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Abstract
Multidimensional solid-state NMR spectra of oriented membrane proteins can be used to infer the backbone torsion angles 
and hence the overall protein fold by measuring dipolar couplings and chemical shift anisotropies, which depend on the 
orientation of each peptide plane with respect to the external magnetic field. However, multiple peptide plane orientations 
can be consistent with a given set of angular restraints. This ambiguity is further exacerbated by experimental uncertainty 
in obtaining and interpreting such restraints. The previously developed algorithms for structure calculations using angular 
restraints typically involve a sequential walkthrough along the backbone to find the torsion angles between the consecutive 
peptide plane orientations that are consistent with the experimental data. This method is sensitive to experimental uncertainty 
in interpreting the peak positions of as low as ± 10 Hz, often yielding high structural RMSDs for the calculated structures. 
Here we present a significantly improved version of the algorithm which includes the fitting of several peptide planes at once 
in order to prevent propagation of error along the backbone. In addition, a protocol has been devised for filtering the structural 
solutions using Rosetta scoring functions in order to find the structures that both fit the spectrum and satisfy bioinformatics 
restraints. The robustness of the new algorithm has been tested using synthetic angular restraints generated from the known 
structures for two proteins: a soluble protein 2gb1 (56 residues), chosen for its diverse secondary structure elements, i.e. 
an alpha-helix and two beta-sheets, and a membrane protein 4a2n, from which the first two transmembrane helices (having 
a total of 64 residues) have been used. Extensive simulations have been performed by varying the number of fitted planes, 
experimental error, and the number of NMR dimensions. It has been found that simultaneously fitting two peptide planes 
always shifted the distribution of the calculated structures toward lower structural RMSD values as compared to fitting a 
single torsion-angle pair. For each protein, irrespective of the simulation parameters, Rosetta was able to distinguish the 
most plausible structures, often having structural RMSDs lower than 2 Å with respect to the original structure. This study 
establishes a framework for de-novo protein structure prediction using a combination of solid-state NMR angular restraints 
and bioinformatics.

Keywords  Oriented-sample NMR · Angular restraints · Dipolar couplings · Chemical shift anisotropy · Membrane 
proteins · Structure determination · Rosetta

Introduction

Over the last two decades, solid-state NMR (ssNMR) of 
uniaxially aligned samples has become a useful tool for 
structure determination of membrane proteins incorporated 
in planar, lipid-rich hydrated bilayers (McDonnell et al. 
1993; Opella et al. 1999; Wang et al. 2001; Marassi and 

Opella 2003; Traaseth et al. 2006, 2009; Sharma et al. 2010; 
Verardi et al. 2011; Gayen et al. 2013; Gleason et al. 2013; 
Yamamoto et al. 2013). Here the structural information is 
directly obtainable from the positions of NMR resonances 
in the multi-dimensional spectra correlating the chemical 
shift anisotropy (CSA) of the protein backbone atoms (e.g. 
15N, 13C), with the nearest-neighbor dipolar couplings (DC), 
such as 1H–15N (Wu et al. 1994) and 1Hα–13Cα couplings 
(Sinha et al. 2007). For a protein aligned in a phospholipid 
bilayer, the principal axes of the chemical shift tensors and 
dipolar vectors have specific orientations with respect to the 
external magnetic field, B0; thus, NMR frequencies become 
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orientationally dependent. Ultimately, in order to calculate 
the overall protein fold, one has to relate these frequencies to 
the backbone �∕� torsional angles, which can then be used 
to reconstruct the polypeptide backbone of the membrane 
protein under study.

Peptide planes can be regarded as fixed-geometry units 
for calculating the orientational dependences of NMR 
resonances along the protein backbone. A peptide plane is 
outlined by four atoms in the backbone: an α-carbon, Ci

�
 , 

the amide proton H, the next α-carbon, Ci+1
�

 , and finally the 
carbonyl oxygen, O. Additionally, contained within the out-
lined atoms in the plane are the carbonyl carbon C’ of the 
i’th residue, and the nitrogen atom, N, which belongs to the 
i + 1’th residue. Figure 1 shows three peptide planes, each 
one outlined in red. The orientation of the main magnetic 
field, B0, relative to an arbitrarily chosen molecular frame 
associated with the peptide plane is given by two spheri-
cal angles: � , the longitudinal angle, and � , the azimuthal 
angle. These angles determine the measured frequencies for 
15N CSA, 1H–15N dipolar couplings, and any other in-plane 
resonances. By contrast, for the chiral C�H� bond, which is 
located at the juncture of two adjacent peptide planes, its 

orientation with respect to B0 additionally depends on the � 
torsion angle between the two planes.

Structure determination from angular restraints relies 
on the measured frequencies to determine the possible 
peptide plane orientations along a polypeptide. In contrast 
to the methods employing distance restraints (Herrmann 
and Guntert 2002; Linge et al. 2003; Schwieters et al. 
2003) and isotropic chemical shift data (Spera and Bax 
1991; Cornilescu et al. 1999; Shen et al. 2009), structure 
determination of oriented membrane proteins from angular 
restraints still represents an outstanding problem. While 
it bears similarity to structure determination using RDCs 
(Valafar and Prestegard 2004; Bryson et al. 2008; Ruan 
et al. 2008), the number of observables per peptide planes 
is usually more limited and the spectra are measured rela-
tive to a single alignment frame defined by the external 
magnetic field B0. Moreover, the high degree of correla-
tion among the angular restraints renders global minimiza-
tion methods such as simulated annealing impractical for 
de novo structure determination. In the mapping of reso-
nance frequencies to peptide plane orientations, finding a 
consensus structure is primarily hindered by the degen-
eracy of the possible solutions, owing to the second-rank 
nature of the relevant chemical shift anisotropy and dipolar 
interactions. For instance, in the case of two experimental 
NMR dimensions, i.e. 15N CSA and 1H–15N dipolar cou-
plings there can be as many as 16 peptide plane orienta-
tions (pairs of �, � ) consistent with each resonance (Ber-
tram et al. 2003). Adding a third NMR dimension, namely 
1Hα–13Cα DC’s, significantly reduces the degeneracy (Yin 
and Nevzorov 2011). Including additional NMR spectro-
scopic dimensions can further help in resolving the correct 
structure from erroneous ones.

Another challenge for the structure determination pro-
cess is experimental uncertainty, which can be thought of 
as ambiguity in interpreting the positions of the resonances. 
Such uncertainty can be due to insufficient resolution and 
slight variations in the dipolar scaling factors arising in com-
posite decoupling pulse sequences (Wu et al. 1994; Dvin-
skikh et al. 2006; Nevzorov and Opella 2007). In addition, 
all resonances are fitted and then back-calculated assuming 
ideal peptide plane geometry and constant (average) chemi-
cal shift tensor principal values and orientations. In reality, 
minor deviations from both the ideal peptide plane geometry 
(Chellapa and Rose 2015) and the CSA tensor orientation 
and its principal values can arise depending on the amino 
acid type and local structure (Cornilescu and Bax 2000; 
Saito et al. 2010). This may interfere with the interpretation 
of angular anisotropy of the NMR resonances used during 
the structural fitting. For instance, it has been shown that in 
the limit of perfect resolution for each resonance, a 3D (15N 
CSA, 1H–15N and 1Hα–13Cα DC’s) spectrum yields a unique 
solution (Yin and Nevzorov 2011). When as little as 10 Hz 

Fig. 1   An idealized representation for the backbone of a tripeptide 
unit. The edges of the peptide planes are outlined by the dotted red 
lines. The main atoms are color coded as: nitrogen in dark blue, car-
bon in light blue, oxygen in red, and hydrogen in gray. The orienta-
tion of the magnetic field B0 relative to the molecular frame associ-
ated with the peptide plane is defined by two spherical angles �, � . 
The spherical angle � is measured from the external magnetic field, 
(black arrow) B0, to the peptide plane normal (red arrow), which 
forms the z-axis for the molecular frame. The azimuthal angle � is 
measured between the NH bond, which forms the x-axis of the 
molecular frame, and the projection of B0 onto the peptide plane 
(black dotted line). The relative orientations of the peptide planes are 
given by the pairs of torsion angles (�1 , �1) and ( �2 , �2)
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of positional noise is added to the spectrum, the structural 
root-mean-square deviation (or structural RMSD) values 
may vary significantly.

A possible strategy to circumvent these problems is to 
develop a robust automated algorithm for finding a multi-
tude of the possible structural solutions which could then be 
screened afterwards. One such previously developed struc-
ture fitting algorithm walks along the backbone and finds 
�∕� pairs that best-fit the adjacent peptide plane resonances 
(Yin and Nevzorov 2011). In contrast to independently deter-
mining the orientation of any two adjacent peptide planes 
and then solving a combinatorial search problem (Stewart 
et al. 1987, 1988; Bertram et al. 2003), this algorithm is 
recursive in the sense that the torsion-angle solutions for a 
given peptide plane pair are dependent on all �∕� solutions 
from the preceding residues. If at a certain residue the reso-
nance frequencies cannot be fit within a desired tolerance, 
this may indicate implausible orientational solutions found 
for a previous residue(s). For such a scenario, a step-back 
or restart was implemented. In the presence of experimental 
uncertainty, the probability of misfit resonances increased 
greatly, even at a relatively low value of ± 10 Hz. Moreover, 
by trying to fit a single resonance at a time certain peaks 
may be over-fit, which may also result in erroneous �∕� 
pairs. In other words, the closest fit to the NMR resonance 
for the current residue may worsen the fit to the subsequent 
resonances, thus decreasing the average fit quality for the 
whole spectrum. Such erroneous �∕� pairs are often imper-
ceptible by their fit to the spectrum alone and, thus, may go 
undetected. In the presence of experimental uncertainty, a 
plethora of possible structural solutions must be obtained in 
the hope that the solution set would still contain low-RMSD 
structures which could be distinguished from the rest.

It should be noted that structural solutions having large 
structural RMSDs (relative to the “correct” structure) could 
still yield good-quality fits to the spectrum. Nevertheless, 
while these structures may fit the experimental spectrum 
well, their overall conformations could violate basic protein 
folding principles and result in implausible topology. For 
example, the calculated torsion angles could occupy forbid-
den areas of the Ramachandran plot, or the backbone and 
side chains could overlap with each other or be too close in 
space. Moreover, there could be unstructured folds where 
compact secondary structure is expected, or the fold could be 
inconsistent with the protein’s specific physical environment, 
such as hydrophobic side chains exposed to an aqueous envi-
ronment, or vice versa, hydrophilic side chains contained in 
a hydrophobic lipid membrane interior. While such errone-
ous structures could violate any number of these conditions, 
the correct structure should satisfy them all. Bioinformatics 
can be of great use in applying physical and statistical crite-
ria to discern the realistic solutions from the unrealistic ones. 
The Rosetta software package is a bioinformatic tool that 

has been very successful in de novo modeling of proteins 
(Kuhlman et al. 2003; Yarov-Yarovoy et al. 2005; Chaudhury 
et al. 2010; Leman et al. 2014). The popularity of Rosetta in 
structural biology is due to its ease of use and the compre-
hensive, well parameterized scoring functions. These scor-
ing functions include numerous score terms that combine 
fundamental thermodynamic principles with statistical data 
compiled from real PDB structures. Moreover, the scoring 
terms can be made context-dependent, some specifically for 
soluble proteins and others for proteins immersed in a mem-
brane environment. With the aid of Rosetta scoring terms, a 
post-fitting protocol can augment the NMR structural fitting 
algorithm to distinguish the reasonable structures from the 
ones that violate the aforementioned biophysical principles.

In the previously developed algorithm for finding the 
backbone structure (Yin and Nevzorov 2011), the search for 
the ( �n,�n) pair that best fit the NMR resonance for the 
n-th residue was carried out using a simplex-based mini-
mizer. The simplex algorithm is convenient since it obvi-
ates explicit calculation of derivatives, which would be 
cumbersome given the recursive dependence of variables in 
the resonance fitting calculation. If the spectral root mean 
square deviation (or spectral RMSD) of the calculated fre-
quencies from the NMR resonance is within a specified tol-
erance, the �∕� search is incremented to the next residue 
and the process continues all the way to the C-terminus of 
the backbone. If the tolerance is not satisfied for the nth 
residue fit, the algorithm steps back to the (n − 5)’th resi-
due and repeats that stretch of resonances in the hope of 
being able to find an acceptable solution on the next pass. In 
what follows, we describe a much improved and more robust 
algorithm which can be used for structure determination of 
macroscopically aligned proteins from their ssNMR spectra. 
Three major updates to the previously developed structure 
fitting algorithm have been implemented. The first update is 
to fix the number of simplex iterations during the search for 
the plausible torsion angles at each residue. The previous 
method would move forward to the next residue immediately 
after a pre-defined tolerance limit is satisfied. However, the 
initial selection of tolerances is arbitrary and, thus, the first 
acceptable solution below the tolerance might not be the best 
fit to a given spectral resonance. As a result of orientational 
degeneracy and experimental uncertainty there may be other 
torsion angles that would still score below the tolerance, 
even when using three or more NMR dimensions. Addition-
ally, the simplex minimizer is highly dependent on the start-
ing point, which requires numerous iterations to reliably find 
the global minimum. To keep searching even after the toler-
ance limit is satisfied makes it more likely that the best fit is 
found. The second modification is to search for the orienta-
tions of two (or more) planes at once, i.e. by fitting simulta-
neously the torsion angles �n,�n,�n+1,�n+1 , etc. There will 
inevitably be some peptide planes where an erroneous �∕� 
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pair would best fit the current resonance while potentially 
resulting in poorly fit resonances downstream. Fitting the 
NMR resonances for several peptide planes simultaneously 
instead of a single resonance may help avoid over-fitting 
single resonances, thus avoiding specious �∕� solutions. 
The third major addition includes post-fitting filtering of the 
calculated structures using various Rosetta scoring functions 
to obtain consensus structural solutions.

These modifications yield a higher percentage of accept-
able, low structural RMSD solutions when a multitude of 
structural fits to the data are possible. A protocol employ-
ing Rosetta scoring functions is presented, which accu-
rately distinguishes the “true” structures from those that 
violate physical principles of protein folding and result in 
unlikely conformations while still satisfying NMR angular 
restraints. Since at present experimental solid-state spectra 
correlating three independent spectroscopic dimensions are 
not routinely available, the protocol was exemplified by 
using synthetic spectra. The method was tested on synthetic 
datasets generated from a soluble protein (PDB 2gb1) and 
the first two transmembrane helices of a membrane protein 
(PDB 4a2n). Structural solutions were obtained at various 
degrees of experimental error or uncertainty (also termed 
as “noise”) in each NMR dimension. Experimental error 
was simulated by randomizing the NMR resonances, calcu-
lated from the known three-dimensional structures, in order 
to illustrate the performance of the algorithm in the pres-
ence of non-ideal peptide plane geometry, variable chemi-
cal shift tensor orientations, and uncertainty in the peak 
positions arising from spectral resolution. Rosetta scoring 
was used to determine the consensus structures for these 
proteins which were then compared to the original struc-
tures used to generate the NMR angular restraints.

Analytical framework: calculating protein structures 
in the spherical basis

For most angular-dependent NMR observables the orien-
tation of the magnetic field B0 relative to each peptide 
plane (molecular frame) is most efficiently represented in 
the irreducible spherical basis (Yin and Nevzorov 2011). 
As was previously mentioned, two spherical angles, � and 
� , specify the orientation of B0 relative to a molecular 
frame associated with a given peptide plane. The three-
dimensional irreducible row vector Y⃗  can be constructed 
using the following form:

To convert the orientation vector into a scalar NMR observ-
able, such as CSA or DC, we invoke an interaction tensor, 

(1)Y⃗(𝛽, 𝛼) =

�
−
sin 𝛽√

2

ei𝛼 , cos 𝛽,
sin 𝛽√

2

e−i𝛼

�

M, which must be additionally transformed from the molec-
ular frame (M) into its principal axis system (P). This trans-
formation can be expressed by the Wigner rotation matrix 
D
(
�MP

)
 , and any angular-dependent NMR observable can 

be written in the following generic form:

Here the superscript “+” denotes the Hermitian conjugate. 
To propagate the orientation vector Y⃗  from residue n to resi-
due n + 1, a propagator matrix is applied:

The propagator consists of the product of three Wigner rota-
tion matrices, which explicitly contains fixed and variable 
angular parameters along the protein backbone (Yin and 
Nevzorov 2011):

Here the angles �NC�
= 151.8◦ , �tetra = 110.5◦ , �NC�C�

= 115.6◦ ,  
�HNC� = 119.5◦ , and � = 180◦ , can be treated as constants 
assuming an ideal peptide plane geometry. Calculating the 
C�H� DC requires a different transformation, viz.:

From which the C�H� DC can be explicitly calculated from 
the second element of the vector ������⃗YCH(2) as:

where �CH is the DC constant for the C�H� coupling interac-
tion (see below). Assuming a constant peptide plane geom-
etry, only two variables are contained in each propagator, 
namely the dihedral angles �n,�n . Equations (1–5) represent 
a recursive recipe for mapping the backbone torsions �∕� 
onto the NMR observables, each specified by its own inter-
action tensor M.

The CSA interaction tensor for 15N depends on its three 
principal components �11, �22, �33 . Although the values of the 
principal components vary from residue to residue in real pro-
teins, average tensor values are used in the calculations, and 
are written in the irreducible basis as:

(2)𝜈 = Y⃗(𝛽, 𝛼) ⋅
[
D
(
𝛺MP

)
⋅M ⋅ D+

(
𝛺MP

)]
⋅ Y⃗+(𝛽, 𝛼)

(3)Y⃗
(
𝛽n+1, 𝛼n+1

)
= Y⃗

(
𝛽n, 𝛼n

)
P
(
𝜙n,𝜓n,𝜔n

)

(4)
P
(
�
n
,�

n
,�

n

)
= D

(
�
NC�

,�
n
, �

tetra

)
D
(
0,−�

n
− 180

◦

, 0
)

D
(
−�

NC�C�
, 180

◦ − �
n
,−90◦ − �

HNC�

)

(5)
������⃗YCH = ���⃗Yn ⋅ D

(
270◦ − 𝛼NC𝛼

,𝜙n − 60◦, 90◦ − 𝛾tetra
)
⋅ D(0,−90◦, 0)

(6)
𝜈CH = 𝜒CH

3

[
������⃗YCH(2)

]2
− 1

2

(7)M =

⎛⎜⎜⎝

0.5 ∗
�
�11 + �22

�
0 0.5 ∗

�
�22 − �11

�
0 �33 0

0.5 ∗
�
�22 − �11

�
0 0.5 ∗

�
�11 + �22

�
⎞⎟⎟⎠
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For Glycine these values (in ppm) are: (41, 64, 215); and 
(64, 77, 222) for all other residue types. For the transfor-
mation of the matrix into the principal axis of the tensor, 
D(ΩMP), the �33 axis of the CSA tensor was assumed to be 
first rotated by 18.5˚ off the NH bond within the peptide 
plane and then tilted by 25˚ off the plane normal about the 
�22 axis. These values have been established experimen-
tally in both solid-state and solution NMR (Lee et al. 1998; 
Cornilescu and Bax 2000). Possible variability in the tensor 
orientation along the protein is considered in the results and 
discussion sections. The DC interaction tensors differ only 
by their coupling constants, � , each having the same form 
for the inner matrix M:

where the coupling constant χ between any two spins 1 and 
2 is given by:

Here �1, �2 are the gyromagnetic ratios of the two interact-
ing spins, and r12 is the distance between the spins. For 
1H–15N the coupling constant is 9965.4 Hz, and for C�H� 
it is 23,334.7 Hz.

In order to make the matrix–matrix multiplications more 
efficient, the quantities of Eqs. (2–5) can be transformed 
from the Y into the Q-basis, which diagonalizes the variable 
part for the rotations involving �,� , and � . The Q-transfor-
mations can be carried out as follows:

yielding the following relations between the “Y” and “Q” 
bases:

Here the matrices Lx, Ly are given by the rank-1 angular 
momentum operators:

Since the operations for calculating NMR observables are 
performed most frequently during the execution of the pro-
gram, transforming the Y-basis into the diagonal Q-basis 

(8)M = �

⎛
⎜⎜⎝

0.25 0 −0.75

0 −0.5 0

−0.75 0 0.25

⎞
⎟⎟⎠

(9)� =
�0�1�2h

16�3r3
12

(Hz)

(10)TQ = e−i(3�∕2−�NC�C�−�HNC� )Ly ⋅ ei�∕2Lx

(11)MQ = TQ ⋅M ⋅ T+
Q

(12)Q⃗ = Y⃗ ⋅ e−i(3𝜋∕2−𝛼HNC𝛼 )Ly ⋅ e−i𝜋∕2Lx

(13)Lx =
1√
2

⎛⎜⎜⎝

0 1 0

1 0 1

0 1 0

⎞⎟⎟⎠
, Ly =

i√
2

⎛⎜⎜⎝

0 −1 0

1 0 −1

0 1 0

⎞⎟⎟⎠

results in a 2-fold improvement in runtime. The Q-basis can 
be transformed back into the Y-basis using the inverse matri-
ces corresponding to the operations given by Eqs. (10–12).

Methods

Structure fitting algorithm flowchart

All computer codes and scripts can be provided upon request 
to the authors. The algorithm for structure calculations has 
been implemented in the C programming language, which 
significantly speeds up the calculations versus the previous 
code (Yin and Nevzorov 2011) that was written in Matlab 
(Mathworks®). It should be noted that implementing the new 
algorithm in an interpreted computer language becomes pro-
hibitively slow due to the sampling demands of the simplex 
solver while simultaneously fitting two or more peptide 
planes. The algorithm flowchart is displayed in Fig. 2, hav-
ing the following basic steps:

	 (1)	 The input spectrum consists of a list of NMR reso-
nance targets. A spectrum can either be simulated 
(option 1A) or read in (option 1B) from a file that 
includes the starting orientation, �1, �1 , and the �∕� 
torsion angles for every residue.

	 (2)	 The master loop administers the calculation of kbmax 
structures, which continues until the last structure is 
reached, i.e. kb = kbmax.

	 (3)	 For each calculation, “experimental uncertainty” or 
“noise” can be included in the resonance targets by 
adding a random number, chosen from a uniform dis-
tribution between –noisemax and +noisemax, to each 
dimension in the spectrum. This effectively puts the 
resonance to be fitted inside a cube (for three spectral 
dimensions) with side lengths equal to 2*noisemax. 
Simulated noise should be utilized on any spec-
trum, synthetic or real, in which there is uncertainty 
assumed in the peak center positions. All tolerances 
must be reset since they may have been altered in the 
previous run (see 8N,Y). Due to the random noise 
added at the beginning, all alterations to tolerances 
only apply to that run.

	 (4)	 Enter loop for calculating structure. Start at first resi-
due, N = 0.

	 (5)	 Is the current residue the first peptide plane, i.e. N = 0?
	 (6)	 If at the first residue (6Y), search for the starting ori-

entation (angles �, � ) of the magnetic field relative to 
the first peptide plane. Then convert the Y-basis to the 
Q-basis. Proceed to the torsion angle search (6N). If 
not at the beginning of the sequence then bypass 6Y 
and proceed directly to 6N. Set the tolerance for the 
current residue. Search for plausible  �∕� combina-
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tions using a simplex search function in a loop that 
runs simits iterations. The number of torsion angles to 
be searched at once will be the 2*stride; stride is the 
number of planes searched at once. Score the calcu-
lated resonances to the target spectrum (z0). To speed 

up the program, break the simplex loop if z0 is less 
than tol2 (optional).

	 (7)	 Is the score to the spectrum, z0, below the tolerance 
for residue N?

2a.   Enter master loop; kb = 0
2b.   While kb < kbmax

1A. Generate angular restraints

3a. Randomize original 
resonances

4. While N < Ntot

5. Is residue = 0

1. Choose type of trial:
A. Synthetic spectrum

a. Randomize / torsions, starting orientation /

b. Read in / torsions, starting orientation /
B. Real/Prepared spectrum

a. Read in spectral resonances

6Na. tol = Tolerance(N)
6Nb.   Search for / , of residue , simits times (at most)

Score z0 = ( − )
2

If z0 < tol2, break the loop

6Y.   Search for starting orientation, β/α, n times
Translate into Q-basis

7.   Is z0 < tol?
8Na.   Increment step-back counter for residue N
8Nb.   Has residue N prompted a step-back 3 
times?

8N,Na.   Step back: N = N - stepbk residues
8N,Nb.   Revert Q to new N

8N,Ya.   Release residue N’s 
tolerance
8N,Yb.   Reset step-back counter
8N,Yc.   Restart: set N=0

8Ya.   Store / solutions
8Yb.   Propagate +1 = ( , ) stride times
8Yc.   Store Q-vectors
8Yd.   Increment residue N stride times
8Ye.   Has the last residue been reached?

9a.   Increment kb
9b.   Is kb = kbmax?

10. End 

Option A

Option B

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Fig. 2   Flowchart for the structure calculation algorithm. Variables in the program are represented with blue text
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	 (8)	 If z0 < tol (8Y) then store the torsion angles, propagate 
the orientation vector Q from residue N to residue 
N + stride, and increment N. Store the Q-vectors. If 
no z0 was found below the tolerance (8N) increment 
the step-back counter for residue N. If residue N fails 
to pass its tolerance 3 times (8N,Y), release its toler-
ance, reset the step-back counter, and step-back to the 
first residue. Otherwise (8N,N) step-back to residue 
N-stepbk and revert QN to QN-stepbk. If residue N is the 
last in the sequence, proceed to 9; otherwise, go back 
to 4.

	 (9)	 Structure calculation for structure kb is complete. 
Store the starting orientation and torsions. Increment 
kb. If kb = kbmax, exit the main loop and proceed to 10. 
Otherwise go back to 2.

	(10)	 Finish the program. Print any pertinent information to 
the output files (torsion angles, atomic coordinates in 
the PDB format).

The quality of the output structures will depend on the 
size of the protein, the number of planes being evaluated 
per iteration, and the noise level being added to the spectral 
targets. The number of planes that are fit simultaneously is 
set by the variable stride. Since the simplex function is the 
bottleneck for program runtime, simits should not exceed 
an amount necessary to reliably find the lowest �∕� solu-
tions for the majority of the runtime. With a larger value for 
stride, more simplex iterations will be necessary to ensure 
the lowest solution is found for every residue. The number 
of residues in the step-back move is set by stepbk, which 
was always set to 5 for these calculations. The experimental 
uncertainty level is set by noisiness and corresponds to the 
maximum deviation (in Hz) from the “true” spectral target 
in each dimension. The higher stride and noisiness are, the 
higher the tolerance criteria, tol, should be set. The program 
can be sped up by setting tol2 at a value that below which 
there can be confidence that the simplex has already found 
the lowest function value for the current residue. Determin-
ing appropriate values for tol and tol2 requires trial and error 
with the program. The general procedure used to find the 
right values involves setting tol high and tol2 low, and gradu-
ally increasing and decreasing the two values, respectively, 
up to the point that they start compromising the quality of 
the structural solutions. Finally the number of structural 
solutions can be set by kb_max.

For the calculation of synthetic spectra, input csv files were 
prepared with all relevant information. A script was written 
in python, torsions.py, to read in the coordinates of a PDB 
file and calculate the �∕� angles for every residue. The �∕� 
torsions were written to a csv file whose top line was a single 
integer for the number of residues in the protein, the second 
line contained the one-letter amino acid codes for every resi-
due, and the third and fourth lines contained the list of � and � 

torsion angles, respectively. With the backbone torsion angles 
and a specified pair of angles (�, �) for the starting orientation, 
the spectrum was calculated using Eqs. 1–6 assuming ideal 
peptide plane geometry. Angles (�, � ) were selected for mem-
brane protein 4a2n so that the helices spanning the membrane 
would be on average oriented along the z-axis, which repre-
sents the most biologically realistic orientation for transmem-
brane helices. There were multiple outputs for the program. 
The specific angles and parameters used in the calculations 
of the peptide plane, from Eq. 4–9, were written to a csv file 
named angles.csv, from which the calculations could be repro-
duced in post-fitting evaluation of the results. The results of 
the structure calculations were written to a file named output.
csv. The structure of the csv file started with a comment line 
at the top, which included specific details for the simulation. 
The second line contained 2 integers, the first of which was 
the number of residues in the protein being measured, and the 
second was the total number of structural solutions calculated 
during the program run (kb_max). The third line was the one-
letter amino acid sequence. All remaining lines are successive 
structural solutions that include 3 lines per solution: the first 
line is the (�, �) starting orientation solution obtained for that 
particular structure, and the second and third lines are the lists 
of � and � torsions, respectively. For example, if a program 
run collected 1000 solutions then the output file would contain 
3003 lines total. Finally the program writes another output in 
the same structure as output.csv containing only the orientation 
and �∕� torsions of the real system from which the spectrum 
was generated, named real.csv.

Program runtime largely depended on the value for simits 
used in the simulation. With the simplex function being the 
execution bottleneck in the program, running with stride = 1 
was roughly an order of magnitude faster than stride = 2. For 
single-plane fitting the runtime per structural solution on a 
desktop computer equipped with i7 2 GHz Intel™ processor 
ranged between 5 and 30 s, largely depending on how many 
step-back moves were made for a particular solution. For fit-
ting two planes at once the runtime was 60–220 s per solution.

Calculations of spectral and structural RMSDs

The figure of merit for spectral fitting is the magnitude of devi-
ations from the target resonances, which can be calculated for 
a set of kbmax solutions as:

The results of Eq. 14, Δv2
k
 , for each NMR dimension are 

then used to calculate the spectral RMSD of the fit to the 
spectrum (in Hz) as:

(14)Δv2
k
=

∑kbmax
j

∑N

i

(�Ci,k−Ti,k�)2
N

kbmax
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Here Ci,k and Ti,k are the calculated and target values for 
M-dimensional resonance, i in an N-residue protein in the 
k’th spectroscopic dimension. The average is taken over all 
calculated structures. In Eq. 15 the magnitude is taken over 
the M dimensions of the NMR spectrum being fit. In this 
work kbmax was always 1000 and M is 3 (corresponding to 
15N CSA, and 1H–15N and 1Hα–13Cα dipolar couplings).

Structural RMSD calculations have been carried out 
using the python script plotstruct.py. This script reads in the 
orientation of the first peptide plane and the torsion angles, 
and calculates the N-residue structure into an (3N) × 3 array 
of points for atoms along the backbone. The script then reads 
in the torsions from real.csv, generates the “true” (PDB) 
backbone structure coordinates in the same size array and 
calculates the structural RMSD using the Kabsch algorithm 
(Kabsch 1976). Structural RMSD calculations are composed 
of a rigid translation to bring each structure’s center of mass 
into coincidence, and a rigid rotation to minimize the dis-
tance of all corresponding points in two structures.

Rosetta post‑fit filtering of structures

PyRosetta was used in order to utilize the Rosetta scor-
ing functions. Inside the python scripts score_output.py, 
membrane_score_output.py the protein was assembled in 
a Rosetta pose object, using the output �∕� torsions from 
the program. The pose object was then scored in both full 
atom and centroid (coarse grained side chain representa-
tion) forms. The full atom function used for both soluble and 
membrane proteins was talaris2013 (Kuhlman and Baker 
2000; Kuhlman et al. 2003; Rohl et al. 2004; Leaver-Fay 
et al. 2013; O’Meara et al. 2015). The centroid function used 
for soluble proteins was score3 (Rohl et al. 2004), and for 
membrane proteins it was mpframework_cen_2006 (Alford 
et al. 2015). In order to further customize score functions, 
the values for the individual terms of each score function 
were written to file for all outputs from the original program. 
The python script rosetta_scores.py read in the unweighted 
individual terms and scores and recombined them with cus-
tom weights, effectively creating new custom scoring func-
tions. The program also was used to scan different combina-
tions of score terms in order to develop the most effective 
scoring function.

PyRosetta was used to distinguish the low-RMSD struc-
tures from the high ones. This involved multiple custom 
scoring functions that filtered results in two steps. The first 
filtering tier was a coarse search from which the top 20 solu-
tions were extracted. The second tier applied a slightly dif-
ferent scoring function to sort out and rank those top 20 

(15)ΔX =

√√√√ M∑
k

Δv2
k
(Hz)

solutions, after which the top 10 solutions were reported 
as the final answer. The scoring functions were customized 
by finding the scoring terms, both full atom and centroid, 
that best correlated with structural RMSD in the two pro-
teins being tested. Combinations of the scoring terms were 
scanned for those that produced the lowest median struc-
tural RMSDs in their top solutions. Ultimately the consen-
sus scoring functions, i.e. the terms and their weights, were 
determined based on those that produced reasonable final 
structural RMSDs at all noise levels.

Table 1 lists the terms of the 2 scoring functions for 
soluble proteins, denoted with the letter ‘s’. Each scoring 
function is constructed by summing up the individual terms 
with the relative weights as given. These scoring terms 
are specific to soluble proteins (Leaver-Fay et al. 2013; 
O’Meara et al. 2015) and thus cannot be used for proteins in 
a membrane environment (although most terms have ana-
logs for membrane proteins and vice versa). Analysis on 
2gb1 solutions from the program found that term rg had 
the best structural RMSD correlation amongst all the struc-
tural solutions. This represents a statistical term favoring 
compact structures, i.e. having minimal radius of gyration. 
Terms env and cbeta also favor compact structures, and had 
the next best correlations. Term env is a solvation term for 
every residue based on their hydrophobicity, and cbeta is a 
solvation term correcting for excluded volume. Score func-
tion “1 s” contains all centroid terms, whereas score func-
tion “2 s” only contains full-atom terms. Term fa_rep is the 
Lennard-Jones repulsion energy between pairs of atoms, and 
fa_solv is the Lazaridis-Karplus solvation energy. The two 
scoring functions used for membrane proteins are denoted 
with the letter ‘m’ in Table 1. Term mp_env is a statistical 
term describing the likelihood of a specific residue being at 
the calculated depth in the modeled membrane; rama refers 
to the backbone torsion-angle preferences by residue type 
on the Ramachandran map. Once again, the second scoring 

Table 1   Custom Rosetta score functions for soluble (s) and mem-
brane (m) proteins

Score function Term Weight

1 s rg 1.0
1 s env 1.0
1 s cbeta 1.0
2 s fa_atr 0.2
2 s fa_sol 1.0
1 m mp_env 1.0
1 m Rama 0.5
2 m fa_atr 0.2
2 m hbond_sr_bb 1.0
2 m p_aa_pp 1.0
2 m fa_mpsolv 1.0
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function consists of terms that score full-atom structures and 
contain a mix of physical and statistical criteria. Term fa_atr 
refers to the Lennard-Jones attractive energy; hbond_sr_bb 
scores the hydrogen bonding between backbone atoms; p_
aa_pp, similar to rama, is the probability for a given amino 
acid to have a given �∕� torsion pair; fa_mpsolv scores pairs 
of residues based on their depth in lipid bilayer. Scoring 
terms mp_env and fa_mpsolv are specific to membrane envi-
ronments and available from Rosetta’s membrane modeling 
package RosettaMP (Leman et al. 2014; Alford et al. 2015).

Results

Fitting of synthetic data for GB1 protein

All 55 residues of the soluble GB1 protein (PDB ID 2gb1; 
Gronenborn et al. 1991) were used for generating the spec-
trum consisting of 15N CSA, and 1H–15N and 1Hα–13Cα dipo-
lar couplings. The first peptide plane orientation was arbi-
trarily set to (�, �) = (0.5, 1.0) . There were 1000 structural 
solutions collected at experimental uncertainty (“noise”) 
levels of 10, 30, and 50 Hz and stride number (either 1 or 2 
planes). For the three noise levels tol was 50, 70, and 90 Hz 
respectively, and tol2 was always 20 Hz. When stride = 1 
(single-plane fitting), simits was set to 100, and increased 
to 1000 when stride = 2 (two-plane fitting). The structural 
RMSDs of 1000 back-calculated structures were binned as 
histograms shown in Fig. 3. The structural RMSDs were 
calculated relative to a “true” structure having the torsions 
angles calculated from the PDB coordinates. For each exper-
imental uncertainty the 1000 structural solutions were put 
through the Rosetta post-fitting protocol as described in the 
Methods section. Using the 1000 sets of �∕� torsions, the 

proteins were reconstructed in PyRosetta and then scored. 
Figure 4 shows the resulting scores from the 2 custom 
Rosetta scoring functions, 1 s and 2 s, with the 20 lowest 
scoring structures in blue. The top 10 solutions for each 
noise level are depicted in Fig. 5.   

Fitting of synthetic data for a transmembrane 
helical hairpin (pdb id 4a2n)

The first two transmembrane helices of integral membrane 
methyltransferase protein (PDB id 4a2n) (Yang et al. 2011) 
were used to calculate the spectrum, totaling 64 residues. 
The starting orientation, (�, �) = (0.0, 3.14) , was chosen to 
orient the helices to be approximately parallel with the mem-
brane normal. All the same noise levels, values of stride, 
and simits as for 2gb1 were used for 4a2n. For the three 
noise levels tol was 30 Hz, 50 Hz, 70 Hz, and tol2 was 5 Hz, 
20 Hz, and 20 Hz, respectively. The back-calculated struc-
tures have been analyzed and filtered similarly to the GB1 
protein, albeit using the scoring functions for membrane 
proteins. The results are shown in Figs. 7 and 8.

Variations in the tensor orientation

A separate trial was performed to quantify the effects 
for the potentially variable orientation of the �33 axis of 
the CSA tensor relative to the NH bond. For this trial, 
the three-dimensional 2gb1 spectrum was generated by 
randomly varying the �33 angle off of the NH bond within 
a uniform distribution from 18˚ to 19˚ for every residue; 
in the previous trials, this angle was set to 18.5˚ for all 
residues. The calculated resonances deviated from those 
calculated by assuming a constant �33 angle by a maxi-
mum of 79.7 Hz with a mean of 25.3 Hz per resonance. 

Fig. 3   Structural RMSD histograms (relative to the original PDB 
structure coordinates measured in Å) for 1000 structures of protein 
2gb1 back-calculated from 3 synthetic NMR angular restraints per 
plane (15N CSA, 1H–15N, 1Hα–13Cα DC’s) with experimental uncer-
tainty of: a 10, b 30, and c 50 Hz. The results of runs involving fitting 

one plane at a time (stride = 1) are shown in red while the histograms 
obtained from fitting two planes at a time (stride = 2) are shown in 
blue. Each histogram contains 1000 runs total for each value of 
stride. Histograms are binned in 0.5 Å steps
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Fig. 4   Scatter plots for structural RMSDs versus Rosetta scores for 
2gb1. Plots a/b, c/d and e/f, correspond to noise levels of 10, 30, and 
50 Hz, respectively. The y-axes represent the Rosetta function scores, 
in REU (Rosetta energy units). Top plots result from Score Function 
1 s applied to all 1000 structural solutions from the program output. 

Scatter points in blue are the lowest 20 scoring structures for the 
Score Function 1 s, which are not necessarily the 20 lowest structural 
RMSD values. Bottom plots result from Score Function 2 s applied to 
the 20 lowest scoring structural solutions from the previous scoring 
function. Scatter points in blue are the 10 lowest scoring structures

Fig. 5   Overlays of top 10 solu-
tions for soluble protein 2gb1 
for noise levels a 10, b 30, and 
c 50 Hz. The 10 solutions for 
each noise level correspond to 
the structural RMSD values 
listed in Table 3

Fig. 6   Structural RMSD histograms (relative to the original struc-
ture) for 1000 structures of protein 4a2n back-calculated from 3 syn-
thetic NMR angular restraints per plane (15N CSA, 1H–15N, 1Hα–13Cα 
DC’s) with experimental uncertainty of: a 10, b 30, and c 50 Hz. The 
results of runs involving fitting one plane at a time (stride = 1) are 

shown in red while the histograms obtained from fitting two planes 
at a time (stride = 2) are shown in blue. Each histogram contains 1000 
runs total for each value of stride. Histograms are binned in 0.5  Å 
steps
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Fig. 7   Scatter plots for structural RMSDs versus Rosetta scores for 
4a2n. Plots a/b, c/d. and e/f, correspond to noise levels of 10, 30, and 
50 Hz, respectively. The y-axes represent the Rosetta function scores, 
in REU (Rosetta energy units). Top plots result from Score Function 
1  m applied to all 1000 structural solutions from the program out-
put. Scatter points in blue are the lowest 20 scoring structures for the 

Score Function 1  m, which are not necessarily the 20 lowest struc-
tural RMSD values. Bottom plots result from Score Function 2  m 
applied to the 20 lowest scoring structural solutions from the previ-
ous scoring function. Scatter points in blue are the 10 lowest scoring 
structures

Fig. 8   Overlays of 10 top-scoring structures for membrane protein 4a2n for a 10, b 30, and c 50 Hz of experimental uncertainty, stride = 2. The 
10 solutions in each picture correspond to the structural RMSD values in Table 3
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This mean deviation most closely resembles the trials 
of Fig. 3c run with 50 Hz of experimental uncertainty,. 
The structures were then back-calculated by assuming a 
constant average value for the �33 angle of 18.5°. Fig-
ure 9 shows the histogram of the structural RMSD values 
alongside the results for 2gb1 with 50 Hz of experimen-
tal uncertainty for direct comparison (cf. Figure 3c). As 
can be seen from Fig. 9, the distributions of the struc-
tural solutions are similar. Moreover, structural RMSDs 
well below 2 Å are still obtainable even if the spectra 

generated with a variable �33 angle are fitted assuming 
a constant (average) CSA tensor orientation. Thus, the 
uncertainty in the tensor orientation can be adequately 
represented by using a uniform experimental uncertainty 
for the spectral positions.

Discussion

The highly correlated nature of angular restraints results 
in extreme ruggedness in the spectral RMSD landscape, 
which may render a global minimization search problematic. 
While the popular software package Xplor-NIH (Schwiet-
ers et al. 2003) predicts structure via molecular dynamics 
augmented with experimental restraint potentials, such as 
distance restraints and implicit solvation potentials (Tian 
et al. 2014; Tian et al. 2017), our algorithm outlined in 
Fig. 2 attempts a de novo structure prediction from the NMR 
angular restraints alone. Such a heavy reliance on the angu-
lar restraints necessitates at least three (3) NMR restraints 
per peptide plane in order to obtain a convergent set of 

Fig. 9   Structural RMSD histo-
gram for the synthetic spectra 
of 2gb1 generated by using 
a random uniform distribu-
tion of the �33 angle within 1°, 
centered at 18.5°. One thousand 
structures are back calculated 
on this spectrum using a fixed 
angle of 18.5° (red). The histo-
gram includes 1000 structures 
obtained from a spectrum 
generated by adding random 
uniform noise of ± 50 Hz (from 
Fig. 3c) and is shown in blue for 
direct comparison

Table 2   Spectral RMSDs of fits using one versus two-plane method

All values are in Hz

Protein 2GB1 4A2N

Experimental 
uncertainty (Hz)

1 Plane 2 Planes 1 Plane 2 Planes

10 86 37 165 38
30 543 125 246 119
50 628 212 366 277

Table 3   Structural RMSD of 
top 10 solutions for 2gb1 and 
4a2n

Uncertainty 
Level

2gb1 4a2n

10 Hz 30 Hz 50 Hz 10 Hz 30 Hz 50 Hz

1 1.32 1.97 1.39 0.26 0.86 5.48
2 0.32 1.95 1.15 0.26 0.35 1.43
3 0.39 1.16 1.33 0.29 0.98 1.86
4 0.41 0.87 1.92 0.27 0.30 0.76
5 0.39 1.15 2.60 0.26 0.59 1.95
6 0.87 1.13 1.50 0.24 0.80 4.43
7 0.87 0.69 1.32 0.37 1.08 1.96
8 0.95 0.57 1.50 0.27 0.77 1.87
9 1.05 0.67 2.66 0.18 1.17 3.24
10 0.53 1.02 2.48 0.15 0.63 3.09
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structures. Peptide planes with less than 3 restraints greatly 
increase the degeneracy of structural solutions, making the 
correct structure less likely to be found. Due to the above 
reasons, a sequential walk along the backbone appears at 
present to be a more practical method for solving a structure 
entirely from NMR angular restraints. Using the simplex 
solver results in the correct torsion angles for the majority 
of residues, even when 50 Hz of experimental uncertainty 
is present throughout the spectrum. Yet miscalculating only 
a few pairs of the torsion angles, especially those in turn 
regions between the secondary structure elements, may 
result in the calculated structures being very different from 
the real structure. Even though some segments of the cal-
culated structure may closely match parts of the real struc-
ture, the overall tertiary fold can still have a high structural 
RMSD value. Despite this potential pitfall our algorithm is 
capable of sampling a vast conformational space thereby 
retaining the relevant torsion angles along the backbone. In 
some cases, occasionally missed torsional pairs along the 
backbone can be mitigated by selecting compensatory �∕� 
torsions in the subsequent residues that would largely return 
the subsequent plane(s) to the correct orientation.

A notable modification of the algorithm as compared to 
the previous work (Yin and Nevzorov 2011) involves the 
capability of fitting NMR resonances simultaneously for 
two peptide planes (4 torsion angles) instead of fitting a sin-
gle plane at a time. As previously mentioned, a potential 
pitfall for any sequential structure fitting algorithm is that 
only a few incorrectly determined torsion angles may com-
promise the overall fold and yield high structural RMSDs 
to the actual structure. This can occur even if the fit to the 
spectrum is acceptable. A plausible reason for the discord 
between the spectral RMSD versus structural RMSD is that 
incorrect torsions can provide better fits to the spectrum for 
certain residues (especially if experimental uncertainty is 
large), thus being more likely selected by the minimization 
algorithm. Adding more residues to be fit simultaneously 
helps in rejecting the (incorrect) solutions that may fit the 
i’th residue very closely while being inconsistent with the 
NMR data for the residues downstream (i.e. i + 1 and i + 2) 
due to the incompatible orientations of their peptide planes. 
It was determined that increasing the number of simultane-
ously fitted planes in the simplex solver to just two largely 
avoids over-fitting certain NMR resonances while being 
computationally feasible. The solver could always find doz-
ens of structural solutions within 2 Å structural RMSD rela-
tive to the starting structure (among 1000 iterations). Adding 
a third plane to the solver required an order of magnitude 
more simplex iterations to reliably find the correct solution, 
which considerably slowed down the execution time while 
not appreciably affecting the efficacy of the search.

A direct comparison between the above two methods of 
fitting is presented in Table 2 and Figs. 3 and 6. With the 

(minor) exception of 4a2n at 50 Hz experimental error, the 
spectral RMSDs (in Hz) for the one-plane method are more 
than double that for the 2 planes. Since these values are aver-
ages of 1000 structures in each case, it can be concluded that 
multiple planes consistently improve the fit to the spectrum. 
More importantly, this should lead to solutions with lower 
structural RMSDs to the PDB structures. Although there is 
no guarantee that a single structural solution that better fits 
the spectrum will have a lower structural RMSD to the PDB 
coordinates, on average the distribution of structural RMSDs 
shifts towards lower values as compared to under-fitted spec-
tra. This can be seen in the histograms of Figs. 3 and 6 from 
the intensity levels on the left hand side (< 2 Å RMSD). 
Owing to their low structural RMSDs, the fraction of these 
solutions relative to the total number of possible structural 
solutions determines the success rate for the algorithm. At 
every noise level there is consistently a higher proportion of 
sub-2 Å solutions for the two-plane fitting than for the single 
plane fitting among the 1000 calculated structures. While 
the improvement is marginal at 10 Hz uncertainty level for 
2gb1 (cf. Figure 3a), fitting two planes at a time has proven 
to have a more pronounced effect when the experimental 
uncertainty is increased (Figs. 3b, c), where the ratio of low-
RMSD solutions for two- versus single-plane fitting exceeds 
5:1. The same trend persists for 4a2n (Fig. 5): at 50 Hz of 
experimental uncertainty there are roughly twice as many 
“correct” solutions for 4a2n when two peptide planes are fit 
instead of one. These results suggest that fitting two planes 
simultaneously in the simplex solver is highly beneficial for 
retaining good structural solutions without considerably 
increasing the program runtime.

Nevertheless, the histograms in Figs. 3 and 6 show that 
even at the lowest noise levels, the majority of the solutions 
are still expected to have greater than 2 Å structural RMSD, 
thus being unacceptable. At the highest noise levels, less 
than 1% of the solutions contain acceptable structures. Since 
all these solutions fit the CSA and dipolar couplings almost 
equally well, it is clear that fitting the angular restraints 
cannot by itself ensure correctness of the calculated struc-
ture, except, perhaps single helices with highly constrained 
torsion angles (Thiriot et  al. 2004). The obtained 1000 
structural solutions would still likely contain a number of 
acceptable structures, at which point the problem becomes 
to distinguish the realistic structural solutions from the 
implausible ones. Through various Rosetta scoring terms, 
which are compiled from a plethora of statistics derived 
from real structures, one can identify the most likely global 
folds amongst the structures calculated from the spectral fit.

The scatter plots of Fig. 4 demonstrate that the custom 
Rosetta scoring functions for 2gb1 are capable of filtering 
out the most implausible solutions. Although some low 
RMSD structures may have a higher/worse Rosetta score, 
it is important to note that the inverse generally does not 
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happen, i.e. high-RMSD structures do not yield lowest/best 
Rosetta scores. For Score Function 1 s the overall correla-
tions between structural RMSD and score are strong, but 
these correlations alone do not constitute a sole reliable met-
ric for obtaining the final results. The primary goal for the 
first scoring function is to separate out the most unrealistic 
solutions, while retaining low to moderate RMSD structures. 
Therefore, the first selection of solutions (20 for these cal-
culations) may need to be subjected to the second scoring 
function. The distribution of structural RMSDs in the top 20 
solutions can be seen in Figs. 4b, d, f. For each noise level 
the Score Function 1 s solutions contained structures over 
2 Å. Score Function 2 s appears to have a stronger correla-
tion between the structural RMSD (in Å) and Rosetta score, 
and filters out the remaining unrealistic structures among 
these 20 solutions from the realistic, low RMSD ones. The 
results for 2gb1 in Table 3 shows that applying different cus-
tom Rosetta scoring functions in series can be very effective 
at all noise levels, with the majority of structures selected 
in the final list having very low structural RMSD values. As 
the experimental uncertainty increases, a number of higher-
RMSD structures may still end up among the final 10 solu-
tions. Neither 10 nor 30 Hz experimental uncertainty con-
tains any structures having RMSDs greater than 2 Å, but for 
50 Hz there are three such structures (in between 2 and 3 Å).

The results for 4a2n are very similar to that of 2gb1: 
the post-fitting Rosetta protocol yielded 10 solutions with 
largely acceptable structural RMSDs at all experimen-
tal uncertainty levels. One noticeable difference is that 
the final top scoring solution for 50 Hz has a significantly 
higher RMSD of 5.48 Å (cf. Table 3); additionally there 
were three other structures present having RMSD > 2 Å. 
Closer observation of Fig. 7f shows that a number of lower 
RMSD structures, between 2 and 3.5 Å, were spurned in 
favor of a few high RMSD structures with low score function 
2 scores. Overall, most of the structures from 50 Hz were 
acceptable, yielding a consensus structure. Another feature 
of the 4a2n trials that distinguishes it from that of 2gb1 is 
that the RMSDs of the structural solutions are distributed 
less continuously. Figures 6a, c, e show that Rosetta seg-
regates the structural solutions essentially into two groups 
with higher and lower RMSD values. A possible reason for 
this segregation is that 4a2n could be considered structur-
ally simpler than 2gb1. In general, 4a2n has 2 secondary 
structural elements ( �-helices) separated by a single turn, 
whereas 2gb1 has 1 helix and 2 �-sheets that are separated 
by 3 turn regions overall. It is likely that the turn regions 
pose consequential obstacles for the algorithm, in that they 
determine the relative orientations of the larger secondary 
structure elements. Nevertheless, the post-fitting Rosetta 
screening protocol still correctly identified the low-RMSD 
structures amongst the 1000 total solutions.

In general, the utilization of the mp_env and rama terms 
are especially useful for screening the calculated structures 
of membrane proteins. Frequently, in solving for 4a2n struc-
ture, the algorithm would fail to orient the second helix back 
into the membrane, yielding one long, straight helix. The 
term mp_env describes the burial depth into the membrane 
and thus heavily penalizes such a structure where a hydro-
phobic α-helix is exposed to a soluble environment. The 
rama term (and similar term p_aa_pp) is also indispensible 
in filtering out physically impossible structures and pro-
viding a simultaneous validation for the calculated torsion 
angles to comply with the Ramachandran map. Finally, in 
this study it was shown that two scoring functions were suffi-
cient to achieve the end goal of separating low RMSD struc-
tures from the high ones. It is possible that additional scor-
ing functions in the protocol may be necessary to achieve 
better scoring of the structural solutions calculated from 
NMR angular restraints.

Conclusions

A critical analysis for the feasibility of de-novo structure cal-
culations using NMR angular restraints in uniaxially aligned 
samples has been presented. The sequential-fitting structure 
calculation algorithm has been substantially improved to bet-
ter handle experimental uncertainty. By doubling the number 
of �∕� torsion angles to be fitted at once, the output struc-
tural solutions have been more effectively funneled toward 
lower RMSD structures. The post-fitting filtering was made 
possible by using several custom Rosetta scoring functions 
including statistical and physical terms that correlate well 
with low structural RMSDs relative to the original protein 
structures. To test the robustness of the structure determi-
nation protocol, synthetic NMR datasets derived from two 
proteins of different topology were employed. A set of 1000 
calculated solutions has been reduced down to 10 acceptable 
solutions, of which the majority of structural RMSD scores 
were less than 2 Å. Thus, without knowing the true structure 
a priori, it is possible to first calculate a large set of the struc-
tural solutions consistent with the NMR angular restraints 
and then filter them using the Rosetta scoring functions to 
obtain the most plausible structure(s).

Experimental error randomly added to the synthetic spec-
tral resonances can adequately account for the deviations 
from constant CSA tensor orientation. Presumably, adding 
such random error can also encompass non-ideal peptide 
plane geometry, variability in the CSA tensor principal 
values, and insufficient spectral resolution. About 50 Hz 
of experimental error (or 1 ppm at 50 MHz 15N NMR fre-
quency) likely represents the maximum degree of uncer-
tainty that could be tolerated in three-dimensional experi-
ments to calculate structures reliably by using the method 
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of ssNMR angular restraints and Rosetta-based filtering. 
For both protein structures considered, the maximum 50 Hz 
uncertainty yielded less than 3% of the 1000 total solutions 
that had a structural RMSD < 2 Å. Greater experimental 
uncertainty in angular restraints and missing data would 
yield a highly diminishing proportion of acceptable solu-
tions, which may necessitate adding a fourth dimension to 
the NMR spectrum, such as 13C–15N dipolar couplings to 
increase the likelihood of obtaining correct protein folds. 
Finally, the presented framework for de-novo structure deter-
mination of protein structures from NMR angular restraints 
calls for the necessity of the development of pulse sequences 
correlating 15N spins with 1Hα–13Cα and 13C–15N dipolar 
couplings for macroscopically aligned membrane proteins.
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