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ABSTRACT

The two-level normal hierarchical model has played an important role in statistical theory and applications.
Inthis article, we first introduce a general adjusted maximum likelihood method for estimating the unknown
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variance component of the model and the associated empirical best linear unbiased predictor of the

random effects. We then discuss a new idea for selecting prior for the hyperparameters. The prior, called
a multi-goal prior, produces Bayesian solutions for hyperparmeters and random effects that match (in the
higher order asymptotic sense) the corresponding classical solution in linear mixed model with respect
to several properties. Moreover, we establish for the first time an analytical equivalence of the posterior
variances under the proposed multi-goal prior and the corresponding parametric bootstrap second-order
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mean squared error estimates in the context of a random effects model.

1. Introduction

Simultaneous estimation of several independent normal means
has been a topic of great research interest, especially in the 60s,
70s, and 80s, after the publication of the celebrated James-Stein
estimator (James and Stein 1961). Lety = (y1,...,¥m) be a
maximum likelihood estimator of 8 = (#,,...,0,,) under the

model: y;|6; ind. N@;,1), i = 1,...,m. James—Stein (1961)
provided a surprising result that for m > 3, y is an inadmissible
estimator of 8 under the model and the sum of squared error loss
function: L(é,ﬂ) = Z?;l(é; — 0,2 They also showed that the
estimator 6)° = (1 — B®)y;, where B = (m —2)/(X™, D).
dominates y in terms of the frequentist’s risk. To be specific,

E[Y."(8" —6)2161 < E[Y " (y; — 6,)%|6], for all 6 € R™, the
m-dimensional Euclidean space, with strict inequality holding
for at least one point 6.

The potential of different extensions of the James-Stein esti-
mator to improve data analysis became transparent when Efron

and Morris (1973) provided an empirical Bayesian justification

of the James-Stein estimator using the prior 6; fid N(0,A),

i = 1,...,m. Some earlier applications of empirical Bayesian
method include the estimation of (a) false alarm probabilities
in New York City (Carter and Rolph 1974), (b) batting averages
of major league baseball players (Efron and Morris 1975), (c)
prevalence of toxoplasmosis in El Salvador (Efron and Morris
1975), and (d) per-capita income of small places in the USA
(Fay and Herriott 1979). More recently, variants of the method
given in Efron and Morris (1973) was used to estimate poverty
rates for the US states, counties, and school districts (Citro
and Kalton 2000) and Chilean municipalities (Casas-Cordero,

Encina, and Lahiri 2016), and to estimate proportions at the
lowest level of literacy for states and counties (Mohadjer et al.
2012).

The following two-level Normal hierarchical model is an
extension of the model used by Efron and Morris (1973):
Fori=1,...,m,

Level 1. (sampling model): y;|6; ind N(0;,D,);

Level 2. (linking model): 6; ind N(x;B,A).

In the above model, level 1 is used to account for the sampling
distribution of unbiased estimates y; based on observations
taken from the ith population. In this model, we assume that
the sampling variances D; are known and this assumption often
follows from the asymptotic variances of transformed direct
estimates (Carter and Rolph 1974; Efron and Morris 1975)
or from empirical variance modeling (Fay and Herriot 1979;
Otto and Bell 1995). Level 2 links the random effects 8; to
a vector of p known auxiliary variables x; = (xj,.. .,x,vp)’,
which are often obtained from various alternative data sources.
The parameters 8 and A are generally unknown and are esti-
mated from the available data. We assume that 8 ¢ RP,
the p-dimensional Euclidian space. In the growing field of
small area estimation, this model is commonly referred to as
the Fay-Herriot model, named after the authors of the land-
mark paper with more than 1290 citations to date (according
to Google Scholar) by Fay and Herriot (1979). For a com-
prehensive review of small area estimation, the readers are
referred to Lahiri (2003), Jiang (2007), and Rao and Molina
(2015).

We may be interested in the high-dimensional parameters
(random effects) §; and/or the hyperparameters 8 and A. The
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estimation problem can be addressed using either Bayesian or
linear mixed model classical approach. When hyperparameters
are known, both the Bayesian and linear mixed model classical
approaches use conditional distribution of 6; given the data
for point estimation and measuring uncertainty of the point
estimator. To elaborate, the posterior mean of 6;, the Bayesian
point estimator, is identical to the best predictor of 6;. Moreover,
the posterior variance of 6; is identical to the mean squared error
of the best predictor. When A is known but g is unknown, a flat
prior is generally assumed for 8 under the Bayesian approach.
Interestingly, in this unknown B case, the posterior mean and
posterior variance of 8 are identical to the maximum likelihood
estimator of 8 and the variance of the maximum likelihood esti-
mator, respectively. Moreover, the posterior mean and variance
of 6; are identical to the best linear unbiased predictor of §; and
its mean squared error, respectively.

When both g and A are unknown, flat prior, that is,
n(B,A) «x 1, B € RP,A > 0, is common though a few
other priors for A have been considered (see, e.g., Datta, Rao,
and Smith 2005; Morris and Tang 2011). In a linear mixed model
classical approach, different estimators of A have been proposed
and the estimator of 8 is obtained by plugging in an estimator of
A in the maximum likelihood estimator of 8 when A is known.
In this general case, the relationship between the Bayesian and
linear mixed model classical approach is not clear. The main goal
of this article is to understand the nature of such relationship.
In particular, we answer the following question: For a given
classical method of estimation of A, is it possible to find a prior
on A that will make the Bayesian solution closer to the classical
solution in achieving desirable multiple goals? In this article, we
set the desirable multiple goals as (i)-(v), given below, in terms
of probability, up to the order of O,(m™").

(i) The posterior mean of the shrinkage parameter B; =
D;/(A + Dy) is identical to its desirable classical estimator.

(ii) The posterior variance of the shrinkage parameter is iden-
tical to the variance of its classical estimator.

(iii) The posterior mean of the random effect ; is identical to
the empirical best linear unbiased predictor given in Hirose
and Lahiri (2018).

(iv) The posterior variance of the random effect is identical to
the Taylor series second-order mean squared error estima-
tors given in Hirose and Lahiri (2018).

(v) The posterior variance of the random effect is identical to
the parametric bootstrap second-order mean squared error
estimators proposed by Hirose and Lahiri (2018).

These desirable multiple goals are described in details in Sec-
tion 3. A subset of these goals is given in Theorem 2.

Let us now explain these multiple goals (i)-(v). To this end,
we first note that Morris and Tang (2011) pointed out the
need for accurately estimating the shrinkage parameters B; =
D;/(A + D;) as they appear linearly in the Bayes estimators of
6;, which are the prime parameters of interest in many appli-
cations like the small area estimation. Moreover, the shrinkage
parameters are good indicators of the strength of the prior
on the random effects 6;. Despite the importance of shrink-
age parameters, relatively little research has been conducted
to understand the theoretical properties of existing estimators.

For the balanced case when D; = D, i = 1,...,m, Morris
(1983) proposed an exact unbiased estimator of B = D/(A +
D) and showed component-wise dominance of the resulting
empirical Bayes estimator of 6; under the joint distribution of
{3i6;), i = 1,...,m} when p < m — 3. For the general
unbalanced case, Hirose and Lahiri (2018) proposed an adjusted
maximum likelihood estimator of B; that satisfies the following
desirable properties: First, the method yields an estimator of
B; that is strictly less than 1, which prevents the overshrinking
problem in the related empirical best linear unbiased predictor
of 6;. Second, this adjusted maximum likelihood estimator of
B; has the smallest bias among all existing rival estimators in
the higher order asymptotic sense. Third, when this adjusted
maximum likelihood method is used, second-order unbiased
estimator of mean squared error of empirical best linear unbi-
ased predictor can be produced in a straightforward way without
additional bias corrections that are necessary for other existing
variance component estimation methods. For prior work on the
adjusted maximum likelihood method, the readers are referred
to Lahiri and Li (2009), Li and Lahiri (2010), Yoshimori and
Lahiri (2014a, 2014b), Hirose and Lahiri (2018), and Hirose
(2017, 2019).

As stated in Morris and Tang (2011), flat prior leads to admis-
sible minimax estimators of the random effects for a special
case of the model. In Section 3, we show that the bias of the
Bayes estimator of B;, under the flat prior and the two-level
model, is O(m~") except for the balanced case when it is of
lower order o(m~!). Thus, in general, the Bayes estimator of B;,
under the flat prior, has more bias than the adjusted maximum
likelihood estimator of Hirose and Lahiri (2018) in the higher
order asymptotic sense. In this section, we propose a prior for
the hyperparameters that leads to the Bayes estimator of B; with
bias of lower order o(m™!) and thus is on par with the adjusted
maximum likelihood of Hirose and Lahiri (2018). Interestingly,
this prior also makes the resulting Bayesian method much closer
to the Hirose-Lahiri’s empirical best linear unbiased prediction
method in multiple sense. In particular, the posterior variance
of the random effect 8;, under the proposed prior, is identical to
both the Taylor series and parametric bootstrap second-order
mean squared error estimators of Hirose and Lahiri (2018) in
the higher order asymptotic sense. To our knowledge, we estab-
lish for the first time the relationship between the Bayesian pos-
terior variance and parametric bootstrap mean squared error
estimator in this higher-order asymptotic sense.

The outline of the article is as follows. In Section 2, we
first introduce a classical method for the two level model by
proposing a general adjustment factor in estimating A. We show
how the method is related to the commonly used residual max-
imum likelihood method for a given choice of the adjustment
factor. We then construct a prior, called a multi-goal prior,
that provides a Bayesian solution close (with respect to several
properties in higher order asymptotic sense) to classical solution
to estimate the hyperparameters and random effects. Section 3
discusses prior choice for an important special case considered
by Hirose and Lahiri (2018). In addition to the multiple prop-
erties discussed in Section 2, this section develops a unique
multi-goal prior that establishes a relationship of the posterior
variances of the random effects with the Hirose-Lahiri Taylor
series and parametric bootstrap mean squared error estimators



that do not require the usual complex bias corrections. We
reiterate that this article demonstrates for the first time how to
bring the Bayesian and classical parametric bootstrap methods
closer in the context of random effects models. In Section 4, we
compare the proposed multi-goal prior with the superharmonic
prior using a real life data. In Section 5, we discuss issues in
extending our results to a general model. All the technical proofs
are deferred to the Appendix.

2. Prior Choice for Reconciliation of the Bayesian and
Classical Approach

In this section, we first introduce a general classical method
for estimation of hyperparameters and random effects in the
two-level Normal hierarchical model. Then we construct prior
for the hyperparameters so that the corresponding Bayesian
method is identical to the classical method in the higher order
asymptotic sense with respect to multiple properties.

We first introduce the empirical best linear unbiased pre-
dictor of §; when the variance component A is estimated by
a general adjusted maximum likelihood method. To this end,
we define mean squared error of a given predictor 6; of 6; as
M; (é,-) = E(é,- — 6;)%, where the expectation is with respect to
the joint distributionof y = (y1,....¥m) and 6 = (64,...,60n)
under the two-level normal model. The best linear unbiased
predictor éfBLUP of 8;, which minimizes M; (é,-) among all linear
unbiased predictors é,-, is given by é?LUP(A) = (1 —-B)yi +
B,-x;ﬁ(A), where B; = B;(A) = D;/(A + D;) is the shrinkage
factor and B(A) = (X'V~!1X)~1X'V~ly is the weighted least
square estimator of 8 when A is known. In this formula, X' =
(X1, ...,%m) denotes p x m matrix of known auxiliary variables
and V = diag(A + Dy,...,A + D,,) denotes a m x m diagonal
covariance matrix of y.

We consider the following general adjusted maximum likeli-
hood estimator 131,';.{; of A:

-

Ajg = argmax,. hig(A)Lre(A), (1)

where Lyp(A) = |X'V-I1X|~1/2|V|~1/2exp(—y'Py/2) is the
residual maximum likelihood of A with P = V~! —
V-IX(X'V-IX)~1X’V~! and the general adjustment factor
hic(A) satisfies condition R5 in Appendix A.

Plugging in A for A in the best linear unbiased predic-
tor, one obtains an empirical best linear unbiased predictor
@i.EB (A;;G) of 6;. Note that maximum likelihood, residual max-
imum likelihood and one of the adjusted maximum likelihood
estimator proposed in Liand Lahiri (2010) of A can be produced
when h;c(A) = C, C|X'V~'X|"/? and CA, respectively, where
C is a generic constant free from A. Hereafter, let Agy, define as
the residual maximum likelihood estimator of A, which can be
obtained as

ﬁRE = argmax,., Lre(A). (2)

Since the residual maximum likelihood estimator ARE is
one of the estimators achieving unbiasedness, up to the order
of O(m~!) (Das, Jiang, and Rao 2004; Yoshimori and Lahiri
2014a), it is of interest to establish a relationship between the
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general adjusted maximum likelihood estimator and the resid-
ual maximum likelihood estimator. We describe such relation-
ship in Theorem 1; see Appendix A.1 for a proof.

Theorem 1. Under regularity conditions R1-R5 given in
Appendix A,

_ dig@®
[V

- -

AiG — ARE +0,(m™1),
where ?E;E(A) = %% and ﬁ,-;G and Ay, are defined in (1)
and (2), respectively.

We now present Theorem 2 for constructing a prior, starting
from a given adjustment factor h;g(A), to bring the resulting
Bayesian method closer to the classical method with respect
to three criteria. To this end, let p(8, A) denote the prior for
(B,A). Following Datta, Rao, and Smith (2005), we assume
p(B,A) o« m(A) and introduce the following notations to be
used throughout the article:

.~  8B; ~  98%B; . dlogm(A)
bl = T ] b2 = _2 - 3 Pl = |- ]
9A |Apg A2 |Agg 0A A
- 132y tr[vV—2]
hy = —— . = 0,(m™ ),
2 m 9A2 |Ag 2m +0p( )
- 1 3%Igg 2tr[V 73] .
=———., =———t0,(m ),
m 9A3 lApg +op(m )

where Ipg, is the logarithm of residual likelihood.
Theorem 2. Under regularity conditions R1-R5, if p(8,A)
mig(A) with
7iG(A) o (A + Dtr(V =) hic(A), (3)

we have

(i) BF¥® = E[Bily] = Bi(Aic) + 0p(m™");

(i) VIBily] = var(Bi(Aic)) + 0p(m™);

(iii) 658 = E[0;ly] = 8i(Aic) + 0p(m™),
where GHB stands for general hierarchical Bayes estimator. We

call the estimator GHB because it matches general adjusted
maximum likelihood method.

The proof of Theorem 2 is deferred to Appendix A.2.

Remark 1. We have several remarks on the prior 7;c(A) given
by (3).

(a) Theorem 2 is valid for multiple choices of h;g.
(b) There exists at least one strictly positive estimate of A if
hig(A) > 0 and

hiG(A) = o(AM—P)/2), (4)

for large A under R6 and R7.

(c) Note that h;g(A) may not qualify as a bonafide prior since it
may result in an improper posterior (see, e.g., Yoshimori and
Lahiri 2014b). However, if we restrict the class of priors to
hig(A) = (A + D;)® for some s > 0, we show in Appendix
B.1 that h;G(A) = 0o(A™—P—2/2) is a sufficient condition
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for the propriety of posterior and hence can serve as a prior
for A.

On the other hand, it is straightforward to show that
7:G(A) given by (3) with hyg(A) = o(A™P)/?) yields
proper posterior because of multiplication of h;g(A) by
(A + D)tr(V—2). In either case, Theorem 2 can facilitate
users for selecting an adjustment factor in the empirical best
linear unbiased prediction approach or prior in the Bayesian
approach.

(d) For all i, each estimator ;1,-;{;, like the residual maximum
likelihood estimator Apg, is asymptotically normal and
asymptotically efficient under the regularity conditions.
Moreover, the covariance matrix of (ﬁhg, . ,Am;g) con-
verges to a singular matrix for large m. The proofs are shown
in Appendix B.2.

3. Multi-Goal Prior for an Important Special Case

Hirose and Lahiri (2018) put forward a classical approach for an
important choice of h;c(A) that satisfies the following desirable
properties under regularity conditions R1-R7:

[1] It is desirable to have a second-order unbiased estimator of
B;, that is, E(B;) = B; + o(m™1).

2] 0 < 'mfmzlﬁ; < supm;,lf?,- < 1 (as.) for protecting
the empirical best linear unbiased predictor from over-
shrinking to the regression estimator.

[3] It is desirable to obtain a simple second-order unbiased
Taylor series mean squared error estimator of the empirical
best linear unbiased predictor without any bias correction;
that is, E[M;(A;)] = M;(6®) + o(m™").

[4] It is desirable to produce a strictly positive second-order
unbiased single parametric bootstrap mean squared error
estimator without any bias-correction,

where M;(A;) denotes an estimator of mean squared error of
OFB(A).

Let A;yvc, Bive éfﬁG, Mings Ml’ﬁfé be the Hirose—Lahiri’s
estimators of A, B;, the empirical best linear unbiased predictor
of 8;, Taylor series and parametric bootstrap estimators of the
mean squared error of the empirical best linear unbiased pre-
dictor, respectively. They are given by

Ajmc = argmax,_ o hi(A)Lre(A),
Bimc = Bi(Aima), GA,-];ﬁG = 63 (Aimc),

Miymc = Mi(Aimc), MRS = Eulbi(AlyG.y") — 671,
where h(A) = hy(A)A + D) withm > p + 2
hy(A) satisfies conditions R6 and R7 in Appendix A; 6 =
xﬁ,é(ﬁnMG,- . ,ﬁm;MG)+u;" with u} ~ind: N(0, Ajmc); Ex isthe
expectation with respect to the two-level Normal hierarchical
model with g and A replaced by S(A;;MmGs- .. Ammc) and
AjMae, respectively. Note that the choice of hy (A) is not unique
in general. One can use the choice given in Yoshimori and Lahiri
(2014a).

The following corollary follows from Theorem 1, Hirose and

Lahiri (2018) and the fact that 2@ — 0, (m~1/2).

Corollary 1. Using the regularity conditions,
(i) Az — Are = Op(m™);
(i) XBARMG: - - » AmMc) — X;B(Are) = 0p(m ™).

In this section, we suggest a Bayesian approach that is close
to the classical approach to achieve multiple goals in the higher-
order asymptotic sense. To this end, we seek a multi-goal prior
on the hyperparameters (S, A) that satisfies all the following
properties simultaneously:

(i) BMB = E[Bilyl = Bimc + 0p(m™);
(i) VIBilyl = var(Bima) + 0p(m~");
(iii) 6B = E[6i]y] = Bimc + 0p(m~);
(iv) VI6ilyl = Minig + 0p(m™);

(V) VI8ilyl = MESE + 0, (m™Y),

where HB stands for Hierarchical Bayes estimator.
First we prepare the following result, which follows from
Corollary 1(i) and Hirose and Lahiri (2018):

Bi(Aimc) — Bi(Are) = (Agmc — Arp)br + o0p(m™")
= {E[AimG — Al — E[Apg — Al}b,

+0p(m_l)
_ Z—D‘ -1 (5)
= VoAt Dy T )

where b, = %%i.

If we use the flat prior 7 (A) o< 1, we get the following result
using equation (21) of Datta, Rao, and Smith (2005) with b(A) =
B;(A) and Equation (5):

A a trlv—3]
E[B;|y] = Bi(Amc) + ]

4D, 1
tr[V2](A 4+ D;)? [A +D; tr[V2]
+ Op(m_l)-

This result emphasizes that the flat prior #(A) o¢ 1 cannot
achieve Property (i) except for the balanced case (D; = D for
all i). We, therefore, seek a prior m(A) to satisfy Property (i),
even in unbalanced case. To this end, we also use the following
result (6) given in (21) of Datta, Rao, and Smith (2005) with
b(A) = B;(A):

A A 1
E[Bily] = Bi(Are) + —
thz

" e b
by — b1 |+ ——p1 + 0p(mY).
hg mhg
(6)

It is evident from Equations (5) and (6) that our desired prior
must satisfy the following differential equation, up to the order
of O(m—1):

1 b _hgb i b, _ 2D;
2mhy \° " hy 2,01— tr[V—2](A + D;)*

Note that the differential equation (7) is equivalent to the
following differential equation, up to the order of Op(m™'):

)

_ dlogm(A) _ _mhg 2D 1 b, _ hs
T 8A b tr[V2I(A+D)? 2|6 hy
2 2tr[V 3
[v—1 ®)

TA+D;, t[v-?]’



Hence, we obtain a solution to differential equation (8) as
follows:

7(A) o (A + Dy)*tr[V2]. (9)

Note that the prior (9) depends on i. To elaborate, the pro-
posed prior distributions for two distinct areas 7 and j will be
different unless the sampling variances D; and Dj are identical.
Therefore, we redefine it as

mi(A) o (A + Dy)*tr[V 2. (10)
Remark 2. We have several important remarks on the prior
(10).

(a) The prior satisfies the rest of Properties (ii)-(v) simulta-
neously, as shown in Appendix B.3. It is remarkable that
m;(A) given by (10) is the unique prior to achieve Properties
(i)-(v) simultaneously, up to the order of Op(m—l), since
E[g1:(A)|y] = g1i(Aimc) + 0p(m~") shown in (B.6).

(b) The prior given by Equation (10) reduces to the Stein’s
super-harmonic prior for the balanced case D; = D, i =
1,...,m,up to the order of Op(m™").

(c) Datta, Rao, and Smith (2005) found the same prior by
matching (in a higher order asymptotic sense) expected
value of the posterior variance of 6; with the mean squared
error of the empirical best linear unbiased predictor with
the residual maximum likelihood estimator used for the
variance component A. It is interesting to note that the same
prior achieves multiple goals, a fact gone unnoticed.

(d) From the result of Ganesh and Lahiri (2008), the prior

> {1/(A + D)%}
Y wi{D?/(A + Dy)?}

also satisfies " w,E[V(#;ly) — MSE[G;(Aimc)ll =
o(m™1).

(e) For all i, each estimator /A{,-;MG, like the residual maxi-
munm likelihood Apg, is asymptotically normal and asymp-
totlcally efficient. Moreover, the covariance matrix of
(Al MG - - - Am MG) converges to a singular matrix for large
m. It follows from Remark 1(d) and the result that ﬁjMG
satisfies the conditions for being A;c under the regularity
conditions.

(f) Theorem 2 ensures that the following adjustment factor
leads the asymptotic equivalent to the results using the
Stein’s superharmonic prior, up to the order Op(m™").

1
(A + Dptr(V=2)

We also show that the superharmonic prior does not gener-
ally attain the multi-goals because

w(A)

hisu(A) =

ﬁa“MG B E:‘-SH _ 4B? lB' B D;tr[V—3] ]
’ ’ D2tr[V—2] tr[V—2]
+op(m_1), (11)
Osmc — G5 = — Bimc — Bisn) (KB — XB) + 0p(m™Y),
4B? Ditr[V—3
~ D2ulV- 2][ t[‘E’ 2]]]( %)
+0p(m™"), (12)
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where f?,-;SH and é,vQSH denote the estimator of shrinkage
factor and the empirical best linear unbiased predictor using
the adjustment factor h;sp (A), respectively. The result (11)
and (12) follow from (A.4) given in Appendix A.2 and the

fact that i‘;%ﬂ = Op(m~1/2).

4. Data Analysis

In this section, using the 1993 Small Area Income and
Poverty Estimates (SAIPE) dataset, we demonstrate that our
proposed multi-goal prior (MGP) performs better than the
superharmonic prior (SHP) in producing Bayesian solutions
closer to the multi-goal classical solutions of Hirose and
Lahiri (2018). The SAIPE data we use here is from Bell
and Franco (2017), available at https://www.census.gov/srd/
csrmreports/byyear.html. The data contain direct poverty rates,
(y:), associated sampling variances (D;), and the four aux-
iliary variables (x;) derived from administrative and census
data for the 50 states and the District of Columbia. Much has
been written about SAIPE over the years. See, for instance,
the recent book chapter by Bell, Basel, and Maples (2016).
Hirose and Lahiri (2018) and Erciulescu, Franco, and Lahiri
(2020) considered the same four auxiliary variables in their data
analysis.

First we consider the estimation of the shrinkage parame-
ters B; for all the states. Figure 1 displays classical multi-goal
estimates ﬁ,v;MG (MGF) and Bayes estimates of B; under the
superharmonic (SHP) and the multi-goal priors (MGP) for all
the states arranged in decreasing order of Biyg with all four
auxiliary variables and a dummy variable for the intercept. Note
that the Bayes estimate of B; is an one-dimensional integral,
which is approximated by numerical integration using the R
function “adaptIntegrate” Overall, the Bayes estimates under
the multi-goal prior are closer to the classical estimates (MGF)
than the superharmonic prior.

Let é,v denote the Bayes estimate of the random effect 6; under
the superharmonic (SHP) or the multi-goal prior (MGP) for
state i. Figure 2 displays the relative difference of the Bayes esti-
mates 6; from the corresponding classical multi-goal estimates
fimc defined as

|9t' tMGl

RD(S )= x 100

9; MG

for all states i. This figure demonstrates that classical multi-
goal estimates are closer to the corresponding Bayes estimates
under the multi-goal prior (MGP) than the corresponding Bayes
estimates under superharmonic prior (SHP).

Figure 3 overall displays Taylor series (MGF) and para-
metric bootstrap (PB.MG) mean squared error estimates of
Hirose and Lahiri (2018) and the posterior variances under
the two different priors—MGP and SHP. The parametric boot-
strap mean squared error estimates use 10* bootstrap samples.
The two mean squared error estimates are virtually identical.
Again our posterior variances under the multi-goal prior are
much closer to the mean squared error estimates than the
corresponding posterior variances under the superharmonic
prior.
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Figure 1. Shrinkage parameter B; estimates for all the states using three estimation methods, arranged in decreasing order of gr';MG; MGF, MGP, and SHP indicate the

multi-goal classical estimates f}i;MG and Bayes estimates of B; under the superharmonic and the multi-goal priors, respectively.
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Figure 2. Relative difference RD(6;) of the Bayes estimates #; from the corresponding multi-goal classical estimates éj;MG for all the states, arranged in decreasing order
of @,-;Mg; MGP and SHP indicate two Bayes estimates of 6; under the multi-goal and the superharmonic priors, respectively.

Next, we present the results using different auxiliary variables
for the same SAIPE data. We select one auxiliary variable x4
with a dummy variable for intercept, described in Section 4
in Hirose and Lahiri (2018). This auxiliary variable provides a
moderate coefficient of determination whereas the first setting
with all four variables plus the intercept leads to large coefficient
of determination. Figures 4-6 display estimates of B;, relative
difference RD(é,-) and mean squared error estimates, respec-
tively. Figures 4 and 6 seem to get more closer results between
the multi-goal prior (MGP) and the classical estimates (MGF),
rather than respective results with all four auxiliary variables.
It is also seen that relative difference while using our multi-
goal priors still provides the closer results than that under the
superharmonic prior.

5. A Discussion on Model Extension

Can we extend our results to a general linear mixed model? To
answer this question, we consider the following nested error
regression model considered by Battese, Harter, and Fuller
(1988):

Yij = 0i + e Z.’C:-jﬁ‘FVi‘l'eiJf,
(i=1,... J 1), (13)

where {vi...,v,} and {e,...,en} are independent with
vi~N(0,0}) and e;~N(0,02); x;; is a p-dimensional vector of
known auxiliary variables; 8 € R? is a p-dimensional vector of
unknown regression coefficients; ¥ = (6.2,02)’ is an unknown
variance component vector; #; is the number of observed unit
level data in ith area.

My j=1,...
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Figure 3. Estimates of the mean squared error of é,- for all the states using four estimation methods, arranged in decreasing order of gi:MG (PB.MG: mean squared error
estimates by parametric bootstrap method M:";‘MG; MGF: mean squared error estimates by Taylor series method f;f;;Mg; MGP: posterior variance under the multi-goal priors;

SHP: posterior variance under the superharmonic prior).
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Figure4. Shrinkage parameter B; estimates for all the states using three estimation methods using two variables (one auxiliary variable and a dummy variable for intercept),
arranged in decreasing order of Bjmg; MGF, MGP, and SHP indicate the multi-goal classical estimates Bj and Bayes estimates of B; under the superharmonic and the

multi-goal priors, respectively.

The condition for achieving desired property [1] given in
Section 3, we need to solve the following system of differential
equations with shrinkage factor B; = ¢2/(n;02 + o), under
certain regularity conditions:

[a log k;;G(w]’rl [BB,-W)

oy F I ] =H(¥), (14)

where

dloghic(y)  (dloghic(y) dloghic(y)Y
v N do2 = do2 '

1 [°Bi(y)
H(w):—ztr[—awz fpl]’

9B;(y) n;
W (mol+0?2)?

(—ot0l),

12 (Z[(m — /ot + (niok + o)™
a

- n,'/(n.-af + c:r‘f)2
— Y mi/(njo} + 02’ ’

> nf/(n,-o‘f + c:r‘f)2

a=[Y"n/(nicl+oH*][Y {(ni—1)/o}+ (nio}
+02)™)] = [ Y. m/(nio? + oD
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superharmonic priors, respectively.
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Figure 6. Estimates of the mean squared error of é,- for all the states using four estimation methods and two variables (one auxiliary variable and a dummy variable for
intercept), arranged in decreasing order of B;pg (PB.MG: mean squared error estimates by parametric bootstrap method MG MGF: mean squared error estimates by
Taylor series method f;f;;Mg; MGP: posterior variance under the multi-goal priors; SHP: posterior variance under the superharmonic prior).

If we use the following adjustment factor h;g (i) for achiev-

Thus, there exist multiple solutions for h;g () satisfying desired
ing desired property [1]:

property [1] under the nested error regression model (13).

dloghic(¥) Further research is needed to identify a reasonable adjustment
R = vk, (15)  factor for the general linear mixed model and to establish a
for a given two dimensional fixed vector £, the solution of v can connection with the corresponding Bayesian approach.
be obtained as
y= L;?‘ Appendix A
Py

‘We assume the regularity conditions throughout this article as follows:
This solution thus leads to an appropriate adjustment factor

Regularity conditions:
satisfying
) R1: rank(X) = p is bounded for large m;
dlog hic(¥) = Hl(;’?w) . R2: The elements of X are uniformly bounded implying
Y KIp —3‘@— Supj> xj{X’X)_lxj =0(m™ Yy



R3: 0 <inf;z D; <sup;g D; < 00, A € (0,00);
R4: |A;| < C,ym*, where 4; is an estimator of A and C,; a generic
positive constant and A is small positive constant.

We also restrict the class of adjustment factors hy (A) and h;G(A)
that satisfy the following regularity conditions, as in Hirose and Lahiri
(2018):

R5: loghi,g(A) is free of y and four times continuously differentiable

Koo hs
with respect to A. Moreover, Qg%@ is of order O(1), respec-
tively, for large m with k = 0,1,2,3;

R6: logh, (A) is free of y and four times continuously differentiable

. 3% logh, (A)
with respect to A. Moreover, —ar
mwithk =0,1,2,3;

R7: hy(A)isastrictly positiveon A > 0 satisfying that h (A) o=

is of order o(1), for large

0and h4 (A) < Con A > 0 with a generic positive constant C.

A.1. Proof of Theorem 1

The result follows from an argument similar to the ones given in Das,
Jiang, and Rao (2004). We note that for the general adjusted maximum
likelihood method (1),

120 — 12(4) =(Aic — AEILAM] + (i — AL A)
—E[l{”(A)]H S@ic - MU @A), (A1)

k -

where lgg(A) mexlmaﬂ for k = 1,2,3 with l;g(4) =
log hi.g(A) and TRE(A) = log Lrg(A). In addition, A:.“ lies between A
and A.j;G.

Under regularity conditions, using results of Hirose and Lahiri
(2018) and £\ (AzG) = 0, we have Ay — A = Op(m~1/%), A* —A =
0pm=172), W (Ae) = ~12A;6), EILR (A)] = E[rﬁ%m}] +
o(1) = ~ Y1 1 0q1), R A)] = Op(m), 11 (4)] = Op(m).

Hence, (A 1) yields

Ajg—Apg = Ay — A — (Agg — A)

2 D Ay
T wv- 2]’G+{tr[V_2]] To@g )

1
— EI2 A1) + - { ] 2@ A R@)

tr[V—2]

+ ZIEE(A}}}{I(B){A) + 0p(m)). (A2)

Using the fact that l{ng (4) = op(m),

(A2) = ———TW 4 o,(m™1). (A3)

[V 2] G
Theorem 1 thus follows.

A.2. Proof of Theorem 2
Proof of part (i). Using Theorem 1, we have

Bi(Aiq) = Bi(Apg) — ng( +op(m™h.  (A4)

t [V 2]Da

Hence, using (6) given in (21) of Datta, Rao, and Smith (2005),
Equation (2) implies that the following condition is required in order
to satisfy f?i.HB =B; (A,-.G):

1 [+ h3- b 2B?
= (bz - .—351) + —91 ﬁl)(ﬁm

(A.5)
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Equation (A.5) reduces to

2tr[V—3]
tr[V—2]

dlogmiG(A) (1) 1

A =W+ - +op(m™). (A6)

After solving the above differential equation, up to the order of
0p(m™1), we obtain: m;G(A) o hiG(A)(A + Dy)tr[V—2].
Part (i) follows from this result. O

Proof of part (ii). Under regularity conditions, Hirose and Lahiri
(2018) proved the following result:

var(Bi(4;c)) = +o(m™Y).

S S
tr[V—2](A + Dy)*
Hence, using the result of Datta, Rao, and Smith (2005),

52

— + U m-

- topm™)

____ o
“uvia+Dyt "

=var(B;(A;)) + op(m™).

V(Bily) =
_1)
(A7)

Thus, the prior (3) satisfies property (ii) from (A.7).
O

Proof of Part (iii). Datta, Rao, and Smith (2005) obtain the following
result:

Elg1i(A)|y] = g1i(ARE) + g1xi(ARE) + 0p(m™);
6118 = y; — Bi(Arp)yi — ¥f(Agp))
m A —
4 SR 1y, XA} +opon™),  (A9)
where
n B? 1 h3
xilA =—p———]. A9
L1xi(ARE) i (pl e+ D; th) (A9)
Using (A.5), we obtain
gix(Arp) = (‘Gm) +op(m™1)
sz
i (1) —1
r_r[V 2]I1G +op(m™). (A.10)

_Hence, using Theorem 1, (A.4), (A.8), (A.10) and the fact that
dB(A)/9A = Op(m_uz}, we have, for large m,

9.-G HB Bi(Aio)lyi — ¥iB(Aic)}

— Bi(Arp)}yi — X,B(As6))

=Yi—
+ {f}i{;‘iiG}

+ s tr[V_le T2 — %BAs6)) + 0p(m ™)

— BiAio)lyi — XBAi0)} + 0p(m™Y).

This completes the proof of part (iii). O
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Appendix B
B.1. Proof of Remark 1(c)

We show that if we use hig(A) alone as a prior, hig(A) =
0(A(m=P=2)/2) 5 a sufficient condition for the propriety of posterior
in a constrained class of adjustment factors h;g(A) = (A + D;)°® for
some s > 0 and fixed m. We note that

oo
j; Lre(A)hig(A)dA

oo
< Cf (A+ infD,-)_m’rz(A + sup Dy)P/2+5dA
0 i i

o0 m2
_ (A+ sup; Dy) A—m[24p/2+s
= Cfﬂ [—(A Tinf, D;) A+ st.}p D;) dA

<C f X pmizep/2esyy (B.1)
- sup; Dj

It is evident that the condition s < (m — p — 2)/2 achieves (B.1)
< o0. Thus, the condition h;G(A) = o(A™—P=2/2) is a sufficient
condition for it to be a bonafide prior for large A.

The following inequality shows that ;G (A) could be a prior if the
condition h;g(A) = o(A(M=0)/2y js met.

o0
fo Lpg(A)mig(A)dA

o0
= Cf (A + inf D;)~™/2=2(A 4 sup Dj)P/2+1+5dA
0 i .

N m/2+2
_ Cfoo I:((iisu?t[[;i)}]m (A + sup Di)—mf2—2+pf2+l+sdA
0 inf; L; i

<C f ®mizep/2-ts gy (B.2)
- sup; Dj

Hence, if h;g(A) in m;g(A) satisfies s < (m — p)/2, then we have
(B.2) < co. Thus, the condition h;G(A) = o(A(m—P)/2) is a sufficient
condition for 7;G(A) being a bonafide prior in a Bayesian method
as well as an adjustment factor in an adjusted maximum likelihood
method.

B.2. Proof of Remark 1(d)

The following result follows from (A.3) and the regularity condition R5
for all 4,

Ay — A — (Agg — A) =0(m™") + op(m™).
Moreover, under the regularity conditions, the following results follow
from Yoshimori and Lahiri (2014a) and Hirose and Lahiri (2018).
E[Apg — Al = o(m™),
E[Asg — Al = O(m™"),

E[(ARg — A)?1 = +o(m™h),

2
tr[V—2]

E[(Ajg — A)?] = +o(m™1).

2
tr[V—2]
Hence, we have for large m and all i,

Agc —ElAygl  Agg — FlAgg]
VVIAigl V/ViAgel
__Aig—A  Are—A4 om-1/2),
V2/tlv=2 2/ulV2)
= 0(m™/2) + 0p(m~1/%).

Each estimator ﬁ,-;G, therefore, has the same asymptotic distribution
as that of Agg for large m under the regularity conditions. This also
implies that the estimator A;;G has asymptotic normality and efficiency
as well as the asymptotic properties of the residual maximum likelihood
estimator ARg given in Jiang (1996). i i
We next show that the covariance matrix of (A1,g, . . ., Am;g) con-

verges to a singular matrix for large m. As for the component of the
covariance matrix of (Ay,G, . . ., Ap,G), we obtain for any i and j such
that i # j,

cov(Ai. Azc) = El(Ai — ElA;D(Ajg — ElA;6D),
E[(Asg — A — E[(Aig — )

(AjG — A — E[(Ajc — D],
__ 4 (1) | D) A, D) -1
= WE [(IRE + Ii;G}{IRE + IjGG}:I +o(m ),

4

= armpE [RD°] oo™,

__ 2 -1
= TV +o(m ),

V(die) = +o(m™h).

tr[V—2]
Note that we use the following results in the above calculations.
1
EL(lgd)*] = ZEL6/ Py — tulP)’]

[P u[v!]
== +0(1),

et |52 + (a2 + 1]

+ o(m_l).
The later results can be shown using a calculation similar to that of
Theorem 4 of Das, Jiang, and Rao (2004). The result thus follows.

E[(Aig — A)Ajg — A)] =

B.3. Proof of Remark 2(a)

‘We show that the prior (10) achieves (ii)—(v).

Proof of (ii). From the results of Datta, Rao, and Smith (2005) and
Hirose and Lahiri (2018),

b -
V(Bily) =—— +0p(m™ ")
mha

I S

“wva@a+ oyt ")

:var(E,v;M(;) + op(m_l). (B.3)
Hence, the prior achieves the property (ii) from (B.3). a
Proof of part (iii). Using (5), it is straightforward to show

(A — oA et B —1
£1i(A;MG) — £1i(ARE) TIV—21A 1 D) +op(m™).

Using (7) and (A.9), we obtain the following after some algebra:
©1i(AiMe) = 21i(ARE) + 217i(ARE) + Op{m_l ). (B.4)
Using (A.8), Corollary 1 (ii) and (B.4), we get
6% =y; — BiAima) i — %B(Asmc))
+ (BiAime) — BiArp)) i — XA Asme))
+ {Bi(ARe) — Bi(Aame) i — XB(Aima)} + op(m™)
=bizc + op(m ™). (B.5)
Property (iii) thus follows from the result (B.5). a



Proof of parts (iv)-(v). Using (B.4), we get

Elgii(A)ly] = 21i(AiMG) + op(m ™). (B.6)
Datta, Rao, and Smith (2005) obtained the following result:
VI6;ly] = 21i(ARE) + 81i(ARE) + &2i(ARE)
+ 24i(ARE3 i) + 0p(m™1). (B.7)

Using the result given in Butar and Lahiri (2003), Hirose and Lahiri
(2018), (B.4) and (B.6), we get

VI8ilyl =g1i(AsMa) + g2i(AiMa) + g3i(AiMa) + 0p(m™)
=M;(Aimc) + op(m™)
=M;(Gnc) + 0p(m™")

=M ?Rﬁt} + op(m_l}.

(B.8)
Equation (B.8) implies that the prior (10) also satisfies (iv)-(v) simul-
taneously. O
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