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ABSTRACT
The need for annotated labels to train machine learning models

led to a surge in crowdsourcing - collecting labels from non-experts.
Instead of annotating from scratch, given an imperfect labeled set,

how can we leverage the label information obtained from amateur

crowd workers to improve the data quality? Furthermore, is there

a way to teach the amateur crowd workers using this imperfect

labeled set in order to improve their labeling performance? In this

paper, we aim to answer both questions via a novel interactive teach-

ing framework, which uses visual explanations to simultaneously

teach and gauge the confidence level of the crowd workers.

Motivated by the huge demand for fine-grained label informa-

tion in real-world applications, we start from the realistic and yet

challenging assumption that neither the teacher nor the crowd

workers are perfect. Then, we propose an adaptive scheme that

could improve both of them through a sequence of interactions: the

teacher teaches the workers using labeled data, and in return, the

workers provide labels and the associated confidence level based

on their own expertise. In particular, the teacher performs teach-

ing using an empirical risk minimizer learned from an imperfect

labeled set; the workers are assumed to have a forgetting behavior

during learning and their learning rate depends on the interpre-

tation difficulty of the teaching item. Furthermore, depending on

the level of confidence when the workers perform labeling, we also

show that the empirical risk minimizer used by the teacher is a

reliable and realistic substitute of the unknown target concept by

utilizing the unbiased surrogate loss. Finally, the performance of

the proposed framework is demonstrated through experiments on

multiple real-world image and text data sets.
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1 INTRODUCTION
The prevalence of complex models, such as deep neural networks,

has enabled unprecedented breakthroughs in a variety of real-world

applications, including data mining, computer vision, natural lan-

guage processing, etc. Many of these models are supervised in

nature, which assume abundant labeled data for model training

obtained from the annotation process [5, 10, 44, 45]. However, cur-

rent annotations may be insufficient for fine-grained categorization

tasks. These tasks focus on discriminating items at the subordinate

level. Examples of fine-grained categorization tasks include: dis-

tinguishing images showing different breeds of cats or dogs (as

opposed to simply distinguishing if the image contains a cat or a

dog); sorting various topics of documents, or categories of emails

for the tasks in text classification; analyzing multiple types of can-

cer tissue images, types of arrhythmia ECG signals for the tasks

in medical diagnosis. As the demand for such fine-grained catego-

rization tasks has increased [6], the qualitative and quantitative

requirements for annotations have also significantly increased.

In fine-grained categorization, the distinctions between cate-

gories are usually subtle and highly local. As such, fine-grained

categorization is more challenging than the common high-level

classification tasks. Fine-grained categorization has fewer discrimi-

native features and often suffers from lower quality labels. In terms

of features, distinguishing between the image of a house and the

image of a dog is easy since highly distinct visual features can be

extracted to classify these two categories. However, in fine-grained

categorization tasks, such as classifying a domestic cat and a wild-

cat, visually discriminative features are often scarce and tend to

be more locally distributed. For example, the Lynx (one species

of the wildcat, Figure 1) usually has larger paws, longer chest fur,

and pointed ear tufts. However, the face of a lynx can easily be

mistaken as a common domestic cat. If only the facial features are

considered, the fine-grained classification can fail. Thus, the task

of categorizing fine-grained items requires human labelers to have

a strong domain knowledge about the subject area, so that s/he

can correctly identify visual cues and perform annotations. Unfor-

tunately, the most popular means of collecting the labeled data is

through crowdsourcing platforms (e.g., Amazon Mechanical Turk,

Figure Eight, etc.) where annotations are outsourced to a group of

mostly unskilled online workers. While such crowdsourcing may
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Figure 1: An example of fine-grained cat categorization. Left: origi-
nal input image of a Lynx. Middle & Right: visual cues of predicting
it as domestic cat and wildcat generated using Grad-CAM [30].

be adequate for high level categories (such as the house versus dog

example), labels obtained from these crowdsourcing platforms may

be insufficient for training fine-grained categorization models even

after cleaning and aggregation using state-of-the-art techniques.

For the sake of collecting and post-processing labels that will be

suitable for fine-grained categorization, several approaches have

been proposed to identify high-quality crowdsourcing workers who

have a good understanding of a specific domain [28, 44]. (1) Pro-

viding general instructions to all workers regarding the specific

labeling concept. (2) Mixing the “gold standard” questions with true

crowdsourcing questions and filtering out the unqualified workers

who continuously provide incorrect and random answers on the

“gold standard" questions. (3) Modeling and estimating the expertise

of these workers, then down-weighting the votes of the weak work-

ers. These approaches can potentially reduce the error within the

labels, but they also suffer from several problems such as low anno-

tation rates and limited numbers of qualified workers, all of which

place a huge burden on the mechanism designer when specifying

the annotation tasks.

Therefore, in this paper, we focus on improving crowdsourcing

annotations for fine-grained classification tasks by introducing a

novel interactive learning and teaching framework. It is designed

to increase the model performance by relabeling and expanding the

existing labeled set. It is also able to improve the labeling expertise

of the crowd workers or learners by providing explanations for the

visual cues. The major contributions of this work include:

• Framework: The proposed adaptive crowd teaching frame-

work is designed to have three-step interactions between

the teacher and the learners. The learners could provide con-

fident annotations to either relabel the labeled items or give

initial label to the unlabeled ones.

• Adaptation: The main objective of teaching considers both

the influence of items by incorporating the principle of cur-

riculum learning and the personalized learning progress of

the learner by balancing between the usefulness and diver-

sity of the teaching sequence.

• Analysis: A theoretical bound of this interactive teaching

scheme has been provided to fit the realistic teaching sce-

nario of using empirical cost minimizer as the target concept.

The confident labels provided by the workers can also reduce

the error rate of the labeled items.

• Experiments: We have built a web-based platform to con-

duct the experiments. The teaching effectiveness and teach-

ing reliability of the framework have been validated on three

real data sets of images and text documents.

The remainder of the paper is organized as follows. We first intro-

duce the problem definition in Section 2. Then, we formally present

the proposed interactive teaching framework in Section 3 followed

by descriptions of the algorithm and the discussions of the model

in Section 4. The experiments and results are presented in Section

5 and the related work is discussed in Section 6. We conclude the

paper in Section 7.

2 PROBLEM DEFINITION
In this section, we provide the preliminary regarding the inter-

pretable explanations. Next, the notation and the definition of adap-

tive crowd teaching are formally presented.

2.1 Preliminary: Interpretable explanations
We denote the original prediction modelψ (·;θ ), parameterized by θ ,
as the model that we want to explain. Understanding the way that

a model (e.g., random forest, convolutional neural network, etc.)

makes decisions is crucial in understanding the model’s behaviors.

Proper explanations can engender trust from the users and provide

insights into model properties [21, 29, 32]. The essential criterion

of explanations is that they should be interpretable by humans.

2.1.1 Feature-additive explanation. We denote д(·) as the feature-
additive explanation model which uses a simplified feature x ′

(which is treated as the interpretable input due to its low dimen-

sionality comparing with the original feature x) as its input. This
interpretable input x ′ is usually mapped from the original input x
through a mapping function as: x = hx (x ′). The additive feature
explanation models are local methods that are designed to ensure

д(x ′) ≈ ψ
(
hx (x ′);θ

)
. Overall, the additive feature method will have

a linear interpretable model:

д(x ′) = ϕ0 +
d∑
j=1

ϕ jx
′
j (1)

where d is the number of simplified features. One of the most promi-

nent text explanation models using additive features is LIME [29],

which minimizes the following objective:

min

д
l(ψ ,д,πx ′) + Ω(д) (2)

where Ω is the complexity measurement used to penalize the expla-

nation model д(·). LIME imposes the faithfulness of the explanation

model д(·) towards the original model ψ
(
hx (x ′);θ

)
by enforcing

through a cost l(ψ ,д,πx ′) over a set of perturbed samples weighted

by a local distance kernel πx ′ .

2.1.2 Saliency-based Explanation. Saliency maps are often consid-

ered to be explanatory and they are extremely useful in categoriza-

tion tasks to determine which area of the observation is relevant.

One of the most popular approaches for generating saliency maps

is Class Activation Mapping (CAM) [30, 42]. Utilizing Gradient-

weighted CAM (Grad-CAM) [30], the saliency explanation is gen-

erated using gradient information flowing into the last convolution

layer of the neural network to understand the importance of each

neuron for a decision of interest.

Given an input image, let oc be the score for class c after the

forward pass of the neural network. Then, the gradient of oc with

respect to the k-th activation mapAk of the last convolutional layer
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Table 1: Summary of symbols

Category Symbol Definition

General
setting

DL Imperfect labeled data set

DU Unlabeled data set

xi ,yi
Feature vector and aggregated

imperfect label of the i−thitem
z = (x ,y) Item tuple of feature and label

Lxi
Setofcrowdsourcinglabels

foritem xi

N ,n,m
# ofallitems, # ofitemswith

initiallabels, # offeatures

I(·) Indicator function

Teacher
Model

ψ (·;θ ), ŷ
Predictionmodeloftheteacher

anditsrealvalueprediction

C(·, ·), ˜C(·, ·)
Costfunctionandthesurrogate

costfunctionoftheteacher

Iup,params (z) Influence of upweighting z

Iper t,loss (z, ztest )
Influenceofperturbingthe

labelof z onatestitem ztest
p1,p2, . . . ,pN Influence scores

Learner
Model

vt
Memorymomentumatthe

t−thteachingstep
L(·, ·) Learning loss of the learner

wIt
Rescalingcoefficientoftheselected

item(index It )in t−thteachingstep

D(e)
Interpretabledifficultyof

anitem
′
sexplanation e

is calculated as
∂oc
∂Ak

. The overall importance weight αck of the k-th

activation map for c-th class is global average pooled as:

αck =
1

Z

∑
h=1

∑
v=1

∂oc

∂Akh,v

(3)

where Z is the norm of the gradient for normalization purposes.

Next, the forward activation maps of the last convolutional layer are

added up using this importance weights and a ReLU operation is fol-

lowed to obtain the saliency map for each class as ReLU

( ∑
k α

c
kA

k
)
.

2.2 Notation
All frequently used notations in the remaining of this paper are

summarized in Table 1. We denote X ⊂ R
m

as them-dimensional

feature representation of all examples (e.g., images or documents)

and Y = {+1,−1} as the collection of labels
1
. In crowdsourcing,

each item usually has one or more labels collected from the work-

ers. For each xi ∈ X, we let (xi ,Lxi ) be the corresponding input

pair, where Lxi = {y
1

i ,y
2

i , . . . ,y
τi
i } ⊂ Y is the set of imperfect

labels for xi , and τi is the number of such labels for xi . We let

DL = {(xi ,Lxi )}
n
i=1 be the imperfect labeled data set collected

from the crowdsourcing workers and DU = {(xi ,Lxi )}
N
i=n+1 be

the unlabeled data set. Each item inDL has τi ≥ 1 and each item in

DU has Lxi = ∅. Notice that in conventional supervised learning

setting, the collected set of labels Lxi for each item xi are usually
aggregated as one label yi to train the model. After aggregation, fol-

lowing [25], we also define the class-conditional error rate ρ+1, ρ−1

1
Although this paper focuses on the binary classification setting, the proposed tech-

niques can be naturally generalized to multi-class setting.

Recommend teaching item

Initial label feedback

Probabilistic predictions with explanations

Updated labels and trusted explanations

Provide masked explanations 

Confidence feedback

Learners

Teacher

Figure 2: An overview of the interactive learning and teaching
framework.

of the labels in DL as:

ρ+1 = P(y = −1|yдt = +1), ρ−1 = P(y = +1|yдt = −1) (4)

whereyдt is the underlying ground truth label and ρ+1+ρ−1 < 1. It

should be noticed that in remaining context, the phrases of worker

and learner are used interchangeably.

2.3 Problem Setting
Given an imperfect labeled data setDL that has a mixture of mostly

correct labels and possible a small fraction of incorrect labels, an

unlabeled data set DU , a real-valued prediction modelψ (·;θ ), and
a group of crowd workers, the proposed framework is designed to

simultaneously target the following two objectives:

• Objective I: The framework aims to improve the predic-

tion model’s performance by providing a new labeled data

set Dnew with better label qualities. Dnew includes three

groups of data items: (a). A group of items that originally

belong to DL but have been re-labeled and verified by these

crowd workers; (b). A second group of items that also belong

to DL , but their labels stay untouched; (c). Another group
of items that originally belong to DU but eventually get

labels from crowd workers. With the new data set Dnew ,

the prediction model ψ (·;θ ) is expected to have improved

performance.

• Objective II: The framework uses the prediction model

ψ (·;θ ), which is not perfectly trained because it is optimized

on the imperfect labeled set DL , as the teacher to interac-

tively teach the crowd workers by showing them a personal-

ized sequence of items with probabilistic prediction labels

and fine-grained visual explanations. In this way, the crowd

workers would have improved labeling abilities for the an-

notation tasks after teaching.

3 ADAPTIVE TEACHING AND LEARNING
Let the prediction modelψ (·;θ ) be the teacher, where the parameter

vector θ is obtained by minimizing a cost function C(·, ·) over the

labeled training data. To teach the crowd workers, we assume that

the teacher knows the empirical target concept
2 ˆθ beforehand,

which is defined as:

ˆθ = argmin

θ

1

n

n∑
i=1
C
(
ψ (xi ;θ ),yi

)
(5)

where n represents the number of training examples in DL .

2
In practice, the true target concept θ∗ is usually unknown. In Section 4, we will

demonstrate that the risk of the empirical target concept is bounded, and it is reasonable

to perform teaching with
ˆθ .
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Notice that in our setting, the aggregated labels yi , which are

obtained from the imperfect label sets, still include errors in nature.

In order to obtain effective prediction models in the presence of

labeling error, we adopt the surrogate cost function proposed in [25],

which is defined as follows:

˜C
(
ŷ,y

)
:=
(1 − ρ−y )C

(
ŷ,y

)
− ρyC

(
ŷ,−y

)
1 − ρ+1 − ρ−1

(6)

where ŷ = ψ (x ;θ ) and the class dependent error rate of the sur-

rogate cost is defined as: ρy = ρ
I(y=+1)
+1

ρ
I(y=−1)
−1

. Lemma of [25]

shows that this surrogate cost on the imperfect labels is an unbiased

estimator of the original cost on the underlying true label yдt as:

Lemma 3.1. If C(ŷ,yдt ) is a bounded cost function and ŷ is a
real-valued prediction. Then the surrogate cost ˜C(ŷ,y) constructed in
Eqn. (6) has Ey

[
˜C(ŷ,y)

]
= C(ŷ,yдt ) for any ŷ.

3.1 Interactions Between Teacher and Learners
An overview of the interactive learning and teaching between learn-

ers and the teacher is provided in Figure 2. Each teaching iteration

includes the following steps:

• First, the teacher recommends and shows an item to the

learner based on the ranking score, which considers both

the learner’s learning progress and the item’s influence on

the prediction model. The learner is then asked to provide

his/her initial label for item.

• Second, the teacher shows the labels made by its prediction

model along with their probability scores and the visual ex-

planations. The learner is then asked to give his/her updated

labels and trusted explanations.

• Third, the teacher evaluates the learner’s confidence regard-
ing his/her annotations using the masked explanations. If

learner’s confidence is high, the provided label will be added

into the label set of the item. Otherwise, the label will not

be recorded.

3.2 Learner Model
In the process of interactive teaching, each learner observes a se-

quence of items and their corresponding label information as well as

the visual explanations provided by the teacher. The most prevalent

modeling [19, 20, 40, 47] of the learners is assuming that they made

linear decisions, i.e., ⟨θ ,x⟩, and have an iterative gradient-based

procedure for concept learning. The adaptivity of the learner is

reflected in three aspects: each learner has a personalized memory

decay regarding the learned concepts with an exponential rate;

the learning rate is adjustable in terms of the item interpretation

difficulty; and the learning concept of each learner is estimated

from his/her previous labels.

Similar to iterative crowd teaching [47] , we also treat the learner

as having an exponential decayed retrievability of memory:

vt = βvt−1 + ∇θt−1L(θ
⊤
t−1xIt ,yIt ) (7)

where we denote It as the index of the selected teaching item in

the t-th teaching step, and L(·, ·) is the learning loss of the learner.

Usually, the initial memory momentum v0 is set to 0, then, the

memory momentum of the learner for the t-th learning step is:

vt =

t∑
r=1

βt−r∇θr−1L(θ
⊤
r−1xIr ,yIr ) (8)

Here, β ∈ (0, 1) is the personalized memory decay rate of the learner

and r is the index of teaching iteration. The learners use the gradient
based learning procedure to improve their concepts in an iterative

way with learning rate ηt :

θt = θt−1 − ηtwItvt (9)

where the learning rate also depends on a re-scaling coefficientwIt
that has a connection with the interpretable difficulty of the item.

Intuitively, the teaching items that are easier to interpret should

have a larger learning rate (by settingwIt larger) and the difficult

items should have relatively smaller learning rate (with smaller

wIt ). After the t-th teaching step, the learner applies a linear model,

i.e., ⟨θt ,x⟩, to make predictions using the learned concept θt .

3.3 Teacher Model
The teacher observes all items (e.g., images, text, etc.) which include

their feature representation and labels. The teacher is also assumed

to have access to the learner’s learning procedure. Given the em-

pirical target concept
ˆθ , the teacher aims to maximize the learner’s

speed of convergence [11] in terms of learning by minimizing the

distance of the learner’s current concept from the empirical target

concept in two consecutive iterations t and t −1. Then, the teaching
objective can be decomposed as:


θt − ˆθ




2
2

−




θt−1 − ˆθ



2
2

=η2tw
2

It






 t∑
r=1

βt−r∇θr−1L(θ
⊤
r−1xIr ,yIr )






2
2

−2ηtwIt

〈
θt−1 − ˆθ ,

t∑
r=1

βt−r∇θr−1L(θ
⊤
r−1xIr ,yIr )

〉 (10)

For t-th teaching iteration, the teacher only aims to recommend

the teaching item (xIt ,yIt ) with its explanation eIt . Therefore, all
the terms in Eqn. (10) that don’t include t-th teaching item can be

excluded from the objective. With some simplifications, the goal of

recommending the next teaching item is formulated as a pool-based

searching problem
3
:

(xIt ,yIt ,eIt ) = argmin

x ,y,e
η2tw

2

It



∇θt−1L(θ⊤t−1x ,y) +vt−1

22
−2ηtwIt

〈
ˆθ − θt−1,−∇θt−1L(θ

⊤
t−1x ,y)

〉 (11)

From the above objective, we know that the learning direction of

a learner is −∇θt−1L(θ
⊤
t−1x ,y). The teacher prefers the negative

gradient of the t-th teaching item to be similar as the concept mo-

mentum vt−1 in order to increase the teaching sequence diversity.

At the same time, the second term of the objective also suggests

that the negative gradient of the teaching item has a large correla-

tion (i.e., large inner product) with the optimal learning direction

3
The item x is either from DL or DU , its label y is predicted using teacher’s model

ψ (·; θ ), and the corresponding explanation e is generated utilizing the methods de-

scribed in Subsection 2.1.
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ˆθ − θt−1. Overall, this teaching scheme aims to simultaneously

maximize the teaching diversity and teaching usefulness.
It should be noticed that the candidate pool of teaching items

includes bothDL andDU , which means that the framework either

allows the worker to re-label current teaching item xIt (if it belongs
toDL ) by expanding LxIt with one more label or annotate xIt (if it
belongs to DU ) by adding the first label to its empty label set.

3.4 Interpretation Difficulty
An item (e.g., image or text) with a smaller attention region (e.g., a

small area of pixels or a few keywords) being highlighted would

indicate that less effort is needed for a worker to interpret the visual

explanations. For example, if the breed of a cat in one image has been

correctly predicted by the model, the explanation which highlights

the attention area of the head & the body would be much easier to

understand than the explanation that highlights the whole image

that includes the cluttered background because the background

does not matter during predictions. Similarly, the explanation that

highlights a few representative words, e.g., “key", “security", for

an encryption-related document, will be easier to interpret than

the document with too many words being highlighted. We define

the interpretation difficulty of an explanation e as the entropy of

all entries on a saliency map (e.g. for image items) or an additive

feature vector (e.g. for text items):

D(e) =

{
−
∑
j ej log(ej ), ⇔ Feature-additive explanation

−
∑
h,v eh,v log(eh,v ), ⇔ Saliency-based explanation

(12)

where the ej is the j-th interpretable feature of the additive fea-

ture vector and eh,v is the visual cue at the (u,v) location on the

saliency map. Furthermore, no matter if it is the explanation of

the saliency map or the additive feature vector, all entries could be

normalized to span the range of [0, 1] and satisfy the property as

a probability distribution. Since the entropy of explanation is the

proxy of the interpretation difficulty, then we can properly encode

the re-scaling coefficient of a selected teaching item (with index

It at t-th teaching iteration) as wIt = e1−
D(eIt )
κ . Usually we set

κ = maxe D(e) to be the maximum interpretation difficulty of all

possible explanations (i.e., e is an uniformly distributed explana-

tion). The re-scaling coefficient will always have a value of 1 when

the framework is reduced to the setting of standard iterative crowd

teaching (by demonstrating the whole image or document without

providing visual explanations).

3.5 Item Influence
The existing teaching scheme usually assumes all items have an

equal influence on the prediction model. However, in real-world

teaching, a more effective strategy is following the principle of cur-

riculum learning [2], which encourages the recommended teaching

sequence to have tasks that range from easy to difficult. Intuitively,

if the learners are making linear decisions during learning, the easy

items should be demonstrated to them in their earlier learning stage

so that they can make fewer mistakes. These easy items should have

some small influence on the prediction model as if they are usually

the data points with a large marginal distance in the feature space.

Gradually, with the more teaching iterations, the more difficult

items should be shown to the workers who should already have

improved their labeling expertise. These difficult items usually have

large influences (i.e., changing their labels would impact the model

behaviors significantly) on the prediction model because they are

the data points with incorrect labels or the data points that have

small marginal distances to the target concept.

Then, the overall goal becomes teaching the crowd workers by

demonstrating a personalized sequence of items that are effective

for the concept learning as well as having increasing influences. To

begin with, we compute the influence scores p1,p2, . . . ,pN over all

items, which is defined as the model prediction’s change w.r.t.
the label perturbations. We denote the item with its label as

z = (x ,y), and we further define its label perturbed version as

zδ = (x ,y + δ ). For simplicity, we denote
˜C(ψ (x ;θ ),y) as ˜C(z,θ ).

Consider the perturbation z → zδ , and let
ˆθzδ ,−z be the empirical

risk minimizer on the training items with zδ in place of z. As an
approximation of its influence when moving a small mass ϵ from z
to zδ , we have:

ˆθϵ,zδ ,−z = argmin

θ

1

n

n∑
i=1

˜C(zi ,θ ) + ϵ ˜C(zδ ,θ ) − ϵ ˜C(z,θ ) (13)

The influence functions introduced in [12] provide an efficient ap-

proximation for the computation of upweighting z as:Iup .params (z) =
d ˆθϵ,z
dϵ

���
ϵ=0
= −H−1

ˆθ
∇θ ˜C(z, ˆθ ). Then, the parameter change of per-

turbing the labely should be given as the difference of the influences
between upweighting zδ and upweighting z:

d ˆθϵ,zδ ,−z

dϵ

���
ϵ=0
= Iup,params (zδ ) − Iup,params (z)

= −H−1
ˆθ

(
∇θ ˜C(zδ , ˆθ ) − ∇θ ˜C(z, ˆθ )

) (14)

where the Hessian is given as H
ˆθ =

1

n
∑n
i=1 ∇

2

θ
˜C(zi , ˆθ ). If ˜C is in

differentiable in θ and y. Also, the soft label y is continuous and

the amount of perturbation δ is small, the above equation can be

approximated using the first-order derivative approximation by

treating ∇θ ˜C(z, ˆθ ) as a function of y. Then, we obtain:

d ˆθϵ,zδ ,−z

dϵ

���
ϵ=0
≈ −H−1

ˆθ
∇y∇θ ˜C(z, ˆθ )δ (15)

If the upweighting mass is set as ϵ = 1

n , we can have the linear

approximation:
ˆθzδ ,−z −

ˆθ ≈ − 1

nH
−1
ˆθ
∇y∇θ ˜C(z, ˆθ )δ . Next, we apply

the chain rule
4
to measure the influence of perturbing y on a test

item:

Iper t,loss (z, ztest ) = ∇δ ˜C(ztest , ˆθzδ ,−z )
���
δ=0

= −
1

n
∇θ ˜C(ztest , ˆθ )

⊤H−1
ˆθ
∇y∇θ ˜C(z, ˆθ )

(16)

Example 3.2 Influence calculation for surrogate logistic cost.
Considering the binary classification problem on a logistic regres-

sion model where σ (t) = 1

1+exp(−t ) is the sigmoid function. The

logistic cost of any item z = (x ,y) is given as C(z,θ ) = log

(
1 +

exp(−yθT x)
)
and the surrogate cost

˜C(z,θ ) is given in Eqn. (6). The

4
It is implicitly assumed that

∂ ˜C
(
ztest , ˆθzδ ,−z

)
∂ ˆθzδ ,−z

=
∂ ˜C

(
ztest , ˆθ

)
∂ ˆθ

is satisfied.
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gradient of the surrogate logistic cost ∇ ˜C(z,θ ) w.r.t θ respectively

are given as:

∇θ ˜C(z,θ ) =

[
(ρ−y − 1)σ (−yθ

T x) − ρyσ (−yθT x)
]
yx

1 − ρ+1 − ρ−1
(17)

Following the above derivation, the gradient w.r.t the variables y
and θ is given as:

∇y∇θ ˜C(z,θ ) =
(ρ−y − 1)σ (−yθ

T x)
[
1 − (θT x)exp(yθT x)σ (−yθT x)y

]
x

1 − ρ+1 − ρ−1

−

ρyσ (yθ
T x)

[
1 + (θT x)exp(−yθT x)σ (yθT x)y

]
x

1 − ρ+1 − ρ−1
(18)

Interestingly, the Hessian of the surrogate logistic cost w.r.t θ is the

same as the Hessian of the logistic cost, it is given as:

∇2θ
˜C(z,θ ) = y2 · σ (yθT x) · σ (−yθT x) · xxT = ∇2θC(z,θ ) (19)

Overall, the label perturbation influence on any item ztest for the
unbiased surrogate logistic cost can be computed by substituting

Eqn. (17) - (19) into Eqn. (16). ▲
The influence of label perturbation could be either positive (per-

turb labels from −1 to +1) or negative (perturb labels from +1 to

−1). Therefore, we compute the influence score of any item ztest
using its absolute influence value on each labeled item as:

ptest =
n∑
i=1

��Iper t,loss (zi , ztest )�� (20)

4 ALGORITHM
Based on this overall objective (Subsection 3.3 and 3.5) which con-

siders both the learner’s learning progress as well as the item’s

influence, we propose the adaptive interactive teaching algorithm

VADER (Visually ExplAinable ADaptive TEaching with Human

LearneR). The VADER teaching algorithm is shown in Algorithm 1.

The given input includes the labeled and the unlabeled data set, the

teacher’s prediction model, the learner’s memory decay rate, the

empirical target concept, the learning rate, and the influence inten-

sity. The algorithm will output the updated label set of all items. In

each worker’s teaching session, VADER works as follows. We first

initialize the teaching iterator t = 1, teaching momentum v0 = 0
and the initial influence scores. Then, in each teaching iteration,

the VADER teacher estimates the learner’s progress and computes

all items’ teaching scores based on their teaching usefulness and

teaching diversity. Next, the teaching score is combined with the

complementary influence score weighted by the influence intensity

and the item with the maximum combined score would be recom-

mended to show to the learner. Finally, the interactions introduced

in Subsection 3.1 will be performed and the labels provided by

the learner will only be added to the current label set if the
learner is confident. The confident gauging has theoretical guar-

antee from Theorem 4.1 and it is reflected on the teacher-learner’s

third interaction step. More details are shown in Figure 6in the

Supplementary Material.

Algorithm 1 VADER (one session)

1: Input: Imperfect labeled data set DL , unlabeled data set DU ,

prediction modelψ , learner’s memory decay rate β , empirical

target concept
ˆθ , initial learning rate η0, influence intensity ξ ,

MaxIter.

2: Initialization:
3: Set t = 1 and v0 = 0. Compute the initial influence scores

p1,p2, . . . ,pN using Eqn. (20)

4: Repeat:
5: (i). Compute the teaching scores s1, s2, . . . , sN of all items in

DL ∪ DU using the objective in Prob. (11).

6: (ii). Combine the teaching score with the complementary

influence scores. The recommended teaching item has an index

of It :
It = argmin

i ∈N
si + ξipi

7: (iii). The teacher and learner perform the first two interac-

tions.

8: (iv). Based on the learner’s selections in the second interac-

tion, the teacher shows the masked explanation and the learner

provides the confidence feedback. If the learner is confident,

add his/her label to the teaching item’s label set.

9: (v). t ← t + 1

10: Until t > MaxIter

11: Output: The updated label set Lx1 ,Lx2 , . . . ,LxN

4.1 Upper Bound
In this paper, the class-conditional random error ρ+1 and ρ−1 exist
within the initial imperfect labeled setDL . Furthermore, we assume

that in each worker’s teaching session, the teacher works with a

single learner, whose initial classification performance is not as

good as the teacher. In other words, if ȳ is the label provided by the

worker, the worker will also has class-conditional random error as:

P(ȳ = −1|yдt = +1) = ρ
′
+1, P(ȳ = +1|yдt = −1) = ρ

′
−1

ρ ′+1 + ρ
′
−1 > ρ+1 + ρ−1

As shown earlier, the surrogate cost
˜C
(
ψ (x ;θ ),y

)
defined in Eqn.

(6) is an unbiased estimator of C
(
ψ (x ;θ ),yдt

)
and the empirical

target concept
ˆθ is learned using the surrogate cost. Furthermore, it

is proven in [25], the generalization performance of the surrogate

cost has the following bound with probability at least 1 − ε ,

RC( ˆθ ) ≤ RC(θ∗) +
8K

1 − ρ+1 − ρ−1
R(Ψ) + 2

√
log(1/ε)

2n
(21)

whereK is the Lipschitz constant ofC(·, ·) andR(Ψ) is the Rademacher

complexity of the prediction function class Ψ. The risk RC( ˆθ ) :=

E[C
(
ψ (x ; ˆθ ),y

)
] is defined as the expectation over the unknown

ground truth distribution.

In the proposed interactive process, we assume that the labels

provided by the learner will only be added to the current label set if

the learner is confident. Furthermore, the probability of the learner

being confident depends on the true class label as follows:

P(Conf |yдt = +1) = c+1, P(Conf |yдt = −1) = c−1

The following theorem shows the condition under which the

upper bound in Eqn. (21) can be improved.
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(a) The average teaching gain of the crowd
workers.
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(b) The label retrieval rate of the teacher and
the crowd workers.
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(c) The prediction model performance com-
parison.
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Figure 3: Experimental results w.r.t. various evaluationmetrics. Bar plots in (a) has standard deviations among group of learners per baseline
per data set. Bar plots in (b), (c) are evaluated with aggregated labels, therefore, no standard deviations in them.

Theorem 4.1. If the learner satisfies the following condition:

c+1(ρ
′
+1 − ρ+1) + c−1(ρ

′
−1 − ρ−1) < 0 (22)

then the upper bound shown in Eqn. (21) is reduced after taking into
consideration the confident labels provided by the learner.

Proof. Notice that the first and the third terms on the right

hand side of Eqn. (21) remain unchanged before and after taking

into consideration the confident labels provided by the learner. As

the complexity of the function class Ψ is fixed, the middle term is

negatively correlated to the change in terms of the sum over the

class conditional label error ρ+1 and ρ−1. It can be easily verified

by solving the inequality below and show that when Eqn. (22) is

satisfied, ρ+1 + ρ−1 is reduced after taking into consideration the

confident labels provided by the learner.

(1−c+1)ρ+1+c+1ρ
′
+1+ (1−c−1)ρ−1+c−1ρ

′
−1−ρ+1−ρ−1 < 0 (23)

□
This theorem shows that when the learners are confident about

their labels, the error rate of the labeled data set will decrease

after including these confidence labels. Followed with it, the risk

under the unknown ground truth distribution using empirical target

concept
ˆθ will gradually have smaller upper bound and getting close

to the risk using true target concept θ∗. Therefore, the empirical

target concept
ˆθ will gradually become a reliable substitute of the

true target concept θ∗ with more and more teaching iterations.

4.2 Discussion and Extensions
Case #1: Worker only has confidence on one category. As-
sume that there is a worker who is only confident about the positive

class such that ρ ′+1 is smaller than ρ+1, and she only provides the

confident positive labels. In this case, c+1 > 0 and c−1 = 0, and the

condition in Eqn. (22) is satisfied. Therefore, the updated labeled

set can still lead to a better prediction model.

Case #2: Teachingwith starving prevention.When the repeated

labeling is allowed, the overall teaching score could be high for cer-

tain items in order to favor the teaching objective. Some low-score

items could be starved and never be recommended. Then, in each

teaching session, the influence intensity ξi of i-th item could be

adaptively updated as the entropy of its label set Lxi . Intuitively,
the low-entropy label set (e.g., Lxi = {+1,+1,+1,+1,−1} of five
confident labels) will downgrade the influence score faster with

smaller ξi because the label aggregation (e.g., majority voting) for

this item is no longer debatable. The score of the high-entropy label

set (e.g., Lxi = {+1,−1,+1,−1} of four confident labels) will be
downgraded slower with larger ξi so that this item could still be

recommenced to break the tie in the later teaching iterations.

Table 2: Statistics of three data sets.

Data set # Items(DL) # Items(DU ) # Features # Workers Error rate
CAT 220 219 512 21 0.15

CANIDAE 257 257 512 19 0.15

TEXT 300 200 120 21 0.25

5 EXPERIMENTS
5.1 Details of the Data Sets
We conduct experiments on three real data sets which include two

image data sets [47] (classify domestic/wild animals) and one text

data set which belongs to a subset of 20 Newsgroup data sets and has

subject categories: comp.os.ms-windows.misc and sci.crypt. [27] (clas-
sify encryption/operating-system documents). The details of these

real-world data sets are provided in Table 2. Regarding the feature

extractions of images, we first fine-tune and transfer the ResNet34

[8] model into our binary teaching scenario on the imperfect data

set DL . Next, the features are extracted from the penultimate layer

before the average pooling layer. The explanations for images are

the saliency maps generated by Grad-CAM [30] on the finetuned

ResNet34 architecture. Regarding the feature extractions of text,

we remove the stopwords, the footers, and the quotes in the docu-

ments to prevent overfitting on irrelevant metadata. Then, the top

TF-IDF features are extracted. The explanations of the text are the

additive features extracted using LIME [29] with ten interpretable

simplified features. To inject error into the labeled data set, we

randomly flipped the labels of the labeled set with an error rate

of ρ+1 = ρ−1 = 0.15 for images data set and ρ+1 = ρ−1 = 0.25

for text data set. As for the teacher, the empirical target concept is

obtained by minimizing the unbiased surrogate logistic cost. We

have hired 61 graduate student workers to perform learning and

each worker is assigned with one exclusive teaching algorithm us-

ing Round-robin scheduling. The worker’s learning loss is also set

to the logistic loss. However, the worker’s learning concept is not

observable in practice. Following the convention [47], we estimate

the worker’s learning progress using the harmonic function [49].
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Figure 4: Visualization of the top eight high influence images (first row) and bottom eight low influence images (second row) on canidae.
Each image is described by a tuple composed of its true category and indicator of error (1 means flipped label, 0 mean no error on its label)

The experiments were conducted remotely through a web interface.

The teaching procedure is nearly real-time. But the model training

and predictions can be computationally intensive, and therefore

are only performed twice, before and after the teaching.

5.2 Quantitative Results
In order to evaluate the effectiveness and reliability of interactive

teaching we have utilized three metrics: (1) Teaching gain is de-

signed to evaluate the overall teaching performance of all workers.

(2) Retrieval rate is used to evaluate the reliability of teaching on

these items with incorrect labels. (3) Model performance com-
parison aims to evaluate the model performance before and after

teaching.

5.2.1 Teaching Gain of the Workers. The purpose of teaching is to

help the human workers learn how to improve labeling. In order

to evaluate and confirm that these workers have made progress to-

wards their annotations tasks, we propose to use the Teaching Gain,
which is defined as the labeling accuracy after teaching minus the

labeling accuracy before teaching. In the third step of interactions,

the confidence labels are also recorded, we also compute the teach-

ing gain that only takes the confidence labels into consideration.

As a comparison, JEDI [47] is an interactive teaching framework

without any explanation, VADER-lite removes the confidence gaug-

ing (i.e., JEDI with explanation) and it is a simplified version of

VADER. As shown in Figure 3a, the teaching gains of learners with

explanation outperform the baseline learners significantly, which

shows that explainable teaching is more effective. We also observe

that the confidence gauging further improves the performance of

these VADER learners on all data sets.

5.2.2 Label Retrieval Rate. We also value the reliability of teaching

in terms of the Retrieval Rate, which is defined as the fraction of

items with incorrect labels that have been corrected. As a compar-

ison, we use the empirical teacher
ˆθ as the baseline and compare

it with the initial crowd labels, the updated crowd labels, and the

confident crowd labels. The label aggregation is performed by first

using the minimax conditional entropy approach [44] to estimate

the worker expertise and then take the weighted average of their

labels. The results are shown in Figure 3b, we observe that the cat

and canidae data sets are relatively difficult compared with the text

data set because the former two have a lower retrieval rate. We also

conclude that fixing the mislabeled items using the taught workers

is more reliable using the original teacher. The retrieval rate results

in Figure 3b show that VADER is better than or comparable to

the state-of-the-art teaching models. As the analysis shown in Sec-

tion 4.1, explanation is surely helpful when the confidence gauging

is performed. Theorem 4.1 guarantees that if the initial labeling

abilities of the workers are lower than the teacher, the proposed

teaching model could guarantee their improvement after teaching.

If this assumption is not satisfied, Figure 3b shows empirically these

workers could still eventually benefit from the teaching.

5.2.3 Model Performance Comparison. Using the aggregated crowd
labels, we retrained the prediction model and compared the perfor-

mance of the retrained model with the teacher’s performance. As

shown in Figure 3c, comparing with the teacher, the performances

of the workers regarding cat images and text have a clear improve-

ment in terms of accuracy. The performance difference on canidae

images is not very obvious. The reason is that the retrieval rate of

the items with incorrect labels in canidae is very low. Even among

the confident labels, most of these high influence items that have

incorrect labels did not get fixed. Therefore, the prediction mod-

els of the teacher and the workers are about the same on canidae.

Figure 3a shows the self-improvement of these learners before and

after teaching. However, the model performance, shown in Fig-

ure 3c, is mostly influenced by the difficult items, e.g., the items

near the decision boundary. Learners with a large teaching gain

could improve their labeling abilities on the easy items, which do

not necessarily have an impact on the model predictions.

5.3 Qualitative Results
We qualitatively checked the results of the influence scores. The top

eight high influence canidae images and bottom eight low influence

canidae images are shown in Figure. 4. The highly influenced images

are actually the ones with flipped labels and those of easily confused

breeds (e.g., Dingo and Akita, Samoyed and Arctic Fox, etc.). The

lowest influenced images did not have a trend on selecting certain

types of images and the label flipped images are rare in them. It is

straightforward to know that perturbing the labels of these highly

influenced images would have a large impact on the prediction

model. Teaching the workers should follow the curriculum principle

by recommending items from low to high influence.

We also compare influence and marginal distance of the items

for all three data sets. The marginal distance of an item is its ge-

ometrical distance from the discriminatory boundary and it has

widely used in standard active learning strategies like uncertainty

sampling and expected error reduction. We hypothesize that those

items near to discriminatory boundary are crucial to classification,
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Figure 5: Influence vs. marginal distance on three data sets: (a) Cat, (b) Canidae, and (c) Text. Pearson correlation coefficient r and its signifi-
cance value p are reported. Y-axis represents normalized value for influence and marginal distance, normalized to the scale [0, 1].

there by given high values of influence. Pearson correlation coeffi-

cient between marginal distance and influence for all the examples

supported our hypothesis. The plots for Cat, Canidae, and Text data

sets are shown in Figure 5. For each plot, r and p values represent

correlation coefficient and significance respectively. From the fig-

ures, it can be observed that, those items that are close to boundary

are commonly given high influence values. However, with the help

of the visualization results from Figure 4, we also observe that un-

like marginal distance, the influence computing scheme used in the

proposed VADER framework also takes difficulty of the labeling

the image into consideration. These visually hard-to-distinguish

items usually have high influences and this observation matches

with the principle of curriculum learning.

6 RELATED WORK
6.1 Explanation Models
Understanding why a model makes certain predictions is as impor-

tant as the model performance on many occasions [1, 7, 13, 14, 43],

especially in high-stakes decision-making applications. Starting

from deconvolution [26] and guided backpropogation [34], mul-

tiple efforts have been made to explain deep models. Inspired by

the global average pooling architecture [18], one of the most popu-

lar and effective explanation models for images is class activating

mapping (CAM) [30, 42]. In the original CAM model, the activation

weights need to be learned as part of the architecture. However,

the Grad-CAM generalizes CAM by enabling these weights to be

learned using the gradients on the activation maps without retrain-

ing the model. Another branch of explanation models is additive

feature based models, which focus on using simplified features to

approximate the original model. LIME [29] locally explains the

model using perturbed examples. DeepLIFT [32] decomposes the

output on a simple input by backpropagating contributions to every

input feature. Shapley value estimation [21] assigns each feature

an importance weight for a particular prediction by guaranteeing

local accuracy, missingness, and consistency. However, none of

these approaches provide visual explanations to guide the learning

procedure of crowd workers with theoretical connections between

worker and learners.

6.2 Crowd Teaching
In the context of crowdsourcing [22, 23, 28, 37, 44, 46, 48], crowd

teaching is a sub-area of machine teaching[50] where the learners

are crowd workers and the teacher is the machine that guides the

learners towards a specific labeling concept. It supervises the la-

beling process of crowdsourced workers in the form of teaching

in order to improve the workers’ annotation expertise and collect

data sets with higher label quality. Previous research [3, 47] has

shown that non-experts can be trained to perform accurate and

complex tasks. Based on the teaching styles, the methodology of

performing crowd teaching has two branches. The first branch of

approaches [4, 24, 33] treats the workers as global learners who

learn things in large jumps holistically. The hypothesis transition

model STRICT [33] assumes the worker’s concept are randomly

switched in the pre-given hypothesis space which is computed on

observed workers’ feedback. The model in [24] extends STRICT by

considering both the item explanation and modeling representa-

tiveness. Another branch of crowd teaching [19, 38, 40, 47] treats

the workers as sequential learners who learn concepts in continu-

ous steps. Starting from the iterative machine teaching (IMT) [19],

multiple efforts have been made in this direction. JEDI [47] assumes

learners have forgetting behavior and it extends IMT by guaran-

teeing the teaching usefulness and teaching diversity. Instead of

teaching a single learner at a time, the model in [40] extends IMT

to the scenario of classroom teaching by teaching a diverse group

of learners. In [9], the authors have proposed a greedy approach to

teach a forgetful learner multiple learning concepts by assuming

every single concept decays over time. Our work belongs to the

general framework of sequential teaching with adaptive learning

rate and confidence-gauged label feedback. However, global teach-

ing requires a heuristic pre-defined hypothesis space and sequential

teaching requires the unknown target concept beforehand. As a

comparison, the unbiased empirical risk minimizer used in this

paper is a reliable and realistic substitute of the optimum target

concept with a bounded performance guarantee.

6.3 Learning with imperfect Labels and
Imperfect Labelers

Learning from imperfect labels is very useful in many applications

[17, 31, 36, 39, 41], as a large number of imperfect labels are rela-

tively easy to collect using crowdsourcing. In the traditional setting
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Figure 6: Interactions between the teacher and the worker on one canidae image.

of supervised learning, these imperfect labels are usually treated as

outliers or label flips. However, imperfect items could be beneficial

for learning because they have a certain level of significant mass.

The work of [25] proposes to modify the loss term with pregiven

class-conditional error and ends up with a error-tolerable learning

model. A system of learning from imperfect labels by leveraging a

knowledge graph has been used in [15]. The modified deep model

[35] could also be adapted to learn using flipped label error and out-

lier error by introducing an extra error layer into the network. From

another perspective, researchers also devote effort on learning with

imperfect labelers. Existing work [31, 39] addresses the repeated ac-

quisition of labels from multiple imperfect labelers for every single

item in active learning. The re-active learning model [17] extends

the concept of active learning with crowdsourcing by allowing the

labeled item being re-labeled using impact sampling. The investi-

gation conducted by [16] further pointed out that item re-labeling

would be helpful when the learning problems have high model ex-

pressiveness. For all that, impact sampling requires multiple model

retraining which is computationally prohibitive and uncertainty

sampling could easily starve items [17] and has difficulty handling

item re-labeling. Our model estimates each item’s influence on the

prediction model using label perturbations without model retrain-

ing and yet has the ability to either perform re-labeling or assign

new labels to the unlabeled items.

7 CONCLUSION
In this paper, motivated by the huge demand for fine-grained label

information from real applications, we propose a novel framework

for interactive teaching and learning between the teacher and the

crowd workers. It utilizes the empirical minimizer as the target

concept of the teacher, and instructs the learners to focus on the

informative visual cues during learning. This framework benefits

both the teacher and the workers in terms of the performance of the

predictive model for the teacher and workers’ expertise. Compared

with state-of-the-art techniques, this framework takes one step

further towards the real-world crowd teachingwith explanations, as

it is designed for imperfect teacher and workers. Furthermore, our

analysis of the proposed framework is verified by the experiments

on various data sets.
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SUPPLEMENTARY MATERIAL
A. Interactions on Images and Texts
The three-step interactions between the teacher and the worker

for an image item are shown in Figure 6. In Step-1, the teacher will

recommend one image and ask for the initial label from the worker.

In Step-2, the teacher will demonstrate its probabilistic soft labels

regarding this image as well as the visual explanations (saliency

map for images). Then, the worker could provide the updated class

label and the preferred visual explanations. For instance, let’s say

the worker has chosen “Wild” and “Right” for the given image. At

last, the third step is designed to collect the confidence information

regarding his/her choices made in the second step. The masked

image will be generated by applying a thresholded saliency map

on the original input image. The threshold would be the teacher’s

probability 0.382 and any pixels with its grayscale value higher than

⌊255 × 0.382⌋ = 97 will remain visible. If the worker selects “Yes”

in Step-3, then we assume s/he is confident regarding the updated

label in step-2 and this label will be added to the item’s label set.

One important thing should be noticed is that when the teacher’s

confidences regarding two classes are approximately equal (∼ 0.5),

the masked explanation for confidence evaluation will be almost

the same no matter which class label the worker chooses.

B. Reproducibility
To better reproduce the empirical analysis presented in the pa-

per, we provide additional implementation details on the proposed

VADER algorithm. The implementation and data sets will be re-

leased upon acceptance. All three data sets are randomly split to

have 50% as DL - examples with labels and 50% as DU - examples

without labels. In order to inject error into DL , we randomly flip

labels with an error rate of ρ+1 = ρ−1 = 0.15 for image data sets

and ρ+1 = ρ−1 = 0.25 for text data set. The initial learning rate of
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the worker is set to η0 = 0.02 and it will be gradually decreased

as ηt =
20

20+t η0. The memory decay rate β of the workers is not

available to the teacher beforehand and we use the image sequence

sorting task to estimate each worker’s β as β = 1 − 1

n̄ where n̄
represents for their mean of maximum number of ordered images

they can recover in the image sorting game designed in [47]. Em-

pirically, β is assigned with one of the values of {0.75, 0.833, 0.875}

where, correspondingly, n̄ has been discretized into three memory

window ranges [3, 5], (5, 7], (7, 9]. Based on our observations, all

participants have 3 ≤ n̄ ≤ 9, then learners’ decay rate is grouped

into these three values (e.g., β = 1 − 1

4
= 0.75, β = 1 − 1

6
= 0.833,

or β = 1 − 1

8
= 0.875). Regarding the implementation of estimating

worker’s concept, we use the harmonic function [49]. The kernel

weight between the i-th and the j-th items denoted by xi ,x j respec-
tively, is calculated as:

ωi j =


exp

(
−
∑
d=1

(xid−x jd )
2

σ 2

d

)
, ⇔ Image data set

exp

(
− 1

0.03

(
1 −

x ⊤i x j
∥xi ∥∥x j ∥

))
, ⇔ Text data set

where d is the index for features and σd is the sample variance on

d-th feature dimension. To deal with the “cold-start” problem, we

ad-hocly set the first 20 teaching items as the bottom low influence

ones without combining the teaching scores. Therefore, the worker

will be taught with easier items as the start and at the same time,

the teacher could get stable estimations of the worker’s learning

progress using these 20 items.
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