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ABSTRACT

The need for annotated labels to train machine learning models
led to a surge in crowdsourcing - collecting labels from non-experts.
Instead of annotating from scratch, given an imperfect labeled set,
how can we leverage the label information obtained from amateur
crowd workers to improve the data quality? Furthermore, is there
a way to teach the amateur crowd workers using this imperfect
labeled set in order to improve their labeling performance? In this
paper, we aim to answer both questions via a novel interactive teach-
ing framework, which uses visual explanations to simultaneously
teach and gauge the confidence level of the crowd workers.

Motivated by the huge demand for fine-grained label informa-
tion in real-world applications, we start from the realistic and yet
challenging assumption that neither the teacher nor the crowd
workers are perfect. Then, we propose an adaptive scheme that
could improve both of them through a sequence of interactions: the
teacher teaches the workers using labeled data, and in return, the
workers provide labels and the associated confidence level based
on their own expertise. In particular, the teacher performs teach-
ing using an empirical risk minimizer learned from an imperfect
labeled set; the workers are assumed to have a forgetting behavior
during learning and their learning rate depends on the interpre-
tation difficulty of the teaching item. Furthermore, depending on
the level of confidence when the workers perform labeling, we also
show that the empirical risk minimizer used by the teacher is a
reliable and realistic substitute of the unknown target concept by
utilizing the unbiased surrogate loss. Finally, the performance of
the proposed framework is demonstrated through experiments on
multiple real-world image and text data sets.
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1 INTRODUCTION

The prevalence of complex models, such as deep neural networks,
has enabled unprecedented breakthroughs in a variety of real-world
applications, including data mining, computer vision, natural lan-
guage processing, etc. Many of these models are supervised in
nature, which assume abundant labeled data for model training
obtained from the annotation process [5, 10, 44, 45]. However, cur-
rent annotations may be insufficient for fine-grained categorization
tasks. These tasks focus on discriminating items at the subordinate
level. Examples of fine-grained categorization tasks include: dis-
tinguishing images showing different breeds of cats or dogs (as
opposed to simply distinguishing if the image contains a cat or a
dog); sorting various topics of documents, or categories of emails
for the tasks in text classification; analyzing multiple types of can-
cer tissue images, types of arrhythmia ECG signals for the tasks
in medical diagnosis. As the demand for such fine-grained catego-
rization tasks has increased [6], the qualitative and quantitative
requirements for annotations have also significantly increased.

In fine-grained categorization, the distinctions between cate-
gories are usually subtle and highly local. As such, fine-grained
categorization is more challenging than the common high-level
classification tasks. Fine-grained categorization has fewer discrimi-
native features and often suffers from lower quality labels. In terms
of features, distinguishing between the image of a house and the
image of a dog is easy since highly distinct visual features can be
extracted to classify these two categories. However, in fine-grained
categorization tasks, such as classifying a domestic cat and a wild-
cat, visually discriminative features are often scarce and tend to
be more locally distributed. For example, the Lynx (one species
of the wildcat, Figure 1) usually has larger paws, longer chest fur,
and pointed ear tufts. However, the face of a lynx can easily be
mistaken as a common domestic cat. If only the facial features are
considered, the fine-grained classification can fail. Thus, the task
of categorizing fine-grained items requires human labelers to have
a strong domain knowledge about the subject area, so that s/he
can correctly identify visual cues and perform annotations. Unfor-
tunately, the most popular means of collecting the labeled data is
through crowdsourcing platforms (e.g., Amazon Mechanical Turk,
Figure Eight, etc.) where annotations are outsourced to a group of
mostly unskilled online workers. While such crowdsourcing may
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Figure 1: An example of fine-grained cat categorization. Left: origi-
nal input image of a Lynx. Middle & Right: visual cues of predicting
it as domestic cat and wildcat generated using Grad-CAM [30].

be adequate for high level categories (such as the house versus dog
example), labels obtained from these crowdsourcing platforms may
be insufficient for training fine-grained categorization models even
after cleaning and aggregation using state-of-the-art techniques.

For the sake of collecting and post-processing labels that will be
suitable for fine-grained categorization, several approaches have
been proposed to identify high-quality crowdsourcing workers who
have a good understanding of a specific domain [28, 44]. (1) Pro-
viding general instructions to all workers regarding the specific
labeling concept. (2) Mixing the “gold standard” questions with true
crowdsourcing questions and filtering out the unqualified workers
who continuously provide incorrect and random answers on the
“gold standard" questions. (3) Modeling and estimating the expertise
of these workers, then down-weighting the votes of the weak work-
ers. These approaches can potentially reduce the error within the
labels, but they also suffer from several problems such as low anno-
tation rates and limited numbers of qualified workers, all of which
place a huge burden on the mechanism designer when specifying
the annotation tasks.

Therefore, in this paper, we focus on improving crowdsourcing
annotations for fine-grained classification tasks by introducing a
novel interactive learning and teaching framework. It is designed
to increase the model performance by relabeling and expanding the
existing labeled set. It is also able to improve the labeling expertise
of the crowd workers or learners by providing explanations for the
visual cues. The major contributions of this work include:

e Framework: The proposed adaptive crowd teaching frame-
work is designed to have three-step interactions between
the teacher and the learners. The learners could provide con-
fident annotations to either relabel the labeled items or give
initial label to the unlabeled ones.

o Adaptation: The main objective of teaching considers both
the influence of items by incorporating the principle of cur-
riculum learning and the personalized learning progress of
the learner by balancing between the usefulness and diver-
sity of the teaching sequence.

e Analysis: A theoretical bound of this interactive teaching
scheme has been provided to fit the realistic teaching sce-
nario of using empirical cost minimizer as the target concept.
The confident labels provided by the workers can also reduce
the error rate of the labeled items.

e Experiments: We have built a web-based platform to con-
duct the experiments. The teaching effectiveness and teach-
ing reliability of the framework have been validated on three
real data sets of images and text documents.
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The remainder of the paper is organized as follows. We first intro-
duce the problem definition in Section 2. Then, we formally present
the proposed interactive teaching framework in Section 3 followed
by descriptions of the algorithm and the discussions of the model
in Section 4. The experiments and results are presented in Section
5 and the related work is discussed in Section 6. We conclude the
paper in Section 7.

2 PROBLEM DEFINITION

In this section, we provide the preliminary regarding the inter-
pretable explanations. Next, the notation and the definition of adap-
tive crowd teaching are formally presented.

2.1 Preliminary: Interpretable explanations

We denote the original prediction model ¢/(-; 8), parameterized by 0,
as the model that we want to explain. Understanding the way that
a model (e.g., random forest, convolutional neural network, etc.)
makes decisions is crucial in understanding the model’s behaviors.
Proper explanations can engender trust from the users and provide
insights into model properties [21, 29, 32]. The essential criterion
of explanations is that they should be interpretable by humans.

2.1.1 Feature-additive explanation. We denote g(-) as the feature-
additive explanation model which uses a simplified feature x’
(which is treated as the interpretable input due to its low dimen-
sionality comparing with the original feature x) as its input. This
interpretable input x’ is usually mapped from the original input x
through a mapping function as: x = hx(x’). The additive feature
explanation models are local methods that are designed to ensure
g(x") = ¢ (hx(x’); 6). Overall, the additive feature method will have
a linear interpretable model:

d
gx') = go+ ). ¢yx] (1)
=1
where d is the number of simplified features. One of the most promi-
nent text explanation models using additive features is LIME [29],
which minimizes the following objective:

mgin I, g, 7mx) + Q(g) 2)

where Q is the complexity measurement used to penalize the expla-
nation model g(-). LIME imposes the faithfulness of the explanation
model g(-) towards the original model ¢/ (hx(x’); 6) by enforcing
through a cost I(}/, g, 7mx/) over a set of perturbed samples weighted
by a local distance kernel 7.

2.1.2  Saliency-based Explanation. Saliency maps are often consid-
ered to be explanatory and they are extremely useful in categoriza-
tion tasks to determine which area of the observation is relevant.
One of the most popular approaches for generating saliency maps
is Class Activation Mapping (CAM) [30, 42]. Utilizing Gradient-
weighted CAM (Grad-CAM) [30], the saliency explanation is gen-
erated using gradient information flowing into the last convolution
layer of the neural network to understand the importance of each
neuron for a decision of interest.

Given an input image, let o be the score for class c after the
forward pass of the neural network. Then, the gradient of 0 with
respect to the k-th activation map A¥ of the last convolutional layer



Table 1: Summary of symbols

‘ Category ‘ Symbol Definition
Dy Imperfect labeled data set
Dy Unlabeled data set
Feature vector and aggregated
(S;:::::;l i Yi imperfect label of the i—thitem
z=(x,y) Item tuple of feature and label
Setofcrowdsourcinglabels
Ly, .
i foritem x;
Nonm # ofallitems, # ofitemswith
T initiallabels, # offeatures
1) Indicator function
0(:0).4 Predictionmodeloftheteacher
T anditsrealvalueprediction
Teacher c é Costfunctionandthesurrogate
Model (), CC2) costfunctionoftheteacher
Lup, params(z) Influence of upweighting z
I Influenceofperturbingthe
pert.loss(2: Ztest) labelof z onatestitem zsess
P1.P2,- - PN Influence scores
Memorymomentumatthe
Ut .
Learner t—thte.achmgstep
Model L) Learning loss of the learner
w Rescalingcoefficientoftheselected
L item(index I; )in t—thteachingstep
Interpretabledifficultyof
Dee) anitem’sexpl. i
planation e

is calculated as gzi - The overall importance weight o} of the k-th
activation map for c-th class is global average pooled as:
1 0o°
133 g
k k
==t

where Z is the norm of the gradient for normalization purposes.
Next, the forward activation maps of the last convolutional layer are
added up using this importance weights and a ReLU operation is fol-

lowed to obtain the saliency map for each class as ReLU( Dk al‘;Ak )

2.2 Notation

All frequently used notations in the remaining of this paper are
summarized in Table 1. We denote X c R™ as the m-dimensional
feature representation of all examples (e.g., images or documents)
and Y = {+1, -1} as the collection of labels!. In crowdsourcing,
each item usually has one or more labels collected from the work-
ers. For each x; € X, we let (x;, Ly,) be the corresponding input
pair, where Ly, = {y}.v%, ... .y;'} C Y is the set of imperfect
labels for x;, and 7; is the number of such labels for x;. We let
Dy = {(xi,Lx;)}}, be the imperfect labeled data set collected
from the crowdsourcing workers and Dy = {(x;, in)}{iwrl be
the unlabeled data set. Each item in 9y has 7; > 1 and each item in
Dy has Ly, = 0. Notice that in conventional supervised learning
setting, the collected set of labels Ly, for each item x; are usually
aggregated as one label y; to train the model. After aggregation, fol-
lowing [25], we also define the class-conditional error rate p41, p—1

! Although this paper focuses on the binary classification setting, the proposed tech-
niques can be naturally generalized to multi-class setting.
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Figure 2: An overview of the interactive learning and teaching
framework.

of the labels in Dy as:
(4)

where yg; is the underlying ground truth label and p41 +p—1 < 1.1t
should be noticed that in remaining context, the phrases of worker
and learner are used interchangeably.

p+1 = P(y = —1lyg: = +1), p-1 = Py = +1lyge = -1)

2.3 Problem Setting

Given an imperfect labeled data set Dy, that has a mixture of mostly
correct labels and possible a small fraction of incorrect labels, an
unlabeled data set Dy, a real-valued prediction model (-; 8), and
a group of crowd workers, the proposed framework is designed to
simultaneously target the following two objectives:

e Objective I: The framework aims to improve the predic-
tion model’s performance by providing a new labeled data
set Dpey with better label qualities. Dyeqy includes three
groups of data items: (a). A group of items that originally
belong to Dy, but have been re-labeled and verified by these
crowd workers; (b). A second group of items that also belong
to Dy, but their labels stay untouched; (c). Another group
of items that originally belong to Dy but eventually get
labels from crowd workers. With the new data set Dyeqy,
the prediction model ¢/(-; ) is expected to have improved
performance.

e Objective II: The framework uses the prediction model
¥(+; 0), which is not perfectly trained because it is optimized
on the imperfect labeled set Dy, as the teacher to interac-
tively teach the crowd workers by showing them a personal-
ized sequence of items with probabilistic prediction labels
and fine-grained visual explanations. In this way, the crowd
workers would have improved labeling abilities for the an-
notation tasks after teaching.

3 ADAPTIVE TEACHING AND LEARNING
Let the prediction model /(-; 0) be the teacher, where the parameter

vector 6 is obtained by minimizing a cost function C(:, -) over the
labeled training data. To teach the crowd workers, we assume that
the teacher knows the empirical target concept? § beforehand,
which is defined as:

6 = arg min ! Z C((xi;0),y:) (5)
o "iO

where n represents the number of training examples in Dr.

%In practice, the true target concept 6, is usually unknown. In Section 4, we will
demonstrate that the risk of the empirical target concept is bounded, and it is reasonable

to perform teaching with 6.



Notice that in our setting, the aggregated labels y;, which are
obtained from the imperfect label sets, still include errors in nature.
In order to obtain effective prediction models in the presence of
labeling error, we adopt the surrogate cost function proposed in [25],
which is defined as follows:

< (= p_y)CBy) - pyCld -
Gloy) = pylji?_;i(y y)

O

where § = /(x; 0) and the class dependent error rate of the sur-
rogate cost is defined as: p, = pE(ly:+1)pH7(1y:_1). Lemma of [25]
shows that this surrogate cost on the imperfect labels is an unbiased

estimator of the original cost on the underlying true label y4; as:

Lemma 3.1. If C(§,yq¢) is a bounded cost function and § is a
real-valued prediction. Then the surrogate cost C(i), y) constructed in

Eqn. (6) hasEy [C‘(y, y)] = C(§,ygt) for any .

3.1 Interactions Between Teacher and Learners

An overview of the interactive learning and teaching between learn-
ers and the teacher is provided in Figure 2. Each teaching iteration
includes the following steps:

e First, the teacher recommends and shows an item to the
learner based on the ranking score, which considers both
the learner’s learning progress and the item’s influence on
the prediction model. The learner is then asked to provide
his/her initial label for item.

e Second, the teacher shows the labels made by its prediction
model along with their probability scores and the visual ex-
planations. The learner is then asked to give his/her updated
labels and trusted explanations.

o Third, the teacher evaluates the learner’s confidence regard-
ing his/her annotations using the masked explanations. If
learner’s confidence is high, the provided label will be added
into the label set of the item. Otherwise, the label will not
be recorded.

3.2 Learner Model

In the process of interactive teaching, each learner observes a se-
quence of items and their corresponding label information as well as
the visual explanations provided by the teacher. The most prevalent
modeling [19, 20, 40, 47] of the learners is assuming that they made
linear decisions, i.e., (0, x), and have an iterative gradient-based
procedure for concept learning. The adaptivity of the learner is
reflected in three aspects: each learner has a personalized memory
decay regarding the learned concepts with an exponential rate;
the learning rate is adjustable in terms of the item interpretation
difficulty; and the learning concept of each learner is estimated
from his/her previous labels.

Similar to iterative crowd teaching [47] , we also treat the learner
as having an exponential decayed retrievability of memory:

™

where we denote I; as the index of the selected teaching item in
the ¢-th teaching step, and L(, -) is the learning loss of the learner.
Usually, the initial memory momentum vy is set to 0, then, the

Ut = 'th_l + Vgtfl‘g(e;—lx[t’yh)
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memory momentum of the learner for the ¢-th learning step is:

t

v = > BV LOTx1,.u1,)

r=1

®)

Here, f§ € (0, 1) is the personalized memory decay rate of the learner
and r is the index of teaching iteration. The learners use the gradient
based learning procedure to improve their concepts in an iterative
way with learning rate n;:

©)

where the learning rate also depends on a re-scaling coefficient wy,
that has a connection with the interpretable difficulty of the item.
Intuitively, the teaching items that are easier to interpret should
have a larger learning rate (by setting wy, larger) and the difficult
items should have relatively smaller learning rate (with smaller
wr, ). After the t-th teaching step, the learner applies a linear model,
i.e., (0, x), to make predictions using the learned concept 6;.

0 =01 - nNtwr, Ut

3.3 Teacher Model

The teacher observes all items (e.g., images, text, etc.) which include
their feature representation and labels. The teacher is also assumed
to have access to the learner’s learning procedure. Given the em-
pirical target concept 0, the teacher aims to maximize the learner’s
speed of convergence [11] in terms of learning by minimizing the
distance of the learner’s current concept from the empirical target
concept in two consecutive iterations t and ¢ — 1. Then, the teaching
objective can be decomposed as:

|12 |12
Jex -], - lee-1 - 4]
2 2
t 2
=njw} Zﬂ“’ver,lﬁ(@llnﬂyh) (10)
r=1 2

t
~2npwr, (611 = 6, ) Vo, L0 1x1,.u1,))
r=1

For t-th teaching iteration, the teacher only aims to recommend
the teaching item (xz,,yz, ) with its explanation ej, . Therefore, all
the terms in Eqn. (10) that don’t include ¢-th teaching item can be
excluded from the objective. With some simplifications, the goal of
recommending the next teaching item is formulated as a pool-based
searching problem?:

s 22 T 2
(x1, y1,- e1,) = argmin niwi, ||V, , L0 x.y) + vr1,
X,y,e

20wy, <é —6:-1,-Vg, , LOx, y)>

From the above objective, we know that the learning direction of
a learner is -V, | .E(H;'—_lx, y). The teacher prefers the negative
gradient of the ¢-th teaching item to be similar as the concept mo-
mentum v;_1 in order to increase the teaching sequence diversity.
At the same time, the second term of the objective also suggests
that the negative gradient of the teaching item has a large correla-
tion (i.e., large inner product) with the optimal learning direction

(11)

3The item x is either from Dy, or Dy, its label y is predicted using teacher’s model
¥(+; 0), and the corresponding explanation e is generated utilizing the methods de-
scribed in Subsection 2.1.



o - 0;—1. Overall, this teaching scheme aims to simultaneously
maximize the teaching diversity and teaching usefulness.

It should be noticed that the candidate pool of teaching items
includes both Dy and Dy, which means that the framework either
allows the worker to re-label current teaching item xj, (if it belongs
to Dy ) by expanding Ly;, with one more label or annotate x, (if it
belongs to Dy7) by adding the first label to its empty label set.

3.4 Interpretation Difficulty

An item (e.g., image or text) with a smaller attention region (e.g., a
small area of pixels or a few keywords) being highlighted would
indicate that less effort is needed for a worker to interpret the visual
explanations. For example, if the breed of a cat in one image has been
correctly predicted by the model, the explanation which highlights
the attention area of the head & the body would be much easier to
understand than the explanation that highlights the whole image
that includes the cluttered background because the background
does not matter during predictions. Similarly, the explanation that
highlights a few representative words, e.g., “key", “security”, for
an encryption-related document, will be easier to interpret than
the document with too many words being highlighted. We define
the interpretation difficulty of an explanation e as the entropy of
all entries on a saliency map (e.g. for image items) or an additive
feature vector (e.g. for text items):

Die) = _Zj ejlog(ej),
- Zh,v eh,vlog(eh,v)v

& Feature-additive explanation

& Saliency-based explanation
(12)
where the e; is the j-th interpretable feature of the additive fea-
ture vector and ey, ,, is the visual cue at the (u, v) location on the
saliency map. Furthermore, no matter if it is the explanation of
the saliency map or the additive feature vector, all entries could be
normalized to span the range of [0, 1] and satisfy the property as
a probability distribution. Since the entropy of explanation is the
proxy of the interpretation difficulty, then we can properly encode
the re-scaling coefficient of a selected teaching item (with index
D(e
I; at t-th teaching iteration) as wy, = el_y. Usually we set
k = max D(e) to be the maximum interpretation difficulty of all
possible explanations (i.e., e is an uniformly distributed explana-
tion). The re-scaling coefficient will always have a value of 1 when
the framework is reduced to the setting of standard iterative crowd
teaching (by demonstrating the whole image or document without
providing visual explanations).

3.5 Item Influence

The existing teaching scheme usually assumes all items have an
equal influence on the prediction model. However, in real-world
teaching, a more effective strategy is following the principle of cur-
riculum learning [2], which encourages the recommended teaching
sequence to have tasks that range from easy to difficult. Intuitively,
if the learners are making linear decisions during learning, the easy
items should be demonstrated to them in their earlier learning stage
so that they can make fewer mistakes. These easy items should have
some small influence on the prediction model as if they are usually
the data points with a large marginal distance in the feature space.
Gradually, with the more teaching iterations, the more difficult
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items should be shown to the workers who should already have
improved their labeling expertise. These difficult items usually have
large influences (i.e., changing their labels would impact the model
behaviors significantly) on the prediction model because they are
the data points with incorrect labels or the data points that have
small marginal distances to the target concept.

Then, the overall goal becomes teaching the crowd workers by
demonstrating a personalized sequence of items that are effective
for the concept learning as well as having increasing influences. To
begin with, we compute the influence scores p1, p2, . .., pN over all
items, which is defined as the model prediction’s change w.r.t.
the label perturbations. We denote the item with its label as
z = (x,y), and we further define its label perturbed version as
zs = (x,y + 9). For simplicity, we denote é(lﬁ(x; 0),y) as C(z, 0).
Consider the perturbation z — zg, and let 6, 5,—z be the empirical
risk minimizer on the training items with zs in place of z. As an
approximation of its influence when moving a small mass € from z
to z5, we have:

R 1< . . .
Oc, 25,z = argmin - Z C(zi,0) + €C(z5,0) — eC(z,0) (13)
0 i=1

The influence functions introduced in [12] provide an efficient ap-
proximation for the computation of upweighting z as: Lup params (2)
4Pe.z

de |.—
turbing the label y should be given as the difference of the influences
between upweighting zs5 and upweighting z:

= —HgIVgé(Z, 6). Then, the parameter change of per-

dge,za,—z

de

o = Iup,params(zb') - Iup,params(z) (14)

= -H! (vgé(25, 0) - VoC(z, é))

where the Hessian is given as H; = % P Vgé(zi, 6). 1 C is in
differentiable in § and y. Also, the soft label y is continuous and
the amount of perturbation ¢ is small, the above equation can be
approximated using the first-order derivative approximation by
treating VyC(z, 0) as a function of y. Then, we obtain:

d96,25,—z

I (15)

~ —HHTlVngé(z, 6)s

€=0

1

If the upweighting mass is set as € = -, we can have the linear

approximation: 0,5, — 6 ~ —%HgflVyVQ(:‘(z, 0)8. Next, we apply

the chain rule* to measure the influence of perturbing y on a test
item:

Ipert,loss(z,ztest) = Véé(ztest, éz(s,—z)
9=0 (16)

1_ - N <

—=VyC(ztest,0) "H, 'V, VoC(z,0)
n 6

Example 3.2 Influence calculation for surrogate logistic cost.

Considering the binary classification problem on a logistic regres-

sion model where o(t) = 1++ is the sigmoid function. The
exp(—t)

logistic cost of any item z = (x,y) is given as C(z,0) = log(1 +

exp(—yGTx)) and the surrogate cost C(z,0)is given in Eqn. (6). The

ﬁé(ztest,é)

< = > is satisfied.
bz5,-2 a6

é(ztestsézg,—z)

o
“It is implicitly assumed that



gradient of the surrogate logistic cost VC(z, 0) w.r.t § respectively
are given as:

|(p-y = V=07 x) - pyo(-y0Tx)|yx
1-p+1—p-1

(17)

VoC(z,0) =

Following the above derivation, the gradient w.r.t the variables y
and 0 is given as:

(p-y — Do(=y0" )| 1 - (O x)exp(y0” ) (-0  x)y | x

V V é z, 9 =
yveo (z,0) 1— pe1 - pi
pya(yGTx)[l + (9Tx)exp(—y9Tx)0(y9Tx)y]x
- 1-p+1—p-1

(18)

Interestingly, the Hessian of the surrogate logistic cost w.r.t 6 is the
same as the Hessian of the logistic cost, it is given as:

V2C(z.0) = y* - o(y0Tx) - o(—y0 x) - xxT = VEC(2,0) (19)

Overall, the label perturbation influence on any item z;,s; for the
unbiased surrogate logistic cost can be computed by substituting
Eqn. (17) - (19) into Eqn. (16). A

The influence of label perturbation could be either positive (per-
turb labels from —1 to +1) or negative (perturb labels from +1 to
—1). Therefore, we compute the influence score of any item z¢s;
using its absolute influence value on each labeled item as:

n
Ptest = Z ’-Z:{)ert,loss(ziaztest)’ (20)
i=1

4 ALGORITHM

Based on this overall objective (Subsection 3.3 and 3.5) which con-
siders both the learner’s learning progress as well as the item’s
influence, we propose the adaptive interactive teaching algorithm
VADER (Visually ExplAinable ADaptive TEaching with Human
LearneR). The VADER teaching algorithm is shown in Algorithm 1.
The given input includes the labeled and the unlabeled data set, the
teacher’s prediction model, the learner’s memory decay rate, the
empirical target concept, the learning rate, and the influence inten-
sity. The algorithm will output the updated label set of all items. In
each worker’s teaching session, VADER works as follows. We first
initialize the teaching iterator t = 1, teaching momentum vy = 0
and the initial influence scores. Then, in each teaching iteration,
the VADER teacher estimates the learner’s progress and computes
all items’ teaching scores based on their teaching usefulness and
teaching diversity. Next, the teaching score is combined with the
complementary influence score weighted by the influence intensity
and the item with the maximum combined score would be recom-
mended to show to the learner. Finally, the interactions introduced
in Subsection 3.1 will be performed and the labels provided by
the learner will only be added to the current label set if the
learner is confident. The confident gauging has theoretical guar-
antee from Theorem 4.1 and it is reflected on the teacher-learner’s
third interaction step. More details are shown in Figure 6in the
Supplementary Material.
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Algorithm 1 VADER (one session)

1: Input: Imperfect labeled data set Dy, unlabeled data set Dy,
prediction model ¢/, learner’s memory decay rate f3, empirical
target concept 0, initial learning rate 7, influence intensity £,
Maxlter.

2: Initialization:

3: Sett = 1 and vy = 0. Compute the initial influence scores
p1.P2, - . ., pN using Eqn. (20)

4: Repeat:

5. (i). Compute the teaching scores si, s2, . .
D1 U Dy using the objective in Prob. (11).

6:  (ii). Combine the teaching score with the complementary
influence scores. The recommended teaching item has an index
of Iy:

., sy of all items in

Iy = argmin s; + &ip;
ieN

7. (iii). The teacher and learner perform the first two interac-
tions.

8:  (iv). Based on the learner’s selections in the second interac-
tion, the teacher shows the masked explanation and the learner
provides the confidence feedback. If the learner is confident,
add his/her label to the teaching item’s label set.

9 (v).tet+1

10: Until ¢t > MaxIter
11: Output: The updated label set Ly, Ly,, ...

,LxN

4.1 Upper Bound

In this paper, the class-conditional random error p41 and p_1 exist
within the initial imperfect labeled set Dy . Furthermore, we assume
that in each worker’s teaching session, the teacher works with a
single learner, whose initial classification performance is not as
good as the teacher. In other words, if 7 is the label provided by the
worker, the worker will also has class-conditional random error as:

P(§ = —1lygr = +1) = 1, P(§ = +1lygr = =1) = p’;
ph1+ply > pe1+pt

As shown earlier, the surrogate cost C (¥(x;6),y) defined in Eqn.
(6) is an unbiased estimator of C(/(x; 6), yg;) and the empirical
target concept 6 is learned using the surrogate cost. Furthermore, it
is proven in [25], the generalization performance of the surrogate
cost has the following bound with probability at least 1 — e,
A 8K log(1/¢)
< —

Rc(0) < Re(6:) + P — R(P) +2 o
where K is the Lipschitz constant of C(-, -) and R(¥) is the Rademacher
complexity of the prediction function class ¥. The risk Rc(é) =
E[C (¥ (x; é), y)] is defined as the expectation over the unknown
ground truth distribution.

In the proposed interactive process, we assume that the labels
provided by the learner will only be added to the current label set if
the learner is confident. Furthermore, the probability of the learner
being confident depends on the true class label as follows:

P(Conflygs = +1) = c+1, P(Conflygs = —1) = c—1

The following theorem shows the condition under which the
upper bound in Eqn. (21) can be improved.

(21)
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THEOREM 4.1. If the learner satisfies the following condition:

cr1(ply = p+1) +e-1(ply —p-1) <0 (22)

then the upper bound shown in Eqn. (21) is reduced after taking into
consideration the confident labels provided by the learner.

Proor. Notice that the first and the third terms on the right
hand side of Eqn. (21) remain unchanged before and after taking
into consideration the confident labels provided by the learner. As
the complexity of the function class ¥ is fixed, the middle term is
negatively correlated to the change in terms of the sum over the
class conditional label error p41 and p_;. It can be easily verified
by solving the inequality below and show that when Eqn. (22) is
satisfied, p4+1 + p—1 is reduced after taking into consideration the
confident labels provided by the learner.

(1=cr1)ps1+cr1ply +(1=co)p_1+c1ply—pr1—p-1 <0 (23)
]

This theorem shows that when the learners are confident about
their labels, the error rate of the labeled data set will decrease
after including these confidence labels. Followed with it, the risk
under the unknown ground truth distribution using empirical target
concept 6 will gradually have smaller upper bound and getting close
to the risk using true target concept .. Therefore, the empirical
target concept 6 will gradually become a reliable substitute of the
true target concept 0, with more and more teaching iterations.

4.2 Discussion and Extensions

Case #1: Worker only has confidence on one category. As-
sume that there is a worker who is only confident about the positive
class such that p’, | is smaller than p.1, and she only provides the
confident positive labels. In this case, ¢;1 > 0 and c—1 = 0, and the
condition in Eqn. (22) is satisfied. Therefore, the updated labeled
set can still lead to a better prediction model.

Case #2: Teaching with starving prevention. When the repeated
labeling is allowed, the overall teaching score could be high for cer-
tain items in order to favor the teaching objective. Some low-score
items could be starved and never be recommended. Then, in each
teaching session, the influence intensity &; of i-th item could be
adaptively updated as the entropy of its label set Ly,. Intuitively,
the low-entropy label set (e.g., Ly, = {+1,+1,+1,+1, -1} of five
confident labels) will downgrade the influence score faster with
smaller &; because the label aggregation (e.g., majority voting) for
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this item is no longer debatable. The score of the high-entropy label
set (e.g., Ly; = {+1,—1,+1,—1} of four confident labels) will be
downgraded slower with larger &; so that this item could still be
recommenced to break the tie in the later teaching iterations.

Table 2: Statistics of three data sets.

‘ Data set ‘# Items(Z)L)‘# Items(DU)‘# Features‘# Workers|Error rate

CAT 220 219 512 21 0.15
CANIDAE 257 257 512 19 0.15
TEXT 300 200 120 21 0.25

5 EXPERIMENTS
5.1 Details of the Data Sets

We conduct experiments on three real data sets which include two
image data sets [47] (classify domestic/wild animals) and one text
data set which belongs to a subset of 20 Newsgroup data sets and has
subject categories: comp.os.ms-windows.misc and sci.crypt. [27] (clas-
sify encryption/operating-system documents). The details of these
real-world data sets are provided in Table 2. Regarding the feature
extractions of images, we first fine-tune and transfer the ResNet34
[8] model into our binary teaching scenario on the imperfect data
set Dr. Next, the features are extracted from the penultimate layer
before the average pooling layer. The explanations for images are
the saliency maps generated by Grad-CAM [30] on the finetuned
ResNet34 architecture. Regarding the feature extractions of text,
we remove the stopwords, the footers, and the quotes in the docu-
ments to prevent overfitting on irrelevant metadata. Then, the top
TF-IDF features are extracted. The explanations of the text are the
additive features extracted using LIME [29] with ten interpretable
simplified features. To inject error into the labeled data set, we
randomly flipped the labels of the labeled set with an error rate
of py1 = p—1 = 0.15 for images data set and p4y1 = p—1 = 0.25
for text data set. As for the teacher, the empirical target concept is
obtained by minimizing the unbiased surrogate logistic cost. We
have hired 61 graduate student workers to perform learning and
each worker is assigned with one exclusive teaching algorithm us-
ing Round-robin scheduling. The worker’s learning loss is also set
to the logistic loss. However, the worker’s learning concept is not
observable in practice. Following the convention [47], we estimate
the worker’s learning progress using the harmonic function [49].
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Figure 4: Visualization of the top eight high influence images (first row) and bottom eight low influence images (second row) on canidae.
Each image is described by a tuple composed of its true category and indicator of error (1 means flipped label, 0 mean no error on its label)

The experiments were conducted remotely through a web interface.
The teaching procedure is nearly real-time. But the model training
and predictions can be computationally intensive, and therefore
are only performed twice, before and after the teaching.

5.2 Quantitative Results

In order to evaluate the effectiveness and reliability of interactive
teaching we have utilized three metrics: (1) Teaching gain is de-
signed to evaluate the overall teaching performance of all workers.
(2) Retrieval rate is used to evaluate the reliability of teaching on
these items with incorrect labels. (3) Model performance com-
parison aims to evaluate the model performance before and after
teaching.

5.2.1 Teaching Gain of the Workers. The purpose of teaching is to
help the human workers learn how to improve labeling. In order
to evaluate and confirm that these workers have made progress to-
wards their annotations tasks, we propose to use the Teaching Gain,
which is defined as the labeling accuracy after teaching minus the
labeling accuracy before teaching. In the third step of interactions,
the confidence labels are also recorded, we also compute the teach-
ing gain that only takes the confidence labels into consideration.
As a comparison, JEDI [47] is an interactive teaching framework
without any explanation, VADER-lite removes the confidence gaug-
ing (i.e., JEDI with explanation) and it is a simplified version of
VADER. As shown in Figure 3a, the teaching gains of learners with
explanation outperform the baseline learners significantly, which
shows that explainable teaching is more effective. We also observe
that the confidence gauging further improves the performance of
these VADER learners on all data sets.

5.2.2  Label Retrieval Rate. We also value the reliability of teaching
in terms of the Retrieval Rate, which is defined as the fraction of
items with incorrect labels that have been corrected. As a compar-
ison, we use the empirical teacher 6 as the baseline and compare
it with the initial crowd labels, the updated crowd labels, and the
confident crowd labels. The label aggregation is performed by first
using the minimax conditional entropy approach [44] to estimate
the worker expertise and then take the weighted average of their
labels. The results are shown in Figure 3b, we observe that the cat
and canidae data sets are relatively difficult compared with the text
data set because the former two have a lower retrieval rate. We also
conclude that fixing the mislabeled items using the taught workers
is more reliable using the original teacher. The retrieval rate results
in Figure 3b show that VADER is better than or comparable to
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the state-of-the-art teaching models. As the analysis shown in Sec-
tion 4.1, explanation is surely helpful when the confidence gauging
is performed. Theorem 4.1 guarantees that if the initial labeling
abilities of the workers are lower than the teacher, the proposed
teaching model could guarantee their improvement after teaching.
If this assumption is not satisfied, Figure 3b shows empirically these
workers could still eventually benefit from the teaching.

5.2.3 Model Performance Comparison. Using the aggregated crowd
labels, we retrained the prediction model and compared the perfor-
mance of the retrained model with the teacher’s performance. As
shown in Figure 3¢, comparing with the teacher, the performances
of the workers regarding cat images and text have a clear improve-
ment in terms of accuracy. The performance difference on canidae
images is not very obvious. The reason is that the retrieval rate of
the items with incorrect labels in canidae is very low. Even among
the confident labels, most of these high influence items that have
incorrect labels did not get fixed. Therefore, the prediction mod-
els of the teacher and the workers are about the same on canidae.
Figure 3a shows the self-improvement of these learners before and
after teaching. However, the model performance, shown in Fig-
ure 3c, is mostly influenced by the difficult items, e.g., the items
near the decision boundary. Learners with a large teaching gain
could improve their labeling abilities on the easy items, which do
not necessarily have an impact on the model predictions.

5.3 Qualitative Results

We qualitatively checked the results of the influence scores. The top
eight high influence canidae images and bottom eight low influence
canidae images are shown in Figure. 4. The highly influenced images
are actually the ones with flipped labels and those of easily confused
breeds (e.g., Dingo and Akita, Samoyed and Arctic Fox, etc.). The
lowest influenced images did not have a trend on selecting certain
types of images and the label flipped images are rare in them. It is
straightforward to know that perturbing the labels of these highly
influenced images would have a large impact on the prediction
model. Teaching the workers should follow the curriculum principle
by recommending items from low to high influence.

We also compare influence and marginal distance of the items
for all three data sets. The marginal distance of an item is its ge-
ometrical distance from the discriminatory boundary and it has
widely used in standard active learning strategies like uncertainty
sampling and expected error reduction. We hypothesize that those
items near to discriminatory boundary are crucial to classification,
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Figure 5: Influence vs. marginal distance on three data sets: (a) Cat, (b) Canidae, and (c) Text. Pearson correlation coefficient r and its signifi-
cance value p are reported. Y-axis represents normalized value for influence and marginal distance, normalized to the scale [0, 1].

there by given high values of influence. Pearson correlation coeffi-
cient between marginal distance and influence for all the examples
supported our hypothesis. The plots for Cat, Canidae, and Text data
sets are shown in Figure 5. For each plot, r and p values represent
correlation coefficient and significance respectively. From the fig-
ures, it can be observed that, those items that are close to boundary
are commonly given high influence values. However, with the help
of the visualization results from Figure 4, we also observe that un-
like marginal distance, the influence computing scheme used in the
proposed VADER framework also takes difficulty of the labeling
the image into consideration. These visually hard-to-distinguish
items usually have high influences and this observation matches
with the principle of curriculum learning.

6 RELATED WORK
6.1 Explanation Models

Understanding why a model makes certain predictions is as impor-
tant as the model performance on many occasions [1, 7, 13, 14, 43],
especially in high-stakes decision-making applications. Starting
from deconvolution [26] and guided backpropogation [34], mul-
tiple efforts have been made to explain deep models. Inspired by
the global average pooling architecture [18], one of the most popu-
lar and effective explanation models for images is class activating
mapping (CAM) [30, 42]. In the original CAM model, the activation
weights need to be learned as part of the architecture. However,
the Grad-CAM generalizes CAM by enabling these weights to be
learned using the gradients on the activation maps without retrain-
ing the model. Another branch of explanation models is additive
feature based models, which focus on using simplified features to
approximate the original model. LIME [29] locally explains the
model using perturbed examples. DeepLIFT [32] decomposes the
output on a simple input by backpropagating contributions to every
input feature. Shapley value estimation [21] assigns each feature
an importance weight for a particular prediction by guaranteeing
local accuracy, missingness, and consistency. However, none of
these approaches provide visual explanations to guide the learning
procedure of crowd workers with theoretical connections between
worker and learners.
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6.2 Crowd Teaching

In the context of crowdsourcing [22, 23, 28, 37, 44, 46, 48], crowd
teaching is a sub-area of machine teaching[50] where the learners
are crowd workers and the teacher is the machine that guides the
learners towards a specific labeling concept. It supervises the la-
beling process of crowdsourced workers in the form of teaching
in order to improve the workers’ annotation expertise and collect
data sets with higher label quality. Previous research [3, 47] has
shown that non-experts can be trained to perform accurate and
complex tasks. Based on the teaching styles, the methodology of
performing crowd teaching has two branches. The first branch of
approaches [4, 24, 33] treats the workers as global learners who
learn things in large jumps holistically. The hypothesis transition
model STRICT [33] assumes the worker’s concept are randomly
switched in the pre-given hypothesis space which is computed on
observed workers’ feedback. The model in [24] extends STRICT by
considering both the item explanation and modeling representa-
tiveness. Another branch of crowd teaching [19, 38, 40, 47] treats
the workers as sequential learners who learn concepts in continu-
ous steps. Starting from the iterative machine teaching (IMT) [19],
multiple efforts have been made in this direction. JEDI [47] assumes
learners have forgetting behavior and it extends IMT by guaran-
teeing the teaching usefulness and teaching diversity. Instead of
teaching a single learner at a time, the model in [40] extends IMT
to the scenario of classroom teaching by teaching a diverse group
of learners. In [9], the authors have proposed a greedy approach to
teach a forgetful learner multiple learning concepts by assuming
every single concept decays over time. Our work belongs to the
general framework of sequential teaching with adaptive learning
rate and confidence-gauged label feedback. However, global teach-
ing requires a heuristic pre-defined hypothesis space and sequential
teaching requires the unknown target concept beforehand. As a
comparison, the unbiased empirical risk minimizer used in this
paper is a reliable and realistic substitute of the optimum target
concept with a bounded performance guarantee.

6.3 Learning with imperfect Labels and
Imperfect Labelers

Learning from imperfect labels is very useful in many applications
[17, 31, 36, 39, 41], as a large number of imperfect labels are rela-
tively easy to collect using crowdsourcing. In the traditional setting
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Figure 6: Interactions between the teacher and the worker on one canidae image.

of supervised learning, these imperfect labels are usually treated as
outliers or label flips. However, imperfect items could be beneficial
for learning because they have a certain level of significant mass.
The work of [25] proposes to modify the loss term with pregiven
class-conditional error and ends up with a error-tolerable learning
model. A system of learning from imperfect labels by leveraging a
knowledge graph has been used in [15]. The modified deep model
[35] could also be adapted to learn using flipped label error and out-
lier error by introducing an extra error layer into the network. From
another perspective, researchers also devote effort on learning with
imperfect labelers. Existing work [31, 39] addresses the repeated ac-
quisition of labels from multiple imperfect labelers for every single
item in active learning. The re-active learning model [17] extends
the concept of active learning with crowdsourcing by allowing the
labeled item being re-labeled using impact sampling. The investi-
gation conducted by [16] further pointed out that item re-labeling
would be helpful when the learning problems have high model ex-
pressiveness. For all that, impact sampling requires multiple model
retraining which is computationally prohibitive and uncertainty
sampling could easily starve items [17] and has difficulty handling
item re-labeling. Our model estimates each item’s influence on the
prediction model using label perturbations without model retrain-
ing and yet has the ability to either perform re-labeling or assign
new labels to the unlabeled items.

7 CONCLUSION

In this paper, motivated by the huge demand for fine-grained label
information from real applications, we propose a novel framework
for interactive teaching and learning between the teacher and the
crowd workers. It utilizes the empirical minimizer as the target
concept of the teacher, and instructs the learners to focus on the
informative visual cues during learning. This framework benefits
both the teacher and the workers in terms of the performance of the
predictive model for the teacher and workers’ expertise. Compared
with state-of-the-art techniques, this framework takes one step
further towards the real-world crowd teaching with explanations, as
it is designed for imperfect teacher and workers. Furthermore, our
analysis of the proposed framework is verified by the experiments
on various data sets.
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SUPPLEMENTARY MATERIAL

A. Interactions on Images and Texts

The three-step interactions between the teacher and the worker
for an image item are shown in Figure 6. In Step-1, the teacher will
recommend one image and ask for the initial label from the worker.
In Step-2, the teacher will demonstrate its probabilistic soft labels
regarding this image as well as the visual explanations (saliency
map for images). Then, the worker could provide the updated class
label and the preferred visual explanations. For instance, let’s say
the worker has chosen “Wild” and “Right” for the given image. At
last, the third step is designed to collect the confidence information
regarding his/her choices made in the second step. The masked
image will be generated by applying a thresholded saliency map
on the original input image. The threshold would be the teacher’s
probability 0.382 and any pixels with its grayscale value higher than
[ 255 x 0.382] = 97 will remain visible. If the worker selects “Yes”
in Step-3, then we assume s/he is confident regarding the updated
label in step-2 and this label will be added to the item’s label set.
One important thing should be noticed is that when the teacher’s
confidences regarding two classes are approximately equal (~ 0.5),
the masked explanation for confidence evaluation will be almost
the same no matter which class label the worker chooses.

B. Reproducibility

To better reproduce the empirical analysis presented in the pa-
per, we provide additional implementation details on the proposed
VADER algorithm. The implementation and data sets will be re-
leased upon acceptance. All three data sets are randomly split to
have 50% as Dy, - examples with labels and 50% as Dy - examples
without labels. In order to inject error into Dy, we randomly flip
labels with an error rate of p+; = p_; = 0.15 for image data sets
and p41 = p—1 = 0.25 for text data set. The initial learning rate of



the worker is set to g = 0.02 and it will be gradually decreased
asny = %r]o. The memory decay rate §§ of the workers is not
available to the teacher beforehand and we use the image sequence
sorting task to estimate each worker’s fas f = 1 — % where 7
represents for their mean of maximum number of ordered images
they can recover in the image sorting game designed in [47]. Em-
pirically, f is assigned with one of the values of {0.75,0.833,0.875}
where, correspondingly, i1 has been discretized into three memory
window ranges [3, 5], (5,7], (7, 9]. Based on our observations, all
participants have 3 < 71 < 9, then learners’ decay rate is grouped
into these three values (e.g., f=1— 7 = 0.75, f = 1 — 1 = 0.833,
orf=1- % = 0.875). Regarding the implementation of estimating
worker’s concept, we use the harmonic function [49]. The kernel
weight between the i-th and the j-th items denoted by x;, x; respec-
tively, is calculated as:

ey )2
exp( St (xda_zx,d))

Tx:
X; Xj

EAIEZ

< Image data set
wjj = )
exp(— m(l )), & Text data set

where d is the index for features and o is the sample variance on
d-th feature dimension. To deal with the “cold-start” problem, we
ad-hocly set the first 20 teaching items as the bottom low influence
ones without combining the teaching scores. Therefore, the worker
will be taught with easier items as the start and at the same time,
the teacher could get stable estimations of the worker’s learning
progress using these 20 items.
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