in Section 7. A dis-
cussion is provided in Section 8. The proofs and the additional simulation results are presented
in the on-line appendix.

2. Semisupervised estimation of βT�β

In this section, we first introduce the calibration methodology for estimating the variance ex-
plained in the general semisupervised framework and then establish the minimax convergence
rate of estimating βTΣβ. A significant statistical gain is obtained by carefully integrating the
unlabelled data and the estimator proposed is shown to achieve the optimal rate in the semi-
supervised setting. The supervised setting and the setting with known design covariance matrix
are then discussed as special cases. We begin with the notation that will be used in the rest of
the paper.

For a matrix A, Ai·, A·j and Ai,j denote respectively the ith row, jth column and .i, j/ entry
of the matrix A. The spectral norm of A is ‖A‖2 = sup‖x‖2=1 ‖Ax‖2 and the matrix l1-norm
is ‖A‖L1 = sup1�j�p Σp

i=1|Aij|. For a symmetric matrix A, λmin.A/ and λmax.A/ denote re-
spectively the smallest and largest eigenvalue of A. For a set S, |S| denotes the cardinality
of S. For a vector x ∈ Rp, supp.x/ denotes the support of x and the lq-norm of x is defined
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as ‖x‖q = .Σp
i=1|xi|q/1=q for q � 0 with ‖x‖0 =|supp.x/| and ‖x‖∞ = max1�j�p |xj|. For a ∈ R,

a+ =max{a, 0}. We use c and C to denote generic positive constants that may vary from place
to place. For a sequence of random variables Xn indexed by n, we use Xn →p X and Xn →d X to
represent that Xn converges to X in probability and in distribution respectively. For a sequence
of random variables Xn and numbers an, we define Xn =op.an/ if Xn=an converges to 0 in prob-
ability. For two positive sequences an and bn, an �bn means that an �Cbn for all n and an �bn if
bn �an and an �bn if an �bn and bn �an, and an �bn if limn→∞ an=bn =0 and an 	bn if bn �an.
We define the signal-to-noise ratio SNR in the context of model (1) as SNR= .1=σ/

√
.βTΣβ/.

2.1. Calibration of plug-in estimators
In semisupervised learning, we observe the labelled data .X1·, y1/, : : : , .Xn·, yn/ and the unla-
belled data Xn+1·, : : : , Xn+N·, where X1·, : : : , Xn·, Xn+1·, : : : , Xn+N· are IID realizations of p-
dimensional covariates. We use β̂ and Σ̂ to denote some estimators of β and Σ, which will be
specified later. A preliminary estimator of the quadratic functional Q = βTΣβ is the plug-in
estimator β̂TΣ̂β̂, which has the error decomposition

β̂TΣ̂β̂ −βTΣβ =2β̂TΣ̂.β̂ −β/− .β̂ −β/TΣ̂.β̂ −β/+βT.Σ̂−Σ/β: .3/

Since the first term 2β̂TΣ̂.β̂ −β/ on the right-hand side can be estimated in a data-dependent
way, the corresponding estimation error of the preliminary estimator β̂TΣ̂β̂ can be further
reduced. We estimate the term 2β̂TΣ̂.β̂ −β/ by −2β̂T.1=n/Σn

i=1Xi·.yi −Xi·β̂/ and propose the
following calibrated estimator:

Q̂.β̂, Σ̂/= β̂TΣ̂β̂ +2β̂T 1
n

n∑
i=1

Xi·.yi −Xi·β̂/: .4/

This estimator is referred to as the calibrated high dimensional inference for variance explained
estimator CHIVE. The calibration step in equation (4) is essentially to improve the plug-in
estimator β̂TΣ̂β̂ through rebalancing the bias and variance.

The CHIVE estimator requires three inputs: the initial estimators β̂ and Σ̂ and the data .X, y/.
With this machinery, we have the flexibility of choosing the initial estimators β̂ (and also σ̂2)
and Σ̂ on the basis of the observed data. We begin with the estimator for β and σ2 and then
move on to the estimator for Σ. Throughout the paper, we assume that the estimators β̂ and σ̂2

satisfy the following conditions.

Condition 1. With probability larger than 1−γ.n/ where γ.n/→0, the estimator β̂ satisfies

max
{

1
n

n∑
i=1

{XT
i· .β̂ −β/}2, ‖β̂ −β‖2

2

}
� k log.p/

n
σ, ‖.β̂ −β/Sc‖1 �C0‖.β̂ −β/S‖1

where S = supp.β/ and C0 > 0 is some positive constant.

Condition 2. σ̂2 is a consistent estimator of σ2, i.e. |σ̂2=σ2 −1|→p 0.

One of the key assumptions for the general penalized estimators satisfying conditions 1 and
2 is the following restricted eigenvalue condition on the population covariance matrix Σ:

κ.k, C0, Σ/= min
S∈{1,:::,p},|S|�k

min
v
=0,‖vSc ‖1�C0‖vS‖1

‖Σ1=2v‖2

‖vS‖2
� c,

for some positive constant c>0. This population version restricted eigenvalue condition implies
the sample version restricted eigenvalue condition that was introduced in Bickel et al. (2009),
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under the assumption that the covariates Xi· are in a certain broad family of sub-Gaussian
random vectors and the sparsity k satisfies k � n= log.p/; see Zhou (2009) and Raskutti et al.
(2010) for the exact statement.

2.1.1. Estimators satisfying conditions 1 and 2
The scaled lasso estimator {β̂, σ̂} that is defined by

{β̂, σ̂}=arg min
β∈Rp,σ∈R+

‖y −Xβ‖2
2

2nσ
+ σ

2
+

√{
2:01 log.p/

n

}
p∑

j=1

‖X·j‖2√
n

|βj| .5/

has been shown in Sun and Zhang (2012) to satisfy conditions 1 and 2 under regularity condi-
tions. See also lemma 1 in Guo et al. (2019) for more details. Since the square-root lasso estimator
(Belloni et al., 2011) is numerically the same as the scaled lasso estimator, the square-root lasso
estimators of β and σ also satisfy conditions 1 and 2. In addition, with a priori knowledge of
σ, the lasso estimator of β and other variants are also shown to satisfy condition 1; see Candès
and Tao (2007), Zhang (2010) and Ye and Zhang (2010) for more details.

Now, we turn to the estimators of Σ. This is exactly the place where we make use of the
unlabelled data. Specifically, we pool the information that is contained in both the labelled and
the unlabelled data and estimate Σ by

Σ̂S = 1
n+N

n+N∑
i=1

Xi·XT
i· :

Then we use β̂ and Σ̂S as inputs and utilize the calibration idea that was introduced in equation
(4):

Q̂.β̂, Σ̂S/= β̂TΣ̂Sβ̂ +2β̂T 1
n

n∑
i=1

Xi·.yi −XT
i· β̂/: .6/

When there is no confusion, we use Q̂ to denote the estimator that is proposed in equation (6).
We introduce the following regularity conditions and then establish the convergence rate of the
proposed estimator in equation (6) in theorem 1.

Assumption 1. The regression vector β is assumed to be k sparse; the errors {εi}1�i�n are
independent of {Xi·}1�i�n+N and follow IID sub-Gaussian random variables with mean 0 and
variance σ2; the rows Xi· are IID p-dimensional random vectors and can be expressed in the
form of Xi· =Σ1=2Zi· where Zi· ∈ Rp is a sub-Gaussian random vector of mean 0 and identity
covariance matrix and Σ has a bounded restricted largest eigenvalue ρmax.k, Σ/, which is defined
as ρmax.k, Σ/=max‖v‖2=1,‖v‖0�k vTΣv.

Assumption 2.
√

E.βTX1·XT
1·β −βTΣβ/2 � c0β

TΣβ, for some positive constant c0 > 0.

Assumption 1 requires that the restricted largest eigenvalue ρmax.k, Σ/ is upper bounded,
where ‘restricted’ here means that the maximum in the definition of ρmax.k, Σ/ is taken with
respect to k-sparse vectors. Note that the restricted (smallest) eigenvalue condition is not required
for the theoretical analysis of the proposed estimator Q̂ as long as the estimator β̂ of β satisfies
condition 1. Define U =XT

i·β=
√

.βTΣβ/, where E.U/=0 and E.U2/=1. Assumption 2 is placed
on this random variable U such that var.U2/ is not vanishing. This assumption is imposed
such that var.U2/ can be well estimated and this type of assumption has been introduced in the
covariance matrix estimation literature (Cai and Liu, 2011) for the same purpose.

Theorem 1. Suppose that assumption 1 holds and k � cn= log.p/ for some constant c > 0.
For any estimator β̂ satisfying condition 1, with probability at least 1 − γ.n/ − C{p−c +
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exp.−cN/+ exp.−ct2/}, the estimator Q̂= Q̂.β̂, Σ̂S/ defined in equation (6) satisfies

|Q̂−Q|� t
σ‖Σ1=2β‖2√

n
+ t

βTΣβ√
.N +n/

+
(

1+ ‖Σ1=2β‖2

σ

N

n+N

)
k log.p/

n
σ2: .7/

Under the additional assumptions k �√
n=log.p/ and SNR	k log.p/=

√
n,

√
n.Q̂−Q/√{4σ2βTΣβ +ρE.βTX1·XT

1·β −βTΣβ/2}
d→N.0, 1/ .8/

where ρ= limn→∞ n=.N +n/.

As a remark, the probability 1−γ.n/−C{p−c + exp.−cN/+ exp.−ct2/} holds for the finite
sample n and finite dimension p and also any non-negative constant t �0. However, the estab-
lished result is more interesting over the regime min{p, n}→∞ and t →∞ as, in this scenario,
the corresponding probability 1−γ.n/−C{p−c + exp.−cN/+ exp.−ct2/} approaches 1. Since
Q�0, the convergence rate (7) also holds for Q̂+: the positive part of Q̂. To keep the notation
simpler, we present only the results for Q̂ in this paper.

The rate of convergence in expression (7) reveals the effect of the unlabelled data. The
sample size of the unlabelled data, N, appears only in the second term tβTΣβ=

√
.N +n/.

An interesting observation is that the usefulness of the unlabelled data varies across differ-
ent signal strengths. If the signal is strong in the sense that SNR � max{1, k log.p/=

√
n},

in which case the term tβTΣβ=
√

.N +n/ is dominant in expression (7), then the additional
unlabelled data reduce the rate of convergence significantly; if the signal is weak in the sense
that SNR�max{1, k log.p/=

√
n}, then the effect of the additional unlabelled data is limited.

To demonstrate the effect of calibration, we note that an upper bound for the term β̂TΣ̂.β̂ −β/

in expression (3) is of the order of magnitude σ‖Σ1=2β‖2
√{k log.p/=n} whereas the remaining

error after the calibration step is

t
σ‖Σ1=2β‖2√

n
+

(
1+ ‖Σ1=2β‖2

σ

N

n+N

)
k log.p/

n
σ2,

as shown in expression (7). By comparing these upper bounds, we note that the calibration step
is useful in reducing the upper bound for the rate of convergence. This reduction of estimation
error is also numerically demonstrated in Section 6.2. The terms

t
βTΣβ√
.N +n/

+ k log.p/

n
σ2

in expression (7) capture the convergence rate of the last two terms in expression (3).
The distributional result in expression (8) is established under the additional assumptions

k �√
n= log.p/ and SNR	k log.p/=

√
n. These additional assumptions are imposed to ensure

that the variance component

t
σ‖Σ1=2β‖2√

n
+ t

βTΣβ√
.N +n/

,

captured by the normal limiting distribution after rescaling, dominates the bias component
(

1+ ‖Σ1=2β‖2

σ

N

n+N

)
k log.p/

n
σ2:
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Since the bias term is difficult to characterize, we impose these sufficient conditions such that
the variance term is the dominating term. The normal limiting distribution in expression (8)
can be used in Section 3 to construct confidence intervals for βTΣβ.

Another interesting phenomenon is that the limiting distribution that is established in expres-
sion (8) depends on the proportion of the labelled data, which is unique in the semisupervised
inference problem. If the amount of unlabelled data dominates that of labelled data (i.e. ρ=0),
then the limiting distribution in expression (8) is simplified to

√
n.Q̂−Q/√

.4σ2βTΣβ/

d→N.0, 1/:

Theorem 1 demonstrates that the CHIVE estimator integrating the unlabelled data improves
the rate of convergence in estimating the explained variance. The lower bound that is given in
the next subsection shows that CHIVE is optimal in terms of the rate of convergence.

2.2. Optimal estimation in the semisupervised setting
In this section, we further investigate the fundamental limit for estimating Q = βTΣβ in the
general semisupervised setting over the specific parameter space

Θ.k, M/={θ=.β, Σ, σ/ :‖β‖0 �k, M=2�‖β‖2 �M, 1=M1 �λmin.Σ/�λmax.Σ/�M1, σ�M2},

where M1 � 1 and M2 > 0 are positive constants. Here k quantifies the sparsity of β and M

quantifies the signal strength of the true signal β in terms of its l2-norm. Both k and M are
allowed to grow with n and p. The other conditions 1=M1 �λmin.Σ/�λmax.Σ/�M1 and σ�M2
are regularity conditions. The following theorem establishes the minimax lower bounds for
estimating Q over the parameter space Θ.k, M/.

Theorem 2. Suppose that k � c min{n= log.p/, pν} for some constants c > 0 and 0 � ν < 1
2 .

Then

inf
Q̃

sup
θ∈Θ.k,M/

P

[
|Q̃−Q|� M2

√
.N +n/

+min
{

M√
n

+ k log.p/

n
, M2

}]
� 1

4
: .9/

One interesting observation of theorem 2 is that only the first term in the lower bound is
involved with the amount of the unlabelled data. Theorems 1 and 2 together show that the
estimator that was proposed in Section 2.1 is minimax rate optimal under regularity conditions.

Corollary 1. Suppose that assumption 1 holds and k � c min{n= log.p/, pν} for some con-
stants c > 0 and 0�ν < 1

2 . For any estimator β̂ satisfying condition 1, the estimator Q̂ defined
in equation (6) is minimax rate optimal over Θ.k, M/ where

√{k log.p/=n}� M � C for some
constant C> 0, i.e.

sup
θ∈Θ.k,M/

P

{
|Q̂−Q|� t

M2
√

.n+N/
+ M√

n
+ k log.p/

n

}
�C{p−c + exp.−cN/+ exp.−ct2/}+γ.n/

.10/

The CHIVE estimator attains the optimal convergence rate when the l2-norm of β is relatively
strong, i.e. M is bounded away from zero by

√{k log.p/=n}. As shown in theorem 2, for the case
where M �√{k log.p/=n}, the lower bound of estimatingβTΣβ is M2. This optimal convergence
rate can be achieved by a trivial estimator 0.
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In corollary 1, the lower bound (9) is only matched for the regime where M � C for some
constant C > 0. For theoretical interest, we shall modify the proposed estimator Q̂ defined
in equation (6) such that the modified version achieves the lower bound (9) over the regime
M � √{k log.p/=n}. We randomly split the data .y, X/ into two subsamples .y.1/, X.1// with
sample size n1 and .y.2/, X.2// with sample size n2, where n1 � n2. Let β̂ denote an estimator
which is produced by the first subsample .y.1/, X.1// and satisfies assumption 1. One example
of such an estimator is the scaled lasso estimator (5) applied to the subsample .y.1/, X.1//. We
propose the following estimator of Q:

Q̂.β̂, Σ̂
.2/

/= β̂TΣ̂
.2/

β̂ +2β̂T 1
n2

n∑
i=n1+1

XT
i· .yi −Xi·β̂/, .11/

where

Σ̂
.2/ = 1

n+N −n1

n+N∑
i=n1+1

Xi·XT
i· :

The following theorem establishes the convergence rate of Q̂.β̂, Σ̂
.2/

/ and shows that this esti-
mator achieves the optimal convergence rate of estimating Q for M �√{k log.p/=n}.

Theorem 3. Suppose that condition 1 holds and k � cn= log.p/ for some constant c > 0. Let
β̂ be an estimator depending on the first half-sample .y.1/, X.1// and satisfying assumption 1.
Then, with probability larger than 1−γ.n/−C{p−c +exp.−cN/+exp.−ct2/}, the estimator
Q̂.β̂, Σ̂

.2/
/ defined in equation (11) satisfies

|Q̂.β̂, Σ̂
.2/

/−Q|� .t +1/
σ‖Σ1=2β‖2√

n
+ t

βTΣβ√
.N +n/

+ k log.p/

n
σ2: .12/

Hence, the estimator Q̂.β̂, Σ̂
.2/

/ defined in equation (11) achieves the optimal estimation rate
over Θ.k, M/ in the sense of inequality (10) over the regime k �c min{n= log.p/, pν} for some
constants c> 0 and 0�ν < 1

2 and M �√{k log.p/=n}.

2.3. Two special cases
We now turn to two important special cases: the inference in the supervised setting and the
setting with known design covariance matrix.

2.3.1. Case I: supervised inference
In the supervised setting without any additional unlabelled data, Σ is estimated by Σ̂

L =
.1=n/Σn

i=1Xi·XT
i· . The following corollary establishes the rate of convergence of the estimator

Q̂= Q̂.β̂, Σ̂
L

/, which is a special case of the estimator (6) with N =0.

Corollary 2. Suppose that assumption 1 holds and k � cn= log.p/ for some constant c > 0.
For any estimator β̂ satisfying condition 1, with probability larger than 1 − γ.n/ − C{p−c +
exp.−ct2/}, Q̂.β̂, Σ̂L/ proposed in expression (4) with Σ̂L = .1=n/Σn

i=1Xi·XT
i· satisfies

|Q̂.β̂, Σ̂L/−Q|� t
σ‖Σ1=2β‖2 +βTΣβ√

n
+ k log.p/

n
σ2: .13/

Under the additional assumption 2 and SNR	min[k log.p/=
√

n, {k log.p/=
√

n}1=2],
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√

n{Q̂.β̂, Σ̂L/−Q}√{4σ2βTΣβ +E.βTX1·XT
1·β −βTΣβ/2}

d→N.0, 1/: .14/

Corollary 2 basically follows from theorem 1 with N =0 except for some technical difference.
By comparing corollary 2 with theorems 1 and 3, we observe that the unlabelled data lead to a
faster convergence rate by reducing βTΣβ=

√
n in expression (13) to βTΣβ=

√
.N +n/ in expres-

sions (7) and (12); the unlabelled data do not affect other terms in the rate of convergence. The ef-
fect of the unlabelled data is also revealed in the limiting distribution in expression (14), where the
exact variance level is reduced from {4σ2βTΣβ +E.βTX1·XT

1·β −βTΣβ/2}=n in expression (14)
to {4σ2βTΣβ +ρE.βTX1·XT

1·β −βTΣβ/2}=n in expression (8) for ρ= limn→∞ n=.N +n/∈ [0, 1].
The following corollary further establishes the minimax rate for estimating βTΣβ in the super-
vised setting.

Corollary 3. Suppose that assumption 1 holds and k � c min{n= log.p/, pν} for some con-
stants c>0 and 0�ν < 1

2 . For any estimator β̂ satisfying condition 1, the estimator Q̂=Q̂.β̂, Σ̂L/

defined in expression (4) with Σ̂L = .1=n/Σn
i=1Xi·XT

i· achieves the optimal estimation rate over
Θ.k, M/ for M �√{k log.p/=n}, i.e. Q̂.β̂, Σ̂L/ satisfies

sup
θ∈Θ.k,M/

P

{
|Q̂.β̂, Σ̂L/−Q|� t

M2
√

n
+ M√

n
+ k log.p/

n

}
�C{p−c + exp.−ct2/}+γ.n/: .15/

Remark 1. In the supervised setting, Guo et al. (2019) established that the optimal rate of
estimating ‖β‖2

2 over Θ.k, M/ for M �√{k log.p/=n} is M=
√

n+ .M +1/k log.p/=n. In contrast
with inequality (15), we can see that neither of these two problems is easier than the other, where
there is an additional term M2=

√
n in inequality (15) and an additional term Mk log.p/=n in the

optimal convergence rate of estimating ‖β‖2
2.

Inference for βTΣβ in the supervised setting is closely connected to Sun and Zhang (2012)
and Verzelen and Gassiat (2018), where Sun and Zhang (2012) studied the inference problem
for σ2 and Verzelen and Gassiat (2018) studied the estimation of βTΣβ=σ2. In particular, Sun
and Zhang (2012) proposed the scaled lasso estimator σ̂2 in expression (5) to estimate σ2 and
Verzelen and Gassiat (2018) proposed to estimate βTΣβ by ..1=n/‖y‖2

2 − σ̂2/+ as an intermediate
step of estimating βTΣβ=σ2. For the estimator Q̂.β̂, Σ̂L/ defined in equation (4), if β̂ is taken
as the scaled lasso estimator, then Q̂.β̂, Σ̂L/ is reduced to being the same as the estimator that
was proposed in Verzelen and Gassiat (2018), where the equivalence is shown by the expression

β̂TΣ̂Lβ̂ +2β̂T 1
n

n∑
i=1

Xi·.yi −Xi·β̂/= 1
n

.‖y‖2
2 −‖y −Xβ̂‖2

2/= 1
n
‖y‖2

2 − σ̂2: .16/

As a remark, in the supervised setting, the calibration idea in expression (4) provides a completely
new perspective on estimation of βTΣβ, where, instead of using the expression Q=E.y2

i /−σ2

and estimating σ2 first, we estimate Q directly by calibrating the plug-in estimator. This new
perspective establishes a general machinery taking reasonably good initial estimators of β and
Σ as inputs. As shown in expression (6), the flexibility of the calibrated estimator has proven
useful in efficiently pooling additional information on Σ whereas the estimation method that
was introduced in Verzelen and Gassiat (2018) cannot be directly extended to integrating the
unlabelled data in the semisupervised setting.

In numerical studies, we have demonstrated that the effect of including unlabelled data is
of great practical significance, where, in the case of dense Σ, the RMSE of the new proposed



402 T. T. Cai and Z. Guo

CHIVE estimator is 60–70% of the size of estimators (16) without using the unlabelled data.
See Table 2 in Section 6 for details.

Additionally, Verzelen and Gassiat (2018) focused on the estimation problem instead of
confidence interval construction and hypothesis testing problems. In terms of technical details
on estimation optimality, the results in Verzelen and Gassiat (2018) allowed for a more general
regime k �√

p than corollary 3 but did not handle the optimality in the semisupervised setting
and did not allow the signal strength M to grow with n and p.

2.4. Case II: known Σ
The general semisupervised results also shed light on another interesting setting where the design
covariance Σ is known. In the semisupervised setting, the unlabelled data are used for estimat-
ing Σ, so the case of known Σ is an extreme case of the semisupervised setting with N taken
as ∞. The estimator (11) can be modified as Q̂.β̂, Σ, Z.2//= β̂TΣβ̂ +2β̂T.1=n2/Σn

i=n1+1XT
i· .yi −

Xi·β̂/. Similarly, the estimator that was proposed in equation (6) is changed to Q̂.β̂, Σ/ =
β̂TΣβ̂ +2β̂T.1=n/Σn

i=1Xi·.yi −XT
i· β̂/.

Corollary 4. Suppose that assumption 1 holds and k � cn= log.p/ for some constant c> 0.

(a) For any estimator β̂ depending on the first half-sample .y.1/, X.1// and satisfying condition
1, then, with probability larger than 1−γ.n/−C{p−c + exp.−ct2/},

|Q̂.β̂, Σ, Z.2//−Q|� .t +1/
σ‖Σ1=2β‖2√

n
+ k log.p/

n
σ2: .17/

(b) For any estimator β̂ satisfying condition 1, then, with probability larger than 1−γ.n/−
C{p−c + exp.−ct2/},

|Q̂.β̂, Σ/−Q|� t
‖Σ1=2β‖2√

n
+

(‖Σ1=2β‖2

σ
+1

)
k log.p/

n
σ2: .18/

Through comparing expression (17) with expression (12) and expression (18) with expression
(7), the uncertainty of estimating the design covariance matrix leads to the additional term
βTΣβ=

√
.N +n/. By applying theorem 2, it can be shown that the upper bound in expression (17)

leads to the optimal convergence rate M=
√

n+ k log.p/=n. The term M2=
√

.N +n/ disappears
because of the known design covariance matrix Σ.

3. Semisupervised confidence intervals for βT�β

In this section, we quantify the uncertainty of the CHIVE estimator that was proposed in Section
2 and then construct confidence intervals for βTΣβ in the semisupervised setting.

3.1. Confidence interval construction
The main next step of confidence interval construction for Q is to estimate consistently the
standard error

√{4σ2βTΣβ +ρE.βTX1·XT
1·β −βTΣβ/2}=

√
n of the limiting distribution that

was established in result (8). Specifically, we estimate 4σ2βTΣβ by φ̂1, ρ by ρ̂=n=.N +n/ and
E.βTX1·XT

1·β −βTΣβ/2 by φ̂2, where φ̂1 = σ̂2β̂TΣ̂Sβ̂ and

φ̂2 = 1
n+N

n+N∑
i=1

.β̂TXi·XT
i· β̂ − β̂TΣ̂Sβ̂/2,
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with Σ̂S defined in equation (6). Then we propose the following confidence interval centred at
Q̂:

CI.Z/= [.Q̂− zα=2φ̂/+, Q̂+ zα=2φ̂], φ̂=√{.4φ̂1 + ρ̂φ̂2/=n}, .19/

where zα=2 is the upper .α=2/-quantile of a standard normal distribution. The following theorem
establishes the coverage and precision properties of CI.Z/, where the length of the interval
CI.Z/= .L.Z/, U.Z// is defined as L{CI.Z/}=U.Z/−L.Z/.

Theorem 4. Suppose that assumptions 1 and 2 hold, k � min{n={log.N + n/ log.p/},√
n= log.p/} and SNR 	 k log.p/=

√
n. For β̂ and σ̂2 satisfying conditions 1 and 2 respec-

tively, the confidence interval that is given in expression (19) satisfies

lim
n→∞

P{βTΣβ ∈CI.Z/}�1−α .20/

lim
n→∞ P[L{CI.Z/}� .1+ δ0/

√{4σ2βTΣβ=n+E.βTX1·XT
1·β −βTΣβ/2=.N +n/}]=0 .21/

for any positive constant δ0 > 0.

The effect of the unlabelled data on the length of confidence interval is carefully characterized
in equation (21), where the unlabelled data shrink part of the length of confidence interval,
E.βTX1·XT

1·β −βTΣβ/2=.N +n/. This term corresponds to the uncertainty of estimating βTΣβ
in the oracle setting of known β. The most effective regime of integrating the unlabelled data is
when the ratio

E.βTX1·XT
1·β −βTΣβ/2

σ2βTΣβ

is not vanishing to 0. Otherwise, the dominating term in the length of expression (21) is
4σ2βTΣβ=n and the additional unlabelled data are not helpful in this regime. In the numer-
ical studies, we investigate how much shorter confidence intervals can be after integrating the
unlabelled data. The lengths of confidence intervals in the semisupervised setting can be re-
duced to being as short as 30–40% of those in the supervised setting. See Table 2 in Section 6 for
details.

The upper bound for confidence interval length established in expression (21) is further upper
bounded by σ‖Σ1=2β‖2=

√
n+βTΣβ=

√
.N +n/, which matches the optimal convergence rate of

estimation M=
√

n + M2=
√

.N +n/ over the parameter space Θ.k, M/ for k � √
n= log.p/ and

M 	k log.p/=
√

n.
As shown in theorem 4, the validity of the proposed confidence interval (19) requires the con-

dition that SNR is bounded away from zero by k log.p/=
√

n. Although k log.p/=
√

n converges
to 0 over the extreme sparse regime k�√

n= log.p/, it reveals the difficulty of constructing stable
confidence intervals for βTΣβ when SNR is at a local neighbourhood of 0. The next section will
address the inference problem when SNR is at a local neighbourhood of 0.

3.2. Inference for weak signals
As discussed in Section 1, uncertainty quantification of Q=βTΣβ is closely connected to other
important statistical problems, including

(a) signal detection and global testing,
(b) prediction accuracy evaluation and
(c) confidence ball construction.
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These applications provide a strong motivation for studying the inference problem for the
explained variance under the settings of weak signals (i.e. SNR�k log.p/=

√
n). The main goal

of this section is to discuss extensions of the proposed procedure to conduct statistical inference
uniformly over different levels of signal strength, measured by SNR.

To begin with, we recall the reasoning for the non-uniformity assumption SNR	k log.p/=
√

n.
This assumption is imposed such that the variance component of the CHIVE estimator domi-
nates the bias component and in this case an asymptotic limiting distribution for the variance
component is used to construct confidence intervals for the explained variance. Specifically, we
discuss two possible solutions to remove this stringent assumption:

(a) to enlarge the confidence interval by an upper bound for the bias in Section 3.2.1;
(b) to increase the variance level by randomized calibration in Section 3.2.2.

3.2.1. Bound the bias term
One way to construct confidence intervals uniformly over all SNRs is to enlarge the estimated
variance level that is defined in expression (19) to

φ̂E = φ̂E.y, X, τ0/=
√{

1
n

4σ̂2.β̂TΣ̂Sβ̂ + τ2
0 /+ 1

.n+N/2

n+N∑
i=1

.β̂TXi·XT
i· β̂ − β̂TΣ̂Sβ̂/2

}
, .22/

for some positive constant τ0 > 0. Then we construct the confidence interval as

CIE.Z/= ..Q̂− zα=2φ̂
E/+, Q̂+ zα=2φ̂

E/, .23/

where zα=2 is the upper .α=2/-quantile of a standard normal distribution. The reason for adding
the term .1=n/4σ̂2τ2

0 in the width (22) is that this additional term is an upper bound for the
bias term in the regime k �√

n= log.p/. The following corollary establishes the coverage and
the precision property of the enlarged confidence interval CIE.Z/.

Corollary 5. Suppose that assumptions 1 and 2 hold, k � min{n={log.N + n/ log.p/},√
n= log.p/} and τ0 >0 is a positive constant. For β̂ and σ̂2 satisfying conditions 1 and 2 respec-

tively, then the confidence interval that is defined in equation (23) satisfies

lim
n→∞

P{βTΣβ ∈CIE.Z/}�1−α, .24/

lim
n→∞ P

[
L{CIE.Z/}� .1+ δ0/

√{
4σ2.βTΣβ + τ2

0 /

n
+ E.βTX1·XT

1·β −βTΣβ/2

N +n

}]
=0 .25/

for any positive constant δ0 > 0.

In contrast with the length of confidence interval in interval (21), the length in expression (25)
is enlarged by the exact amount 4σ2τ2

0 =n. In contrast with theorem 4, the inference is uniform
over all levels of SNR at the expense of slightly longer confidence interval.

3.2.2. Randomized calibration
The construction in interval (23) still uses the CHIVE estimator as the centre and enlarges the
constructed confidence interval. We introduce a randomized version of the CHIVE estimator as
the new centre, where the main intuition is to increase the variance level through randomization
such that the variance of this randomized estimator dominates its bias level. We generate random
variables ui ∼IID N.0, τ2

0 / for 1 � i � n, independent of the observed data Z, and propose the
following randomized calibrated estimator:
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Q̂R = Q̂R.β̂, Σ̂S, u/= β̂TΣ̂Sβ̂ +2
1
n

n∑
i=1

.XT
i· β̂ +ui/.yi −XT

i· β̂/: .26/

When there is no confusion, we use Q̂R to denote the estimator that is proposed in equation
(26). In contrast with estimator (6), the calibration step in estimator (26) is involved with an
additional term 2.1=n/Σn

i=1ui.yi −XT
i· β̂/. If ui is 0 instead of being generated as normal random

variables in equation (26), the estimator Q̂R.β̂, Σ̂S, 0/ is reduced to being exactly the same as
Q̂.β̂, Σ̂S/ defined in expression (6). Since ui in equation (26) are randomly generated normal
random variables, this additional term approximately follows a normal distribution with mean
0 and variance 4σ2τ2

0 =n. Even in the presence of weak signals, this additional term further
enlarges the variance level of the calibrated estimator such that the bias level of the calibrated
estimator is dominated by the corresponding variance level. The following theorem establishes
the limiting distribution of the estimator Q̂R after randomized calibration.

Theorem 5. Suppose that assumption 1 holds, k�√
n= log.p/ and τ0 >0 is a positive constant.

For any estimator β̂ satisfying condition 1, then

√
n

Q̂R −Q√{4σ2.βTΣβ + τ2
0 /+ρE.βTX1·XT

1·β −βTΣβ/2}
d→N.0, 1/ .27/

where ρ= lim n=.n+N/.

In comparison with the limiting distribution (8) in theorem 1, theorem 5 requires no con-
dition on SNR to establish the asymptotic limiting distribution while the variance level of
the established normal distribution is enlarged by the amount 4σ2τ2

0 =n. This additional vari-
ance term is a side effect of the randomized calibration. However, it enables a uniform in-
ference procedure over all levels of SNR. Then we propose the confidence interval CIR.Z/ =
[.Q̂R −zα=2φ̂

E/+, Q̂R +zα=2φ̂
E], where φ̂E is defined in expression (22). This confidence interval

has the same length as that of interval (23) but different centres. The proposed estimator Q̂R

enjoys the advantage of having an asymptotic normal distribution but it suffers from the same
disadvantage as all randomized procedures, where the output is random even given the same
data set. The following corollary characterizes the coverage and precision properties of CIR.Z/.

Corollary 6. Under the same conditions as corollary 5, the coverage property in inequality
(24) and precision property in equation (25) hold for the confidence interval CIR.Z/.

Algorithm 1 in Table 1 summarizes the uncertainty quantification methods for βTΣβ.
We conclude this section with some additional comments. Compared with point estimation,

construction of confidence intervals for the explained variance is a more challenging problem,
mainly because we need to characterize the uncertainty of the estimator proposed. Specifically,
accurate estimation of Q can be conducted uniformly over all levels of SNR whereas construction
of confidence intervals uniformly over all levels of SNR requires much more effort. Another
interesting observation is that inference for explained variance is different from that for linear
functionals (Zhang and Zhang, 2014; van de Geer et al., 2014; Javanmard and Montanari,
2014a, b; Cai and Guo, 2017), where the valid inference results for the latter do not depend on
the magnitude of SNR.

4. Related semisupervised inference problem

The improvement due to integrating the unlabelled data is not just limited to the inference
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Table 1. Algorithm 1: semisupervised uncertainty quantification for βTΣβ

Input: labelled data {yi, Xi·}1�i�n and unlabelled data {Xi·}n+1�i�n+N ; τ0 > 0
Output: point estimator Q̂= Q̂.y, X/, Q̂R = Q̂R.y, X, τ0/ and variance estimator φ̂E = φ̂E.y, X, τ0/

Step 1: initialization—construct point estimator β̂ and σ̂2 satisfying conditions 1 and 2; estimate Σ by Σ̂S

defined in equation (6)
Step 2: calibration—estimate Q by the CHIVE estimator Q̂ in equation (4) or its randomized version Q̂R in

equation (26)
Step 3: uncertainty quantification—quantify the error of the proposed estimator by φ̂E defined in equation (2)

problem for βTΣβ but can also be obtained in the semisupervised inference for ‖β‖2
2. This

unweighted quadratic functional is different from βTΣβ as the covariance matrix Σ does not
appear in the expression. Hence, it is even unclear whether the unlabelled data can be of any
help. We introduce in this section a procedure integrating the unlabelled data and also carefully
quantify the improvement by making use of the additional unlabelled data in the semisupervised
setting.

The estimation of ‖β‖2
2 in the supervised setting was studied in Guo et al. (2019), where the

error decomposition of the plug-in estimator ‖β̂‖2
2 was established as ‖β̂‖2

2 −‖β‖2
2 = 2β̂T.β̂ −

β/− .β̂ −β/T.β̂ −β/. In Guo et al. (2019), the bias term 2β̂T.β̂ −β/ in the decomposition was
estimated and hence the plug-in estimator ‖β̂‖2

2 was corrected.
We illustrate here how the additional unlabelled data facilitate the bias correction step. We

randomly split the labelled data .y, X/ into two subsamples .y.1/, X.1// with sample size n1 and
.y.2/, X.2// with sample size n2, where n1 �n2. Let β̂ denote an estimator of β that is produced
by the first subsample .y.1/, X.1// satisfying condition 1, where one example is the scaled lasso
estimator (5) applied to .y.1/, X.1//. Then we construct a projection direction û∈Rp and propose
the estimator ‖β̂‖2

2 as

̂‖β‖2
2 =‖β̂‖2

2 +2ûT 1
n2

n∑
i=n1+1

Xi·.yi −XT
i· β̂/: .28/

The unlabelled data are particularly useful in estimating the projection direction û ∈ Rp. The
projection direction û is constructed as û = Ω̂β̂ = Σl∈supp.β̂/Ω̂·lβ̂l where Ω̂·l is the constrained
l1-minimization for inverse matrix estimation estimator CLIME (Cai et al., 2011) defined as

Ω̂·l =arg min ‖m‖1 subject to ‖Σ̃m− el‖∞ �λS .29/

with

Σ̃= 1
N +n1

(
n1∑

i=1
Xi·XT

i· +
n+N∑

i=n+1
Xi·XT

i·

)

and λS �√{log.p/=.n1 +N/}. The additional unlabelled data play a role in constructing the
sample covariance matrix Σ̃ in estimator (29) and hence constructing the projection direction
û. The specific way of including the unlabelled data to improve the estimation accuracy of ‖β‖2

2
is different from that of βTΣβ, where the additional unlabelled data are used to estimate Σ
directly in estimating βTΣβ whereas the additional unlabelled data are used to estimate Σ−1 in
estimating ‖β‖2

2. However, the high level idea is the same, i.e. making use of the flexibility of
the calibrated estimator and properly incorporating the information about Σ that is contained
in the unlabelled data.
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Precision matrix estimation has been studied in the literature; see Cai et al. (2011) and the
references therein. We restrict attention to Ω̂ satisfying the following condition.

Condition 3. The estimator Ω̂ satisfies P[‖Ω̂−Ω‖2 �CΩs
√{log.p/=.N +n/}]�1−γ1.N +n/

where γ1.N +n/→0, s=max1�l�p ‖Ωl·‖0 and CΩ is a constant depending on ‖Ω‖L1 .

The CLIME estimator Ω̂= .Ω̂·1 Ω̂·2: : : Ω̂·p/ with Ω̂l· constructed in definition (29) is shown
to satisfy condition 3 under certain regularity conditions. See the exact statement in Cai et al.
(2011). We show in the following theorem that, with a sufficiently large amount of unlabelled
data, the inference results for the semisupervised setting are distinguished from those in the
supervised data.

Theorem 6. Suppose that assumption 1 holds, k�cn= log.p/ for some constant c>0 and c0 �
λmin.Ω/�λmax.Ω/�C0 for some positive constants C0 �c0 >0. Suppose that β̂ satisfies con-
dition 1 and Ω̂ satisfies condition 3. Under the sample size condition N +n	C2

Ωk{s log.p/}2,
then, with probability larger than 1−γ.n/−C{p−c + exp.−ct2/}−γ1.N +n/,

|̂‖β‖2
2 −‖β‖2

2|�σ
‖β‖2√

n
+k

log.p/

n
σ2: .30/

In addition, if .1=σ/‖β‖2 	k log.p/=
√

n and εi are IID Gaussian random variables, then

√{n=.σ2V/}.̂‖β‖2
2 −‖β‖2

2/
d→N.0, 1/, V =4

n∑
i=n1+1

.ûTXi·/2=n2
2: .31/

The limiting distribution in expression (31) leads to the confidence interval construction

CI‖β‖2
2
= .̂‖β‖2

2 − zα=2σ̂
√

V , ̂‖β‖2
2 + zα=2σ̂

√
V/

where ̂‖β‖2
2 is defined in equation (28), V is defined in expression (31) and û=Σl∈supp.β̂/Ω̂·lβ̂l.

A few remarks are in order for the semisupervised inference for ‖β‖2
2. The results that were

established in Guo et al. (2019) showed that the optimal rate for estimating ‖β‖2
2 in the supervised

setting is

σ‖β‖2√
n

+ .1+‖β‖2/k
log.p/

n
σ2:

In contrast, the term

‖β‖2k
log.p/

n
σ

disappears in the rate of convergence (30) by efficiently incorporating the unlabelled data. The
improvement varies across different signal strengths, where the reduction in RMSE is limited
if the signal strength ‖β‖2 is small but is significant if ‖β‖2 is large. Although integrating the
unlabelled data is useful in reducing the RMSE for estimating both βTΣβ and ‖β‖2

2, it is inter-
esting to observe that the improvement by incorporating the unlabelled data is different, where,
for estimating βTΣβ, part of the variance component is reduced but, for estimating ‖β‖2

2, the
bias component is reduced by
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‖β‖2k
log.p/

n
σ:

More interestingly, when the size of the unlabelled data is sufficiently large and the spectrum of
Σ is bounded away from 0 and ∞, the rate of estimating ‖β‖2

2 in expression (30) coincides with
that of estimating βTΣβ in expression (17).

Theorem 6 requires an additional sample size condition for the unlabelled data: N + n 	
C2

Ωk{s log.p/}2. The general results for any N � 0 are given in section A in the on-line supple-
mentary material.

The additional unlabelled data are not just useful in improving the estimation accuracy but
are also useful in confidence interval construction. The specific effect is different from that for
βTΣβ; the confidence interval for βTΣβ is shortened as in interval (21) whereas the length
of confidence interval CI‖β‖2

2
is not shortened in terms of order of magnitude. However, the

additional unlabelled data significantly weaken the model complexity and sample size condition
for establishing the limiting distribution, where the sufficient condition for the supervised setting
is .1=σ/‖β‖2 	 k log.p/=

√
n and k � √

n= log.p/. Corollary 6 has shown that the condition
k �√

n= log.p/ is not needed if there is a sufficient amount of unlabelled data.

5. Statistical applications

In this section, we apply the inference procedure related to the CHIVE estimator to tackle several
important statistical problems.

5.1. Application 1: signal detection and global testing
Signal detection is of great importance in statistics and related scientific applications and the
detection problem in high dimensional linear regression has been studied in Arias-Castro et al.
(2011) and Ingster et al. (2010). The inference procedure that is stated in algorithm 1 has
profound implications on signal detection and the general global testing in high dimensional
linear regression. We consider the global hypothesis testing problem H0 : .β − βnull/TΣ.β −
βnull/ = 0 versus H1 : .β − βnull/TΣ.β − βnull/ > 0, which includes signal detection as a special
case with βnull = 0. We apply algorithm 1 with a given τ0 > 0 and obtain the point estima-
tor Q̂R.y − Xβnull, X, τ0/ and its standard error estimator φ̂E.y − Xβnull, X, τ0/. Then we pro-
pose the detection procedure, with type I error controlled at α ∈ .0, 1/ as D.τ0/ = 1{Q̂R.y −
Xβnull, X, τ0/� φ̂E.y−Xβnull, X, τ0/zα}. Define the null parameter space H0 ={θ= .βnull, Σ, σ/ :
1=M1 �λmin.Σ/�λmax.Σ/�M1, σ �M2} and the local alternative parameter space as

H1.Δ/=
{

θ = .β, Σ, σ/ : .β −βnull/TΣ.β −βnull/= Δ√
n

,

1
M1

�λmin.Σ/�λmax.Σ/�M1, σ �M2

}
:

The following corollary establishes that D.τ0/ controls the type I error asymptotically and also
establishes the asymptotic power function of the test proposed.

Corollary 7. Suppose that assumptions 1 and 2 hold, τ0 > 0 is a positive constant and the
vector δ=β −βnull satisfies the conditions that ‖δ‖0 �min{n={log.N +n/ log.p/},

√
n= log.p/}

and
√

E.δTX1·XT
1·δ − δTΣδ/2 � c0δ

TΣδ for some positive constant c0. Then, for any θ∈H0, the
type I error is controlled: limn→∞ Pθ{D.τ0/= 1}�α. For ρ> 0 and any θ ∈H1.Δ/ with some
positive constant Δ> 0, then
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lim
n→∞ Pθ{D.τ0/=1}=1−Φ−1

[
zα − Δ√{4σ2.δTΣδ + τ2

0 /+ρE.δTX1·XT
1·δ − δTΣδ/2}

]
: .32/

The assumptions of corollary 7 are the same as those of corollary 6 from the perspective that
the conditions that are imposed on β in corollary 6 are now imposed on the difference vector
δ =β −βnull. One sufficient condition for the difference vector δ to be sparse is that both the
true signal β and the null hypothesis βnull are sparse. Corollary 7 shows that, for any positive
constant τ0, D.τ0/ controls the type I error asymptotically. The asymptotic power of the test
proposed is established in expression (32), where the additional unlabelled data prove useful in
improving the power. See section D.2 of the on-line supporting information for an improve-
ment in the numerical studies. For the finite sample performance, we have investigated how to
choose the randomization level τ0 in the simulation section. See section D.3 for the numerical
performance.

5.2. Application 2: prediction accuracy assessment
Inference for explained variance has important applications to evaluating the out-of-sample
prediction for a given sparse estimator β̌. To keep the notation consistent, we assume that
β̌ is estimated on the basis of a training data set .X0, y0/ and .X, y/ are independent test
data to evaluate its prediction accuracy. We start with computing the residual on the test
data set y − Xβ̌ = X.β − β̌/ + ε: The out-of-sample prediction accuracy is defined as PA.β̌/ =
Exnew{xT

new.β̌ − β/}2 = .β̌ − β/TΣ.β̌ − β/ and it is reduced to the explained variance for the
residual model with outcome r = y − Xβ̌ and covariates X. Let Q̂R.r, X, τ0/ and φ̂E.r, X, τ0/

denote the outputs of algorithm 1 with the labelled data {.ri, Xi·/}1�i�n and unlabelled data
{Xi·}n+1�i�n+N as inputs. Then we propose the point estimator of PA.β̌/ as Q̂R.r, X, τ0/ and
the interval estimator for PA.β̌/ as

CIPA.β̌/= [.Q̂R.r, X, τ0/− zα=2φ̂
E.r, X, τ0//+, Q̂R.r, X, τ0/+ zα=2φ̂

E.r, X, τ0/]: .33/

The following corollary establishes the convergence rate for the point estimator and the coverage
and precision properties of the interval estimator.

Corollary 8. Suppose that assumptions 1 and 2 hold, τ0 > 0 is a positive constant and c0 �
λmin.Ω/ �λmax.Ω/ � C0, σ � M2 for some positive constants C0 � c0 > 0 and M2 > 0. For any
sparse estimator satisfying ‖β̌‖0 �C‖β‖0 and C> 0 we have the following results.

(a) If k � cn= log.p/ for some positive constant c > 0, then, with probability larger than
1−γ.n/−C{p−c + exp.−cN/+ exp.−ct2/},

|Q̂R.r, X, τ0/−Q|� t
‖β̌ −β‖2 + τ0√

n
+ t

‖β̌ −β‖2
2√

.N +n/
+ .‖β̌ −β‖2 +1/

k log.p/

n
: .34/

(b) If k � min{n={log.N + n/ log.p/},
√

n= log.p/} and
√

E.δTX1·XT
1·δ − δTΣδ/2 � c0δ

TΣδ
for δ =β − β̌ and some positive constant c0, then the confidence interval that is defined in
expression (33) satisfies the coverage property limn→∞ P{PA.β̌/∈CIPA.β̌/

}�1−α and

lim
n→∞ P

[
L.CIPA.β̌/

/�C

{‖β̌ −β‖2 + τ0√
n

+ ‖β̌ −β‖2
2√

.N +n/

}]
=0 .35/

for some constant C> 0.

Corollary 8 has shown that the precision of the confidence interval for the prediction accuracy
is not just related to the sample sizes n and N, the sparsity k and the dimension p but is also
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related to the accuracy of the evaluated estimator ‖β̌ −β‖2. As characterized in expressions (34)
and (35), the integration of the unlabelled data is useful in improving the estimation accuracy
and confidence interval precision. See Section 6.1 and section D.4 in the on-line supporting
information for the numerical performance.

5.3. Application 3: confidence ball construction
The prediction accuracy evaluation that was established in expression (33) can be used to
construct a confidence ball for β. For the setting where λmin.Σ/ is known, then we have
λmin.Σ/‖β̌ −β‖2

2 � .β̌ −β/TΣ.β̌ −β/ and construct the confidence ball for β as

CB.β̌/=
{

β :‖β − β̌‖2
2 � zα=2

1
λmin.Σ/

φ̂E.r, X, τ0/

}
.36/

As shown in expression (35), the radius of the confidence ball CB.β̌/ is upper bounded by
.‖β̌ −β‖2 + τ0/=

√
n+‖β̌ −β‖2

2=
√

.N +n/. To minimize the radius, we need to select the centre
β̌ for the confidence ball (36) such that β̌ is sparse and ‖β̌ −β‖2 is small. In the high dimensional
literature, several penalized estimators have been shown to satisfy such properties, such as the
lasso, scaled lasso and the Dantzig selector.

6. Simulation study

We carry out simulation studies in this section to demonstrate the numerical performance of
the CHIVE estimator. Specifically, we illustrate the numerical improvement of pooling over the
unlabelled data in Section 6.1; we compare the performance of the CHIVE estimator with the
plug-in estimator in Section 6.2. Additional simulation results are postponed to section D in
the on-line supplementary material.

We first introduce the general simulation set-up that is used for this section. We generate the
high dimensional linear regression (1) with the dimension p = 800 and the labelled data with
sample size n and unlabelled data with sample size N. For the linear model (1), the covariates
{Xi·}1�i�n for the labelled data and also {Xi·}n+1�i�n+N for the unlabelled data are generated
in IID fashion to follow a multivariate normal distribution with mean 0 and covariance matrix
Σ∈R800×800 and the errors {εi}1�i�n are generated as an IID standard normal distribution.

6.1. Effect of pooling over additional unsupervised data
The focus of this section is to illustrate the improvement after integrating the unlabelled data
in the semisupervised setting. We first consider the inference problem for βTΣβ and then the
out-of-sample prediction loss evaluation.

6.1.1. Inference for βTΣβ
We fix the labelled data sample size as n=400 and vary the unlabelled data sample size N across
{2000, 6000, 20000}. We consider the following settings for the design covariance matrix Σ and
high dimensional regression vector β.

(a) Across settings 1, 2 and 3, the regression coefficients are generated as βi = i=10 for 1� i�0
and βi =0 for i�11; the covariance matrix Σ is generated as follows:
(i) setting 1, Σij =0:5|i−j|;
(ii) setting 2, Σij =0:35 for 1� i 
= j �p and Σii =1 for 1� i�p;
(iii) setting 3, Σij =0:7 for 1� i 
= j �p and Σii =1 for 1� i�p.
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(b) Across settings 4, 5 and 6, the regression coefficients are generated as βi = 1:5 × 0:8i for
1� i�800. The covariance matrix Σ is generated as follows:
(i) setting 4, Σij =0:5|i−j|;
(ii) setting 5, Σij =0:35 for 1� i 
= j �p and Σii =1 for 1� i�p;
(iii) setting 6, Σij =0:7 for 1� i 
= j �p and Σii =1 for 1� i�p.

Settings 1–3 correspond to the exact sparse case whereas settings 4–6 correspond to the ap-
proximate sparse case. Settings 1 and 4 correspond to the case of an approximated banded
covariance matrix whereas settings 2, 3, 5 and 6 are about denser covariance matrices. The
simulations are replicated over 1000 simulations. RMSE and the coverage and length of confi-
dence intervals are presented in Table 2. Regarding RMSE, we observe that incorporation of
unlabelled data reduces it significantly. The column under ‘Ratio’ reports the ratio of RMSE
of the semisupervised method to that of the supervised method and RMSE of the semi-
supervised method is reduced to 33–57% of that of the supervised method, depending on the
amount of the unlabelled data and also the structure on Σ. Since Xi· follows a multivariate
Gaussian distribution, the variance component depending on the unlabelled data is expressed
as E.βTX1·XT

1·β −βTΣβ/2=.N +n/=2.βTΣβ/2=.N +n/. From setting 1 to setting 3, the value
of βTΣβ increases as Σ becomes denser and this explains why the effect of using the unlabelled
data becomes more significant; the same phenomenon holds for settings 4–6.

In terms of constructed confidence intervals, both confidence intervals that were constructed
in the semisupervised setting and the supervised setting have near 95% coverage whereas the
confidence intervals that were constructed by using the unlabelled data have much shorter
lengths. Specifically, we use Ratio to measure the ratio of the length of confidence interval in
the semisupervised setting to that in the supervised setting and we observe that the length of
confidence intervals can be reduced by as much as 70%.

The unlabelled data are not just useful in inference for βTΣβ, but also in prediction loss
evaluation, which will be illustrated in what follows.

6.1.2. Prediction loss evaluation
We generate βi = i=5 for 1� i�0 and βi =0 for i�11 and Σij =0:5|i−j|. We fix the labelled data
sample size as n= 400 and vary the unlabelled data sample size N across {2000, 6000, 20000}.
We use these generated data (both labelled and unlabelled) to evaluate the out-of-sample predic-
tion accuracy .β̂.λ/−β/TΣ.β̂.λ/−β/, where β̂.λ/ is the lasso estimator based on independent
training data .X.0/, y.0// with sample size 300 with the tuning parameter λ:

β̂.λ/=arg min
β∈Rp

‖y.0/ −X.0/β‖2
2

2n0
+λ

p∑
j=1

‖X
.0/
·j ‖2√
n0

|βj|:

Note that .X.0/, y.0// is an independent copy of the labelled data .X, y/. Specifically, we consider
the three estimators β̂.λ0/, β̂.6λ0/ and β̂.10λ0/ with

λ0 =
√(

z1−1=.10p/

n0

)

and use the randomization level τ0 = 2 in terms of estimating this out-of-sample prediction
accuracy.

The simulations are replicated over 1000 simulations and we report the numerical performance
of both point and interval estimators of the corresponding prediction accuracy in Table 3. The
observation is consistent with that for βTΣβ, where confidence intervals in both semisupervised
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and supervised settings have coverage but the semisupervised estimators are uniformly better
than the supervised estimators in terms of both RMSE and the length of confidence interval.
As observed in Table 3, across the three estimators β̂.λ0/, β̂.6λ0/ and β̂.10λ0/, the effect of
unlabelled data is different. The effect of unlabelled data for estimating β̂.λ0/ is marginal whereas
the effect of unlabelled data β̂.10λ0/ is much more significant, where RMSE and length of
confidence interval can be reduced by 30%. This matches with the theory where, in the simulation
setting of a Gaussian design, the unlabelled data reduce the term {.β̂ −β/TΣ.β̂ −β/}2=.N +n/

and .β̂ −β/TΣ.β̂ −β/ is quite small (0:145) for β̂ = β̂.λ0/ and is much larger (4:679) for β̂ =
β̂.10λ0/.

The semisupervised data are also useful for improving the power for signal detection. Since
the detection power is improved by only around 5%, we defer the detailed results to the on-line
supplementary material section D.2.

6.2. Comparison with other estimators
In what follows, we compare the CHIVE estimator with the plug-in estimator. We fix the size of
unlabelled data at N =2000 and vary the labelled data sample size n across {200, 400, 600, 800,
1000}. The simulations are replicated over 500 simulations. We generate the design covariance
matrix as Σij =0:5|i−j| and the high dimensional regression vector β across the following three
settings:

(a) setting a, β is generated with sparsity 10 where βj = j=10 for 1 � j � 10 and βj = 0 for
j �11;

(b) setting b, β is generated with sparsity 50 where βj = j=50 for 1 � j � 50 and βj = 0 for
j �51;

(c) setting c, β is generated as an approximate sparse vector with βj =0:5p−1.

We compare four different estimators, where ‘CHIVE’ and ‘CHIVE.semi’ denote the CHIVE
estimator in the supervised setting and semisupervised setting respectively; ‘Plugin’ and
‘Plugin.semi’ denote the plug-in estimator β̂TΣ̂β̂ in the supervised setting and semisupervised
setting respectively. A numerical comparison is reported in Fig. 1. Across all three settings, it is
observed that the proposed CHIVE estimator has achieved uniformly much better estimation
accuracy than the plug-in estimators, in both supervised and semisupervised settings. This nu-
merical observation demonstrates that the calibration step is useful in improving the estimation
accuracy.

We also point out that the unlabelled data are useful only if they are incorporated in a
proper way. Plugin.semi is another estimator also using the unlabelled data to estimate Σ, but
it is only slightly better than the Plugin estimator. In contrast, together with the calibration
machinery, CHIVE.semi uses the additional data in an efficient way and the corresponding
RMSE is significantly reduced in comparison with the CHIVE estimator.

7. Real data application

In this section, we analyse a yeast data set that was reported in Bloom et al. (2013) and study
how the genetic variants explain the colony sizes under various growth media. The goal is to
estimate the heritability measures of colony sizes under various growth media, which represent
the variance of the colony sizes explained by the genetic variants.

Bloom et al. (2013) investigated a large-scale genomewide association study of 46 quantitative
traits based on 1008 Saccharomyces cerevisiae segregants crossbred from a laboratory strain and
a wine strain. These quantitative traits are measures of end point colony size under 46 different
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Fig. 1. RMSE of various estimators of βTΣβ (the x-axis denotes the sample size and the y-axis denotes
the RMSE of corresponding estimators; , RMSEs of the CHIVE estimator in the supervised setting;

, RMSEs of the CHIVE estimator in the semisupervised setting; , RMSE of the plug-in estimator
in the supervised setting; , RMSE of the plug-in estimator in the semisupervised setting): (a) setting a
(true value 9.42); (b) setting b (true value 49.47); (c) setting c (true value 2.9)
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growth media, including hydrogen peroxide, cadmium chloride, calcium chloride, lactose, raf-
finose, sorbitol, yeast nitrogen base and yeast peptone dextrose. The genetic marker genotypes
are coded as 1 or −1, according to which strain it comes from. A set of 11623 unique genotype
markers of the 1008 segregants is measured. Since many of these markers are highly correlated
and the corresponding codes are different in only several samples, Bloom et al. (2013) further
selected a set of 4410 markers that are weakly dependent on the basis of the linkage disequi-
librium information. All traits are normalized to have unit variance and hence the explained
variance is a measure for heritability. Bloom et al. (2013) showed that the genetic variants are
associated with many such trait values and highlighted the importance of addressing missing
heritability. Bloom et al. (2013) pointed out one key reason for missing heritability as

‘the undiscovered factors could have effects that are too small to be detected with current sample sizes,
or even too small to ever be individually detected with statistical significance’.

We demonstrate that the CHIVE estimator has exactly addressed this concern of missing heri-
tability. As reported in Table 4, we choose six traits out of the total 46 traits and observe that the
CHIVE estimates are always larger than the corresponding plug-in estimates. This means that
the calibration step adds back the missing heritability due to plugging in the lasso estimator,
where the lasso estimator tends to ignore the genetic markers with small effects. The results for
all 46 traits are reported in section E in the on-line supplementary material.

We also construct confidence intervals for heritability of all 46 traits and report part of the
results in Table 4. Note that a proportion of the outcome variables for different growth media
have missing values, with the proportion of missing ranging from 0.2% to 40.58%. This forms
the semisupervised-type data naturally (note that the unlabelled data are of a smaller size than
the labelled data in this specific example). After applying the proposed methods to analysing
the corresponding outcomes, we have the following interesting observations:

(a) the heritability measures of the colony sizes under different growth media range from 0.3
to 0.8 and none of the confidence interval estimators contain zero; this means that the
colony sizes under different growth media are strongly genetically heritable;

(b) the integration of the unlabelled data has shortened the length of the constructed confi-
dence intervals; for example the length is shorter by around 3% for sorbitol (with 40.58%
outcome missing), around 2% for raffinose (with 34.33% outcome missing) and around
1% for hydrogen peroxide (with 23.71% outcome missing).

8. Discussion

This paper studies statistical inference for the explained variance βTΣβ in the semisupervised
setting, which includes the supervised setting as a special case. By comparing the theoretical
as well as the numerical results for the semisupervised and supervised settings, it is easy to see
the significant contributions of the unlabelled data to the inference accuracy. In addition, the
confidence interval constructed, using the idea of calibration, has been shown to be useful in
tackling other important statistical applications, including signal detection and global testing,
prediction accuracy evaluation and confidence ball construction. There remain a few open
questions for future research.

Although the CHIVE estimator has been shown to achieve the optimal rates over the whole
sparse regime k � n= log.p/, construction of confidence intervals for βTΣβ is only considered
over the ultrasparse regime k �√

n= log.p/. Since neither the point nor the interval estimator
requires prior knowledge of the exact sparsity level, they are referred to as adaptive estimation
and the adaptive confidence interval respectively. However, it remains open whether it is possible
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to construct adaptive confidence intervals over the moderate sparse regime
√

n= log.p/ � k �
n= log.p/. The possibility of adaptive confidence intervals for the general linear functional ηTβ
for η ∈Rp has been studied in Cai and Guo (2017) and the technical tools that were developed
in Cai and Guo (2017) can be useful to study the adaptive confidence intervals for βTΣβ.

Because of the emerging semisupervised data sets, it is of significant importance to propose
procedures incorporating the unlabelled data efficiently and to study how the unlabelled data
affect the statistical accuracy. This paper has studied both methodological and theoretical per-
spectives of the semisupervised statistical inference for the explained variance βTΣβ and the
unweighted quadratic functional ‖β‖2

2. However, it is largely unknown how these unlabelled data
can facilitate the statistical inference problem for other quantities of interest, such as the gen-
eral linear functional ηTβ for some given η ∈Rp and the variance level σ2. These are interesting
problems that are left for future research.
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