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ABSTRACT

Many complex systems with relational data can be naturally repre-
sented as dynamic processes on graphs, with the addition/deletion
of nodes and edges over time. For such graphs, network embed-
ding provides an important class of tools for leveraging the node
proximity to learn a low-dimensional representation before using
the off-the-shelf machine learning models. However, for dynamic
graphs, most, if not all, embedding approaches rely on various
hyper-parameters to extract spatial and temporal context informa-
tion, which differ from task to task and from data to data. Besides,
many regulated industries (e.g., finance, health care) require the
learning models to be interpretable and the output results to meet
compliance. Therefore, a natural research question is how we can
jointly model the spatial and temporal context information and
learn a unique network representation, while being able to pro-
vide interpretable inference over the observed data. To address this
question, we propose a generic graph attention neural mechanism
named STANE, which guides the context sampling process to focus
on the crucial part of the data. Moreover, to interpret the network
embedding results, STANE enables the end users to investigate
the graph context distributions along three dimensions (i.e., nodes,
training window length, and time). We perform extensive experi-
ments regarding quantitative evaluation and case studies, which
demonstrate the effectiveness and interpretability of STANE.
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1 INTRODUCTION

Network embedding [5, 11] has recently attracted a surge of re-
search interest in a myriad of high impact domains, ranging from
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Figure 1: An outline of STANE. The embedded chart in-
cludes the attention distributions over nodes (purple), train-
ing window length (red) and timestamps (orange) dimen-
sions, which allows the analysts to investigate the impor-
tance of node, time, training window length.

social networks [8] to collaborative networks [17], from knowledge
graphs [9] to protein-protein networks [2]. In contrast to the con-
ventional graph analytic tools, network embedding leverages the
node proximity to learn a low-dimensional network representation,
based on which a variety of off-the-shelf machine learning models
can be easily applied for graph mining tasks such as node classi-
fication [7], link prediction [5], community detection [8, 14] and
rare category analysis [12, 13].

However, most real-world networks are intrinsically evolving
over time. Compared with the static setting, the dynamic net-
work evolution is more complex and noisy as the nodes and edges
may appear, vanish, or even reappear. Several initial attempts (e.g.,
[4, 15, 17]) have been made to solve the dynamic network embed-
ding problem, which often introduce some hyper-parameters (e.g.,
arbitrary length random walk [4]) to extract the spatial-temporal
context information. Such hyper-parameters may have a huge im-
pact on the performance of downstream applications(e.g., training
window length in [4]). On the other hand, it is unclear how to
jointly model the extracted context information from the spatial
domain (e.g., which node is more important?) and time domain
(e.g., which snapshot of the time-evolving graph contains crucial
dynamic patterns?). Furthermore, many real systems with highly
regulated processes (e.g., finance, health care) often require the
learning models to be interpretable and the output results to meet
compliance [3]. In this case, a user-friendly model with interpretable
inferences can help analysts investigate the malicious patterns and
largely reduce the workload of analyzing the raw data.

To address the aforementioned challenges, we propose a generic
learning framework named STANE, which aims to learn a unique
representation for dynamic networks and provide comprehensive
interpretable inferences for the end users. In particular, instead of
extracting context via random walks, we introduce the expectation
of the co-occurrence matrix of the dynamic graphs. In addition, we
develop a spatial-temporal neural attention mechanism to estimate
the above co-occurrence matrix and guide the embedding algorithm
to focus on the context information with high importance. At last,
benefiting from the attention mechanism, we are able to conduct
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fine-grained analysis on the node embedding through aggregat-
ing attention parameters along different dimensions (i.e., nodes,
training window length and time).

The major contributions of this paper are as follows:

e Problem. We formally define the problem of explainable
time-evolving graph representation and identify its unique
challenges arising from real applications.

Algorithm. We propose a generic learning framework for
dynamic network embedding, which is able to (1) jointly
model the spatial and temporal context information with-
out extra hyper-parameters, and (2) provide interpretable
inferences over the observed dynamic graphs.
Evaluations. We perform extensive experiments and case
studies on six real data sets, showing that the proposed al-
gorithm achieves consistent improvement in the prediction
performance with good interpretability.

The rest of the paper is organized as follows. In Section 2, we
introduce the problem definition and our proposed framework
STANE. Experimental results and literature review are presented in
Section 3 and Section 4, before we conclude the paper in Section 5.

2 PROPOSED MODEL

In this section, we start from the problem definition, then we intro-
duce the proposed method for the dynamic network embedding.

2.1 Problem Definition

Suppose we are given a evolving graph G = (G, ... .My e,
G = (V(t),E(t)),t =1,...,T, that can be presented as a series of
time-evolving adjacency matrices, i.e., A(l), o AT For the sake of
exposition, we assume the numbers of nodes of different snapshots
G™® are fixed, which leads to a fixed node set V with |V| = n; if
not, we can reserve rows/columns with zero padding if necessary.
In addition, since the information for a single time slice may be
too sparse, analysts typically want to study a larger portion of the
observed data to capture interesting patterns and structures. In
this paper, we preprocess the data in the form of increasing time-
evolving graphs, where each time-evolving adjacency matrix A
aggregates the information from timestamp 1 to ¢t. With the above
notations, we formally define our problem as follows:

ProOBLEM 1. Explainable Time-Evolving Graph Representation
Input: (i) a time-evolving graph G, (ii)a user-specific graph embed-
ding dimension d.
Output: (i) a graph representation Z € R"™ that captures both spa-

tial and temporal graph context in G, (ii) importance inferences
regarding nodes, training window length and timestamps.

2.2 A Generic Learning Framework

The central goal of this work is to learn a generic network em-
bedding for time-evolving graphs, which is able to jointly encode
the spatial and temporal context distribution into a unique repre-
sentation and provide interpretable inferences over the dynamic
graph elements (e.g., nodes, timestamps). To achieve this goal, we
need to take consideration of the following aspects. First (C.1), our
framework needs to be capable of learning hyper-parameters with
respect to context sampling (e.g., co-occurrence matrix D, the train-
ing window length k, the sampling timestamp t) in order to be
automatically trained on different graphs. Second (C.2), to obtain
the comprehensive representation of the observed time-evolving
graphs, we aim to jointly model the spatial and temporal context
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Figure 2: An illustration of the proposed framework. On
the left-hand side, the time-evolving graph G that changes
over T timestamps. On the right-hand side, the spatial atten-
tion module (i.e., colored in blue) and the temporal attention
module (i.e., colored in green) are jointly trained to simulate
the context sampling process by computing the expectation
of co-occurrence matrix E[ﬁ; §]

within a unique optimization scheme. Third (C.3), in addition to
the performance, we also require our model to be explainable.

Fig. 2 presents an overview of the proposed STANE framework,
where the spatial context and temporal context are jointly ex-
tracted via a neural attention mechanism. In particular, given a
time-evolving graph G = {GW, ... G}, the whole process can be
separated into three steps: (1) instead of generating random walks
by simulation[5], we estimate the expectation of co-occurrence
matrix D of the time-evolving graph with a neural attention mech-
anism. then, (2) the spatial-temporal attention module and node
embeddings are jointly trained within a unified optimization pro-
cess, aiming to maximize the likelihood of the observed 5; at last,
(3) the end users can investigate the graph context distributions by
aggregating the learned attention weights. Next, we dive into the
details of STANE in the following three aspects.

Learning the spatial-temporal context distribution. Aspoi-
nted out by [1], random walk based network embedding approaches
(e.g., [5]) actually construct a co-occurrence matrix D, of which
expectation is written as:

C
E[D;C] = Z wy - P x (M)F 1)
k=1

where C is the largest walk length; the definition of wy varies with
different methods (e.g., wy is defined as the probability of node
with distance k from anchor node to be selected in [5]); P is the
diagonal matrix of the prior distribution p, i.e., P = diag(p), with
setting P(v, v) as the number of walks starting at anchor point v;
M is the transition probability matrix M = diag(A x 1,)~! x A.
Here, we generalize the expectation of co-occurrence matrix
E[D] to the dynamic setting. Instead of introducing new hyper-
parameters of prior distribution regarding nodes (i.e., v), training
window length (k) and timestamp (), we estimate the expectation
of D of time-evolving graph G via a neural attention mechanism
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with trainable attention parameters § = {Q(l), Q(Z), cees Q(T)},
that is
T |V] C
E[D; Q] = )| Z Z BO(v, ) (MO @
t=1v=1k=1

where Q(t ) e R™C t =1,...,T,is the context distribution matrix
to capture the dynamic network context information with respect
to nodes and training window length at timestamp ¢; B(t) ¢ R"XC,
t =1,...,T,is the normalized context distribution matrix at times-
tamp t, i.e., B(t)(v, k) = ,Q(t)(v k)

L S0 S, 00wk
tion probability matrix at timestamp t. To be specific, we replace
the hyper-parameter wy and P in Eq. 1 with the trainable atten-
tion weight matrix Q(t) at each timestamp ¢, where each entry
Q(t)(v, k) = wy. - P(v,v) indicates the importance factor of network
context within k distance to v at the timestamp t.

Maximizing the graph likelihood of time-evolving graphs.
Many existing temporal network embedding approaches [4, 15, 17]
treat temporal context (i.e., which timestamp is important?) and
spatial context (i.e., which region of the graph is important and
how large it is?) as two independent information sources, thus
these methods fail to fully investigate the fine-grained context
information of dynamic graphs (e.g., given two node-context pairs
(v1, ¢1) and (v, c2), which one is more important in the k™-order
ego-network of a given anchor point u at a specific timestamp
t). In order to thoroughly investigate such fine-grained context
information in the dynamic setting, we propose to jointly extract the
spatial context and temporal context by maximizing the likelihood
of time-evolving graphs. In particular, the overall objective function
of our STANE framework is formulated as follows

M®) is the transi-

min - [ | loglo@hze) ¥ - (1 - o(zhz) AT =]
Z,Q v,c€‘7
T V| C &)
+ay 3100w k)
t=1v=1k=1

where E[D; §] is defined in Eq.2, zo, and z. are the embedding
vectors of anchor node v and context node ¢ respectively, and o
is a hyper-parameter to balance the impact of the regularization
term on the overall objective function. In particular, the first term
corresponds to the graph likelihood estimator of the observed time-
evolving graphs. Note that, since the last snapshot G aggregates
all the information from the initial timestamp to the very last times-
tamp, we are considering all the nodes and edges that have been
added to the graph over time. The second term corresponds to the
sparse regularizer (i.e., L1 norm) that is designed to select the key
context information from G.

Interpretation via Spatial-Temporal Attention. For various
network analytic tasks, the interpretability of the model is essential
for understanding the logic behind the graph data. To be specific,
given a time-evolving graph G, the end users may want to inves-
tigate the attention distribution of various dimensions (e.g., node
dimension and time dimension). It is natural to exploit the learned
attention parameters B to fulfill the interpretation requirements.
While the burden of using the raw attention B to decipher the
importance of the nodes and timestamps comes from the high-
dimensionality of B € RTX"XC_ To accommodate this issue, we
adopt the aggregation function fugg : RaxbXe _, RY(q € {a,b,c})
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to aggregate along two of three dimensions of B, e.g., fagg(ﬁ) =
Z; Tk BLj:K) 2, Lk Bajk)

3% Sk Blig.k)” 7 8 X Xk Bi. k)

mate the attention distributions of node, training window length

. In this way, we can esti-

and time by compressing B into vector representations.

3 EXPERIMENTAL RESULTS

In this section, we evaluate our proposed STANE framework regard-
ing effectiveness and interpretability on six real dynamic networks.

3.1 Experiment Setup

Datasets: The statistics and brief information of all datasets used
in our experiments are summarized in Table 1.

Table 1: Statistics of datasets

Name #Nodes|#Edges|#Classes|#T Description
DBLP 1909 | 8237 |4 |3 DBLP citation network [11]
FB 1899 | 61734 | -5 Facebook social network [6]
SO 326219926 |25 Stack Overflow comment network [11]
IAR 6809 | 52050 | - | 5 communication network [6]
WIKI 7118 | 107071 | 2| 6 who-votes-on-whom network [6]
IAE 10106 | 50632 | - | 6 bipartite graph of people [6]

Comparison Methods: Our proposed method is compared to
five baselines: DeepWalk[5], WYS[1], TNE[16], Traid[15] and
HTNE[17]. In particular, DeepWalk and WYS are static network
embedding methods, while TNE, Traid and HTNE are recent net-
work embedding approaches that designed for dynamic graphs.

3.2 Effectiveness Analysis

We evaluate the effectiveness of the STANE on the task of link
prediction and node classification, by comparing with five baseline
methods across six datasets.

Link Prediction. The experiment of link prediction is designed
to predict the probability of whether two nodes are connected by an
edge at the last timestamp T, as the last snapshot G aggregates
all the previous information. Besides, a fraction (50%) of edges in

GT) is removed, which ends with two set E(t”)n n and E(t:z 4 ’(f};en

node embeddings are learned from the remaining edges (i.e., £}, ;,
andE®D t=1,...,T- 1). With the same number of non-existent
edges sampled from G, we calculate ROC AUC to report the
performance of each method, which is shown in Table 2. We observe
that STANE consistently outperform all the five baseline methods
across all the six datasets.

Table 2: Link prediction results.

Datasets

Methods  DBLP FB SO JAR WIKI IAE

DeepWalk  0.670  0.656  0.579  0.875 0.794  0.555
WYS 0.841 0.952 0.844 0.954 0.963 0.843
TNE 0.610 0.708 0.736 0.881 0.719  0.656
Triad 0.522  0.601 0575 0.762 0.502 0.515
HTNE 0.844 0913 0.607 0911 0.844 0.792
STANE 0.882 0.966 0.888 0.997 0.982 0.898

Node Classification. This task to predict the label of the node
based on its embedding. We train a logistic classifier with a fraction
(50%) of graph nodes and predict the labels of the rest of nodes
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based on the learned node embeddings. Note that the experiments
are performed on the three datasets (i.e., DBLP, SO, WIKI) with
label information. In Table 3, we report the micro-F1 to measure
the performance of the methods. In general, STANE outperforms
all the baseline methods in most cases.

Table 3: Node classification results.

Methods
Datasets DeepWalk WYS TNE Triad HTNE STANE
DBLP 0.718 0.727 0.612 0.511 0.737 0.757
SO 0.610 0.614 0.592 0.591 0.632 0.617
WIKI 0.701 0.699  0.690 0.553 0.715 0.718

3.3 Interpretability Analysis

Here, we investigate the interpretability of STANE on DBLP dataset.
The distribution of the context attention and time attention is shown
in Fig. 3, where the largest training window length is 5 and the total
timestamps are 3. In summary, we have the following observations:
(1) the last snapshot G is more important than the previous two
snapshots, which is easy to follow as the last snapshot aggregates all
the nodes and edges in the previous timestamps; (2) the high-order
proximity plays the most important role in presenting the observed
time-evolving networks. To further verify the above observations,
we test STANE based on E[B; §] which is estimated solely from
one of the three snapshots, respectively. The evaluation result of
each snapshot is [0.527,0.540,0.848] (ROC AUC for the link predic-
tion) and [0.501,0.612,0.720] (micro-F1 for the node classification),
respectively. This suggests that among the three snapshots, G®
is the most important one, which is consistent with the observed
distribution of attention weights.
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Figure 3: Attention weights over time and walk length (k).

4 RELATED WORKS

There is a growing interest in encoding the temporal patterns of
time-evolving graphs into embedding representations. For exam-
ple, TNE [16] generates the embedding based on the non-negative
matrix factorization of a series of time-evolving adjacency matrices
with the smoothness constraint; Traid [15] focuses on modeling
how to derive a closed triad from an open triad; [4] proposes to
generate temporal random walks in increasing order of edge times
to embed the continuous-time network in a unique representa-
tion; HTNE [17] studies on the neighborhood formation sequence
through Hawkes process to capture the influence of historical neigh-
bors on the current neighbors; There is also another line of works
based on graph convolution for attributed graph sequence, most of
which are applied for traffic prediction [10]. However, it is still an
open question that how to incorporate and balance the extracted
network context information from the spatial domain (e.g., the net-
work structures) and the temporal domain (e.g., the evolution of the
network over time). In this paper, we develop a unified attention
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mechanism to jointly explore the spatial and temporal context from
the time-evolving networks with a learned importance factor in
terms of each node v, training window length k, and timestamps ¢.

5 CONCLUSION

In this paper, we propose a temporal network embedding (STANE)
framework. By parameterizing the co-occurrence matrix with train-
able parameters to balance spatial and temporal context informa-
tion, STANE successfully encodes structural and temporal patterns
within the time-evolving graphs into node embeddings. In addi-
tion, we present that through detailed analysis on the attention
parameters, we could achieve a better understanding of the node
embeddings and the evolution of the temporal networks. Extensive
experiments on several real-world networks demonstrate the effec-
tiveness of the proposed method. In the future, it is of interest to
introduce structured attention and to study the scalability of the
proposed method via a batched training scheme.
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