A Motivated Look into Students’ Affective Response to an Authentic Examination Experience

Idalis Villanueva, Assistant Professor, Utah State University
Jenefer Husman, Associate Professor, University of Oregon
Katherine Cheng, Postdoctoral Fellow, University of Nebraska-Lincoln
Brief Background

Pekrun suggests academic emotions are “multi-component, coordinated processes of psychological subsystems including affective, cognitive, motivational, expressive, and peripheral physiological processes” (Pekrun, 2006 p. 316)

Valence (Positive/Negative)
Activation (Activating/Deactivating)

Limited studies have attempted to tease out potential associations between these processes, particularly around authentic classroom experiences (e.g., exams)
Research Goal

The goal of this presentation is to discuss two exploratory studies attempting to triangulate Biological (salivary Alpha-Amylase or sAA) or Physiological (Electrodermal Activity or EDA) techniques with self-reported instruments.

Research Question

In an authentic examination experience, does self-reported motivation associate with EDA measures and salivary sAA levels among students?

Study 1:
Salivary Alpha Amylase and academic achievement emotions while taking an Exam

Study 2:
Electrodermal arousal and positive/negative affect while taking engineering statics exams
Stress Hormones: Elevates upon Stress/Arousal

Saliva alpha amylase (sympathetic nervous system response or SNS)
Response quickly to challenge and is associated with adaptive coping responses to difficult situations.
sAA research has not typically been conducted in educational settings.
Electrodermal Activity: Indicative of Arousal

• When a person becomes nervous or anxious about a task, their palms become sweaty. Affective and cognitive processes, among other brain functions, can influence the control of sweating.

• Electrodermal activity (EDA) is widely considered as a proxy for quantifying stress level or cognitive load in the SNS.

 • Typically measured in locations where sweat glands are most dense (e.g., fingers) and whose region contains a greater number of innervated fibers
Study 1 Goal: Explore the relationship between sAA and academic achievement emotions.

Utilizing Pekrun’s model of discrete academic achievement emotions we were interested in the association between biological markers of arousal and discrete test emotions in an authentic testing environment.

Expectation is that a positive relationship would be found between positive emotions and sAA arousal.

Positive relationships between self-efficacy and sAA are also expected.
Methods

Participants

Two undergraduate engineering classes. On mid-term exam day, 29 of those provided pre, post, and 10-minutes after exam saliva samples.

65% of the sample was male; 58% of the sample was White; 17% of the sample was Asian/Pacific Islander.

Measures:

Achievement Emotions Questionnaire (Pekrun)
MSLQ - Self Efficacy (Pintrich)

<table>
<thead>
<tr>
<th>Procedures</th>
<th>10min prior to exam</th>
<th>After exam</th>
<th>10min after exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEQ: Saliva collection</td>
<td>AEQ & Saliva Collection</td>
<td>AEQ saliva collection</td>
<td></td>
</tr>
</tbody>
</table>
Saliva Alpha Amylase

Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-exam sAA</td>
<td>86.14U/mL</td>
<td>75.43</td>
</tr>
<tr>
<td>Post-Exam sAA</td>
<td>96.12U/mL</td>
<td>77.59</td>
</tr>
<tr>
<td>10-min post exam</td>
<td>77.27U/mL</td>
<td>56.59</td>
</tr>
</tbody>
</table>

Quadratic GLM F(1,28) F=50.74 p< .01
Saliva Alpha Amylase

Reactivity

Recovery AUC

Before after 10min
Study 1 Results – Positive emotions (Pearson r)

<table>
<thead>
<tr>
<th>Pre-exam Emo</th>
<th>Happy</th>
<th>Pride</th>
<th>Relief</th>
<th>Hope</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactivity</td>
<td>.32+</td>
<td>.371*</td>
<td>.43*</td>
<td>.39*</td>
<td>.65**</td>
</tr>
<tr>
<td>Recovery</td>
<td>.15</td>
<td>.19</td>
<td>-.06</td>
<td>.12</td>
<td>.386+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-exam Emo</th>
<th>Happy</th>
<th>Pride</th>
<th>Relief</th>
<th>Hope</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactivity</td>
<td>.03</td>
<td>.15</td>
<td>.16</td>
<td>.15</td>
<td>.372*</td>
</tr>
<tr>
<td>Recovery</td>
<td>.41*</td>
<td>.42*</td>
<td>.37+</td>
<td>.08</td>
<td>.08</td>
</tr>
</tbody>
</table>

Note: +p<0.10, *p<.05, **p<.01.
Study 1 Results – Negative emotions (Pearson r)

<table>
<thead>
<tr>
<th>Pre-exam Emo</th>
<th>Anxiety</th>
<th>Boredom</th>
<th>Hopelessness</th>
<th>Shame</th>
<th>Anger</th>
<th>Nervous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactivity</td>
<td>-.13</td>
<td>.07</td>
<td>-.12</td>
<td>.04</td>
<td>.18</td>
<td>-.02</td>
</tr>
<tr>
<td>Recovery</td>
<td>-.001</td>
<td>.15</td>
<td>.07</td>
<td>-.21</td>
<td>-.10</td>
<td>.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-Exam Emo</th>
<th>Anxiety</th>
<th>Boredom</th>
<th>Hopelessness</th>
<th>Shame</th>
<th>Anger</th>
<th>Nervous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactivity</td>
<td>-.10</td>
<td>.15</td>
<td>-.12</td>
<td>-.08</td>
<td>.23</td>
<td>.05</td>
</tr>
<tr>
<td>Recovery</td>
<td>-.07</td>
<td>-.01</td>
<td>-.73</td>
<td>.05</td>
<td>.08</td>
<td>-.15</td>
</tr>
</tbody>
</table>

All correlations are non-significant (n=29)
Study 1 Discussion

sAA is a Sympathetic Nervous System pathway response to stressful environments.

sAA not only is an indication of arousal, it is evidence of a coping response to stressful environments.

The study, cross-sectional and correlational in nature, provides evidence of the positive relationships between positive activating and positive deactivating emotions expected based on prior laboratory work (primarily with toddlers and very young students).

Future research examining the directionality of these relationships is needed.
Study 2 Goal: Explore the relationship between EDA and affect

Participants
Undergraduate Engineering students (N=7) at a western institution in the US
Sophomore/Junior Students
First Filter “engineering” course

Materials/Instruments
Electrodermal Sensor, Empatica E3
Positive Affect Negative Affect Scale (PANAS)
E-Prime Software and Video to track timed events

Three authentic engineering exam problem types
Plane Example
Spatial Example
Combined Example
Study 2: Methods

<table>
<thead>
<tr>
<th>EDA sensor Installation</th>
<th>Pre-PANAS</th>
<th>Spatial Problems (5 items)</th>
<th>Break</th>
<th>Plane Problems (5 items)</th>
<th>Break</th>
<th>Combined Exam Problems (5 items)</th>
<th>Post-PANAS</th>
<th>EDA Sensor Removal</th>
</tr>
</thead>
</table>

- An EDA sensor was placed in the non-dominant wrist of the participant.

- An E-Prime program was pre-programmed with exam problems and PANAS survey questions.

- As student entered their responses, the keyboard strike was timestamped. Video Recording was timestamped to confirm data findings.

- A 5 minute calibration period was done before the study to ensure that EDA baseline levels were acquired.
Study 2 Results

EDA Measures per Event

Duration of timed events may influence the EDA measures
Study 2 Results

EDA Measurements between Exam Types

<table>
<thead>
<tr>
<th></th>
<th>Mean Normalized EDA (SD)</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spatial</td>
<td>Plane</td>
</tr>
<tr>
<td>Spatial vs. Plane</td>
<td>0.75(0.57)</td>
<td>0.95(1.12)</td>
</tr>
<tr>
<td>Spatial vs. Combined</td>
<td>0.75(0.57)</td>
<td>0.18 (0.17)</td>
</tr>
<tr>
<td>Plane vs. Combined</td>
<td>0.95(1.12)</td>
<td>0.18 (0.17)</td>
</tr>
</tbody>
</table>

Correlations between Exams and EDA Measures

<table>
<thead>
<tr>
<th></th>
<th>Pre-PANAS (Pearson)</th>
<th>Post-PANAS (Pearson)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Affect</td>
<td>Negative Affect</td>
<td></td>
</tr>
<tr>
<td>Spatial Problems</td>
<td>-0.128</td>
<td>0.540 *</td>
</tr>
<tr>
<td>Plane Problems</td>
<td>0.245</td>
<td>0.530 *</td>
</tr>
<tr>
<td>Combined Problems</td>
<td>0.079</td>
<td>0.298</td>
</tr>
</tbody>
</table>

SHAME

- p<0.05
Methodological Limitations & Considerations

Study 1

Suggests that while sAA can be an effective method to collect “macro-events”, we risk losing power in our samples

Limited to a 10-minute window from the onset to the offset of an event; this limits sampling and isolation of “micro-events” during the exam experience

Study 2

Indicates the need to define and quantify “micro-events” during examination experiences particularly when using triangulating methods (e.g., video recording and EDA sensor) are used

EDA for a single participant and session can result in millions of data points so restricting participant sizes and collapsing data is ideal; however, this may compromise the sampling power needed for other multi-modal techniques (e.g., sAA)
Collectively, Studies 1 and 2:

Provide two ways to show a “window” into students’ authentic examination experiences

EDA and sAA are indicative of SNS response to arousal and stress

sAA provides insight into the regulatory response students’ bring to environments typically considered “stressful”

EDA provides insight into the magnitude of students’ arousal

Small data collected for sAA during macro-events and small participant numbers collected for micro-events in EDA may limit generalizability of findings

A balance between the two approaches are needed

Neither sAA or EDA provide insight into the specific motivational students’ experience

Adding surveys assists in providing a more holistic picture of what is happening prior to and after the examination experience
Instructional Implications

The emotions students bring to an exam are important

Although both study findings are correlational, they point to a need to consider students’ affective state prior to an exam

Study 1 provides a further confirmation of the importance of Self-Efficacy. As predicted but not previously tested, a significant relationship exists between students’ confidence in their course success and their adaptive emotional regulation

Study 2 confirms that the selection of sequencing and type of exam problem may assist in adaptive mechanisms for negative affect as students enter an exam which may impact their performance during the exam

Research techniques combining surveys, sAA or EDA, could be applied to secondary education high stakes testing situations to better understand the authentic effects of these testing situations on students’ motivational experiences
Research presented here was supported by

This material is based upon work supported in part by Utah State University (USU) Research Catalyst SEED Funding and National Science Foundation (NSF) No. EEC-1653140 and EEC-1661117. Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect those of NSF or USU.

This material is based upon work supported in part by the Sanford school at Arizona State University Salivary Biomarker and Relationships Seed Funding, the QESST-ERC funded by the National Science Foundation (NSF), and the Department of Energy (DOE) under NSF CA No. EEC-1041895. Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect those of NSF or DOE.
Reimagining Who Does STEM and Why Through Research, Education, and Action

July 31-August 2, 2018
University of Oregon Eugene, OR USA

Keynote addresses by Dr. Jacquelynne Eccles, Dr. Kimberly Scott, Dr. Kathryn Scantlebury, and Dr. Alice Pawley

If you have any further questions about the conference, please don’t hesitate to contact us at
conference@genderandSTEM.com

For more detailed information about the conference program and registration please visit our website:
https://stem2018.uoregon.edu/

An equal-opportunity, affirmative-action institution committed to cultural diversity and compliance with the Americans with Disabilities Act. This publication will be made available in accessible formats upon request.
Questions?

Idalis Villanueva, Utah State University, idalis.Villanueva@usu.edu
Jenefer Husman, University of Oregon, jhusman@uoregon.edu
Katherine Cheng, University of Nebraska-Lincoln, kcheng13@asu.edu
Pre-to-Post PANAS

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interested</td>
<td>Upset</td>
</tr>
<tr>
<td>Excited</td>
<td>Scared</td>
</tr>
<tr>
<td>Strong</td>
<td>Hostile</td>
</tr>
<tr>
<td>Proud</td>
<td>Ashamed</td>
</tr>
<tr>
<td>Alert</td>
<td>Jittery</td>
</tr>
<tr>
<td>Inspired</td>
<td></td>
</tr>
<tr>
<td>Attentive</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
</tr>
</tbody>
</table>