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ABSTRACT
Collective matrix completion refers to the problem of simultane-
ously predicting the missing entries in multiple matrices by lever-
aging the cross-matrix information. It finds abundant applications
in various domains such as recommender system, dimensionality
reduction, and image recovery. Most of the existing work repre-
sents the cross-matrix information in a shared latent structure
constrained by the Euclidean-based pairwise similarity, which may
fail to capture the nonlinear relationship of the data. To address
this problem, in this paper, we propose a new collective matrix
completion framework, named C4, which uses the graph spectral
filters to capture the non-Euclidean cross-matrix information. To
the best of our knowledge, this is the first effort to represent the
cross-matrix information in the graph spectral domain. We bench-
mark our model against 8 recent models on 10 real-world data sets,
and our model outperforms state-of-the-art methods in most tasks.
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1 INTRODUCTION
Collective Matrix Completion (CMC) is a fundamental data min-
ing problem, where the goal is to collectively complete multiple
incomplete matrices by leveraging the cross-matrix information.
Each matrix, also known as one view, corresponds to one type of
measurement, while multiple views contain complementary infor-
mation from various sources. Many high impact applications, such
as recommender system [8], neuroimages analyzing [16], crowd-
sourcing [19, 20], and rare category detection [17, 18], bring us
huge amount of incomplete data from multiple sources. CMC bene-
fits from the correlation among such multi-view data, and aims to
predict their missing entries with a high accuracy.

There are two approaches extensively applied in the CMC stud-
ies when formulating the cross-matrix information: (i) Low-rank
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Latent Structure: the cross-matrix information is encoded into a
single measurement matrix, which has the overall minimum Eu-
clidean distance to each view [7]. (ii) Graph Knowledge: the samples’
pairwise similarity is enforced by the graph-based regularizer with
respect to the observed information [2]. More recently, through re-
visiting deep learning with graph spectral theory, graph knowledge
is decoded by the deep model as a graph convolution network by in-
troducing graph filters. In particular, the authors of [4] showed that
the Chebyshev polynomial approximation can well estimate the
graph filters, and the authors of [3] introduced such graph filters
into convolution neural networks for handling the graph struc-
tured data. Furthermore, the authors of [5] simplified the graph
convolution process and widely applied since its inception [15].

However, state-of-the-art techniques for CMC currently face
the following challenges. (C1) The low-rank latent structure can-
not fully exploit the cross-matrix information, especially when the
data exhibit non-Euclidean structure. (C2) The graph convolution
method is dependent on Chebyshev polynomial expansions. As we
will demonstrate in this paper, different K values (i.e., how many
polynomial bases are taken, also known as K-order graph filter)
can significantly impact the effectiveness. Therefore, it is preferred
to have K adjusted according to the specific applications. However,
almost all the existing methods use a fixed K value, e.g., [5] sets the
order K=2, [3] adopts K=5, and [16] conducts the experiments with
K=30. (C3) The graph convolution method is originally designed
with a single matrix input, which cannot be readily applied to multi-
ple matrices. To address these challenges, in this paper, we propose a
Convolution-Consistent Collective Matrix Completion framework,
named C4. Our contributions are summarized as follows.
• Formulation: The CMC problem is formulated as a joint graph
convolution problem. The essential non-Euclidean cross-matrix
information is encoded in the graph spectral domain with the
adapted data-driven filter order.

• C4 Framework: We propose a novel framework for CMC with
adaptive graph filter order K∗, such that the information loss is
minimized for all the matrices.

• Experiments: Our model C4 performs the best when compared
with 8 state-of-the-art methods on 10 real-world data sets.

The rest of the paper is organized as follows. In Sect. 2, we introduce
the preliminary knowledge and present our modelC4. Sect. 3 shows
the experimental results and we conclude the paper in Sect. 4.
2 PROPOSED MODEL
In this section, we first review the preliminary knowledge about
spectral graph filter and graph convolution (Sect. 2.1). Then we
present the proposed model C4, in which we aim to solve two sub-
problems that: (i) how to select the graph filter order K∗ (Sect. 2.2)
and (ii) how to further capture the cross-matrix information through
the K∗-th order joint graph convolution process (Sect. 2.3). Figure
1 shows the overall structure of our model. Notation: In general,
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we use bold-face uppercase letter X to represent a matrix. X[i, j]
denotes its entry in the ith row and jth column, and X⊤ denotes its
transpose. We use bold-face lowercase letter u to denote a column
vector, whose ith entry is denoted ui . The uppercase Greek letters
are used to represent scalars. Goal: Given multiple incomplete
matrices {Xt }

T
t=1 ⊂ Rm×nt , our goal is to predict their missing

entries simultaneously. To this end, the proposed C4 framework
jointly factorizes all these T matrices into {Ut }Tt=1 ⊂ Rm×ct and
{Vt }Tt=1 ⊂ Rnt×ct by incorporating the cross-matrix information
from graph spectral domain. The products {X̃t = UtV⊤

t }
T
t=1 contain

the estimated missing entries.

2.1 Spectral Graph Filter and Convolution
A graph G withm nodes is presented as G = (V, E,A), with the
adjacency matrix A ∈ Rm×m , vertex set V and edge set E. The
normalized graph Laplaican matrix ∆ = I − D− 1

2AD− 1
2 with the di-

agonal degree matrix Dii =
∑m
j Ai j and identity matrix I ∈ Rm×m .

As ∆ is positive semidefinite, it has a complete set of eigenvalues
Λ = (λ1, λ2, . . . , λm ) and eigenvectors Φ = (ϕ1, ϕ2, . . . ,ϕm ) for
its eigendecomposition ∆ = ΦΛΦ⊤. Eigenvalues {λi }mi=1 are iden-
tified as graph spectral frequencies and eigenvectors {ϕi }mi=1 are
identified as graph Fourier basis. For a graph signal x ∈ Rm , the
graph Fourier transform is defined as x̃ = Φ⊤x and its inverse trans-
form x = Φx̃. The graph convolutional operation ∗G for the graph
signals x and y is then defined on the graph spectral domain as
x ∗G y = Φ(Φ⊤x) ⊙ (Φ⊤y) = Φдθ (Λ)x̃, where ⊙ denotes element
wise product. дθ (Λ) is recognized as θ -parameterized graph filter.
More recently, the graph filter дθ (Λ) is re-modeled to decrease its
complexity by being expanded by the Chebyshev polynomial as:

дθ (Λ) =
K∑
k=0

θkTk (∆̃) =
K∑
k=0

θkΦTk (Λ̃)Φ
⊤ (1)

where the modified graph Laplacian ∆̃ = 2∆
λmax

− Im and its eigen-
values Λ̃ fall into the range [−1, 1]. Tk (·) represents the k-th order
Chebyshev polynomial abiding by the recursive manner Tk (λ) =
2λTk−1(λ) −Tk−2(λ) with T0(λ) = 1 and T1(λ) = λ.

2.2 Adapted Data-Driven Filter Order
In this subsection, we introduce our proposed techniques for select-
ing the filter order K∗. The problem definition is as follows.
Problem 1: Selecting Filter Order K∗

Input: Incomplete matrices {Xt }
T
t=1 with missing entries.

Output: Adapted graph filter order K∗.
The output K∗ denotes the adapted graph filter order derived from
the cross-matrix information observed in the inputmatrices {Xt }

T
t=1.

Emphasized in [5], the orderK∗ plays a decisive role in adopting the
graph structure knowledge, i.e., only the nodes within maximumK∗

steps away from the central node are taken into consideration. The
data-adaptive order K∗ can improve the completion performance
significantly, while none analytic guidance address it yet.

In our model, we propose to settle the order K∗ with respect to
the minimum information loss considering from the graph spectral
domain. Being expanded by K∗-th order Chebyshev polynomial,
each matrix is reconstructed as the weighted combination of its
own graph structure knowledge from K∗ level. The expectation is
that K∗-th order graph filters are capable enough to preserve the

Algorithm 1 - C4 Updating Procedure

1: Input: (1) multiple matrices {Xt }
T
t=1 (with missing entries). (2)

normalized Laplacian matrices {∆̃r,t }
T
t=1. (3) filter order K

∗.
2: Initialize: {Ut }Tt=1, {Vt }

T
t=1, Θk and Wk randomly.

3: Repeat: Stochastic Gradient Descent (SGD) algorithm to up-
date {Ut }Tt=1, {Vt }

T
t=1, Θk and Wk one at a time.

4: Until: Eq. (5) converges.
5: Output: {X̃t }

T
t=1: completion results

observed knowledge as much as possible. The completion results
{X̃t }

T
t=1 are expected to be consistent with the observed entries in

{Xt }
T
t=1 as the reconstruction error between {X̃t }

T
t=1 and {Xt }

T
t=1

is minimum, which is defined as solving the problem:

min
Ut ,Vt

T∑
t=1



Xt − UtV⊤
t


2
F ,Ωt

s .t . {Ut }Tt=1 ⊂ Rm×ct
+ , {Vt }Tt=1 ⊂ Rnt×ct+

(2)

where Ut ∈ Rm×ct and Vt ∈ Rnt×ct . R+ denotes the non-negative
real numbers and the completion results are {X̃t = UtV⊤

t }
T
t=1. The

index matrixΩt ∈ Rm×nt containsΩt [i, j] = 1 ifXt [i, j] is observed,
otherwise 0. To simplify the expression, ∥X∥2F ,Ω is equivalent to
the expression of ∥X ⊙ Ω∥2F , in which ⊙ denotes the Hadamard
product. In Eq. (2), the Ut is polynomial expanded by Eq. (1) as:

min
Ut ,Vt ,θk,t

T∑
t=1

| |Xt−(

K∑
k=0

θk,tTk (∆̃r,t )Ut )V⊤
t | |

2
F ,Ωt

⇔ min
Ut ,Vt ,θk,t

T∑
t=1

| |Xt−(θ0,tT0(∆̃r,t )Ut + θ1,tT1(∆̃r,t )Ut+

· · · + θK,tTK (∆̃r,t )Ut )V⊤
t | |

2
F ,Ωt

(3)

constrained by {Ut }Tt=1 ⊂ Rm×ct
+ and {Vt }Tt=1 ⊂ Rnt×ct+ . For the t-

th view, parameter θk,t weights the k-th order graph filterTk (∆̃r,t ).
∆̃r,t denotes the normalized row-wise Laplacian matrix. To be more
specific, the factor Ut is described as the weighted combination
of K-th order graph structure knowledge, which is purposeful to
reinforced the estimation of the matrix Ut by the localized graph
knowledge from K-th level neighboring information.

Here, what makes Eq. (3) more attractive is that the reconstruc-
tion error is altered according to the graph filter order K . The
low-order graph filters capture the nearest neighborhood knowl-
edge surrounding each node, which shows the similar patterns
existing in each view. While as the order increases, the less sim-
ilarity has been preserved by the far-away neighborhoods. Even
worse, we found that the model would be impaired when incorpo-
rating the far-away neighborhoods into cross-matrix information.
Thus, we settle the order K∗ for each data set which brings in the
minimum effect when removing the graph filters higher than K∗.
The superiority of this strategy is shown in the experiments.

2.3 Quantifying Cross-Matrix Information
In this subsection, we present our proposed techniques for quantify-
ing cross-matrix information. The problem definition is as follows.
Problem 2: Quantifying Cross-Matrix Information
Input: (1) Incomplete matrices {Xt }

T
t=1. (2) Graph filter order K∗

obtained from Problem 1.
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Figure 1: The overall architecture of our framework with two views.

Output: (1) Matrix-stitch unit Wk . (2) Completion results {X̃t }
T
t=1.

There are two main challenges arise in Problem 2: (P2-a) how
to capture the cross-matrix information when data implicate the
non-Euclidean structure, e.g., graph-structured data. (P2-b) how to
quantify the matrices’ interactive impacts. Either positive or nega-
tive impacts exist between the matrices, e.g., how much knowledge
does the view 2 contribute to predicting the missing entries in view
1? Is the view 2 more competent than view 3 for predicting the miss-
ing entries in view 1? Existing methods fail to address these issues,
while we make an effort to correct the cross-matrix information.

We propose the Matrix-Stitch Unit Wk to answer Problem 2.
For illustration purpose, only two views are considered (T=2), while
in practice, the unitWk is feasible to the arbitrary number of views
(T ≥2), which has been demonstrated in our experiments. Based
on the Eq. (3) when (t = 1, 2, k = 1, 2, . . . ,K ), the factors Ut are ex-
panded by Tk (∆̃r,t ) and θk,t , where θk,t is the learnable weighted
parameter reflecting how does the k-th localized graph knowledge
Tk (∆̃r,t ) impact in each view separately. The Matrix-Stitch Unit
considers the impacts from both view itself and all the other views.
The unit Wk is designed as a weight matrix between the parame-
ters {θk,t }T=2t=1 for each level of the graph localized knowledge:

Θ̃k =

[
θ̃k,1
θ̃k,2

]
=

[
w11 w12
w21 w22

]
k

[
θk,1
θk,2

]
=WkΘk (4)

where Θ̃k ,Θk ∈ RT×1. The matrix-stitch unit Wk ∈ RT×T . There
are total K∗ units when adopting K∗ order graph filter. Incorporat-
ing Eq. (4) with Eq. (3), the C4 objective function is written as:

min
Ut,Vt ,Θk ,Wk

T∑
t=1

| |Xt − (

K∑
k=0

Θ̃k[t,1]Tk (∆̃r,t )Ut )V⊤
t | |

2
F ,Ωt

⇔ min
Ut ,Vt ,Θk ,Wk

T∑
t=1

| |Xt − (

K∑
k=0

Wk[t, :]ΘkTk (∆̃r,t )Ut )V⊤
t | |

2
F ,Ωt

(5)

constrained by {Ut }Tt=1 ⊂ Rm×ct
+ and {Vt }Tt=1 ⊂ Rnt×ct+ . The C4

updating procedure is summarized in Algorithm 1 omitted to space.

3 EXPERIMENTAL RESULTS
In this section, we first present our data sets and experiment setting.
Then, we present matrix completion results compared with others
and further discussion about the effectiveness of filter order K∗.

3.1 Experiment Settings
Data Sets. Table. 1 shows ten data sets collected from Amazon da-
tum [8]. Seven of them contain two views (ID 1-7) and three of them
contain three views (ID 8-10). Taking data set (ID 1) as an example,
view 1 ’Electronics’ contains 6352 users and their 39574 ratings for
12836 products, and view 2 ’Video Games’ contains 27712 rating
for 12,836 products from the same users group. In each view, 30%
ratings of each item are removed and serves as the ground-truth
for the completion results.
Baselines. Our model is compared with 8 state-of-the-art meth-
ods, including GROUSE [1], IALM [6], LMaFit [12], MC-NMF [13],
OR1MP [11], RMAMR [14], ScGrassMC [9], and multiNMF [7]. Pa-
rameters are initialized as suggested in [10].

3.2 Results and Discussions
As shown in Table 2, the completion results are evaluated by the
mean squared error (MSE) between the ground-truth and prediction
values. Our model C4 achieves the best completion performance
compared with state-of-the-art methods.

For various data sets, the ideal filter order can be obtained by it-
erating over every possible value, however, it is infeasible to handle
large data set. Hereby, we estimate the order K∗ based on sample
proportion of the observed data {Xt }Tt=1. Within the realm of afford-
able computation cost, the larger portion sampled, the more precise
order K∗ can be estimated. Red stars in Fig. 2 (graph filter order v.s.
reconstruction MSE) and Fig. 3 (graph filter order v.s. prediction
MSE) denote K∗ estimations. The blue stars in Fig. 3 denote the
ideal filter order identified through the offline iterative searching.
In most cases, the estimation filter orders (K∗ in red stars) are close

ID Views |User| |Item1| |Item2| |Item3| |Rating|

1 Electronics & Video Games 6352 12836 8059 - 39574
2 Patio & Tools 3778 4077 7813 - 27712
3 Beauty Product & Clothing 1318 3406 7261 - 12691
4 Art & Musical Instruments 1412 602 988 - 8520
5 Electronics & Kindle Store 1050 3956 1614 - 7431
6 Beauty Product & Jewelry 266 1458 730 - 3870
7 Kindle Store & Software 190 637 627 - 2885

8 Electronics & Video Games & Software 1724 4383 2487 3845 12741
9 Patio & Tools & Pet Supplies 652 812 1564 715 8125
10 Beauty Product & Clothing & Jewelry 571 1845 2377 492 4298

Table 1: Multi-View Amazon Review Data Sets.
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Table 2: Matrix Completion MSE w.r.t. ground-truth and missing entries.

Dataset ID C4 GROUSE IALM LMaFit MC-NMF OR1MP RMAMR ScGrassMC multiNMF

1 1.206±0.031 1.181±0.162 1.689±0.004 1.429±0.002 1.986±2.542E-6 1.590±4.590E-31 1.344±0.003 1.347±1.275E-30 3.817±1E-9
2 1.350±0.007 1.368±0.133 1.423±0.012 1.452±0.004 1.946±1.104E-5 1.464±1.653E-30 1.416±0.007 1.943±1.275E-31 2.298±1E-9
3 1.027±0.004 1.282±0.087 1.446±0.005 2.005±0.002 2.045±1.447E-5 1.392±2.040E-31 1.536±0.003 1.733±1.275E-30 4.301±1E-9
4 1.016±0.002 1.320±0.087 1.478±0.008 1.664±0.004 2.059±3.419E-6 1.796±4.590E-31 1.506±0.005 1.814±2.648E-31 2.961±1E-9
5 1.341±0.092 1.268±0.093 1.807±0.003 1.894±0.002 2.008±4.946E-6 1.475±1.275E-30 1.387±0.006 1.641±8.161E-31 2.888±1E-9
6 1.235±0.031 1.328±0.134 1.494±0.007 2.082±0.008 2.057±8.806E-6 1.808±2.684E-31 1.498±0.001 2.047±3.264E-30 4.253±1E-9
7 1.174±0.056 1.217±0.015 1.759±0.003 2.028±0.008 1.984±3.216E-5 1.444±2.040E-31 1.517±0.006 1.903±4.590E-31 2.403±1E-9

8 1.256±0.081 1.335±0.153 1.812±0.015 1.896±0.002 2.009±8.37E-6 1.590±1.154E-9 1.437± 0.005 1.676± 5.478E-32 3.674±1E-9
9 1.207±0.048 1.310±0.089 1.504±0.020 2.080±0.001 2.058±1.27E-5 1.264±1.348E-9 1.9431±0.004 2.044±2.191E-31 2.479±1E-9
10 1.243±0.032 1.279±0.032 1.732±0.003 1.880±0.004 1.981±5.14E-5 1.292±1 .674E-9 1.742±0.002 1.841±4.213E-32 2.738±1E-9
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Figure 2: Red stars (K∗) leads to minimum reconstruction.
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Figure 3: Red stars are the same stars in Fig. 2. Blue stars de-
note ideal filter order identified through offline searching.
to the ideal order (blue stars). The exception happens in the data
set with ID 7 as the data volume is relatively small. In addition to
the order estimation, we verify the assumption in Problem 1 that
larger K does not signify the authentic cross-matrix information.
As shown in Fig. 3, the completion performance declines as the
MSE value bounces back after a certain point of the increasing
filter order, as the cross-matrix information being impaired when
incorporating the nodes far away from the neighborhood.
4 CONCLUSION
In this paper, we have proposed a novel multi-view graph convolu-
tion framework (C4) for collective matrix completion. We make the
first effort to decode the essential cross-matrix information in the
graph spectral domain and quantify the matrices’ interactive im-
pacts. Experimental results on ten real-world data sets demonstrate
the effectiveness of C4 as compared to state-of-the-art methods.
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