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Abstract: We present a slope dependent calibration algorithm for interferometric surface figure 
testing. RMS wavefront error is reduced 40.7% (10.8% for linear method) from the uncalibrated 
measurement for a R/22.7 mirror tested against a flat reference.  © 2019 The Author(s)  
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1. Introduction 

Proper calibration is a key attribute of non-null surface figure testing interferometers. The distinct path travelled by 
the test and reference rays leads to systematic non-common path (retrace) errors in the phase measurement [1]. These 
retrace errors cannot be neglected when working with dual wavelength interferometry or other methods that extend 
the interferometer’s dynamic range well beyond the monochromatic Nyquist limit [2]. To counteract this, an example 
calibration method was patented by Dörband and Frank [3] and published in the literature by Dörband et al. [4]. Their 
algorithm assumes long range retrace errors (caused by aberrations in the imaging lens and misalignments) to be 
linearly dependent on the slope departure of the test surface. 

The Dörband and Frank linear calibration method and our proposed extension were tested in FRED using a pair of 
1:1 stock optics relay lenses individually color corrected for 594 and 604 nm wavelengths. The lenses were designed 
to test surfaces of up to 1.4° of slope departure and 11 mm diameter and have a maximum wavefront error RMS of 
0.02 waves across the field for both wavelengths. The imaging lens is shown in Figure 1. 

 
Fig. 1. A 1:1 relay imaging lens composed of a pair of stock optics Cooke Triplets. The test and reference surfaces are 
modelled as the aperture stop/entrance pupil, which are imaged to the detector (exit pupil) [5]. 

 
2. Linear and quadratic calibration 

For the linear algorithm, the phase error across the pupil is measured for two flat calibration surfaces tilted by the 
maximum interferometer acceptance angle along two orthogonal directions (αx= αy= αMAX, half the imaging lens 
HFOV). For unity magnification, the calibration to be applied at each (x, y) pupil point is given by [3, 4] 
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where EC(x, y, αx, αy) is the phase measurement error (phase measurement minus the ideal phase for the calibration 
input tilt) at the two extrema angles. The linear assumption is usually appropriate for null and quasi-null 
monochromatic surface figure testing where the maximum departure angle is constrained to a small value by the 
Nyquist limit but large enough to be significant (>10λ) [3]. For larger departures of non-null interferometry, the effects 
of higher order terms cannot be disregarded. Assuming all odd power order errors are linear and all even power errors 
are quadratic in slope departure, the calibration function can be extended to second order using 
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  (2) 
where αINT is the maximum tilt angle in an orthogonal basis rotated by 45° with respect to the (αx, αy) basis. The eight 
phase error measurements required for this extended calibration measurement are shown in Figure 2. The performance 
of each calibration algorithm for a 11 mm diameter, 250 mm radius of curvature concave mirror is shown in Figure 3. 

 
Fig. 2. Phase error measurements for tilted flat calibration surfaces. From left to right: (αMAX, 0), (0, αMAX), (-αMAX,0),  
(0, -αMAX), (-αINT, -αINT), (-αINT, αINT),  (αINT, -αINT), and (αINT, αINT). The limiting aberrations are tilt (linear in slope departure), 
astigmatism and field curvature (quadratic in slope departure). Only the first two phase error measurements are used for the 
linear method existing in the literature [3,4]. 

 
Fig. 3. Test surface sag measurement error. From left to right: before calibration (1.75 µm PV, 1.57 µm RMS), after linear 
calibration (2.05 µm PV, 1.40 µm RMS) and after second order calibration (1.00 µm PV, 0.93 µm RMS).  

 
3. Conclusion 

The linear calibration algorithm provides inaccurate results when second and higher order errors become non-
negligible, leading to better performance for points with slope departures close to the calibration values and worse 
performance for the rest of the pupil. The extension to second order solves this problem. Future research will focus 
on extending this method to higher orders and decoupling the slope dependent monochromatic error from the 
chromatically magnified dual wavelength errors. 
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