

1 **Extremely Stable Anthraquinone Negolytes Synthesized from Common Precursors**

2 Min Wu,¹ Yan Jing,² Andrew A. Wong,¹ Eric M. Fell,¹ Shijian Jin,¹ Zhijiang Tang,¹ Roy
3 G. Gordon,^{*,1,2} Michael J. Aziz^{*,1}

4 ¹John A. Paulson School of Engineering and Applied Sciences, Harvard University,
5 Cambridge, Massachusetts 02138, United States

6 ²Department of Chemistry and Chemical Biology, Harvard University, Cambridge,
7 Massachusetts 02138, United States

8 *Correspondence: gordon@chemistry.harvard.edu; maziz@harvard.edu

9

10 **Summary**

11 Synthetic cost and long-term stability remain two of the most challenging barriers for the
12 utilization of redox-active organic molecules in redox flow batteries for grid scale energy
13 storage. Starting from potentially inexpensive 9,10-dihydroanthracene, we developed a
14 new synthetic approach for two extremely stable anthraquinone negolytes, *i.e.*, 3,3'-(9,10-
15 anthraquinone-diyl)bis(3-methylbutanoic acid) (DPivOHAQ) and 4,4'-(9,10-
16 anthraquinone-diyl)dibutanoic acid (DBAQ). Pairing with a ferrocyanide posolyte at pH
17 12, DPivOHAQ and DBAQ can transfer up to 1.4 M and 2 M electrons with capacity fade
18 rates of 0.014%/day and 0.0084%/day, respectively, and 1.0 V of cell voltage. By adjusting
19 the supporting electrolytes to pH 14, DPivOHAQ exhibited a record low capacity fade rate
20 of <1%/year. We attribute the capacity loss of these flow batteries to be caused primarily
21 by the formation of anthrone, which can be suppressed by increasing the pH of the
22 electrolyte and reversed by exposure to air.

23

24 **Introduction**

25 The cost of solar and wind electricity has dropped so precipitously that the main barrier to
26 widespread implementation is their intrinsic intermittency.¹⁻³ A safe, low-cost, large-scale
27 electrical energy storage system could enable grid-scale adoption of renewables. Among
28 the numerous proposed technologies, redox flow batteries (RFBs) have been recognized as
29 a potentially viable strategy to address the intermittency of renewable energy.²⁻⁴ Compared
30 to conventional stationary rechargeable batteries (*e.g.*, lithium-ion batteries and lead-acid
31 batteries), RFBs use redox-active materials dissolved in liquid supporting electrolytes that
32 are stored in external tanks and separated from the power generation stack. This separation
33 allows for the decoupling of energy capacity from maximum power output, thereby
34 providing the possibility of low-cost long-duration discharge.²⁻⁴

35 Aqueous redox flow batteries featuring non-flammable electrolytes, are particularly
36 suitable for storing massive amount of electricity. Aqueous vanadium RFBs are the most
37 widely studied and adopted systems, but are hindered by the high cost of vanadium.³⁻⁵ In
38 contrast, redox-active organic molecules comprising earth abundant elements such as C, H,
39 O, and N have the potential to be inexpensive alternatives to vanadium.⁶⁻¹² Additionally,
40 the structural diversity and tunability of organics enable chemists to design molecules with
41 essential properties such as high aqueous solubility, high chemical stability, fast kinetics,
42 and appropriate redox potential.^{6,8-14}

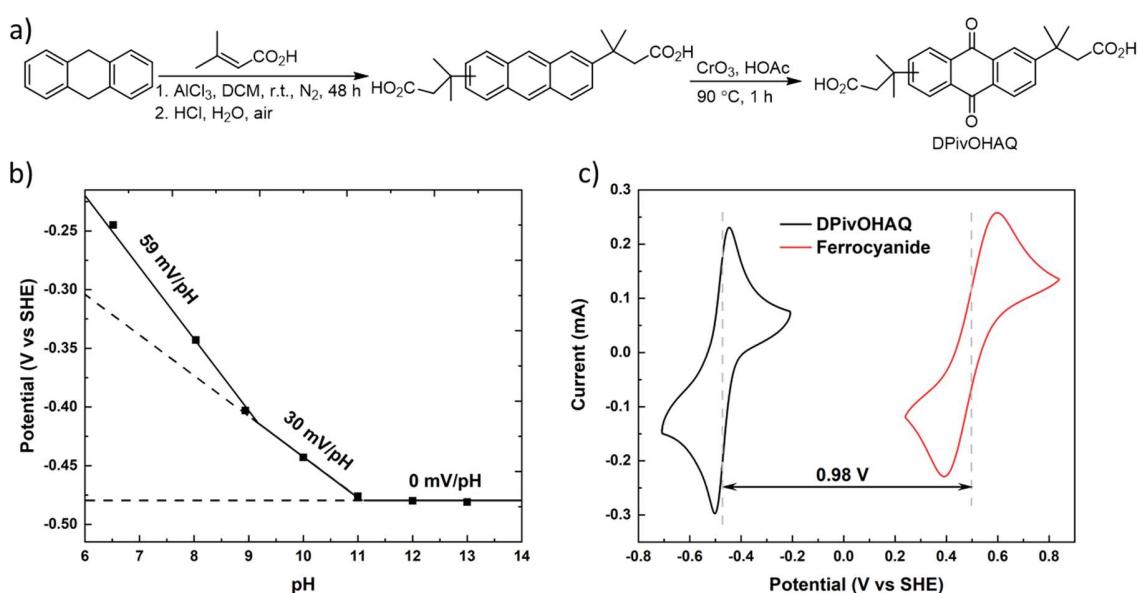
43 Recently, water soluble anthraquinones 4,4'-(9,10-anthraquinone-2,6-
44 diyl)dioxy) dibutyrate (2,6-DBEAQ) and (((9,10-dioxo-9,10-dihydroanthracene-2,6-
45 diyl)bis(oxy))bis(propane-3,1-diyl))bis(phosphonic acid) (2,6-DPPEAQ) in mildly
46 alkaline solutions have demonstrated extremely low temporal fade rates in flow batteries
47 paired with K₄Fe(CN)₆.¹⁵⁻¹⁷ These quinones are chemically synthesized from 2,6-
48 dihydroxyanthraquinone (2,6-DHAQ) by industry-compatible methods. However, 2,6-
49 DHAQ and 2,7-DHAQ are always co-produced and are costly to separate. Furthermore,
50 our previous research showed that the molecular lifetimes of anthraquinone-based
51 electrolytes can differ by two orders of magnitude depending on the positions of their
52 functional groups (e.g., 1,8- and 2,6-anthraquinones).^{15,18} Therefore, it is important to
53 quantify the stabilities of organic molecules with a mixture of isomers. Additionally, 2,6-
54 DHAQ and 2,7-DHAQ are synthesized from 9,10-anthraquinone-2,6-disulfonic acid and
55 9,10-anthraquinone-2,7-disulfonic acid, respectively, in strong alkaline solution for 35
56 hours at high temperature (180 °C) with a moderate yield, which is energy-intensive and
57 costly.¹⁹ Thus, designing low-cost and chemically stable anthraquinones is of vital
58 importance for the commercialization of aqueous organic redox flow batteries.

59 Because of the inherent chemical stability of the parent structure, the addition of side chains
60 to an anthraquinone core is usually accomplished by a stepwise procedure *via*
61 anthraquinone derivatives (e.g., hydroxylated anthraquinone or chlorinated
62 anthraquinone).^{15,16,18,20} Here, we report a new synthetic route for water-soluble
63 anthraquinones starting from a potentially inexpensive anthracene derivative, 9,10-
64 dihydroanthracene, which can be readily produced from anthracene with a yield of almost
65 100%.^{21,22} Anthracene, a component of coal tar, is one of the major resources for large-
66 scale anthraquinone production.²³ The first step is a Friedel-Crafts alkylation or acylation
67 to render dihydroanthracene/anthracene water-soluble; the last step is an oxidation to
68 produce the corresponding redox-active anthraquinones, *i.e.*, 3,3'-(9,10-anthraquinone-
69 diyl)bis(3-methylbutanoic acid) (DPivOHAQ) and 4,4'-(9,10-anthraquinone-
70 diyl)dibutanoic acid (DBAQ).

71 Both molecules exhibit high water solubility and chemical stability at pH 12. The DBAQ
72 negolyte (negative electrolyte) has a water solubility of 1.0 M, corresponding to a

73 volumetric capacity of 53.6 Ah/L; when paired with potassium ferrocyanide, a full cell
74 exhibited a capacity fade rate of 0.0084%/day or 3.1%/year. DPivOHAQ has a solubility
75 of 0.74 M; when paired with potassium ferrocyanide, a full cell exhibited a capacity fade
76 rate of 0.014%/day or 5.1%/year. Additionally, we demonstrated that the DPivOHAQ
77 negolyte is even more stable in strong base, exhibiting a capacity fade rate of 0.0018%/day
78 or 0.66%/year at pH 14. Furthermore, we demonstrated that the capacity fade is due to
79 formation of anthrone, which can convert back to anthraquinone through air exposure and
80 can also be suppressed at high pH. Thus, these findings suggest that, through a combination
81 of increased pH and periodic air exposure, both DPivOHAQ and DBAQ offer the
82 possibility of decadal lifetimes in aqueous RFBs. In the following section we report
83 methods and results, first for DPivOHAQ and then for DBAQ.

84

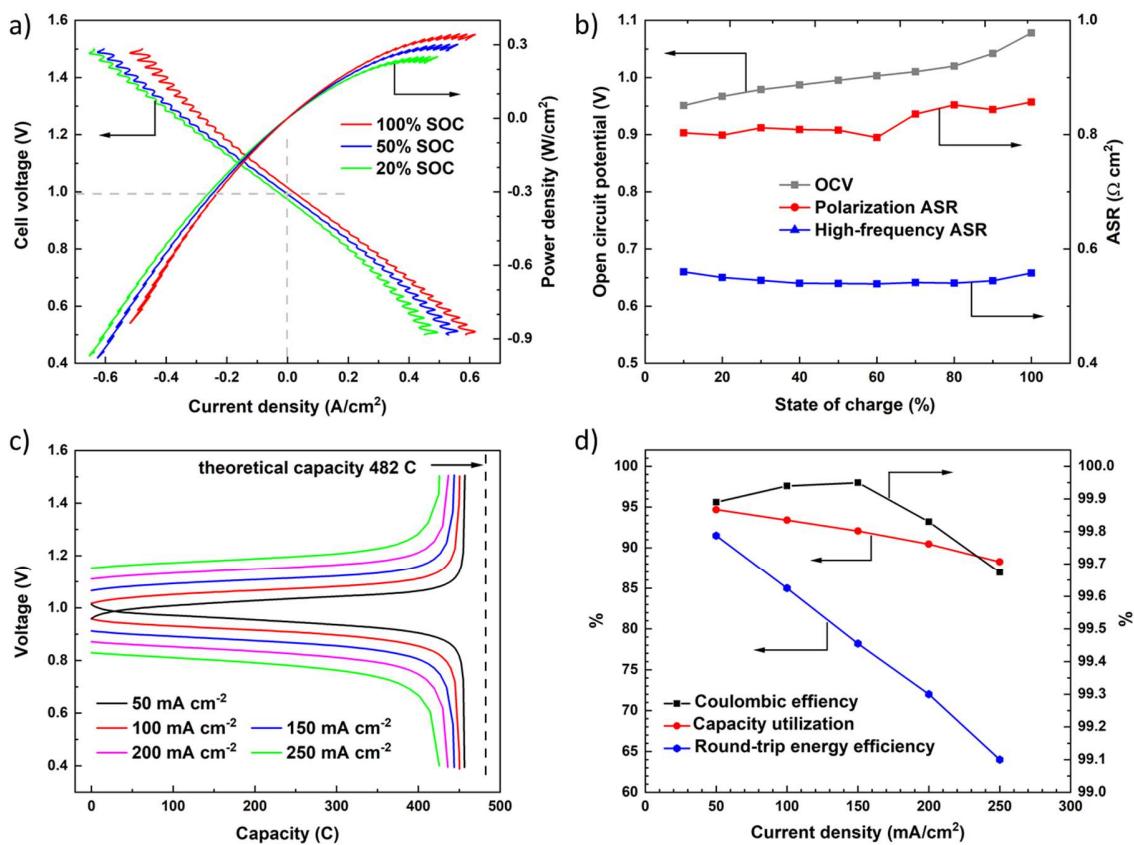

85 **Results and discussion**

86 Figure 1 illustrates the synthetic routes, chemical structure, Pourbaix diagram, and cyclic
87 voltammogram (CV) of DPivOHAQ. Synthesis was achieved by first functionalizing 9,10-
88 dihydroanthracene with the water-soluble group -C(CH₃)₂CH₂COOH, followed by an
89 oxidation step with CrO₃. The oxidation step is well known in industry for anthraquinone
90 synthesis, and it can also be accomplished by other methods, such as nitric acid/air, that
91 could further decrease the costs.^{24,25} Compared to 2,6-DBEAQ and 2,6-DPPEAQ synthesis,
92 the reported synthetic approach could be potentially more cost-effective. For example,
93 assuming anthracene is the starting material, both DBEAQ and DPPEAQ require five
94 synthetic steps in total as illustrated in Scheme S1 with an overall yield around 52% and
95 59%, respectively; whereas DPivOHAQ synthesis requires only three steps with an overall
96 yield of 81%. Moreover, the cost of side chains for DPivOHAQ is slightly lower than that
97 of DBEAQ and substantially lower than that of DPPEAQ, as shown in Table S1. Therefore,
98 we expect that DPivOHAQ is most likely less expensive to produce than DBEAQ and
99 DPPEAQ at industrial scales.

100 In addition to potentially lower synthetic costs, DPivOHAQ is functionalized with carbon-
101 linked functional groups, which are chemically more robust than the oxygen-linked side
102 chains in DBEAQ and DPPEAQ, minimizing the opportunity for S_N2 and S_NAr side
103 reactions to occur.^{15,16} The thermochemical stability of both oxidized and reduced forms of
104 DPivOHAQ were evaluated at high temperature (65 °C) and in strongly alkaline conditions
105 (pH 14) for eight days. No apparent decomposition was detected from the ¹H NMR as
106 shown in Figure S6, indicating that DPivOHAQ is quite chemically stable.

107 Synthesis of DPivOHAQ results in a mixture of 2,6- and 2,7- isomers that does not require
108 further separation prior to use in a battery. The Pourbaix diagram of DPivOHAQ, shown
109 in Figure 1b, suggests that the molecule undergoes a two-proton/two-electron process

110 below pH 9, a one-proton/two-electron process between pH 9 and 11, and a zero-
 111 proton/two-electron process with a pH-independent potential of approximately -0.48 V
 112 versus SHE at pH>11. Pairing a DPivOHAQ negolyte with potassium ferrocyanide at pH
 113 12 should yield an equilibrium cell potential of approximately 0.98 V (Figure 1c).
 114 Electrochemical kinetics of DPivOHAQ reduction were determined with the rotating disk
 115 electrode (RDE) method as shown in Figure S7. The charge transfer coefficient is 0.49, the
 116 diffusion coefficient is 2.4×10^{-6} cm²/s, and the kinetic rate constant is 2.5×10^{-3} cm/s; the
 117 latter is much higher than is typical of inorganic redox active materials.²⁶ The solubilities
 118 of the oxidized forms of anthraquinones in alkaline solutions are typically lower than those
 119 of the reduced forms. The solubility of DPivOHAQ at pH 12 was determined by UV-Vis
 120 spectrophotometry (Figure S8) to be 0.74 M, corresponding to a volumetric capacity of
 121 39.7 Ah/L.

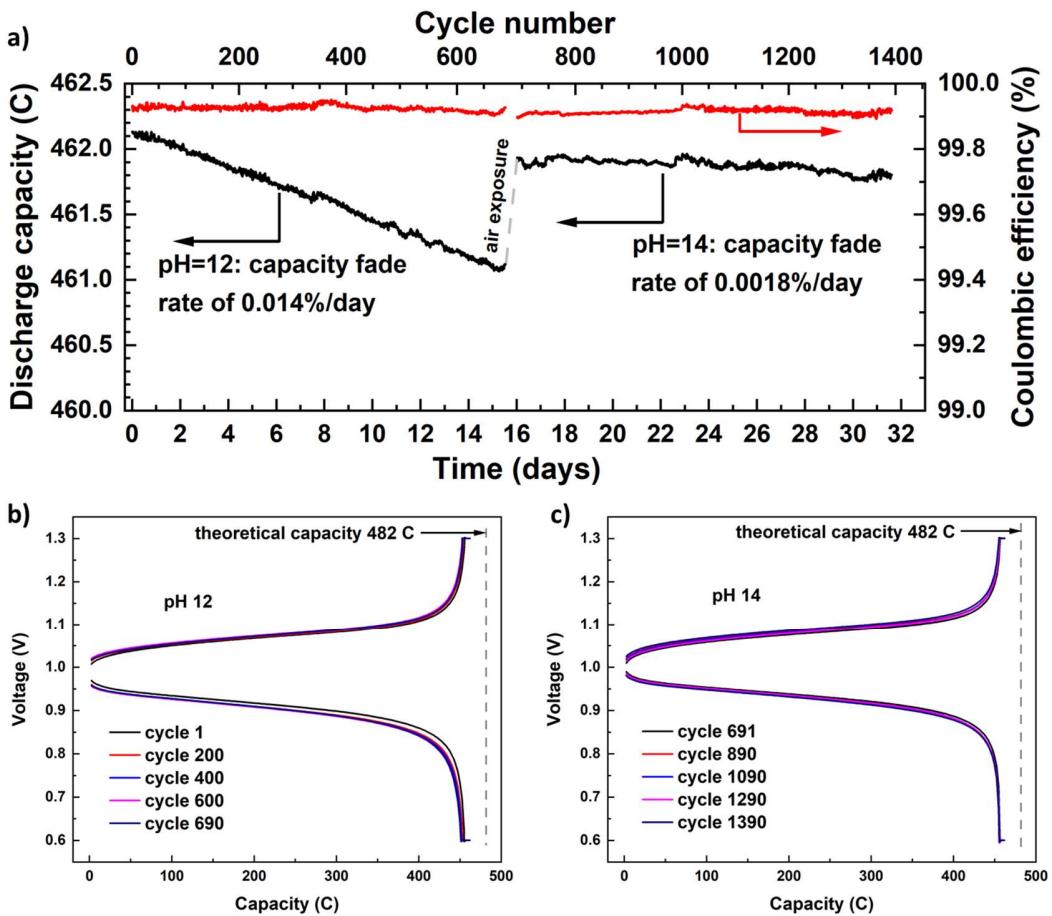


122

123 *Figure 1. a) Synthetic route for DPivOHAQ; b) Pourbaix diagram; c) Cyclic voltammograms of 5*
 124 *mM DPivOHAQ and 10 mM potassium ferrocyanide at pH 12 with a scan rate of 100 mV/s.*

125 Polarization experiments of a 0.5 M DPivOHAQ/ferrocyanide full cell at pH 12 were
 126 performed at various states of charge. The electrolytes comprised 5 mL of 0.5 M
 127 DPivOHAQ (negolyte) at pH 12 (10 mM KOH) and 80 mL of 0.3 M potassium
 128 ferrocyanide and 0.1 M potassium ferricyanide (posolyte) at pH 12. The cell was
 129 constructed from graphite flow plates and AvCarb carbon cloth electrodes, separated by a
 130 Fumasep E-620 (K) membrane because of its low permeability of ferricyanide and high
 131 ionic conductivity.^{15,16} A peak galvanic power density of 0.34 W cm⁻² was achieved at
 132 ~100% SOC (Figure 2a). The open-circuit voltage (OCV) increases from 0.95 to 1.08 V

as the state of charge (SOC) increases from 10% to \sim 100%, and the OCV at 50% SOC of 0.99 V (Figure 2b) is consistent with the voltage expected from CV. The alternating current area-specific resistance (ASR) of the cell was determined *via* high-frequency potentiostatic electrochemical impedance spectroscopy (EIS), and the value was below $0.6 \Omega \text{ cm}^2$ across all SOCs (Figure 2b). This is a relatively low alternating current ASR value for RFBs with alkaline electrolytes.^{15,16} The polarization ASR was determined using the linear region within the voltage range 0.9–1.1 V (Figure 2a, b). The ASR of the membrane ($0.54 \Omega \text{ cm}^2$ at 50% SOC, determined by high-frequency EIS in the full cell) accounted for around 67% of the ASR of the entire cell ($0.81 \Omega \text{ cm}^2$ at 50% SOC, DC polarization). The capacity utilization is approximately 95% at 50 mA cm^{-2} with a high round-trip energy efficiency of 91.5% (Figure 2c, d). At a reasonable practical operation target of 80% round-trip energy efficiency, the low value of the ASR permits galvanostatic operation at around 140 mA cm^{-2} with an electrolytic power density of 0.16 W cm^{-2} , a galvanic power density of 0.13 W cm^{-2} , and 92% capacity utilization.

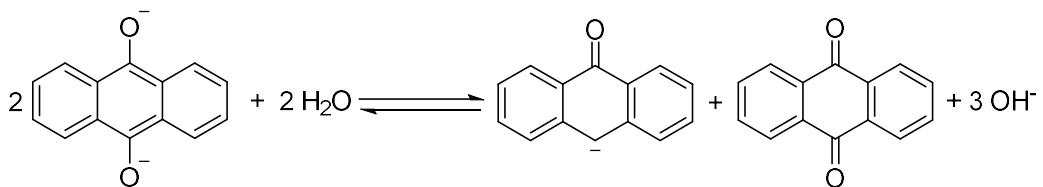


147

148 *Figure 2.* Polarization measurements of 0.5 M DPivOHAQ/ferrocyanide full cell at pH 12. a)
149 b) OCV, high-frequency ASR

150 and polarization ASR vs. SOC. c) Galvanostatic charge-discharge voltage profiles at various
151 current densities. The vertical dashed line indicates the theoretical capacity. d) Capacity utilization,
152 coulombic efficiency, and round-trip energy efficiency versus current density.

153 The same 0.5 M DPivOHAQ-ferrocyanide full cell was used for long-term stability
154 evaluation (Figure 3). The cell was cycled at a constant current density of $\pm 0.1 \text{ A cm}^{-2}$, and
155 each galvanostatic half-cycle was followed by a potential hold at the voltage limit (1.3 V
156 for charge, 0.6 V for discharge) until the current density fell below 2 mA cm^{-2} to mitigate
157 the effect of temporal variations in accessible capacity during full cell cycling caused by
158 drifts in cell resistance.²⁷ The charge-discharge profiles near the voltage limits (Figure 3b,
159 c) are quite steep and are followed by small subsequent horizontal segments during the
160 potential holds. The horizontal segments end at 95.5% of theoretical capacity, but the
161 steepness followed by a small subsequent horizontal segment of the charge-discharge
162 profiles suggests that the electrolyte had around 4.5% inactive material and that the active
163 material is undergoing deep cycling to essentially the full SOC limits. The cell was cycled
164 for 690 cycles at 100 mA cm^{-2} , which required 15.6 days to complete. The capacity
165 retention over the 690 cycles was 99.78% with an average coulombic efficiency greater
166 than 99.9%, reflecting a capacity fade rate of 0.00031% per cycle or 0.014% per day
167 (Figure 3a), i.e. 5.1% per year. This temporal fade rate is among the lowest exhibited by
168 full cells in which organic molecules composed the capacity-limiting side: 2,6-DBEAQ
169 fades at $\sim 0.04\%/\text{day}$; 2,6-DPPEAQ fades at $\sim 0.014\%/\text{day}$.¹⁷



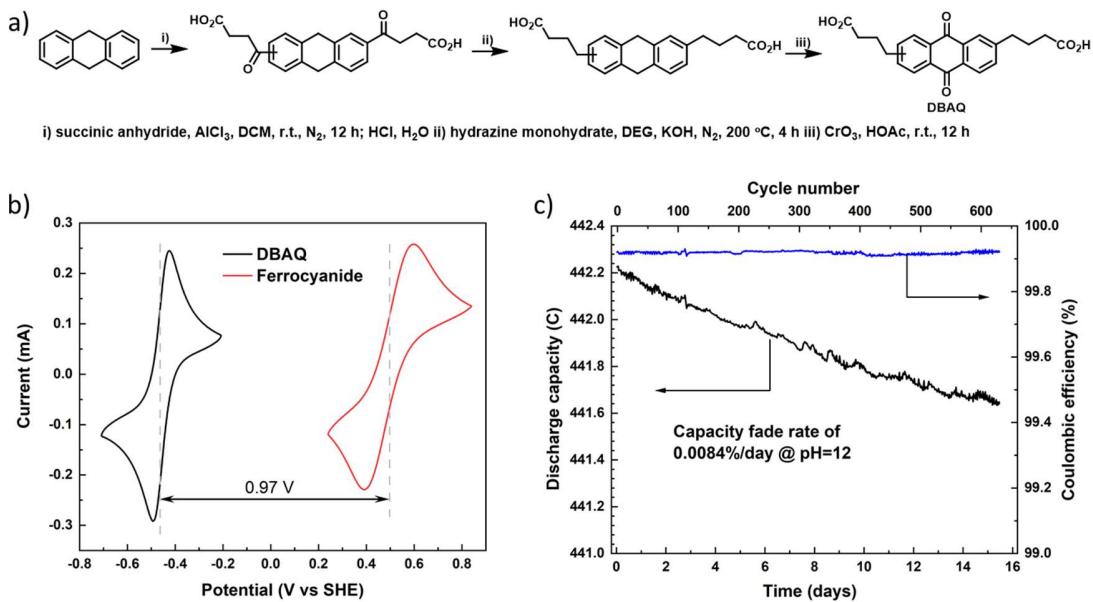
170

171 *Figure 3. a)* Coulombic efficiency and discharge capacity versus time and cycle number for a
172 negolyte-limited DPivOHAQ/K₄Fe(CN)₆ full cell. Each 100 mA cm⁻² half cycle was followed by
173 a potentiostatic hold until the magnitude of the current density fell below 2 mA cm⁻². The negolyte
174 comprised 5 mL of 0.5 M DPivOHAQ at pH 12, and the posolyte comprised 80 mL of 0.3 M
175 potassium ferrocyanide and 0.1 M potassium ferricyanide at pH 12. After approximately 16 days
176 of cycling, the negolyte was exposed to air and the pH of both negolyte and posolyte were adjusted
177 to 14 before cycling for an additional 16 days. Note that the left y-axis represents 0.54% of the
178 capacity of the DPivOHAQ negolyte. b) Charge-discharge voltage profile of DPivOHAQ from
179 selected cycles at pH 12 in Figure 3a. c) Charge-discharge voltage profile of DPivOHAQ from
180 selected cycles at pH 14 in Figure 3a.

181 After 15.6 days of cycling at pH 12, DPivOHAQ negolyte, in the discharged state, was
182 exposed to air for 2 hours and the pH was adjusted to 14 by dissolving KOH pellets into
183 the negolyte and posolyte without changing cell materials or setup. As a result, 81% of the
184 lost capacity was recovered, as shown in Figure 3a. Over the additional 16 days at pH 14,
185 the cell exhibited a capacity fade rate of 0.0018%/day, which is 6 times lower than that at

pH 12. The charge-discharge voltage profiles (Figure 3b, c) are almost invariant, indicating no apparent change in ohmic resistance and good chemical compatibility with cell membrane and other cell components.²⁸ Based on the decomposition study of 2,6-DHAQ,²⁹ we attribute capacity fade to anthrone formation (Scheme 1). Therefore, increasing the hydroxide concentration should suppress the formation of anthrone. This expectation is consistent with the lower capacity fade rate observed at pH 14 than at pH 12. In general, the disproportionation reaction will generate OH⁻ (or consume H⁺) at pH above the first pK_a of the anthrahydroquinone. Therefore, anthrone formation will be disfavored under alkaline conditions relative to acid conditions and will be progressively disfavored as the pH increases (Figure S9). We interpret the sudden increase in capacity at cycle 691 as the consequence of anthrone being converted back to anthraquinone by both the pH effect and the effect of exposure to atmospheric O₂.

202


203 To confirm the major side reaction is the disproportionation of reduced anthraquinone, a
204 fully reduced (~100% SOC) sample of DPivOHAQ at pH 12 was prepared and stored in
205 an FEP vial in a glove box for 238 days, allowing the disproportionation to reach
206 equilibrium. Indeed, some appreciable side peaks appeared in the ¹H NMR spectrum of the
207 reduced DPivOHAQ, whereas upon re-oxidation in air, the ¹H NMR spectrum contained
208 no observable decomposition peaks (Figure S10), indicating that the decomposition
209 compounds can either be re-oxidized back to DPivOHAQ or are converted to other
210 products with no observable signals above the detection limit of the NMR instrument.
211 Therefore, high-performance liquid chromatography-mass spectrometry was performed to
212 analyze both the reduced and the re-oxidized samples (Figure S11). The anthrone species
213 was detected in the reduced sample but not in the re-oxidized sample, in agreement with
214 the ¹H NMR result shown in Figure S11. In the re-oxidized sample after 238 days,
215 approximately 1.24% of the signal corresponded to an anthrone dimer, suggesting a fade
216 rate of 1.90%/year for reduced DPivOHAQ at pH 12 after aeration.

217 Goulet and Tong *et al.* showed that, by avoiding high SOC, the anthrone formation rate in
218 2,6-DHAQ decreased substantially.²⁹ They also demonstrated recovery of most of the lost

219 capacity by air exposure. Because DPivOHAQ also decomposes via anthrone formation,
220 we hypothesize that similar approaches will extend its lifetime significantly. We suggest
221 that a flow cell with decades-long calendar life may be achievable with DPivOHAQ at pH
222 12.

223 Another anthraquinone, DBAQ, with higher solubility, was synthesized (Figure 4a) using
224 a similar strategy. The first step is a Friedel–Crafts acylation, followed by Wolff–Kishner
225 reduction of the carbonyl groups to methylene. The last step is to oxidize the corresponding
226 anthracene (or 9,10-dihydroanthracene) to the final anthraquinone form. Compared to the
227 three steps for DPivOHAQ synthesis, four steps are required for DBAQ synthesis when
228 starting from anthracene. Because of the low cost of succinic anhydride and given that the
229 Wolff–Kishner reduction is well-developed in industry, the cost of DBAQ could also be
230 low. Electrochemical kinetics studies of DBAQ were conducted by RDE techniques as
231 shown in Figure S12a. The diffusion coefficient of the oxidized form of DBAQ was
232 determined by Levich analysis (Figure S12b) to be 2.5×10^{-6} cm²/s. According to the
233 Koutecký–Levich equation and Tafel plot, the charge transfer coefficient is 0.50, and the
234 kinetic rate constant is 2.9×10^{-3} cm/s, which is slightly higher still than DPivOHAQ.

235 The solubility of DBAQ was determined to be 1.0 M at pH 12, corresponding to a
236 volumetric capacity of 53.6 Ah/L for the negolyte. The reduction potential is -0.47 V versus
237 SHE at pH 12. When paired with potassium ferrocyanide, a full cell of approximately 0.97
238 V can be achieved. To evaluate the stability of a DBAQ negolyte, a full cell was assembled
239 with 5 mL of 0.5 M DBAQ negolyte at pH 12 as the capacity limiting side and a posolyte
240 comprising 80 mL of 0.3 M K₄Fe(CN)₆ with 0.1 M K₃Fe(CN)₆ at pH 12 as the non-
241 capacity-limiting side. The flow cell was constructed from graphite flow plates and carbon
242 paper electrodes, separated by a Fumasep E-620 (K) membrane. The cell exhibited 91.7%
243 of its theoretical capacity. It was cycled for 650 cycles at 100 mA cm⁻², which required
244 15.5 days to complete. The average capacity fade rate was 0.0084%/day, corresponding to
245 3.1%/year. Assuming the capacity fade is primarily due to anthrone formation then, with
246 careful control of the pH and SOC of the DBAQ electrolyte and periodic exposure to air,
247 DBAQ might exhibit an even lower loss rate in real-world applications.

248

249 *Figure 4. a) Synthetic route for DBAQ; b) Cyclic voltammograms of 5 mM DBAQ and 10 mM*
 250 *potassium ferrocyanide at pH 12 with a scan rate of 100 mV/s; c) Coulombic efficiency and*
 251 *discharge capacity versus time and cycle number for a negolyte-limited DBAQ/K₄Fe(CN)₆ full cell.*
 252 *The cell was cycled galvanostatically at 100 mA cm⁻² between 0.4 and 1.3 V with SGL 39AA*
 253 *carbon electrodes, and each half cycle was followed by a potentiostatic hold until the magnitude of*
 254 *the current density fell below 2 mA cm⁻². The negolyte comprised 5 mL of 0.5 M DBAQ at pH 12,*
 255 *and the posolyte comprised 80 mL of 0.3 M potassium ferrocyanide and 0.1 M potassium*
 256 *ferricyanide at pH 12. Note that the left y-axis represents about 0.32% of the capacity of the DBAQ*
 257 *negolyte.*

258 **Conclusion**

259 In this report, we have demonstrated a new route to synthesize water-soluble
 260 anthraquinones with solubilizing groups attached by carbon-carbon bonds, starting from
 261 potentially inexpensive 9,10-dihydroanthracene. These anthraquinones exhibit high
 262 aqueous solubilities and low capacity fade rates of 0.0084%/day and 0.014%/day at pH 12,
 263 respectively. We demonstrated in a full cell containing a DPivOHAQ negolyte that
 264 anthrone formation is the major side reaction responsible for capacity fade and that air
 265 exposure can recover most of the lost capacity. Furthermore, by increasing the pH of the
 266 negolyte, we demonstrate the suppression of the DPivOHAQ capacity fade rate to an
 267 extremely low value of less than 1%/year. We expect that the stability of DPivOHAQ and
 268 DBAQ can be even further improved with careful control of the battery operating
 269 conditions. We suggest that strategies combining SOC limit control, precision air exposure,
 270 and pH tuning can be extended to other inexpensive anthraquinone molecules to achieve

271 extremely low capacity fade rates, paving the way to commercialize anthraquinone-based
272 RFBs to enable grid scale energy storage of renewable electricity.

273 **Experiment procedures:**

274 9,10-dihydroanthracene (97%), 3,3-dimethylacrylic acid (97%), and anhydrous
275 dichloromethane were purchased from Sigma Aldrich. Anhydrous aluminum chloride
276 (95%) was purchased from Alfa Aesar. All chemicals were used as received.

277 **3,3'-(anthracene-diyl)bis(3-methylbutanoic acid) (DPivOHAC):**

278 13.32 g (99.93 mmol) of AlCl₃ was suspended in ~200 mL of anhydrous CH₂Cl₂. A
279 solution of 6.67 g (66.62 mmol) of 3,3-dimethylacrylic acid in ~20 mL of anhydrous
280 CH₂Cl₂ was added by syringe and the mixture stirred at room temperature for 0.5 hour
281 under nitrogen. Subsequently, a solution of 5.00 g (27.74 mmol) of 9,10-dihydroanthracene
282 in ~15 mL of anhydrous CH₂Cl₂ was added to the above mixture and stirred for 48 hours
283 at room temperature. Following that, the solvent was quenched with 200 mL of 1 M
284 aqueous HCl and stirred overnight. The organic layer was then removed and the remaining
285 solution was filtered to afford the pale-yellow product. Yield: 95%.

286 **3,3'-(9,10-anthraquinone-diyl)bis(3-methylbutanoic acid) (DPivOHAQ):**

287 DPivOHAC (6.00 g, 15.85 mM) was dissolved in glacial acetic acid (70 mL). Then, a CrO₃
288 solution (3.33 g, 33.3 mM) was added to the DPivOHAC/acetic acid mixture. The reaction
289 mixture was heated at 90 °C for 1 h. After cooling down to room temperature, water was
290 added to precipitate the solid. The compound was purified by dissolution in base followed
291 by addition of acid to afford the precipitate. Yield: 85%.

292

293 The ¹H NMR spectra of 3,3'-(anthracene-diyl)bis(3-methylbutanoic acid) and 3,3'-(9,10-
294 anthraquinone-diyl)bis(3-methylbutanoic acid) are shown in Figure S1 and S2. DBAQ
295 related synthesis is using similar method, thus is provided in the supporting information.

296

297 **Full cell measurements**

298 Flow battery experiments were conducted with cell hardware from Fuel Cell Tech.
299 (Albuquerque, NM), assembled into a zero-gap flow cell configuration, similar to a
300 previous report.[1] Pyrosealed POCO graphite flow plates with serpentine flow patterns
301 were used for both electrodes. Each electrode comprised a 5 cm² geometric surface area
302 covered by one sheet of AvCarb carbon cloth or three sheets of SGL 39aa electrode. For
303 DPivOHAQ/ferrocyanide full cell tests, a Fumasep E-620 (K) membrane was used to serve
304 as the ion-selective membrane between the AvCarb electrodes. For DBAQ/ferrocyanide

305 full cell tests, a Fumasep E-620 (K) membrane was used to serve as the ion-selective
306 membrane between the SGL39AA electrodes. The outer portion of the space between the
307 electrodes was gasketed by Viton sheets with the area over the electrodes cut out. Torque
308 applied during cell assembly was 60 lb-in (6.78 Nm) on each of 8 bolts. The electrolytes
309 were fed into the cell through fluorinated ethylene propylene (FEP) tubing at a rate of 60
310 mL/min, controlled by Cole-Parmer 6 Masterflex L/S peristaltic pumps. All cells were run
311 inside a nitrogen-filled glove bag. Cell polarization measurements, impedance
312 spectroscopy, and charge-discharge cycling were performed using a Biologic BCS-815
313 battery cycler. Galvanostatic cycling was performed at $\pm 0.1 \text{ A cm}^{-2}$ at room temperature
314 with voltage limits of 0.6 and 1.3 V. To obtain the polarization curves, the cell was first
315 charged to the desired state of charge and then polarized via linear sweep voltammetry at
316 a rate of 100 mV s^{-1} . This method was found to yield polarization curves very close to
317 point-by-point galvanostatic holds, yet to impose minimal perturbation to the SOC of the
318 small-electrolyte-volume cell. Electrochemical impedance spectroscopy (EIS) was
319 performed at SOCs between 10 and 100% at open-circuit potential with a 10-mV
320 perturbation and with frequency ranging from 1 to 300,000 Hz.

321

322 **Supplemental information**

323 Supplemental Information can be found with this article online at

324 **Acknowledgments**

325 This research was supported by U.S. DOE award DE-AC05-76RL01830 through PNNL
326 subcontract 428977, Innovation Fund Denmark via the Grand Solutions project
327 "ORBATS" file no. 7046-00018B, and NSF grant CBET-1914543. The authors
328 thank Daniel A. Pollack for valuable discussions and for assistance with chemical stability
329 experiments and in reviewing and editing the manuscript.

330 **Author contributions**

331 M.W. designed and synthesized the molecules. M.W. conducted the chemical stability and
332 solubility tests, M.W., A.A.W., Z.T., and Y.J. performed full cell tests. Y.J. also conducted
333 DPivOHAQ synthesis. Y.J. and S.J. identified the anthrone side product and performed
334 HPLC test. E.M.F. performed the RDE test. R.G.G. supervised the molecular synthesis and
335 characterization. M.J.A. supervised the cell assembly, electrolyte composition selection,
336 and performance evaluation. M.W. drafted the manuscript with input from Y.J. All authors
337 reviewed and edited the manuscript.

338 **Declaration of Interests**

339 Harvard University has filed a patent application on the materials described in this paper.

340 **References**

341 (1) Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: a battery of
342 choices. *Science* **2011**, *334* (6058), 928.

343 (2) Yang, Z.; Zhang, J.; Kintner-Meyer, M. C.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J.
344 Electrochemical energy storage for green grid. *Chem. Rev.* **2011**, *111* (5), 3577.

345 (3) Soloveichik, G. L. Flow batteries: current status and trends. *Chem. Rev.* **2015**, *115* (20),
346 11533.

347 (4) Darling, R. M.; Gallagher, K. G.; Kowalski, J. A.; Ha, S.; Brushett, F. R. Pathways to
348 low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow
349 batteries. *Energy Environ. Sci.* **2014**, *7* (11), 3459.

350 (5) Li, L.; Kim, S.; Wang, W.; Vijayakumar, M.; Nie, Z.; Chen, B.; Zhang, J.; Xia, G.; Hu,
351 J.; Graff, G.; Liu, J.; Yang, Z. A stable vanadium redox-flow battery with high energy
352 density for large-scale energy storage. *Adv. Energy Mater.* **2011**, *1* (3), 394.

353 (6) Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X.;
354 Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. A metal-free organic-inorganic aqueous
355 flow battery. *Nature* **2014**, *505* (7482), 195.

356 (7) Yang, B.; Hoober-Burkhardt, L.; Wang, F.; Surya Prakash, G. K.; Narayanan, S. R. An
357 inexpensive aqueous flow battery for large-scale electrical energy storage based on water-
358 soluble organic redox couples. *J. Electrochem. Soc.* **2014**, *161* (9), A1371.

359 (8) Lin, K.; Chen, Q.; Gerhardt, M. R.; Tong, L.; Kim, S. B.; Eisenach, L.; Valle, A. W.;
360 Hardee, D.; Gordon, R. G.; Aziz, M. J. Alkaline quinone flow battery. *Science* **2015**, *349*
361 (6255), 1529.

362 (9) Lin, K.; Gómez-Bombarelli, R.; Beh, E. S.; Tong, L.; Chen, Q.; Valle, A.; Aspuru-Guzik,
363 A.; Aziz, M. J.; Gordon, R. G. A redox-flow battery with an alloxazine-based organic
364 electrolyte. *Nat. Energy* **2016**, *1* (9), 16102.

365 (10) Beh, E. S.; De Porcellinis, D.; Gracia, R. L.; Xia, K. T.; Gordon, R. G.; Aziz, M. J. A
366 neutral pH aqueous organic-organometallic redox flow battery with extremely high
367 capacity retention. *ACS Energy Lett.* **2017**, *2* (3), 639.

368 (11) Yang, Z.; Tong, L.; Tabor, D. P.; Beh, E. S.; Goulet, M. A.; De Porcellinis, D.; Aspuru-
369 Guzik, A.; Gordon, R. G.; Aziz, M. J. Alkaline benzoquinone aqueous flow battery for
370 large-scale storage of electrical energy. *Adv. Energy Mater.* **2018**, *8* (8), 1702056.

371 (12) Hollas, A.; Wei, X.; Murugesan, V.; Nie, Z.; Li, B.; Reed, D.; Liu, J.; Sprenkle, V.;
372 Wang, W. A biomimetic high-capacity phenazine-based anolyte for aqueous organic
373 redox flow batteries. *Nat. Energy* **2018**, *3* (6), 508.

374 (13) DeBruler, C.; Hu, B.; Moss, J.; Liu, X.; Luo, J.; Sun, Y.; Liu, T. L. Designer two-electron
375 storage viologen anolyte materials for neutral aqueous organic redox flow batteries.
376 *Chem* **2017**, *3* (6), 1.

377 (14) Hu, B.; DeBruler, C.; Rhodes, Z.; Liu, T. L. Long-cycling aqueous organic redox flow
378 battery (AORFB) toward sustainable and safe energy storage. *J. Am. Chem. Soc.* **2017**,
379 *139* (3), 1207.

380 (15) Kwabi, D. G.; Lin, K.; Ji, Y.; Kerr, E. F.; Goulet, M. A.; De Porcellinis, D.; Tabor, D. P.;
381 Pollack, D. A.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Alkaline quinone flow
382 battery with long lifetime at pH 12. *Joule* **2018**, *2* (9), 1894.

383 (16) Ji, Y.; Goulet, M. A.; Pollack, D. A.; Kwabi, D. G.; Jin, S.; Porcellinis, D.; Kerr, E. F.;
384 Gordon, R. G.; Aziz, M. J. A phosphonate-functionalized quinone redox flow battery at
385 near-neutral pH with record capacity retention rate. *Adv. Energy Mater.* **2019**, *9* (12),
386 1900039.

387 (17) Kwabi, D. G.; Ji, Y.; Aziz, M. J. Electrolyte lifetime in aqueous organic redox flow
388 batteries: a critical review. *Chem. Rev.* **2020**, submitted.

389 (18) Jin, S.; Jing, Y.; Kwabi, D. G.; Ji, Y.; Tong, L.; De Porcellinis, D.; Goulet, M.-A.;
390 Pollack, D. A.; Gordon, R. G.; Aziz, M. J. A water-miscible quinone flow battery with
391 high volumetric capacity and energy density. *ACS Energy Lett.* **2019**, *4* (6), 1342.

392 (19) Hall, J.; Perkin, A. G. Reduction products of the hydroxyanthraquinones. Part II. *J.
393 Chem. Soc., Trans.* **1923**, *123*, 2029.

394 (20) Shimizu, A.; Takenaka, K.; Handa, N.; Nokami, T.; Itoh, T.; Yoshida, J. I. Liquid
395 quinones for solvent-free redox flow batteries. *Adv. Mater.* **2017**, *29* (41), 1606592.

396 (21) Kuimov, V. A.; Gusarova, N. K.; Malysheva, S. F.; Trofimov, B. A. Transition metal-free
397 regioselective access to 9,10-dihydroanthracenes via the reaction of anthracenes with
398 elemental phosphorus in the KOH/DMSO system. *Tetrahedron Lett.* **2018**, *59* (52), 4533.

399 (22) Grotthuss, E.; Prey, S. E.; Bolte, M.; Lerner, H. W.; Wagner, M. Dual role of doubly
400 reduced arylboranes as dihydrogen- and hydride-transfer catalysts. *J. Am. Chem. Soc.*
401 **2019**, *141* (14), 6082.

402 (23) Dieterich, V.; Milshtein, J. D.; Barton, J. L.; Carney, T. J.; Darling, R. M.; Brushett, F. R.
403 Estimating the cost of organic battery active materials: a case study on anthraquinone
404 disulfonic acid. *Transl. Mater. Res.* **2018**, *5* (3), 034001.

405 (24) Das, C. K. D. a. N. S. Oxidation of anthracene to anthraquinone in liquid-phase with an
406 air/oxygen/nitric acid system. *J. Chem. Tech. Biootechnol.* **1982**, *32* (6), 643.

407 (25) Francisco Rodríguez, M. D. B., Luis F. Adrados, José C. Burillo, Julio F. Tijero. Selective
408 oxidation of anthracene to anthraquinone in acetic acid with air in presence of nitric acid.
409 *Tetrahedron Lett.* **1989**, *30* (18), 2417.

410 (26) Weber, A. Z.; Mench, M. M.; Meyers, J. P.; Ross, P. N.; Gostick, J. T.; Liu, Q. Redox
411 flow batteries: a review. *J. Appl. Electrochem.* **2011**, *41* (10), 1137.

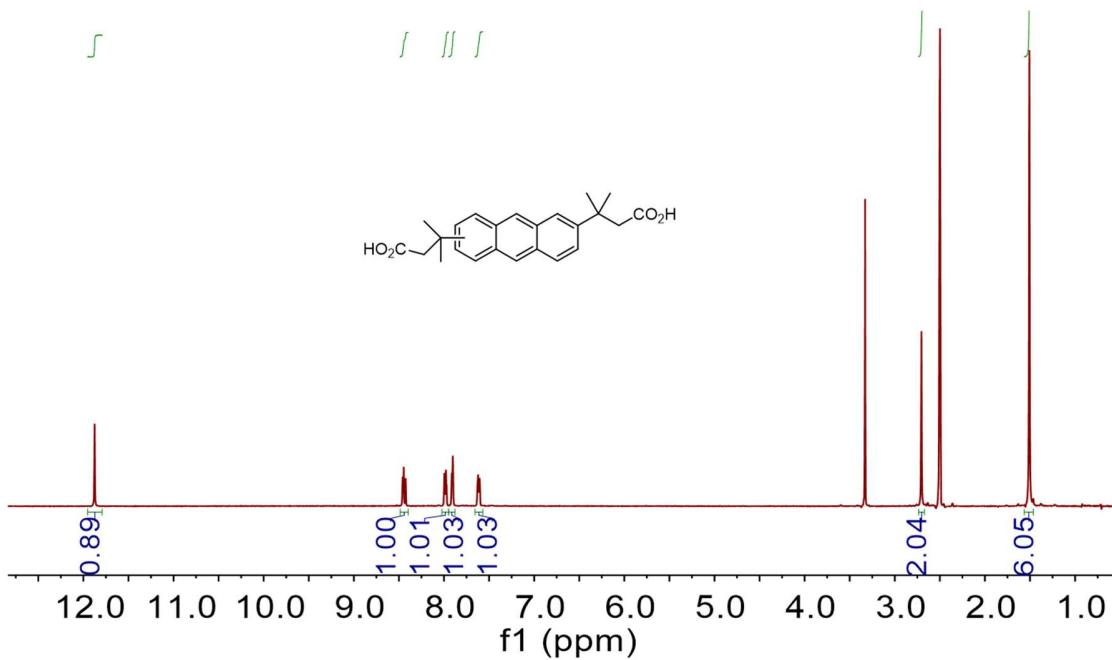
412 (27) Goulet, M. A.; Aziz, M. J. Flow battery molecular reactant stability determined by
413 symmetric cell cycling methods. *J. Electrochem. Soc.* **2018**, *165* (7), A1466.

414 (28) Hu, B.; Luo, J.; Hu, M.; Yuan, B.; Liu, T. L. A pH-neutral, metal-free aqueous organic
415 redox flow battery employing an ammonium anthraquinone anolyte. *Angew. Chem. Int. Ed.*
416 **2019**, *58* (46), 16629.

417 (29) Goulet, M. A.; Tong, L.; Pollack, D. A.; Tabor, D. P.; Odom, S. A.; Aspuru-Guzik, A.;
418 Kwan, E. E.; Gordon, R. G.; Aziz, M. J. Extending the lifetime of organic flow batteries
419 via redox state management. *J. Am. Chem. Soc.* **2019**, *141* (20), 8014.

420 (30) McCann, G. M.; McDonnell, C. M.; Magris, L.; More O'Ferrall, R. A. Enol–keto
421 tautomerism of 9-anthrol and hydrolysis of its methyl ether. *J. Chem. Soc., Perkin Trans.*
422 **2002**, *2* (4), 784.

423 (31) Tandon, P. K.; Baboo, R.; Singh, A. K. Simple and economical conversion of organic
424 compounds with H_2O_2 catalyzed by ruthenium (III) chloride. *Appl. Organometal. Chem.*
425 **2006**, *20* (1), 20.

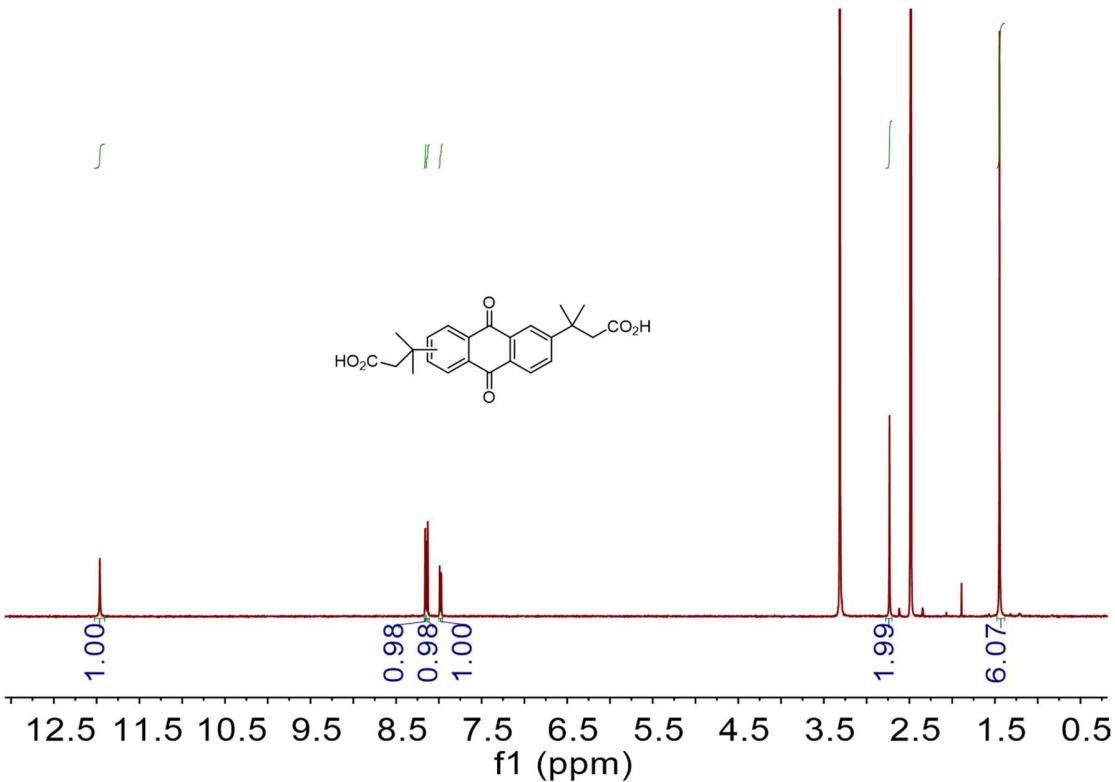

426
427
428
429
430
431

432	Supporting information
433	
434	Contents
435	Chemical synthesis and characterization.....17
436	Comparison of synthetic conditions for DPivOHAQ, DBAQ, DBEAQ, and DPPEAQ.....22
437	Chemical stability experiments23
438	Cyclic Voltammetry (CV) and Rotating Disk Electrode (RDE) Measurements24
439	Solubility tests25
440	Thermodynamics of the disproportionation reaction.....26
441	Anthrone detection29
442	
443	

444 **Experimental section:**

445 9,10-dihydroanthracene (97%), 3,3-dimethylacrylic acid (97%), succinic anhydride,
446 hydrazine monohydrate (98%), anhydrous dichloromethane, and diethylene glycol (99%)
447 were purchased from Sigma Aldrich, and anhydrous aluminum chloride (95%) was
448 purchased from Alfa Aesar. All chemicals were used as received.

449 **Chemical synthesis and characterization**

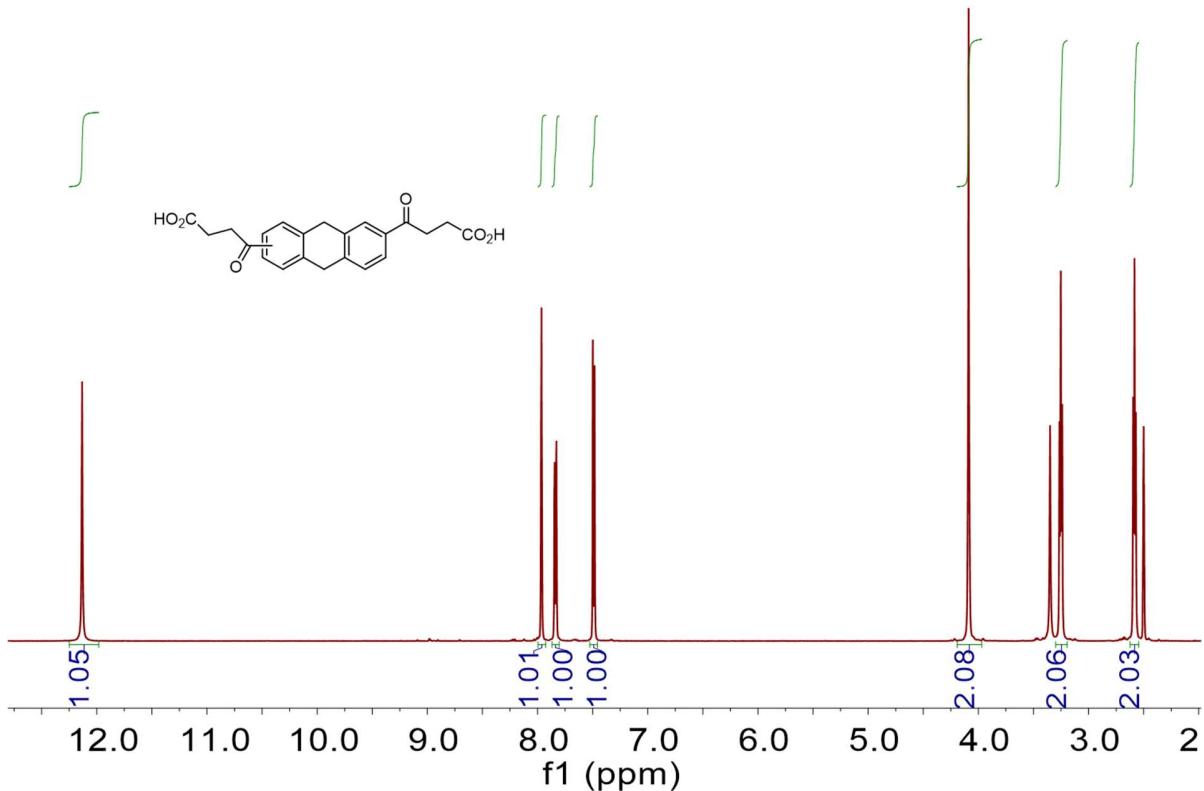

450

451 *Figure S1.* ^1H NMR spectrum of DPivOHAC in $\text{DMSO}-d_6$. Solvent peaks are those that are not
452 integrated. ^1H NMR (500 MHz, $\text{DMSO}-d_6$) δ 11.88 (s, 2H), 8.45 (t, 2H), 7.99 (dd, 2H), 7.91 (d,
453 2H), 7.62 (d, 2H), 2.71 (s, 2H), 1.51 (s, 6H).

454

455

456



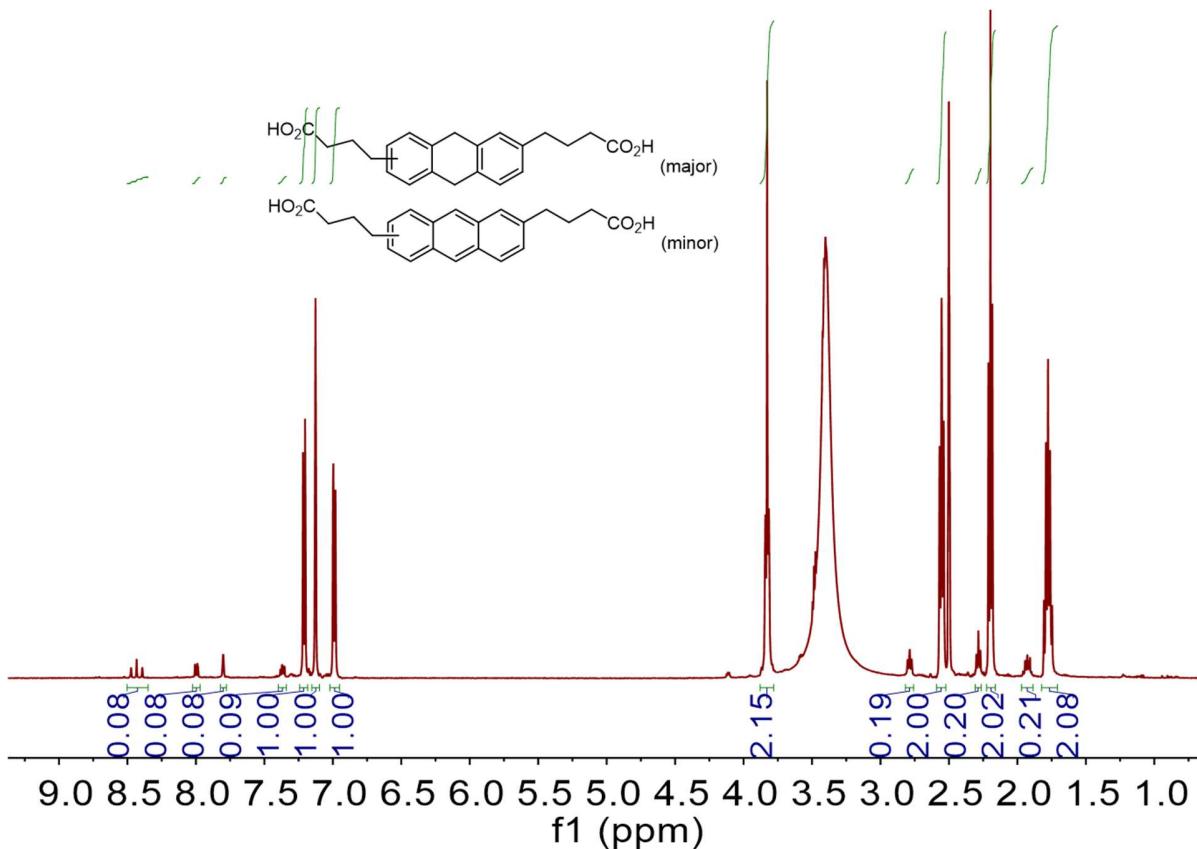
457

458 *Figure S2.* ^1H NMR spectrum of DPivOHAQ in $\text{DMSO}-d_6$. Solvent peaks are those that are not
 459 integrated. ^1H NMR (500 MHz, $\text{DMSO}-d_6$) δ 11.99 (s, 2H), 8.17 (d, 2H), 8.15 (dd, 2H), 8.0 (dd,
 460 2H), 2.75 (s, 2H), 1.46 (s, 6H).

461

462 **4,4'-(9,10-dihydroanthracene-diyl)bis(4-oxobutanoic acid) (DOBDHAC):**
 463 15.50 g (115.89 mmol) of AlCl_3 was suspended in ~200 mL of anhydrous CH_2Cl_2 . A
 464 solution of 5.69 g (56.49 mmol) of succinic anhydride was added and the mixture stirred
 465 at 0 °C for 0.5 hour under nitrogen. Subsequently, a solution of 5.00 g (27.74 mmol) of
 466 9,10-dihydroanthracene in ~15 mL of anhydrous CH_2Cl_2 was added to the above mixture
 467 and stirred overnight. Then the suspension was filtered to obtain the red solid, which was
 468 then washed with ice water twice and filtered to afford a yellow solid (10.5 g). Yield: 99%.
 469 ^1H NMR (500 MHz, $\text{DMSO}-d_6$) δ 12.13 (s, 2H), 7.96 (t, 2H), 7.84 (dd, 2H), 7.49 (d, 2H),
 470 4.09 (s, 4H), 3.25 (t, 4H), 2.58 (t, 4H).

471

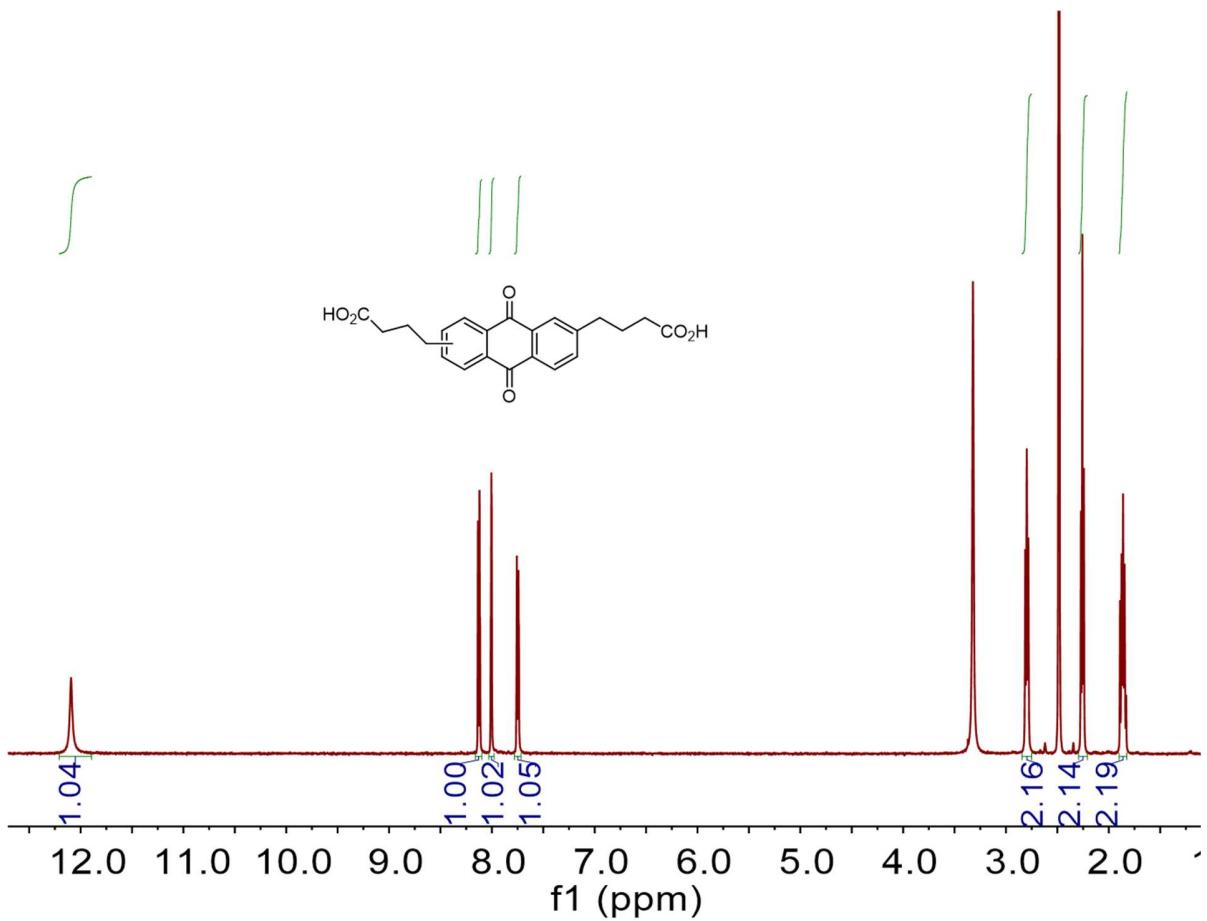

472 *Figure S3.* ^1H NMR spectrum of DOBDHAC in $\text{DMSO}-d_6$. Solvent peaks are those that are not
473 integrated.

474

475 **4,4'-(9,10-dihydroanthracene-diyl)dibutanoic acid (DBDHAC):**

476 To a solution of DOBDHAC (10.5 g, 27.74 mmol) in diethylene glycol (100 mL) at room
477 temperature was added hydrazine monohydrate (98%, 8 mL, 166 mmol). The reaction
478 mixture was stirred for half an hour. Then potassium hydroxide was added (8.73 g, 155.59
479 mmol) and stirred at 100 °C for 1 hour under nitrogen. Then the temperature was allowed
480 to rise to 200 °C for 4 hours. After cooled to room temperature, 500 mL of water was added
481 to the solution, which was then filtered twice to remove insoluble solid. The filtrate was
482 acidified with 5 M HCl to adjust the pH to 1, and the resulting precipitate was collected
483 and washed with water (500 mL) twice to afford the light brown solid. Yield:
484 approximately 95%. ^1H NMR indicated that the product was DBDHAC (4,4'-(9,10-
485 dihydroanthracene-2,6-diyl)dibutanoic acid) with around 10% percent of DBAC (4,4'-
486 (anthracene-diyl)dibutanoic acid). As both dihydroanthracene and anthracene may be
487 converted to anthraquinone, no further purification was needed at this step. ^1H NMR (500
488 MHz, $\text{DMSO}-d_6$) DBHAC: δ 7.21 (d, 2H), 7.13 (s, 2H), 6.99 (dd, 2H), 3.83 (t, 4H), 2.55

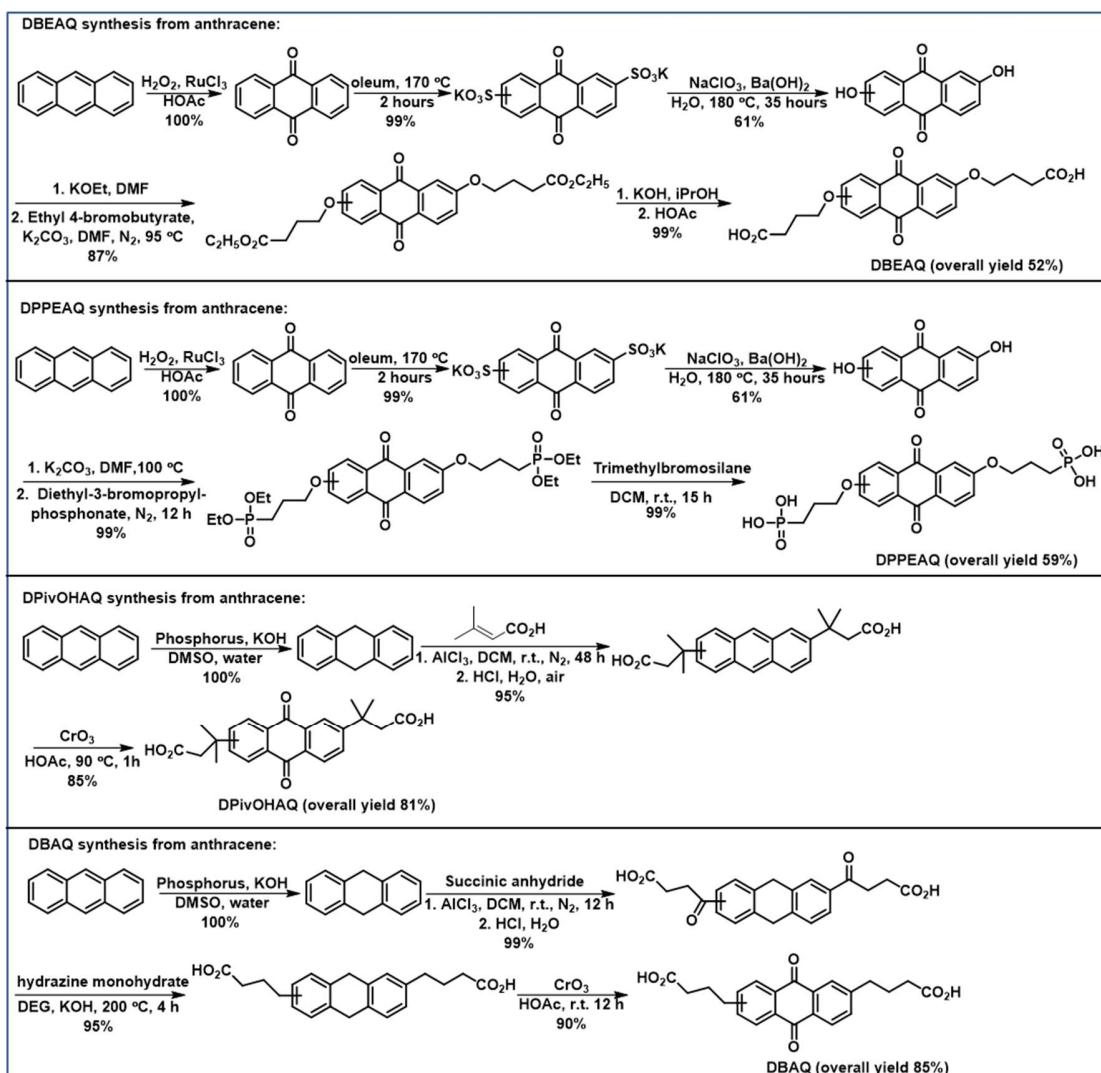
489 (t, 4H), 2.20 (t, 4H), 1.78 (m, 4H). DBAC: δ 8.43 (t, 2H), 7.99 (dd, 2H), 7.80 (s, 2H), 7.37
490 (t, 2H), 2.79 (t, 4H), 2.29 (t, 4H), 1.93 (m, 4H).



491
492 *Figure S4.* ^1H NMR spectrum of DBDHAC in $\text{DMSO}-d_6$. Solvent peaks are those that are not
493 integrated.

494

495 **4,4'-(9,10-anthraquinone-diyl)dibutanoic acid (DBAQ):**


496 DBDHAC (10 g, 28.4 mM) was dissolved in 100 mL glacial acetic acid. Then, a CrO_3
497 solution, prepared by dissolving CrO_3 (7.1 g, 71 mM) in 4 mL of water, was added to the
498 above solution. The reaction mixture was allowed to stir at room temperature overnight.
499 Then 300 mL of water was added to the mixture, which was then filtered to afford the yellow
500 product. The product was dissolved in base and further acidified to afford the yellow
501 precipitate. The last step is used to remove the residual Cr (III) compound. Yield: 90%. ^1H
502 NMR (500 MHz, $\text{DMSO}-d_6$) δ 8.05 (dd, 2H), 7.94 (t, 2H), 7.70 (dd, 2H), 2.77 (t, 4H), 2.27
503 (t, 4H), 1.86 (m, 4H).

504

505 *Figure S5.* ^1H NMR spectrum of DBAQ in $\text{DMSO}-d_6$. Solvent peaks are those that are not
506 integrated.

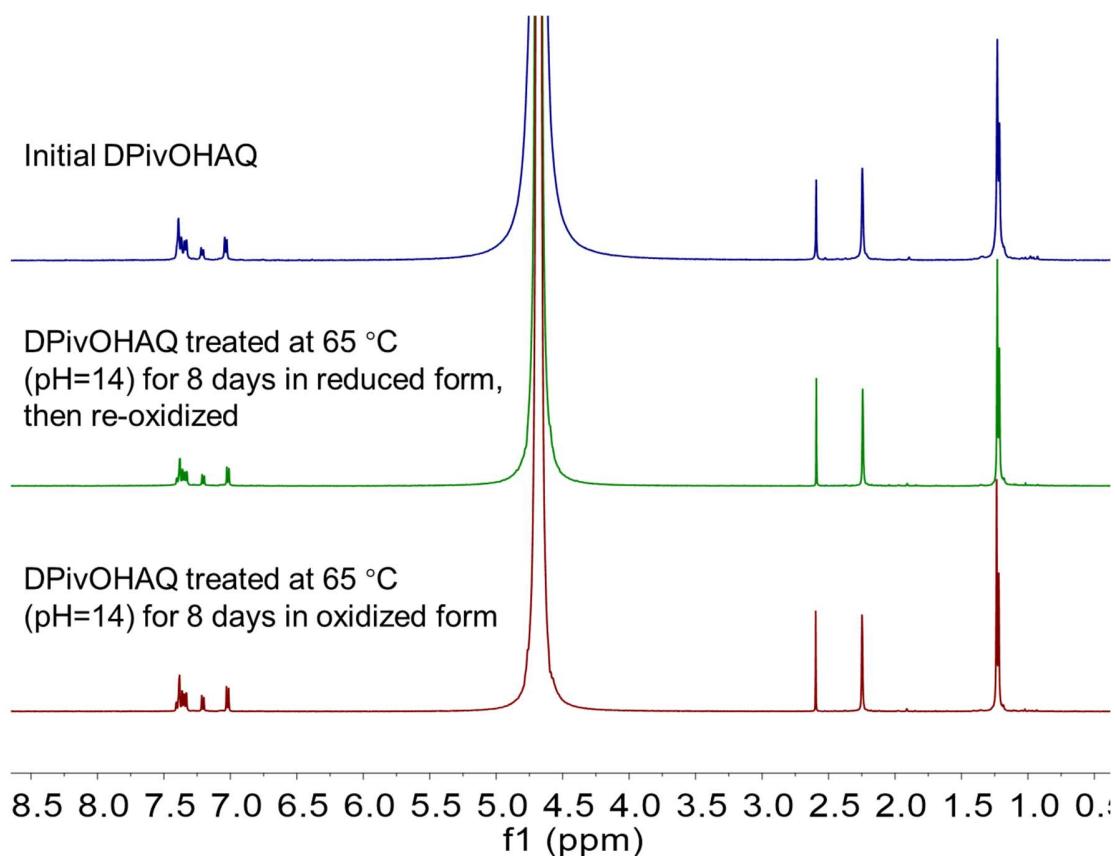
507 **Comparison of synthetic conditions for DPivOHAQ, DBAQ, DBEAQ, and DPPEAQ**

508

509 *Scheme S1.* Comparison of the synthetic routes for DBEAQ,¹⁻⁴ DPPEAQ,^{1-3,5} DPivOHAQ,⁶ and
510 DBAQ⁶ from anthracene.

511 *Table S1.* Lab-scale cost for the side chain resources and starting materials of four stable
512 anthraquinones from Sigma-Aldrich in Nov. 2019.

	2,6-DHAQ	DBEAQ	DPPEAQ	9,10-dihydroanthracene	DPivOHAQ	DBAQ
side chain		ethyl 4-bromobutyrate	diethyl 3-bromopropylphosphonate		3,3-dimethylacrylic acid	succinic anhydride
cost	5 g: \$105	250 g: \$138	5mL: \$91	5 g: \$41.1	500 g: \$152	500 g: \$41
unit price (\$/mol)	5044.4	107.7	3498	1481	30.4	8.2

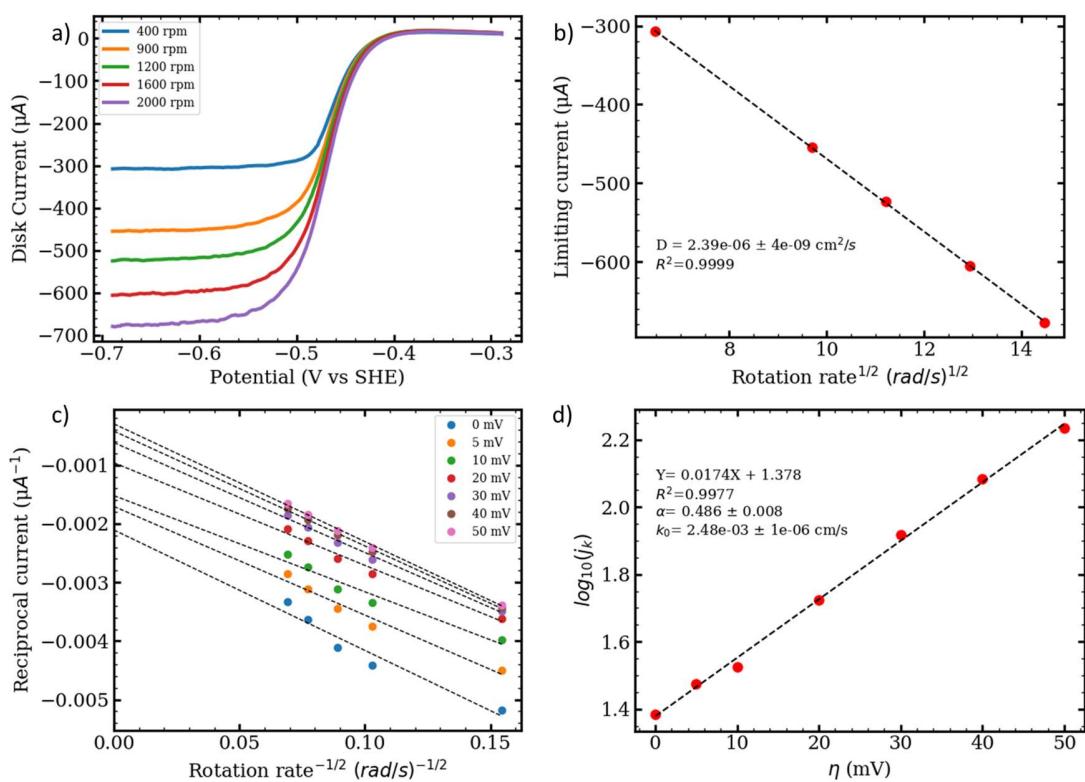

513
514 Note that even though the lab-scale cost of 2,6-DHAQ is high, the mass production cost
515 of 2,6-DHAQ is predicted to be as low as \$2.4/kg by Borealis Technology Solutions

516 LLC.⁷ As the lab-scale cost of 9,10-dihydroanthracene is approximately one third of that
517 of 2,6-DHAQ, we suppose the cost of 9,10-dihydroanthracene could be inexpensive if
518 produced in large-scale.

519

520 **Chemical stability experiments**

521 Samples of DPivOHAQ at 0.1 M concentration and at pH 14 were stored in fluorinated
522 ethylene propylene bottles and heated in an oven at 65 °C for 8 days. The extent of
523 decomposition was determined by ¹H NMR, with peak integrals measured relative to an
524 internal standard of NaCH₃SO₃ prepared at 10 mM concentration in D₂O. All samples were
525 diluted in this deuterated solvent containing the internal standard at a fixed ratio of 1:5.


526

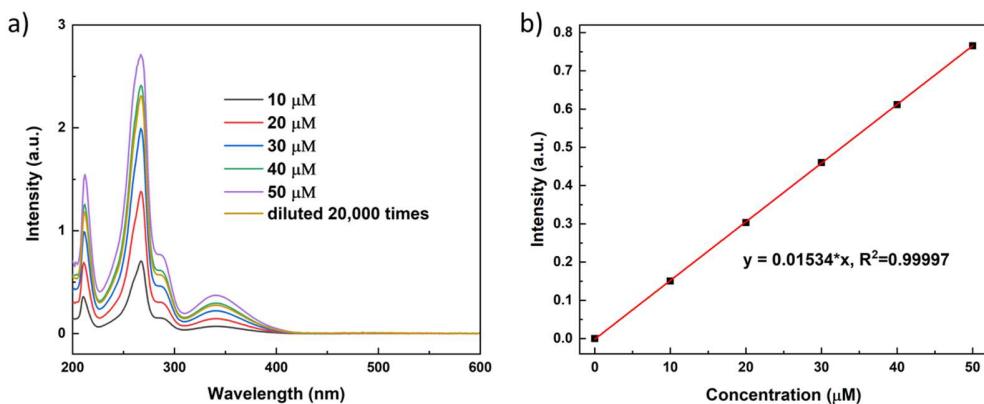
527 *Figure S6.* ¹H NMR spectra (500 MHz, 1 M KOH in D₂O with 10 mM NaCH₃SO₃ internal
528 standard) of (a) the oxidized form of DPivOHAQ in pH 14 aqueous solution (1 M KOH); (b)
529 DPivOHAQ treated at 65 °C for 8 days at 0.1 M concentration in pH 14 aqueous solution (1 M
530 KOH) in the reduced form and then re-oxidized in order to compare to samples tested in the
531 oxidized form; (c) DPivOHAQ treated at 65 °C for 8 days at 0.1 M concentration in pH 14

532 aqueous solution (1 M KOH) in the oxidized form. No apparent decomposition was detected; the
 533 integration did not appreciably change.

534 **Cyclic Voltammetry (CV) and Rotating Disk Electrode (RDE) Measurements**

535 Glassy carbon was used as the working electrode for all three-electrode CV tests. RDE
 536 experiments were conducted using a Pine Instruments Modulated Speed Rotator
 537 AFMSRCE equipped with a 5 mm diameter glassy carbon working electrode, a Ag/AgCl
 538 reference electrode (BASi, pre-soaked in a 3 M NaCl solution), and a graphite counter
 539 electrode. The diffusion coefficient of the oxidized form of DPivOHAQ was calculated
 540 using the Levich equation, which relates the mass-transport-limited current to the number
 541 of electrons transferred (n), the area of the electrode (A), and the concentration of redox-
 542 active species in the electrolyte (C) by plotting the mass-transport-limited current against
 543 the square root of the rotation rate (Figure S7b) with the following parameters: n = 2, F =
 544 96,485 Coulombs/mol, A = 0.196 cm², C = 5 mM, kinematic viscosity of 1 M KCl =
 545 0.89 × 10⁻⁶ m²/s.⁸ The resulting value of the diffusion coefficient for the oxidized form of
 546 DPivOHAQ is 2.4 × 10⁻⁶ cm²/s.

547


548 *Figure S7.* DPivOHAQ reduction kinetics in RDE. a) Linear sweep voltammograms of 5 mM
 549 DPivOHAQ in 1 M KCl at pH 12 on a glassy carbon electrode at rotation rates between 400 and

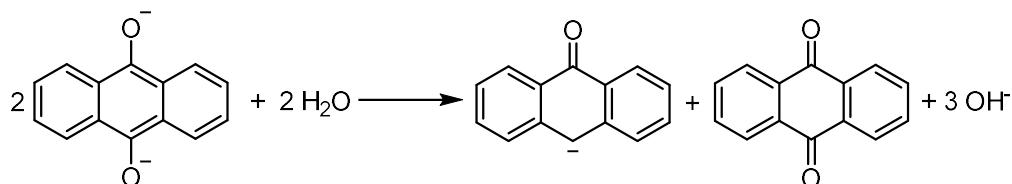
550 2000 rpm. b) Levich plot (limiting current versus square root of rotation rate in rad/s) of 5 mM
551 DPivOHAQ in 1 M KCl at pH 12. Limiting current is taken as the current at -0.65 V in (a). The
552 slope yields a diffusion coefficient for the oxidized form of DPivOHAQ of $2.39 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$. c)
553 Koutecky-Levich plot (reciprocal current versus inverse square root of rotation rate in rad/s) of 5
554 mM DPivOHAQ in 1 M KCl at pH12. d) Fitted Tafel plot of 5 mM DPivOHAQ in 1 M KCl at pH
555 12. The charge transfer coefficient is calculated to be 0.49, and the rate constant is calculated to be
556 $2.48 \times 10^{-3} \text{ cm s}^{-1}$.

557 Solubility tests

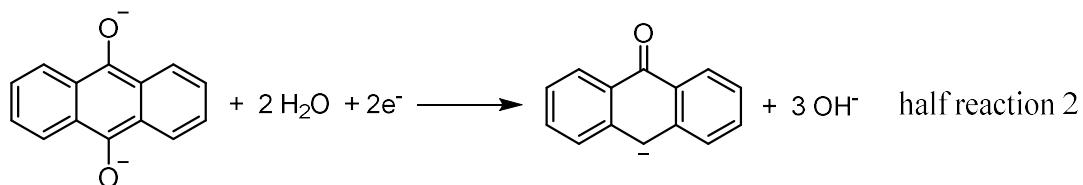
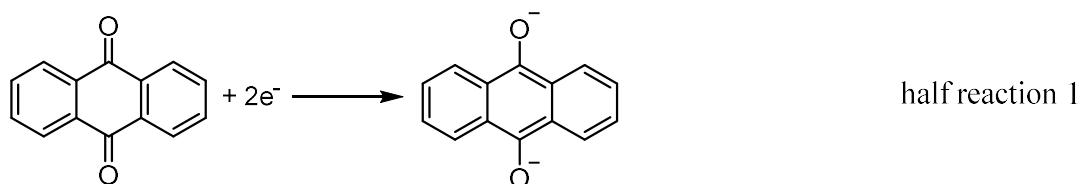
558 For the solubility of K₂DBAQ, we prepared a 1.0 M solution in pH 12 KOH and found that
559 it remained fully dissolved. We did not determine an upper limit. Therefore we report the
560 solubility as 1.0 M.

561 The solubility limit of DPivOHAQ was measured in the oxidized form by adding the
562 potassium salt of DPivOHAQ (prepared by reacting DPivOHAQ with potassium hydroxide
563 in water) until no further solid could be dissolved. The mixture was adjusted to pH 12.
564 After the suspension was filtered through a nylon 0.45 μm syringe filter, a saturated
565 solution of DPivOHAQ at pH 12 was obtained. The saturated solution was then diluted
566 20,000 times while maintaining a pH of 12, and the concentration was evaluated by UV–
567 Vis spectrophotometry (Agilent Cary 60 spectrophotometer). The concentration was
568 calculated according to a pre-calibrated absorbance concentration curve of known
569 concentrations of DPivOHAQ at pH 12. The resulting value of the solubility of the oxidized
570 form of DPivOHAQ at pH 12 is 0.74 M.

571


572 *Figure S8. a)* UV–Vis spectra of DPivOHAQ at different concentrations; *b)* the absorbance at 287.9
573 nm versus the concentration; a least-squares linear fit to the data was performed to generate the

574 calibration curve utilized in this work. The saturated sample was diluted 20,000 times and
575 calculated to be 0.74 M at pH 12.



576

577 **Thermodynamics of the disproportionation reaction**

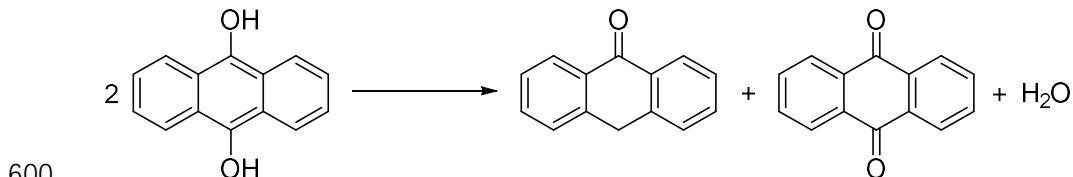
578 When the pH is between 12 and 14, both 9,10-dihydroxyanthracene (reduced
579 anthraquinone) and anthrone ($pK_a = 10$)⁹ are deprotonated, and the disproportionation
580 reaction proceeds as follows:

582 This disproportionation reaction is a combination of the following two half reactions:

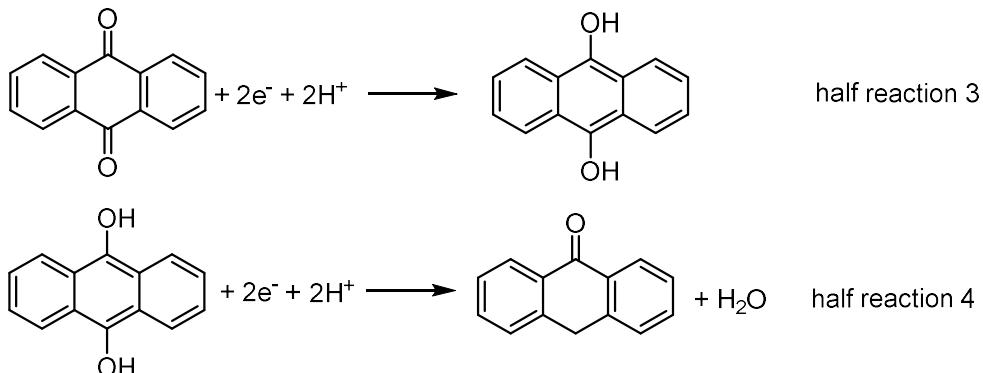
583

584 Within this pH range, the redox potential E_1 for half reaction 1 is pH independent,
585 whereas the redox potential E_2 for the half reaction 2 decreases by approximately 89 mV
586 per pH unit increase based on Nernst equation. The Gibbs free energy change ΔG per
587 molecule of anthrone formed by the disproportionation reaction (half reaction 2 minus
588 half reaction 1) is given by:

589
$$\Delta G = -2 \times F \times (E_2 - E_1) / N_A$$


590 assuming reactants and products (other than OH⁻) have unit activities and the activity of
591 OH⁻ is consistent with the pH.

592 As pH increases, the Gibbs free energy change ΔG increases, and the disproportionation
593 reaction is less prone to happen. This observation is equivalent to the statement that the


594 overall reaction within this pH range involves OH^- , so the activity of OH^- factors into the
595 reaction quotient and equilibrium constant. By Le Chatelier's principle, the reaction will
596 be disfavored as the pH increases.

597

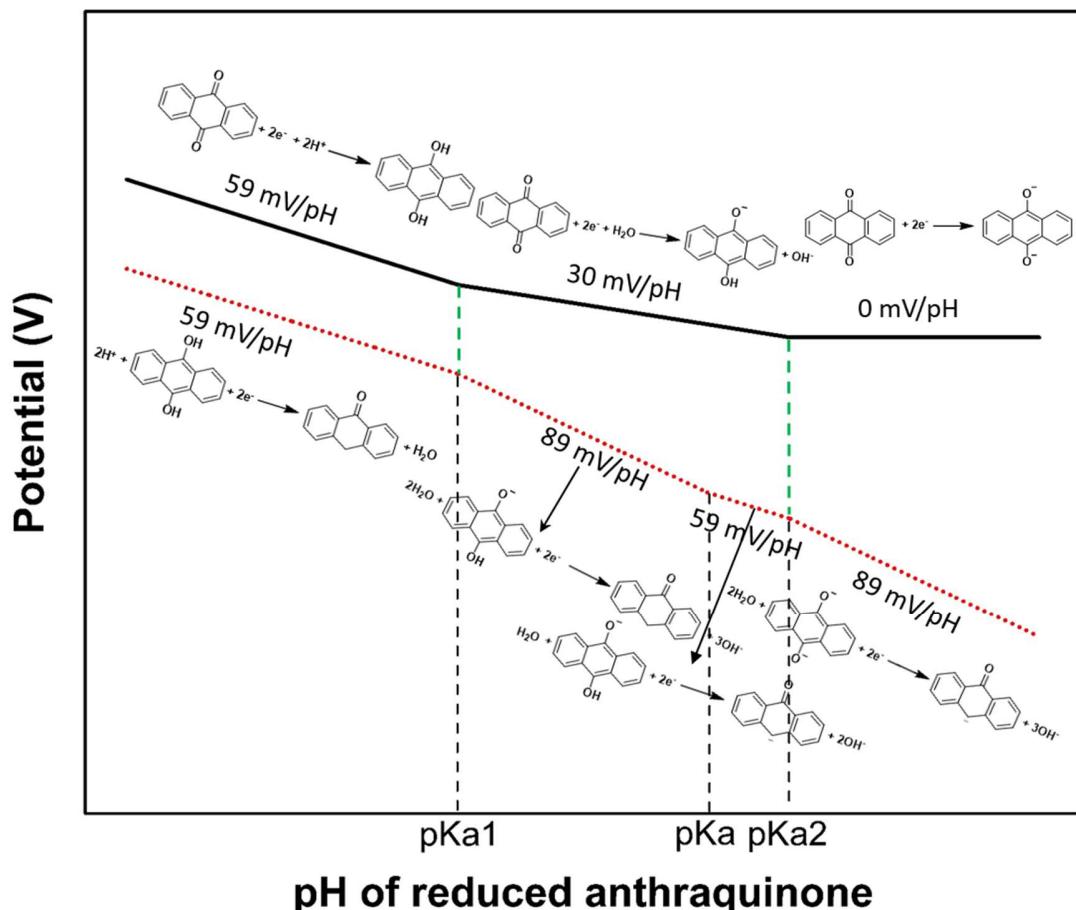
598 When the pH is below the pK_{a1} (typically approximately 7) of 9,10-dihydroxyanthracene,
599 the disproportionation reaction becomes:

601 The two corresponding two half reactions are

602

603 The redox potential E_3 for half reaction 3 decreases by approximately 59 mV per pH unit
604 increase based on Nernst equation, and so does the redox potential E_4 .

605 The Gibbs free energy change $\Delta G'$ per molecule of anthrone formed by the
606 disproportionation reaction (half reaction 4 minus half reaction 3) is given by:

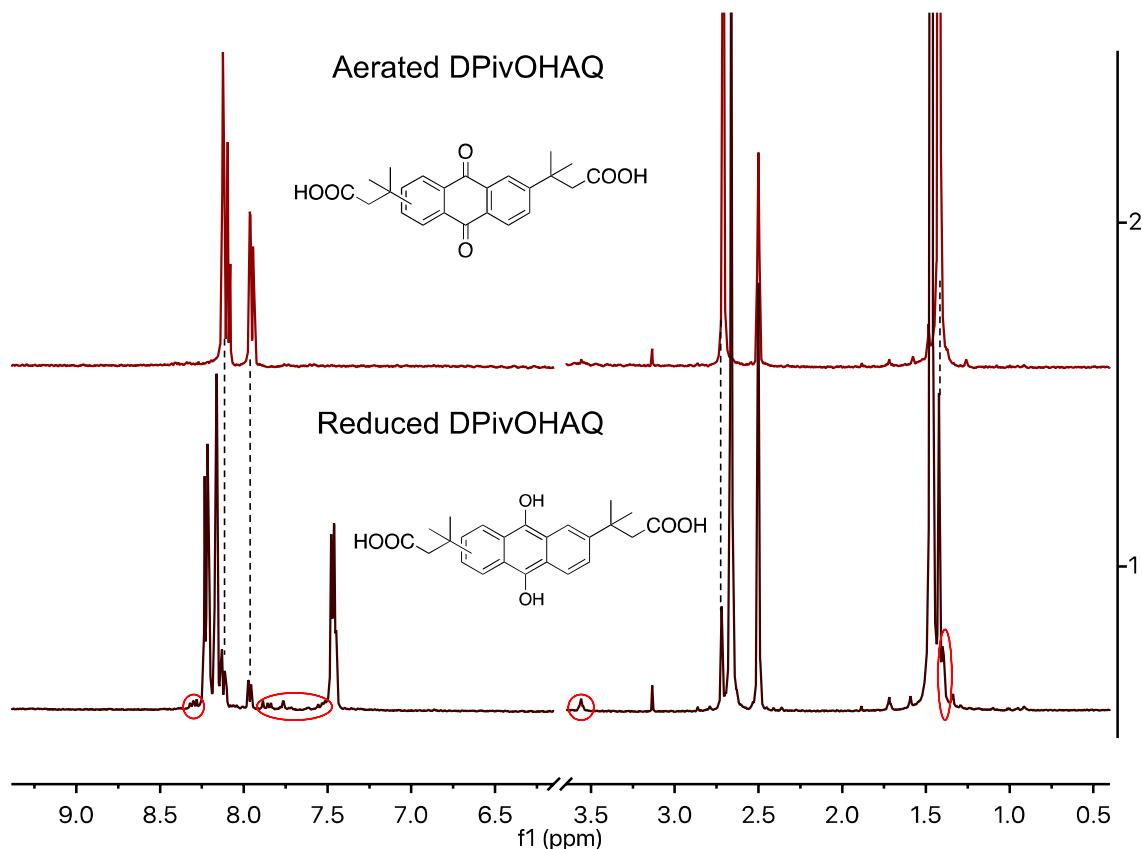

607
$$\Delta G' = -2 \times F \times (E_4 - E_3) / N_A$$

608 assuming reactants and products (other than H^+) have unit activities and the activity of H^+
609 is consistent with the pH.

610 As pH (below pK_{a1}) increases, the Gibbs free energy change $\Delta G'$ is constant. This
611 observation is equivalent to the statement that the overall reaction within this pH range
612 does not involve H^+ , so the activity of H^+ does not factor into the reaction quotient and
613 equilibrium constant.

614

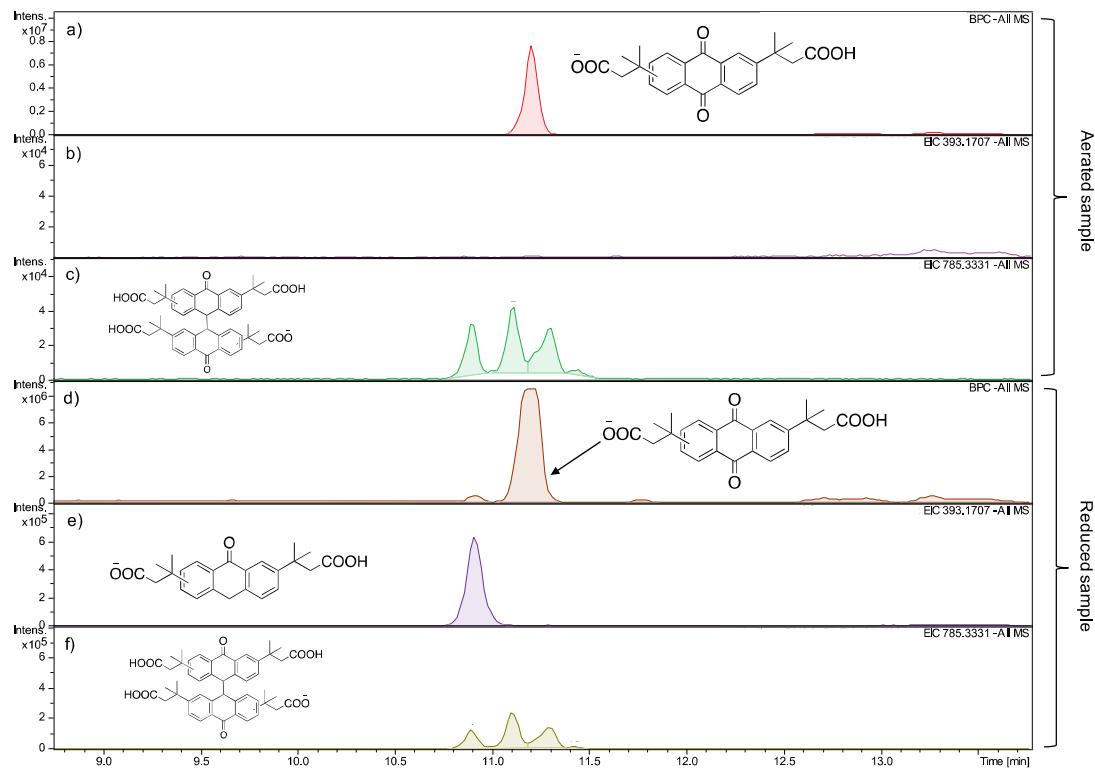
615 If we draw a theoretical Pourbaix diagram for the two half reactions of the anthrone-
 616 forming disproportionation reaction according to Nernst equation (assuming that the pK_a
 617 of anthrone lies between the pK_{a1} and pK_{a2} of hydroquinone), we obtain:



618

619 *Figure S9.* Representative Pourbaix diagram of anthraquinone, anthrahydroquinone, and anthrone.
 620 The pK_{a1} and pK_{a2} belong to the 9,10-dihydroxyanthracene (anthrahydroquinone). The pK_a
 621 (reported to be approximately 10) belongs to anthrone.⁹ Here we assume that the pK_a of anthrone
 622 lies between the pK_{a1} and pK_{a2} of anthrahydroquinone.

623 This Pourbaix diagram illustrates that the Gibbs free energy change ΔG for the
 624 disproportionation reaction is larger at alkaline pH than at neutral or acidic pH. Therefore,
 625 anthrone formation is disfavored at alkaline pH relative to neutral or acidic pH. In real
 626 applications with a reasonable concentration of quinone, even starting at pH 7, the pH will
 627 increase to (or above) the pK_{a2} of 9,10-dihydroxyanthraquinone upon quinone reduction;
 628 therefore, it is still possible to get a relatively stable anthraquinone negolyte starting at pH
 629 7.

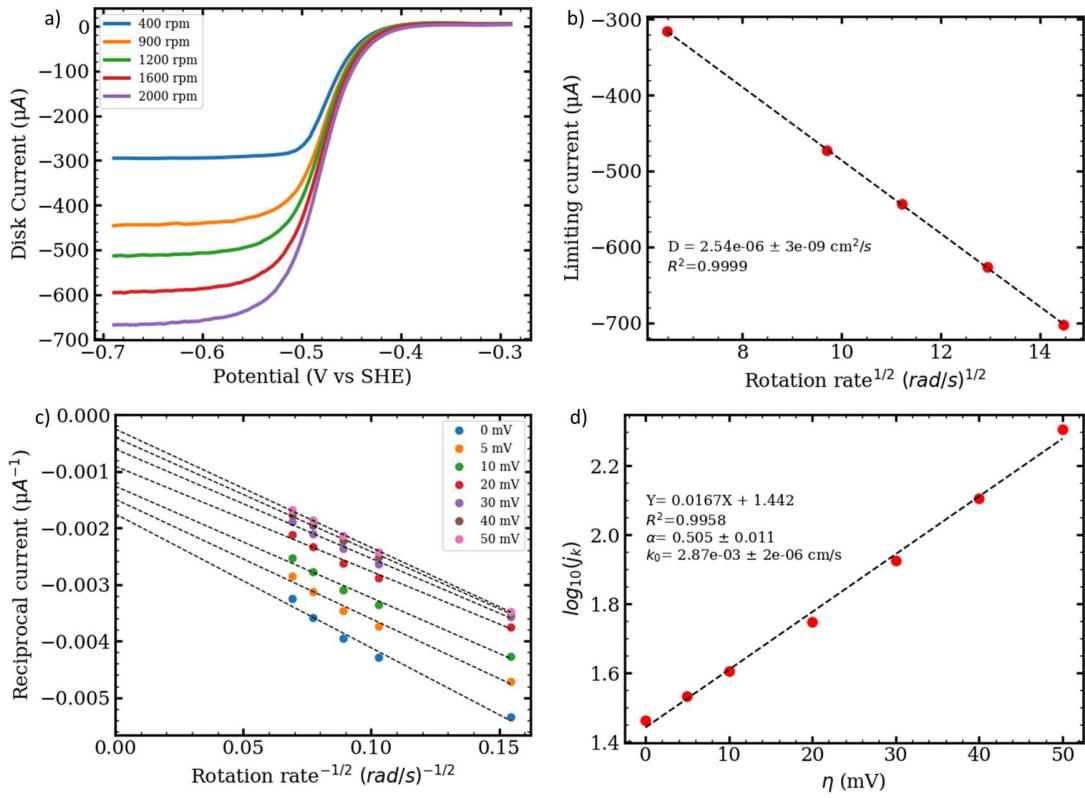

630

631 **Anthrone detection**

632

633 *Figure S10.* ^1H NMR spectra of the reduced and aerated DPivOHAQ in $\text{DMSO}-d_6$. Sample
 634 preparation: 5 mL of 0.1 M DPivOHAQ was fully charged to ~100% SOC and stored in a brown
 635 vial in a glovebox for 238 days. After that, an aliquot was taken and acidified with concentrated
 636 HCl to obtain the protonated and reduced DPivOHAQ precipitate after clear solution was removed.
 637 The protonated and reduced DPivOHAQ was re-dissolved in $\text{DMSO}-d_6$ and stored in a J. Young
 638 NMR tube for ^1H NMR spectrometry. The aerated sample was prepared by exposing the same
 639 reduced sample to air and shaking the NMR tube for several minutes before collecting the NMR
 640 spectrum. The ^1H NMR spectrum of the reduced sample revealed, in addition to peaks from reduced
 641 DPivOHAQ and a small amount of the oxidized form, some appreciable peaks highlighted with red
 642 circles, corresponding to signals from unknown compounds. However, these signals disappeared
 643 when the same NMR sample was aerated, indicating that the unknown compounds can either be
 644 oxidized back to DPivOHAQ or convert into other products with no observable signals above the
 645 detection limit of the NMR instrument.

646



647

Figure S11. LC-MS results from the reduced DPivOHAQ samples stored for 238 days. a) The base peak chromatogram of the aerated sample. b) The extracted-ion chromatogram for the anthrone derivative from the aerated sample. c) The extracted-ion chromatogram for the anthrone dimer derivative from the aerated sample. d) The base peak chromatogram of the reduced sample. e) The extracted-ion chromatogram for the anthrone derivative from the reduced sample. f) The extracted-ion chromatogram for the anthrone dimer derivative from the reduced sample. In the reduced sample, both anthrone and anthrone dimer forms were detected. After aeration, no anthrone form is detected. The anthrone dimer accounts for 1.24% in the aerated sample, corresponding a fade rate of 1.90% per year for the reduced DPivOHAQ after aeration. Sample preparation: 5 mL of 0.1 M DPivOHAQ was fully charged to ~100% SOC and stored in a brown vial in a glovebox for 238 days. After that, aliquots were taken and acidified with concentrated HCl to obtain protonated DPivOHAQ precipitate after clear solution was removed. The protonated and reduced DPivOHAQ was re-dissolved in DMSO. The resulting solution was further diluted to the desired concentration (10-20 μ M) by acetonitrile/water co-solvents (V/V=1:1). One sample was stored in a glovebox in the reduced form prior to the LC-MS measurement, whereas another sample was intentionally aerated. After that, the two samples were immediately subjected to the LC-MS experiment.

663

664

665

666 *Figure S12.* RDE test for DBAQ. a) Linear sweep voltammograms of 5 mM DBAQ in 1 M KCl at
667 pH 12 on a glassy carbon electrode at rotation rates between 400 and 2000 rpm. b) Levich plot
668 (limiting current versus square root of rotation rate in rad/s) of 5 mM DBAQ in 1 M KCl at pH 12.
669 Limiting current is taken as the current at -0.65 V in (a). The slope yields a diffusion coefficient for
670 the oxidized form of DBAQ of $2.54 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$. c) Koutecky-Levich plot (reciprocal current
671 versus inverse square root of rotation rate in rad/s) of 5 mM DBAQ in 1 M KCl at pH 12. d) Fitted
672 Tafel plot of 5 mM DBAQ in 1 M KCl at pH 12. The charge transfer coefficient is calculated to be
673 0.505 ± 0.011, and the rate constant is calculated to be $2.87 \times 10^{-3} \text{ cm s}^{-1}$.

674

675

676

677 **References**

678 1. Tandon, P. K.; Baboo, R.; Singh, A. K. Simple and economical conversion of organic
679 compounds with H_2O_2 catalyzed by ruthenium (III) chloride. *Appl. Organometal. Chem.*
680 **2006**, *20* (1), 20.

681 2. Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X.;
682 Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. A metal-free organic-inorganic aqueous
683 flow battery. *Nature* **2014**, *505* (7482), 195.

684 3. Hall, J.; Perkin, A. G. Reduction products of the hydroxyanthraquinones. Part II. *J.
685 Chem. Soc., Trans.* **1923**, *123*, 2029.

686 4. Kwabi, D. G.; Lin, K.; Ji, Y.; Kerr, E. F.; Goulet, M. A.; De Porcellinis, D.; Tabor, D. P.;
687 Pollack, D. A.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Alkaline quinone flow
688 battery with long lifetime at pH 12. *Joule* **2018**, *2* (9), 1894.

689 5. Ji, Y.; Goulet, M. A.; Pollack, D. A.; Kwabi, D. G.; Jin, S.; Porcellinis, D.; Kerr, E. F.;
690 Gordon, R. G.; Aziz, M. J. A phosphonate-functionalized quinone redox flow battery at
691 near-neutral pH with record capacity retention rate. *Adv. Energy Mater.* **2019**, *9* (12),
692 1900039.

693 6. Kuimov, V. A.; Gusarova, N. K.; Malysheva, S. F.; Trofimov, B. A. Transition metal-free
694 regioselective access to 9,10-dihydroanthracenes via the reaction of anthracenes with
695 elemental phosphorus in the KOH/DMSO system. *Tetrahedron Lett.* **2018**, *59* (52), 4533.

696 7. Yang, Z.; Tong, L.; Tabor, D. P.; Beh, E. S.; Goulet, M. A.; De Porcellinis, D.; Aspuru-
697 Guzik, A.; Gordon, R. G.; Aziz, M. J. Alkaline benzoquinone aqueous flow battery for
698 large-scale storage of electrical energy. *Adv. Energy Mater.* **2018**, *8* (8), 1702056.

699 8. Kestin, J.; Khalifa, H. E.; Correia, R. J. Tables of the dynamic and kinematic viscosity of
700 aqueous KCl solutions in the temperature range 25–150 °C and the pressure range 0.1–35
701 MPa. *J. Phys. Chem. Ref. Data* **1981**, *10* (1), 57.

702 9. McCann, G. M.; McDonnell, C. M.; Magris, L.; More O'Ferrall, R. A. Enol–keto
703 tautomerism of 9-anthrol and hydrolysis of its methyl ether. *J. Chem. Soc., Perkin Trans.*
704 **2002**, *2* (4), 784.

705